diff options
Diffstat (limited to 'arch/powerpc/mm/pgtable-book3s64.c')
-rw-r--r-- | arch/powerpc/mm/pgtable-book3s64.c | 501 |
1 files changed, 501 insertions, 0 deletions
diff --git a/arch/powerpc/mm/pgtable-book3s64.c b/arch/powerpc/mm/pgtable-book3s64.c new file mode 100644 index 000000000..297db665d --- /dev/null +++ b/arch/powerpc/mm/pgtable-book3s64.c @@ -0,0 +1,501 @@ +/* + * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include <linux/sched.h> +#include <linux/mm_types.h> +#include <linux/memblock.h> +#include <misc/cxl-base.h> + +#include <asm/pgalloc.h> +#include <asm/tlb.h> +#include <asm/trace.h> +#include <asm/powernv.h> + +#include "mmu_decl.h" +#include <trace/events/thp.h> + +unsigned long __pmd_frag_nr; +EXPORT_SYMBOL(__pmd_frag_nr); +unsigned long __pmd_frag_size_shift; +EXPORT_SYMBOL(__pmd_frag_size_shift); + +int (*register_process_table)(unsigned long base, unsigned long page_size, + unsigned long tbl_size); + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +/* + * This is called when relaxing access to a hugepage. It's also called in the page + * fault path when we don't hit any of the major fault cases, ie, a minor + * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have + * handled those two for us, we additionally deal with missing execute + * permission here on some processors + */ +int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, + pmd_t *pmdp, pmd_t entry, int dirty) +{ + int changed; +#ifdef CONFIG_DEBUG_VM + WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); + assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); +#endif + changed = !pmd_same(*(pmdp), entry); + if (changed) { + /* + * We can use MMU_PAGE_2M here, because only radix + * path look at the psize. + */ + __ptep_set_access_flags(vma, pmdp_ptep(pmdp), + pmd_pte(entry), address, MMU_PAGE_2M); + } + return changed; +} + +int pmdp_test_and_clear_young(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp) +{ + return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); +} +/* + * set a new huge pmd. We should not be called for updating + * an existing pmd entry. That should go via pmd_hugepage_update. + */ +void set_pmd_at(struct mm_struct *mm, unsigned long addr, + pmd_t *pmdp, pmd_t pmd) +{ +#ifdef CONFIG_DEBUG_VM + WARN_ON(pte_present(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); + assert_spin_locked(pmd_lockptr(mm, pmdp)); + WARN_ON(!(pmd_trans_huge(pmd) || pmd_devmap(pmd))); +#endif + trace_hugepage_set_pmd(addr, pmd_val(pmd)); + return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); +} + +static void do_nothing(void *unused) +{ + +} +/* + * Serialize against find_current_mm_pte which does lock-less + * lookup in page tables with local interrupts disabled. For huge pages + * it casts pmd_t to pte_t. Since format of pte_t is different from + * pmd_t we want to prevent transit from pmd pointing to page table + * to pmd pointing to huge page (and back) while interrupts are disabled. + * We clear pmd to possibly replace it with page table pointer in + * different code paths. So make sure we wait for the parallel + * find_current_mm_pte to finish. + */ +void serialize_against_pte_lookup(struct mm_struct *mm) +{ + smp_mb(); + smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1); +} + +/* + * We use this to invalidate a pmdp entry before switching from a + * hugepte to regular pmd entry. + */ +pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, + pmd_t *pmdp) +{ + unsigned long old_pmd; + + old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0); + flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); + /* + * This ensures that generic code that rely on IRQ disabling + * to prevent a parallel THP split work as expected. + */ + serialize_against_pte_lookup(vma->vm_mm); + return __pmd(old_pmd); +} + +static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) +{ + return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); +} + +pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) +{ + unsigned long pmdv; + + pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; + return pmd_set_protbits(__pmd(pmdv), pgprot); +} + +pmd_t mk_pmd(struct page *page, pgprot_t pgprot) +{ + return pfn_pmd(page_to_pfn(page), pgprot); +} + +pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) +{ + unsigned long pmdv; + + pmdv = pmd_val(pmd); + pmdv &= _HPAGE_CHG_MASK; + return pmd_set_protbits(__pmd(pmdv), newprot); +} + +/* + * This is called at the end of handling a user page fault, when the + * fault has been handled by updating a HUGE PMD entry in the linux page tables. + * We use it to preload an HPTE into the hash table corresponding to + * the updated linux HUGE PMD entry. + */ +void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, + pmd_t *pmd) +{ + if (radix_enabled()) + prefetch((void *)addr); +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +/* For use by kexec */ +void mmu_cleanup_all(void) +{ + if (radix_enabled()) + radix__mmu_cleanup_all(); + else if (mmu_hash_ops.hpte_clear_all) + mmu_hash_ops.hpte_clear_all(); +} + +#ifdef CONFIG_MEMORY_HOTPLUG +int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid) +{ + if (radix_enabled()) + return radix__create_section_mapping(start, end, nid); + + return hash__create_section_mapping(start, end, nid); +} + +int __meminit remove_section_mapping(unsigned long start, unsigned long end) +{ + if (radix_enabled()) + return radix__remove_section_mapping(start, end); + + return hash__remove_section_mapping(start, end); +} +#endif /* CONFIG_MEMORY_HOTPLUG */ + +void __init mmu_partition_table_init(void) +{ + unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; + unsigned long ptcr; + + BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); + partition_tb = __va(memblock_alloc_base(patb_size, patb_size, + MEMBLOCK_ALLOC_ANYWHERE)); + + /* Initialize the Partition Table with no entries */ + memset((void *)partition_tb, 0, patb_size); + + /* + * update partition table control register, + * 64 K size. + */ + ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); + mtspr(SPRN_PTCR, ptcr); + powernv_set_nmmu_ptcr(ptcr); +} + +void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, + unsigned long dw1) +{ + unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); + + partition_tb[lpid].patb0 = cpu_to_be64(dw0); + partition_tb[lpid].patb1 = cpu_to_be64(dw1); + + /* + * Global flush of TLBs and partition table caches for this lpid. + * The type of flush (hash or radix) depends on what the previous + * use of this partition ID was, not the new use. + */ + asm volatile("ptesync" : : : "memory"); + if (old & PATB_HR) { + asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : : + "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); + asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : + "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); + trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1); + } else { + asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : + "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); + trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); + } + /* do we need fixup here ?*/ + asm volatile("eieio; tlbsync; ptesync" : : : "memory"); +} +EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); + +static pmd_t *get_pmd_from_cache(struct mm_struct *mm) +{ + void *pmd_frag, *ret; + + spin_lock(&mm->page_table_lock); + ret = mm->context.pmd_frag; + if (ret) { + pmd_frag = ret + PMD_FRAG_SIZE; + /* + * If we have taken up all the fragments mark PTE page NULL + */ + if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) + pmd_frag = NULL; + mm->context.pmd_frag = pmd_frag; + } + spin_unlock(&mm->page_table_lock); + return (pmd_t *)ret; +} + +static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) +{ + void *ret = NULL; + struct page *page; + gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; + + if (mm == &init_mm) + gfp &= ~__GFP_ACCOUNT; + page = alloc_page(gfp); + if (!page) + return NULL; + if (!pgtable_pmd_page_ctor(page)) { + __free_pages(page, 0); + return NULL; + } + + atomic_set(&page->pt_frag_refcount, 1); + + ret = page_address(page); + /* + * if we support only one fragment just return the + * allocated page. + */ + if (PMD_FRAG_NR == 1) + return ret; + + spin_lock(&mm->page_table_lock); + /* + * If we find pgtable_page set, we return + * the allocated page with single fragement + * count. + */ + if (likely(!mm->context.pmd_frag)) { + atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); + mm->context.pmd_frag = ret + PMD_FRAG_SIZE; + } + spin_unlock(&mm->page_table_lock); + + return (pmd_t *)ret; +} + +pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) +{ + pmd_t *pmd; + + pmd = get_pmd_from_cache(mm); + if (pmd) + return pmd; + + return __alloc_for_pmdcache(mm); +} + +void pmd_fragment_free(unsigned long *pmd) +{ + struct page *page = virt_to_page(pmd); + + BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); + if (atomic_dec_and_test(&page->pt_frag_refcount)) { + pgtable_pmd_page_dtor(page); + __free_page(page); + } +} + +static pte_t *get_pte_from_cache(struct mm_struct *mm) +{ + void *pte_frag, *ret; + + spin_lock(&mm->page_table_lock); + ret = mm->context.pte_frag; + if (ret) { + pte_frag = ret + PTE_FRAG_SIZE; + /* + * If we have taken up all the fragments mark PTE page NULL + */ + if (((unsigned long)pte_frag & ~PAGE_MASK) == 0) + pte_frag = NULL; + mm->context.pte_frag = pte_frag; + } + spin_unlock(&mm->page_table_lock); + return (pte_t *)ret; +} + +static pte_t *__alloc_for_ptecache(struct mm_struct *mm, int kernel) +{ + void *ret = NULL; + struct page *page; + + if (!kernel) { + page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT); + if (!page) + return NULL; + if (!pgtable_page_ctor(page)) { + __free_page(page); + return NULL; + } + } else { + page = alloc_page(PGALLOC_GFP); + if (!page) + return NULL; + } + + atomic_set(&page->pt_frag_refcount, 1); + + ret = page_address(page); + /* + * if we support only one fragment just return the + * allocated page. + */ + if (PTE_FRAG_NR == 1) + return ret; + spin_lock(&mm->page_table_lock); + /* + * If we find pgtable_page set, we return + * the allocated page with single fragement + * count. + */ + if (likely(!mm->context.pte_frag)) { + atomic_set(&page->pt_frag_refcount, PTE_FRAG_NR); + mm->context.pte_frag = ret + PTE_FRAG_SIZE; + } + spin_unlock(&mm->page_table_lock); + + return (pte_t *)ret; +} + +pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel) +{ + pte_t *pte; + + pte = get_pte_from_cache(mm); + if (pte) + return pte; + + return __alloc_for_ptecache(mm, kernel); +} + +void pte_fragment_free(unsigned long *table, int kernel) +{ + struct page *page = virt_to_page(table); + + BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); + if (atomic_dec_and_test(&page->pt_frag_refcount)) { + if (!kernel) + pgtable_page_dtor(page); + __free_page(page); + } +} + +static inline void pgtable_free(void *table, int index) +{ + switch (index) { + case PTE_INDEX: + pte_fragment_free(table, 0); + break; + case PMD_INDEX: + pmd_fragment_free(table); + break; + case PUD_INDEX: + kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table); + break; +#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) + /* 16M hugepd directory at pud level */ + case HTLB_16M_INDEX: + BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); + kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); + break; + /* 16G hugepd directory at the pgd level */ + case HTLB_16G_INDEX: + BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); + kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); + break; +#endif + /* We don't free pgd table via RCU callback */ + default: + BUG(); + } +} + +#ifdef CONFIG_SMP +void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) +{ + unsigned long pgf = (unsigned long)table; + + BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); + pgf |= index; + tlb_remove_table(tlb, (void *)pgf); +} + +void __tlb_remove_table(void *_table) +{ + void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); + unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; + + return pgtable_free(table, index); +} +#else +void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) +{ + return pgtable_free(table, index); +} +#endif + +#ifdef CONFIG_PROC_FS +atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; + +void arch_report_meminfo(struct seq_file *m) +{ + /* + * Hash maps the memory with one size mmu_linear_psize. + * So don't bother to print these on hash + */ + if (!radix_enabled()) + return; + seq_printf(m, "DirectMap4k: %8lu kB\n", + atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); + seq_printf(m, "DirectMap64k: %8lu kB\n", + atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); + seq_printf(m, "DirectMap2M: %8lu kB\n", + atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); + seq_printf(m, "DirectMap1G: %8lu kB\n", + atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); +} +#endif /* CONFIG_PROC_FS */ + +/* + * For hash translation mode, we use the deposited table to store hash slot + * information and they are stored at PTRS_PER_PMD offset from related pmd + * location. Hence a pmd move requires deposit and withdraw. + * + * For radix translation with split pmd ptl, we store the deposited table in the + * pmd page. Hence if we have different pmd page we need to withdraw during pmd + * move. + * + * With hash we use deposited table always irrespective of anon or not. + * With radix we use deposited table only for anonymous mapping. + */ +int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, + struct spinlock *old_pmd_ptl, + struct vm_area_struct *vma) +{ + if (radix_enabled()) + return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); + + return true; +} |