summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/fpu/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/fpu/core.c')
-rw-r--r--arch/x86/kernel/fpu/core.c468
1 files changed, 468 insertions, 0 deletions
diff --git a/arch/x86/kernel/fpu/core.c b/arch/x86/kernel/fpu/core.c
new file mode 100644
index 000000000..2e5003fef
--- /dev/null
+++ b/arch/x86/kernel/fpu/core.c
@@ -0,0 +1,468 @@
+/*
+ * Copyright (C) 1994 Linus Torvalds
+ *
+ * Pentium III FXSR, SSE support
+ * General FPU state handling cleanups
+ * Gareth Hughes <gareth@valinux.com>, May 2000
+ */
+#include <asm/fpu/internal.h>
+#include <asm/fpu/regset.h>
+#include <asm/fpu/signal.h>
+#include <asm/fpu/types.h>
+#include <asm/traps.h>
+#include <asm/irq_regs.h>
+
+#include <linux/hardirq.h>
+#include <linux/pkeys.h>
+
+#define CREATE_TRACE_POINTS
+#include <asm/trace/fpu.h>
+
+/*
+ * Represents the initial FPU state. It's mostly (but not completely) zeroes,
+ * depending on the FPU hardware format:
+ */
+union fpregs_state init_fpstate __read_mostly;
+
+/*
+ * Track whether the kernel is using the FPU state
+ * currently.
+ *
+ * This flag is used:
+ *
+ * - by IRQ context code to potentially use the FPU
+ * if it's unused.
+ *
+ * - to debug kernel_fpu_begin()/end() correctness
+ */
+static DEFINE_PER_CPU(bool, in_kernel_fpu);
+
+/*
+ * Track which context is using the FPU on the CPU:
+ */
+DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
+
+static void kernel_fpu_disable(void)
+{
+ WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
+ this_cpu_write(in_kernel_fpu, true);
+}
+
+static void kernel_fpu_enable(void)
+{
+ WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
+ this_cpu_write(in_kernel_fpu, false);
+}
+
+static bool kernel_fpu_disabled(void)
+{
+ return this_cpu_read(in_kernel_fpu);
+}
+
+static bool interrupted_kernel_fpu_idle(void)
+{
+ return !kernel_fpu_disabled();
+}
+
+/*
+ * Were we in user mode (or vm86 mode) when we were
+ * interrupted?
+ *
+ * Doing kernel_fpu_begin/end() is ok if we are running
+ * in an interrupt context from user mode - we'll just
+ * save the FPU state as required.
+ */
+static bool interrupted_user_mode(void)
+{
+ struct pt_regs *regs = get_irq_regs();
+ return regs && user_mode(regs);
+}
+
+/*
+ * Can we use the FPU in kernel mode with the
+ * whole "kernel_fpu_begin/end()" sequence?
+ *
+ * It's always ok in process context (ie "not interrupt")
+ * but it is sometimes ok even from an irq.
+ */
+bool irq_fpu_usable(void)
+{
+ return !in_interrupt() ||
+ interrupted_user_mode() ||
+ interrupted_kernel_fpu_idle();
+}
+EXPORT_SYMBOL(irq_fpu_usable);
+
+static void __kernel_fpu_begin(void)
+{
+ struct fpu *fpu = &current->thread.fpu;
+
+ WARN_ON_FPU(!irq_fpu_usable());
+
+ kernel_fpu_disable();
+
+ if (fpu->initialized) {
+ /*
+ * Ignore return value -- we don't care if reg state
+ * is clobbered.
+ */
+ copy_fpregs_to_fpstate(fpu);
+ } else {
+ __cpu_invalidate_fpregs_state();
+ }
+}
+
+static void __kernel_fpu_end(void)
+{
+ struct fpu *fpu = &current->thread.fpu;
+
+ if (fpu->initialized)
+ copy_kernel_to_fpregs(&fpu->state);
+
+ kernel_fpu_enable();
+}
+
+void kernel_fpu_begin(void)
+{
+ preempt_disable();
+ __kernel_fpu_begin();
+}
+EXPORT_SYMBOL_GPL(kernel_fpu_begin);
+
+void kernel_fpu_end(void)
+{
+ __kernel_fpu_end();
+ preempt_enable();
+}
+EXPORT_SYMBOL_GPL(kernel_fpu_end);
+
+/*
+ * Save the FPU state (mark it for reload if necessary):
+ *
+ * This only ever gets called for the current task.
+ */
+void fpu__save(struct fpu *fpu)
+{
+ WARN_ON_FPU(fpu != &current->thread.fpu);
+
+ preempt_disable();
+ trace_x86_fpu_before_save(fpu);
+ if (fpu->initialized) {
+ if (!copy_fpregs_to_fpstate(fpu)) {
+ copy_kernel_to_fpregs(&fpu->state);
+ }
+ }
+ trace_x86_fpu_after_save(fpu);
+ preempt_enable();
+}
+EXPORT_SYMBOL_GPL(fpu__save);
+
+/*
+ * Legacy x87 fpstate state init:
+ */
+static inline void fpstate_init_fstate(struct fregs_state *fp)
+{
+ fp->cwd = 0xffff037fu;
+ fp->swd = 0xffff0000u;
+ fp->twd = 0xffffffffu;
+ fp->fos = 0xffff0000u;
+}
+
+void fpstate_init(union fpregs_state *state)
+{
+ if (!static_cpu_has(X86_FEATURE_FPU)) {
+ fpstate_init_soft(&state->soft);
+ return;
+ }
+
+ memset(state, 0, fpu_kernel_xstate_size);
+
+ if (static_cpu_has(X86_FEATURE_XSAVES))
+ fpstate_init_xstate(&state->xsave);
+ if (static_cpu_has(X86_FEATURE_FXSR))
+ fpstate_init_fxstate(&state->fxsave);
+ else
+ fpstate_init_fstate(&state->fsave);
+}
+EXPORT_SYMBOL_GPL(fpstate_init);
+
+int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
+{
+ dst_fpu->last_cpu = -1;
+
+ if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
+ return 0;
+
+ WARN_ON_FPU(src_fpu != &current->thread.fpu);
+
+ /*
+ * Don't let 'init optimized' areas of the XSAVE area
+ * leak into the child task:
+ */
+ memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
+
+ /*
+ * Save current FPU registers directly into the child
+ * FPU context, without any memory-to-memory copying.
+ *
+ * ( The function 'fails' in the FNSAVE case, which destroys
+ * register contents so we have to copy them back. )
+ */
+ if (!copy_fpregs_to_fpstate(dst_fpu)) {
+ memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
+ copy_kernel_to_fpregs(&src_fpu->state);
+ }
+
+ trace_x86_fpu_copy_src(src_fpu);
+ trace_x86_fpu_copy_dst(dst_fpu);
+
+ return 0;
+}
+
+/*
+ * Activate the current task's in-memory FPU context,
+ * if it has not been used before:
+ */
+void fpu__initialize(struct fpu *fpu)
+{
+ WARN_ON_FPU(fpu != &current->thread.fpu);
+
+ if (!fpu->initialized) {
+ fpstate_init(&fpu->state);
+ trace_x86_fpu_init_state(fpu);
+
+ trace_x86_fpu_activate_state(fpu);
+ /* Safe to do for the current task: */
+ fpu->initialized = 1;
+ }
+}
+EXPORT_SYMBOL_GPL(fpu__initialize);
+
+/*
+ * This function must be called before we read a task's fpstate.
+ *
+ * There's two cases where this gets called:
+ *
+ * - for the current task (when coredumping), in which case we have
+ * to save the latest FPU registers into the fpstate,
+ *
+ * - or it's called for stopped tasks (ptrace), in which case the
+ * registers were already saved by the context-switch code when
+ * the task scheduled out - we only have to initialize the registers
+ * if they've never been initialized.
+ *
+ * If the task has used the FPU before then save it.
+ */
+void fpu__prepare_read(struct fpu *fpu)
+{
+ if (fpu == &current->thread.fpu) {
+ fpu__save(fpu);
+ } else {
+ if (!fpu->initialized) {
+ fpstate_init(&fpu->state);
+ trace_x86_fpu_init_state(fpu);
+
+ trace_x86_fpu_activate_state(fpu);
+ /* Safe to do for current and for stopped child tasks: */
+ fpu->initialized = 1;
+ }
+ }
+}
+
+/*
+ * This function must be called before we write a task's fpstate.
+ *
+ * If the task has used the FPU before then invalidate any cached FPU registers.
+ * If the task has not used the FPU before then initialize its fpstate.
+ *
+ * After this function call, after registers in the fpstate are
+ * modified and the child task has woken up, the child task will
+ * restore the modified FPU state from the modified context. If we
+ * didn't clear its cached status here then the cached in-registers
+ * state pending on its former CPU could be restored, corrupting
+ * the modifications.
+ */
+void fpu__prepare_write(struct fpu *fpu)
+{
+ /*
+ * Only stopped child tasks can be used to modify the FPU
+ * state in the fpstate buffer:
+ */
+ WARN_ON_FPU(fpu == &current->thread.fpu);
+
+ if (fpu->initialized) {
+ /* Invalidate any cached state: */
+ __fpu_invalidate_fpregs_state(fpu);
+ } else {
+ fpstate_init(&fpu->state);
+ trace_x86_fpu_init_state(fpu);
+
+ trace_x86_fpu_activate_state(fpu);
+ /* Safe to do for stopped child tasks: */
+ fpu->initialized = 1;
+ }
+}
+
+/*
+ * 'fpu__restore()' is called to copy FPU registers from
+ * the FPU fpstate to the live hw registers and to activate
+ * access to the hardware registers, so that FPU instructions
+ * can be used afterwards.
+ *
+ * Must be called with kernel preemption disabled (for example
+ * with local interrupts disabled, as it is in the case of
+ * do_device_not_available()).
+ */
+void fpu__restore(struct fpu *fpu)
+{
+ fpu__initialize(fpu);
+
+ /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
+ kernel_fpu_disable();
+ trace_x86_fpu_before_restore(fpu);
+ fpregs_activate(fpu);
+ copy_kernel_to_fpregs(&fpu->state);
+ trace_x86_fpu_after_restore(fpu);
+ kernel_fpu_enable();
+}
+EXPORT_SYMBOL_GPL(fpu__restore);
+
+/*
+ * Drops current FPU state: deactivates the fpregs and
+ * the fpstate. NOTE: it still leaves previous contents
+ * in the fpregs in the eager-FPU case.
+ *
+ * This function can be used in cases where we know that
+ * a state-restore is coming: either an explicit one,
+ * or a reschedule.
+ */
+void fpu__drop(struct fpu *fpu)
+{
+ preempt_disable();
+
+ if (fpu == &current->thread.fpu) {
+ if (fpu->initialized) {
+ /* Ignore delayed exceptions from user space */
+ asm volatile("1: fwait\n"
+ "2:\n"
+ _ASM_EXTABLE(1b, 2b));
+ fpregs_deactivate(fpu);
+ }
+ }
+
+ fpu->initialized = 0;
+
+ trace_x86_fpu_dropped(fpu);
+
+ preempt_enable();
+}
+
+/*
+ * Clear FPU registers by setting them up from
+ * the init fpstate:
+ */
+static inline void copy_init_fpstate_to_fpregs(void)
+{
+ if (use_xsave())
+ copy_kernel_to_xregs(&init_fpstate.xsave, -1);
+ else if (static_cpu_has(X86_FEATURE_FXSR))
+ copy_kernel_to_fxregs(&init_fpstate.fxsave);
+ else
+ copy_kernel_to_fregs(&init_fpstate.fsave);
+
+ if (boot_cpu_has(X86_FEATURE_OSPKE))
+ copy_init_pkru_to_fpregs();
+}
+
+/*
+ * Clear the FPU state back to init state.
+ *
+ * Called by sys_execve(), by the signal handler code and by various
+ * error paths.
+ */
+void fpu__clear(struct fpu *fpu)
+{
+ WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
+
+ fpu__drop(fpu);
+
+ /*
+ * Make sure fpstate is cleared and initialized.
+ */
+ if (static_cpu_has(X86_FEATURE_FPU)) {
+ preempt_disable();
+ fpu__initialize(fpu);
+ user_fpu_begin();
+ copy_init_fpstate_to_fpregs();
+ preempt_enable();
+ }
+}
+
+/*
+ * x87 math exception handling:
+ */
+
+int fpu__exception_code(struct fpu *fpu, int trap_nr)
+{
+ int err;
+
+ if (trap_nr == X86_TRAP_MF) {
+ unsigned short cwd, swd;
+ /*
+ * (~cwd & swd) will mask out exceptions that are not set to unmasked
+ * status. 0x3f is the exception bits in these regs, 0x200 is the
+ * C1 reg you need in case of a stack fault, 0x040 is the stack
+ * fault bit. We should only be taking one exception at a time,
+ * so if this combination doesn't produce any single exception,
+ * then we have a bad program that isn't synchronizing its FPU usage
+ * and it will suffer the consequences since we won't be able to
+ * fully reproduce the context of the exception.
+ */
+ if (boot_cpu_has(X86_FEATURE_FXSR)) {
+ cwd = fpu->state.fxsave.cwd;
+ swd = fpu->state.fxsave.swd;
+ } else {
+ cwd = (unsigned short)fpu->state.fsave.cwd;
+ swd = (unsigned short)fpu->state.fsave.swd;
+ }
+
+ err = swd & ~cwd;
+ } else {
+ /*
+ * The SIMD FPU exceptions are handled a little differently, as there
+ * is only a single status/control register. Thus, to determine which
+ * unmasked exception was caught we must mask the exception mask bits
+ * at 0x1f80, and then use these to mask the exception bits at 0x3f.
+ */
+ unsigned short mxcsr = MXCSR_DEFAULT;
+
+ if (boot_cpu_has(X86_FEATURE_XMM))
+ mxcsr = fpu->state.fxsave.mxcsr;
+
+ err = ~(mxcsr >> 7) & mxcsr;
+ }
+
+ if (err & 0x001) { /* Invalid op */
+ /*
+ * swd & 0x240 == 0x040: Stack Underflow
+ * swd & 0x240 == 0x240: Stack Overflow
+ * User must clear the SF bit (0x40) if set
+ */
+ return FPE_FLTINV;
+ } else if (err & 0x004) { /* Divide by Zero */
+ return FPE_FLTDIV;
+ } else if (err & 0x008) { /* Overflow */
+ return FPE_FLTOVF;
+ } else if (err & 0x012) { /* Denormal, Underflow */
+ return FPE_FLTUND;
+ } else if (err & 0x020) { /* Precision */
+ return FPE_FLTRES;
+ }
+
+ /*
+ * If we're using IRQ 13, or supposedly even some trap
+ * X86_TRAP_MF implementations, it's possible
+ * we get a spurious trap, which is not an error.
+ */
+ return 0;
+}