summaryrefslogtreecommitdiffstats
path: root/block/bio.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--block/bio.c2102
1 files changed, 2102 insertions, 0 deletions
diff --git a/block/bio.c b/block/bio.c
new file mode 100644
index 000000000..7858b2d23
--- /dev/null
+++ b/block/bio.c
@@ -0,0 +1,2102 @@
+/*
+ * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public Licens
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
+ *
+ */
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/bio.h>
+#include <linux/blkdev.h>
+#include <linux/uio.h>
+#include <linux/iocontext.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/export.h>
+#include <linux/mempool.h>
+#include <linux/workqueue.h>
+#include <linux/cgroup.h>
+#include <linux/blk-cgroup.h>
+
+#include <trace/events/block.h>
+#include "blk.h"
+#include "blk-rq-qos.h"
+
+/*
+ * Test patch to inline a certain number of bi_io_vec's inside the bio
+ * itself, to shrink a bio data allocation from two mempool calls to one
+ */
+#define BIO_INLINE_VECS 4
+
+/*
+ * if you change this list, also change bvec_alloc or things will
+ * break badly! cannot be bigger than what you can fit into an
+ * unsigned short
+ */
+#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
+static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
+ BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
+};
+#undef BV
+
+/*
+ * fs_bio_set is the bio_set containing bio and iovec memory pools used by
+ * IO code that does not need private memory pools.
+ */
+struct bio_set fs_bio_set;
+EXPORT_SYMBOL(fs_bio_set);
+
+/*
+ * Our slab pool management
+ */
+struct bio_slab {
+ struct kmem_cache *slab;
+ unsigned int slab_ref;
+ unsigned int slab_size;
+ char name[8];
+};
+static DEFINE_MUTEX(bio_slab_lock);
+static struct bio_slab *bio_slabs;
+static unsigned int bio_slab_nr, bio_slab_max;
+
+static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
+{
+ unsigned int sz = sizeof(struct bio) + extra_size;
+ struct kmem_cache *slab = NULL;
+ struct bio_slab *bslab, *new_bio_slabs;
+ unsigned int new_bio_slab_max;
+ unsigned int i, entry = -1;
+
+ mutex_lock(&bio_slab_lock);
+
+ i = 0;
+ while (i < bio_slab_nr) {
+ bslab = &bio_slabs[i];
+
+ if (!bslab->slab && entry == -1)
+ entry = i;
+ else if (bslab->slab_size == sz) {
+ slab = bslab->slab;
+ bslab->slab_ref++;
+ break;
+ }
+ i++;
+ }
+
+ if (slab)
+ goto out_unlock;
+
+ if (bio_slab_nr == bio_slab_max && entry == -1) {
+ new_bio_slab_max = bio_slab_max << 1;
+ new_bio_slabs = krealloc(bio_slabs,
+ new_bio_slab_max * sizeof(struct bio_slab),
+ GFP_KERNEL);
+ if (!new_bio_slabs)
+ goto out_unlock;
+ bio_slab_max = new_bio_slab_max;
+ bio_slabs = new_bio_slabs;
+ }
+ if (entry == -1)
+ entry = bio_slab_nr++;
+
+ bslab = &bio_slabs[entry];
+
+ snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
+ slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
+ SLAB_HWCACHE_ALIGN, NULL);
+ if (!slab)
+ goto out_unlock;
+
+ bslab->slab = slab;
+ bslab->slab_ref = 1;
+ bslab->slab_size = sz;
+out_unlock:
+ mutex_unlock(&bio_slab_lock);
+ return slab;
+}
+
+static void bio_put_slab(struct bio_set *bs)
+{
+ struct bio_slab *bslab = NULL;
+ unsigned int i;
+
+ mutex_lock(&bio_slab_lock);
+
+ for (i = 0; i < bio_slab_nr; i++) {
+ if (bs->bio_slab == bio_slabs[i].slab) {
+ bslab = &bio_slabs[i];
+ break;
+ }
+ }
+
+ if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
+ goto out;
+
+ WARN_ON(!bslab->slab_ref);
+
+ if (--bslab->slab_ref)
+ goto out;
+
+ kmem_cache_destroy(bslab->slab);
+ bslab->slab = NULL;
+
+out:
+ mutex_unlock(&bio_slab_lock);
+}
+
+unsigned int bvec_nr_vecs(unsigned short idx)
+{
+ return bvec_slabs[--idx].nr_vecs;
+}
+
+void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
+{
+ if (!idx)
+ return;
+ idx--;
+
+ BIO_BUG_ON(idx >= BVEC_POOL_NR);
+
+ if (idx == BVEC_POOL_MAX) {
+ mempool_free(bv, pool);
+ } else {
+ struct biovec_slab *bvs = bvec_slabs + idx;
+
+ kmem_cache_free(bvs->slab, bv);
+ }
+}
+
+struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
+ mempool_t *pool)
+{
+ struct bio_vec *bvl;
+
+ /*
+ * see comment near bvec_array define!
+ */
+ switch (nr) {
+ case 1:
+ *idx = 0;
+ break;
+ case 2 ... 4:
+ *idx = 1;
+ break;
+ case 5 ... 16:
+ *idx = 2;
+ break;
+ case 17 ... 64:
+ *idx = 3;
+ break;
+ case 65 ... 128:
+ *idx = 4;
+ break;
+ case 129 ... BIO_MAX_PAGES:
+ *idx = 5;
+ break;
+ default:
+ return NULL;
+ }
+
+ /*
+ * idx now points to the pool we want to allocate from. only the
+ * 1-vec entry pool is mempool backed.
+ */
+ if (*idx == BVEC_POOL_MAX) {
+fallback:
+ bvl = mempool_alloc(pool, gfp_mask);
+ } else {
+ struct biovec_slab *bvs = bvec_slabs + *idx;
+ gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
+
+ /*
+ * Make this allocation restricted and don't dump info on
+ * allocation failures, since we'll fallback to the mempool
+ * in case of failure.
+ */
+ __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
+
+ /*
+ * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
+ * is set, retry with the 1-entry mempool
+ */
+ bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
+ if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
+ *idx = BVEC_POOL_MAX;
+ goto fallback;
+ }
+ }
+
+ (*idx)++;
+ return bvl;
+}
+
+void bio_uninit(struct bio *bio)
+{
+ bio_disassociate_task(bio);
+}
+EXPORT_SYMBOL(bio_uninit);
+
+static void bio_free(struct bio *bio)
+{
+ struct bio_set *bs = bio->bi_pool;
+ void *p;
+
+ bio_uninit(bio);
+
+ if (bs) {
+ bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
+
+ /*
+ * If we have front padding, adjust the bio pointer before freeing
+ */
+ p = bio;
+ p -= bs->front_pad;
+
+ mempool_free(p, &bs->bio_pool);
+ } else {
+ /* Bio was allocated by bio_kmalloc() */
+ kfree(bio);
+ }
+}
+
+/*
+ * Users of this function have their own bio allocation. Subsequently,
+ * they must remember to pair any call to bio_init() with bio_uninit()
+ * when IO has completed, or when the bio is released.
+ */
+void bio_init(struct bio *bio, struct bio_vec *table,
+ unsigned short max_vecs)
+{
+ memset(bio, 0, sizeof(*bio));
+ atomic_set(&bio->__bi_remaining, 1);
+ atomic_set(&bio->__bi_cnt, 1);
+
+ bio->bi_io_vec = table;
+ bio->bi_max_vecs = max_vecs;
+}
+EXPORT_SYMBOL(bio_init);
+
+/**
+ * bio_reset - reinitialize a bio
+ * @bio: bio to reset
+ *
+ * Description:
+ * After calling bio_reset(), @bio will be in the same state as a freshly
+ * allocated bio returned bio bio_alloc_bioset() - the only fields that are
+ * preserved are the ones that are initialized by bio_alloc_bioset(). See
+ * comment in struct bio.
+ */
+void bio_reset(struct bio *bio)
+{
+ unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
+
+ bio_uninit(bio);
+
+ memset(bio, 0, BIO_RESET_BYTES);
+ bio->bi_flags = flags;
+ atomic_set(&bio->__bi_remaining, 1);
+}
+EXPORT_SYMBOL(bio_reset);
+
+static struct bio *__bio_chain_endio(struct bio *bio)
+{
+ struct bio *parent = bio->bi_private;
+
+ if (bio->bi_status && !parent->bi_status)
+ parent->bi_status = bio->bi_status;
+ bio_put(bio);
+ return parent;
+}
+
+static void bio_chain_endio(struct bio *bio)
+{
+ bio_endio(__bio_chain_endio(bio));
+}
+
+/**
+ * bio_chain - chain bio completions
+ * @bio: the target bio
+ * @parent: the @bio's parent bio
+ *
+ * The caller won't have a bi_end_io called when @bio completes - instead,
+ * @parent's bi_end_io won't be called until both @parent and @bio have
+ * completed; the chained bio will also be freed when it completes.
+ *
+ * The caller must not set bi_private or bi_end_io in @bio.
+ */
+void bio_chain(struct bio *bio, struct bio *parent)
+{
+ BUG_ON(bio->bi_private || bio->bi_end_io);
+
+ bio->bi_private = parent;
+ bio->bi_end_io = bio_chain_endio;
+ bio_inc_remaining(parent);
+}
+EXPORT_SYMBOL(bio_chain);
+
+static void bio_alloc_rescue(struct work_struct *work)
+{
+ struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
+ struct bio *bio;
+
+ while (1) {
+ spin_lock(&bs->rescue_lock);
+ bio = bio_list_pop(&bs->rescue_list);
+ spin_unlock(&bs->rescue_lock);
+
+ if (!bio)
+ break;
+
+ generic_make_request(bio);
+ }
+}
+
+static void punt_bios_to_rescuer(struct bio_set *bs)
+{
+ struct bio_list punt, nopunt;
+ struct bio *bio;
+
+ if (WARN_ON_ONCE(!bs->rescue_workqueue))
+ return;
+ /*
+ * In order to guarantee forward progress we must punt only bios that
+ * were allocated from this bio_set; otherwise, if there was a bio on
+ * there for a stacking driver higher up in the stack, processing it
+ * could require allocating bios from this bio_set, and doing that from
+ * our own rescuer would be bad.
+ *
+ * Since bio lists are singly linked, pop them all instead of trying to
+ * remove from the middle of the list:
+ */
+
+ bio_list_init(&punt);
+ bio_list_init(&nopunt);
+
+ while ((bio = bio_list_pop(&current->bio_list[0])))
+ bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
+ current->bio_list[0] = nopunt;
+
+ bio_list_init(&nopunt);
+ while ((bio = bio_list_pop(&current->bio_list[1])))
+ bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
+ current->bio_list[1] = nopunt;
+
+ spin_lock(&bs->rescue_lock);
+ bio_list_merge(&bs->rescue_list, &punt);
+ spin_unlock(&bs->rescue_lock);
+
+ queue_work(bs->rescue_workqueue, &bs->rescue_work);
+}
+
+/**
+ * bio_alloc_bioset - allocate a bio for I/O
+ * @gfp_mask: the GFP_* mask given to the slab allocator
+ * @nr_iovecs: number of iovecs to pre-allocate
+ * @bs: the bio_set to allocate from.
+ *
+ * Description:
+ * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
+ * backed by the @bs's mempool.
+ *
+ * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
+ * always be able to allocate a bio. This is due to the mempool guarantees.
+ * To make this work, callers must never allocate more than 1 bio at a time
+ * from this pool. Callers that need to allocate more than 1 bio must always
+ * submit the previously allocated bio for IO before attempting to allocate
+ * a new one. Failure to do so can cause deadlocks under memory pressure.
+ *
+ * Note that when running under generic_make_request() (i.e. any block
+ * driver), bios are not submitted until after you return - see the code in
+ * generic_make_request() that converts recursion into iteration, to prevent
+ * stack overflows.
+ *
+ * This would normally mean allocating multiple bios under
+ * generic_make_request() would be susceptible to deadlocks, but we have
+ * deadlock avoidance code that resubmits any blocked bios from a rescuer
+ * thread.
+ *
+ * However, we do not guarantee forward progress for allocations from other
+ * mempools. Doing multiple allocations from the same mempool under
+ * generic_make_request() should be avoided - instead, use bio_set's front_pad
+ * for per bio allocations.
+ *
+ * RETURNS:
+ * Pointer to new bio on success, NULL on failure.
+ */
+struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
+ struct bio_set *bs)
+{
+ gfp_t saved_gfp = gfp_mask;
+ unsigned front_pad;
+ unsigned inline_vecs;
+ struct bio_vec *bvl = NULL;
+ struct bio *bio;
+ void *p;
+
+ if (!bs) {
+ if (nr_iovecs > UIO_MAXIOV)
+ return NULL;
+
+ p = kmalloc(sizeof(struct bio) +
+ nr_iovecs * sizeof(struct bio_vec),
+ gfp_mask);
+ front_pad = 0;
+ inline_vecs = nr_iovecs;
+ } else {
+ /* should not use nobvec bioset for nr_iovecs > 0 */
+ if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
+ nr_iovecs > 0))
+ return NULL;
+ /*
+ * generic_make_request() converts recursion to iteration; this
+ * means if we're running beneath it, any bios we allocate and
+ * submit will not be submitted (and thus freed) until after we
+ * return.
+ *
+ * This exposes us to a potential deadlock if we allocate
+ * multiple bios from the same bio_set() while running
+ * underneath generic_make_request(). If we were to allocate
+ * multiple bios (say a stacking block driver that was splitting
+ * bios), we would deadlock if we exhausted the mempool's
+ * reserve.
+ *
+ * We solve this, and guarantee forward progress, with a rescuer
+ * workqueue per bio_set. If we go to allocate and there are
+ * bios on current->bio_list, we first try the allocation
+ * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
+ * bios we would be blocking to the rescuer workqueue before
+ * we retry with the original gfp_flags.
+ */
+
+ if (current->bio_list &&
+ (!bio_list_empty(&current->bio_list[0]) ||
+ !bio_list_empty(&current->bio_list[1])) &&
+ bs->rescue_workqueue)
+ gfp_mask &= ~__GFP_DIRECT_RECLAIM;
+
+ p = mempool_alloc(&bs->bio_pool, gfp_mask);
+ if (!p && gfp_mask != saved_gfp) {
+ punt_bios_to_rescuer(bs);
+ gfp_mask = saved_gfp;
+ p = mempool_alloc(&bs->bio_pool, gfp_mask);
+ }
+
+ front_pad = bs->front_pad;
+ inline_vecs = BIO_INLINE_VECS;
+ }
+
+ if (unlikely(!p))
+ return NULL;
+
+ bio = p + front_pad;
+ bio_init(bio, NULL, 0);
+
+ if (nr_iovecs > inline_vecs) {
+ unsigned long idx = 0;
+
+ bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
+ if (!bvl && gfp_mask != saved_gfp) {
+ punt_bios_to_rescuer(bs);
+ gfp_mask = saved_gfp;
+ bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
+ }
+
+ if (unlikely(!bvl))
+ goto err_free;
+
+ bio->bi_flags |= idx << BVEC_POOL_OFFSET;
+ } else if (nr_iovecs) {
+ bvl = bio->bi_inline_vecs;
+ }
+
+ bio->bi_pool = bs;
+ bio->bi_max_vecs = nr_iovecs;
+ bio->bi_io_vec = bvl;
+ return bio;
+
+err_free:
+ mempool_free(p, &bs->bio_pool);
+ return NULL;
+}
+EXPORT_SYMBOL(bio_alloc_bioset);
+
+void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
+{
+ unsigned long flags;
+ struct bio_vec bv;
+ struct bvec_iter iter;
+
+ __bio_for_each_segment(bv, bio, iter, start) {
+ char *data = bvec_kmap_irq(&bv, &flags);
+ memset(data, 0, bv.bv_len);
+ flush_dcache_page(bv.bv_page);
+ bvec_kunmap_irq(data, &flags);
+ }
+}
+EXPORT_SYMBOL(zero_fill_bio_iter);
+
+/**
+ * bio_put - release a reference to a bio
+ * @bio: bio to release reference to
+ *
+ * Description:
+ * Put a reference to a &struct bio, either one you have gotten with
+ * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
+ **/
+void bio_put(struct bio *bio)
+{
+ if (!bio_flagged(bio, BIO_REFFED))
+ bio_free(bio);
+ else {
+ BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
+
+ /*
+ * last put frees it
+ */
+ if (atomic_dec_and_test(&bio->__bi_cnt))
+ bio_free(bio);
+ }
+}
+EXPORT_SYMBOL(bio_put);
+
+inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
+{
+ if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
+ blk_recount_segments(q, bio);
+
+ return bio->bi_phys_segments;
+}
+EXPORT_SYMBOL(bio_phys_segments);
+
+/**
+ * __bio_clone_fast - clone a bio that shares the original bio's biovec
+ * @bio: destination bio
+ * @bio_src: bio to clone
+ *
+ * Clone a &bio. Caller will own the returned bio, but not
+ * the actual data it points to. Reference count of returned
+ * bio will be one.
+ *
+ * Caller must ensure that @bio_src is not freed before @bio.
+ */
+void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
+{
+ BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
+
+ /*
+ * most users will be overriding ->bi_disk with a new target,
+ * so we don't set nor calculate new physical/hw segment counts here
+ */
+ bio->bi_disk = bio_src->bi_disk;
+ bio->bi_partno = bio_src->bi_partno;
+ bio_set_flag(bio, BIO_CLONED);
+ if (bio_flagged(bio_src, BIO_THROTTLED))
+ bio_set_flag(bio, BIO_THROTTLED);
+ bio->bi_opf = bio_src->bi_opf;
+ bio->bi_ioprio = bio_src->bi_ioprio;
+ bio->bi_write_hint = bio_src->bi_write_hint;
+ bio->bi_iter = bio_src->bi_iter;
+ bio->bi_io_vec = bio_src->bi_io_vec;
+
+ bio_clone_blkcg_association(bio, bio_src);
+}
+EXPORT_SYMBOL(__bio_clone_fast);
+
+/**
+ * bio_clone_fast - clone a bio that shares the original bio's biovec
+ * @bio: bio to clone
+ * @gfp_mask: allocation priority
+ * @bs: bio_set to allocate from
+ *
+ * Like __bio_clone_fast, only also allocates the returned bio
+ */
+struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
+{
+ struct bio *b;
+
+ b = bio_alloc_bioset(gfp_mask, 0, bs);
+ if (!b)
+ return NULL;
+
+ __bio_clone_fast(b, bio);
+
+ if (bio_integrity(bio)) {
+ int ret;
+
+ ret = bio_integrity_clone(b, bio, gfp_mask);
+
+ if (ret < 0) {
+ bio_put(b);
+ return NULL;
+ }
+ }
+
+ return b;
+}
+EXPORT_SYMBOL(bio_clone_fast);
+
+/**
+ * bio_add_pc_page - attempt to add page to bio
+ * @q: the target queue
+ * @bio: destination bio
+ * @page: page to add
+ * @len: vec entry length
+ * @offset: vec entry offset
+ *
+ * Attempt to add a page to the bio_vec maplist. This can fail for a
+ * number of reasons, such as the bio being full or target block device
+ * limitations. The target block device must allow bio's up to PAGE_SIZE,
+ * so it is always possible to add a single page to an empty bio.
+ *
+ * This should only be used by REQ_PC bios.
+ */
+int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
+ *page, unsigned int len, unsigned int offset)
+{
+ int retried_segments = 0;
+ struct bio_vec *bvec;
+
+ /*
+ * cloned bio must not modify vec list
+ */
+ if (unlikely(bio_flagged(bio, BIO_CLONED)))
+ return 0;
+
+ if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
+ return 0;
+
+ /*
+ * For filesystems with a blocksize smaller than the pagesize
+ * we will often be called with the same page as last time and
+ * a consecutive offset. Optimize this special case.
+ */
+ if (bio->bi_vcnt > 0) {
+ struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
+
+ if (page == prev->bv_page &&
+ offset == prev->bv_offset + prev->bv_len) {
+ prev->bv_len += len;
+ bio->bi_iter.bi_size += len;
+ goto done;
+ }
+
+ /*
+ * If the queue doesn't support SG gaps and adding this
+ * offset would create a gap, disallow it.
+ */
+ if (bvec_gap_to_prev(q, prev, offset))
+ return 0;
+ }
+
+ if (bio_full(bio))
+ return 0;
+
+ /*
+ * setup the new entry, we might clear it again later if we
+ * cannot add the page
+ */
+ bvec = &bio->bi_io_vec[bio->bi_vcnt];
+ bvec->bv_page = page;
+ bvec->bv_len = len;
+ bvec->bv_offset = offset;
+ bio->bi_vcnt++;
+ bio->bi_phys_segments++;
+ bio->bi_iter.bi_size += len;
+
+ /*
+ * Perform a recount if the number of segments is greater
+ * than queue_max_segments(q).
+ */
+
+ while (bio->bi_phys_segments > queue_max_segments(q)) {
+
+ if (retried_segments)
+ goto failed;
+
+ retried_segments = 1;
+ blk_recount_segments(q, bio);
+ }
+
+ /* If we may be able to merge these biovecs, force a recount */
+ if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
+ bio_clear_flag(bio, BIO_SEG_VALID);
+
+ done:
+ return len;
+
+ failed:
+ bvec->bv_page = NULL;
+ bvec->bv_len = 0;
+ bvec->bv_offset = 0;
+ bio->bi_vcnt--;
+ bio->bi_iter.bi_size -= len;
+ blk_recount_segments(q, bio);
+ return 0;
+}
+EXPORT_SYMBOL(bio_add_pc_page);
+
+/**
+ * __bio_try_merge_page - try appending data to an existing bvec.
+ * @bio: destination bio
+ * @page: page to add
+ * @len: length of the data to add
+ * @off: offset of the data in @page
+ *
+ * Try to add the data at @page + @off to the last bvec of @bio. This is a
+ * a useful optimisation for file systems with a block size smaller than the
+ * page size.
+ *
+ * Return %true on success or %false on failure.
+ */
+bool __bio_try_merge_page(struct bio *bio, struct page *page,
+ unsigned int len, unsigned int off)
+{
+ if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
+ return false;
+
+ if (bio->bi_vcnt > 0) {
+ struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
+
+ if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
+ bv->bv_len += len;
+ bio->bi_iter.bi_size += len;
+ return true;
+ }
+ }
+ return false;
+}
+EXPORT_SYMBOL_GPL(__bio_try_merge_page);
+
+/**
+ * __bio_add_page - add page to a bio in a new segment
+ * @bio: destination bio
+ * @page: page to add
+ * @len: length of the data to add
+ * @off: offset of the data in @page
+ *
+ * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
+ * that @bio has space for another bvec.
+ */
+void __bio_add_page(struct bio *bio, struct page *page,
+ unsigned int len, unsigned int off)
+{
+ struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
+
+ WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
+ WARN_ON_ONCE(bio_full(bio));
+
+ bv->bv_page = page;
+ bv->bv_offset = off;
+ bv->bv_len = len;
+
+ bio->bi_iter.bi_size += len;
+ bio->bi_vcnt++;
+}
+EXPORT_SYMBOL_GPL(__bio_add_page);
+
+/**
+ * bio_add_page - attempt to add page to bio
+ * @bio: destination bio
+ * @page: page to add
+ * @len: vec entry length
+ * @offset: vec entry offset
+ *
+ * Attempt to add a page to the bio_vec maplist. This will only fail
+ * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
+ */
+int bio_add_page(struct bio *bio, struct page *page,
+ unsigned int len, unsigned int offset)
+{
+ if (!__bio_try_merge_page(bio, page, len, offset)) {
+ if (bio_full(bio))
+ return 0;
+ __bio_add_page(bio, page, len, offset);
+ }
+ return len;
+}
+EXPORT_SYMBOL(bio_add_page);
+
+/**
+ * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
+ * @bio: bio to add pages to
+ * @iter: iov iterator describing the region to be mapped
+ *
+ * Pins pages from *iter and appends them to @bio's bvec array. The
+ * pages will have to be released using put_page() when done.
+ * For multi-segment *iter, this function only adds pages from the
+ * the next non-empty segment of the iov iterator.
+ */
+static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
+{
+ unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
+ struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
+ struct page **pages = (struct page **)bv;
+ size_t offset;
+ ssize_t size;
+
+ size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
+ if (unlikely(size <= 0))
+ return size ? size : -EFAULT;
+ idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
+
+ /*
+ * Deep magic below: We need to walk the pinned pages backwards
+ * because we are abusing the space allocated for the bio_vecs
+ * for the page array. Because the bio_vecs are larger than the
+ * page pointers by definition this will always work. But it also
+ * means we can't use bio_add_page, so any changes to it's semantics
+ * need to be reflected here as well.
+ */
+ bio->bi_iter.bi_size += size;
+ bio->bi_vcnt += nr_pages;
+
+ while (idx--) {
+ bv[idx].bv_page = pages[idx];
+ bv[idx].bv_len = PAGE_SIZE;
+ bv[idx].bv_offset = 0;
+ }
+
+ bv[0].bv_offset += offset;
+ bv[0].bv_len -= offset;
+ bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
+
+ iov_iter_advance(iter, size);
+ return 0;
+}
+
+/**
+ * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
+ * @bio: bio to add pages to
+ * @iter: iov iterator describing the region to be mapped
+ *
+ * Pins pages from *iter and appends them to @bio's bvec array. The
+ * pages will have to be released using put_page() when done.
+ * The function tries, but does not guarantee, to pin as many pages as
+ * fit into the bio, or are requested in *iter, whatever is smaller.
+ * If MM encounters an error pinning the requested pages, it stops.
+ * Error is returned only if 0 pages could be pinned.
+ */
+int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
+{
+ unsigned short orig_vcnt = bio->bi_vcnt;
+
+ do {
+ int ret = __bio_iov_iter_get_pages(bio, iter);
+
+ if (unlikely(ret))
+ return bio->bi_vcnt > orig_vcnt ? 0 : ret;
+
+ } while (iov_iter_count(iter) && !bio_full(bio));
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
+
+static void submit_bio_wait_endio(struct bio *bio)
+{
+ complete(bio->bi_private);
+}
+
+/**
+ * submit_bio_wait - submit a bio, and wait until it completes
+ * @bio: The &struct bio which describes the I/O
+ *
+ * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
+ * bio_endio() on failure.
+ *
+ * WARNING: Unlike to how submit_bio() is usually used, this function does not
+ * result in bio reference to be consumed. The caller must drop the reference
+ * on his own.
+ */
+int submit_bio_wait(struct bio *bio)
+{
+ DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
+
+ bio->bi_private = &done;
+ bio->bi_end_io = submit_bio_wait_endio;
+ bio->bi_opf |= REQ_SYNC;
+ submit_bio(bio);
+ wait_for_completion_io(&done);
+
+ return blk_status_to_errno(bio->bi_status);
+}
+EXPORT_SYMBOL(submit_bio_wait);
+
+/**
+ * bio_advance - increment/complete a bio by some number of bytes
+ * @bio: bio to advance
+ * @bytes: number of bytes to complete
+ *
+ * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
+ * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
+ * be updated on the last bvec as well.
+ *
+ * @bio will then represent the remaining, uncompleted portion of the io.
+ */
+void bio_advance(struct bio *bio, unsigned bytes)
+{
+ if (bio_integrity(bio))
+ bio_integrity_advance(bio, bytes);
+
+ bio_advance_iter(bio, &bio->bi_iter, bytes);
+}
+EXPORT_SYMBOL(bio_advance);
+
+void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
+ struct bio *src, struct bvec_iter *src_iter)
+{
+ struct bio_vec src_bv, dst_bv;
+ void *src_p, *dst_p;
+ unsigned bytes;
+
+ while (src_iter->bi_size && dst_iter->bi_size) {
+ src_bv = bio_iter_iovec(src, *src_iter);
+ dst_bv = bio_iter_iovec(dst, *dst_iter);
+
+ bytes = min(src_bv.bv_len, dst_bv.bv_len);
+
+ src_p = kmap_atomic(src_bv.bv_page);
+ dst_p = kmap_atomic(dst_bv.bv_page);
+
+ memcpy(dst_p + dst_bv.bv_offset,
+ src_p + src_bv.bv_offset,
+ bytes);
+
+ kunmap_atomic(dst_p);
+ kunmap_atomic(src_p);
+
+ flush_dcache_page(dst_bv.bv_page);
+
+ bio_advance_iter(src, src_iter, bytes);
+ bio_advance_iter(dst, dst_iter, bytes);
+ }
+}
+EXPORT_SYMBOL(bio_copy_data_iter);
+
+/**
+ * bio_copy_data - copy contents of data buffers from one bio to another
+ * @src: source bio
+ * @dst: destination bio
+ *
+ * Stops when it reaches the end of either @src or @dst - that is, copies
+ * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
+ */
+void bio_copy_data(struct bio *dst, struct bio *src)
+{
+ struct bvec_iter src_iter = src->bi_iter;
+ struct bvec_iter dst_iter = dst->bi_iter;
+
+ bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
+}
+EXPORT_SYMBOL(bio_copy_data);
+
+/**
+ * bio_list_copy_data - copy contents of data buffers from one chain of bios to
+ * another
+ * @src: source bio list
+ * @dst: destination bio list
+ *
+ * Stops when it reaches the end of either the @src list or @dst list - that is,
+ * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
+ * bios).
+ */
+void bio_list_copy_data(struct bio *dst, struct bio *src)
+{
+ struct bvec_iter src_iter = src->bi_iter;
+ struct bvec_iter dst_iter = dst->bi_iter;
+
+ while (1) {
+ if (!src_iter.bi_size) {
+ src = src->bi_next;
+ if (!src)
+ break;
+
+ src_iter = src->bi_iter;
+ }
+
+ if (!dst_iter.bi_size) {
+ dst = dst->bi_next;
+ if (!dst)
+ break;
+
+ dst_iter = dst->bi_iter;
+ }
+
+ bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
+ }
+}
+EXPORT_SYMBOL(bio_list_copy_data);
+
+struct bio_map_data {
+ int is_our_pages;
+ struct iov_iter iter;
+ struct iovec iov[];
+};
+
+static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
+ gfp_t gfp_mask)
+{
+ struct bio_map_data *bmd;
+ if (data->nr_segs > UIO_MAXIOV)
+ return NULL;
+
+ bmd = kmalloc(sizeof(struct bio_map_data) +
+ sizeof(struct iovec) * data->nr_segs, gfp_mask);
+ if (!bmd)
+ return NULL;
+ memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
+ bmd->iter = *data;
+ bmd->iter.iov = bmd->iov;
+ return bmd;
+}
+
+/**
+ * bio_copy_from_iter - copy all pages from iov_iter to bio
+ * @bio: The &struct bio which describes the I/O as destination
+ * @iter: iov_iter as source
+ *
+ * Copy all pages from iov_iter to bio.
+ * Returns 0 on success, or error on failure.
+ */
+static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
+{
+ int i;
+ struct bio_vec *bvec;
+
+ bio_for_each_segment_all(bvec, bio, i) {
+ ssize_t ret;
+
+ ret = copy_page_from_iter(bvec->bv_page,
+ bvec->bv_offset,
+ bvec->bv_len,
+ iter);
+
+ if (!iov_iter_count(iter))
+ break;
+
+ if (ret < bvec->bv_len)
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+/**
+ * bio_copy_to_iter - copy all pages from bio to iov_iter
+ * @bio: The &struct bio which describes the I/O as source
+ * @iter: iov_iter as destination
+ *
+ * Copy all pages from bio to iov_iter.
+ * Returns 0 on success, or error on failure.
+ */
+static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
+{
+ int i;
+ struct bio_vec *bvec;
+
+ bio_for_each_segment_all(bvec, bio, i) {
+ ssize_t ret;
+
+ ret = copy_page_to_iter(bvec->bv_page,
+ bvec->bv_offset,
+ bvec->bv_len,
+ &iter);
+
+ if (!iov_iter_count(&iter))
+ break;
+
+ if (ret < bvec->bv_len)
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+void bio_free_pages(struct bio *bio)
+{
+ struct bio_vec *bvec;
+ int i;
+
+ bio_for_each_segment_all(bvec, bio, i)
+ __free_page(bvec->bv_page);
+}
+EXPORT_SYMBOL(bio_free_pages);
+
+/**
+ * bio_uncopy_user - finish previously mapped bio
+ * @bio: bio being terminated
+ *
+ * Free pages allocated from bio_copy_user_iov() and write back data
+ * to user space in case of a read.
+ */
+int bio_uncopy_user(struct bio *bio)
+{
+ struct bio_map_data *bmd = bio->bi_private;
+ int ret = 0;
+
+ if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
+ /*
+ * if we're in a workqueue, the request is orphaned, so
+ * don't copy into a random user address space, just free
+ * and return -EINTR so user space doesn't expect any data.
+ */
+ if (!current->mm)
+ ret = -EINTR;
+ else if (bio_data_dir(bio) == READ)
+ ret = bio_copy_to_iter(bio, bmd->iter);
+ if (bmd->is_our_pages)
+ bio_free_pages(bio);
+ }
+ kfree(bmd);
+ bio_put(bio);
+ return ret;
+}
+
+/**
+ * bio_copy_user_iov - copy user data to bio
+ * @q: destination block queue
+ * @map_data: pointer to the rq_map_data holding pages (if necessary)
+ * @iter: iovec iterator
+ * @gfp_mask: memory allocation flags
+ *
+ * Prepares and returns a bio for indirect user io, bouncing data
+ * to/from kernel pages as necessary. Must be paired with
+ * call bio_uncopy_user() on io completion.
+ */
+struct bio *bio_copy_user_iov(struct request_queue *q,
+ struct rq_map_data *map_data,
+ struct iov_iter *iter,
+ gfp_t gfp_mask)
+{
+ struct bio_map_data *bmd;
+ struct page *page;
+ struct bio *bio;
+ int i = 0, ret;
+ int nr_pages;
+ unsigned int len = iter->count;
+ unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
+
+ bmd = bio_alloc_map_data(iter, gfp_mask);
+ if (!bmd)
+ return ERR_PTR(-ENOMEM);
+
+ /*
+ * We need to do a deep copy of the iov_iter including the iovecs.
+ * The caller provided iov might point to an on-stack or otherwise
+ * shortlived one.
+ */
+ bmd->is_our_pages = map_data ? 0 : 1;
+
+ nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
+ if (nr_pages > BIO_MAX_PAGES)
+ nr_pages = BIO_MAX_PAGES;
+
+ ret = -ENOMEM;
+ bio = bio_kmalloc(gfp_mask, nr_pages);
+ if (!bio)
+ goto out_bmd;
+
+ ret = 0;
+
+ if (map_data) {
+ nr_pages = 1 << map_data->page_order;
+ i = map_data->offset / PAGE_SIZE;
+ }
+ while (len) {
+ unsigned int bytes = PAGE_SIZE;
+
+ bytes -= offset;
+
+ if (bytes > len)
+ bytes = len;
+
+ if (map_data) {
+ if (i == map_data->nr_entries * nr_pages) {
+ ret = -ENOMEM;
+ break;
+ }
+
+ page = map_data->pages[i / nr_pages];
+ page += (i % nr_pages);
+
+ i++;
+ } else {
+ page = alloc_page(q->bounce_gfp | gfp_mask);
+ if (!page) {
+ ret = -ENOMEM;
+ break;
+ }
+ }
+
+ if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
+ if (!map_data)
+ __free_page(page);
+ break;
+ }
+
+ len -= bytes;
+ offset = 0;
+ }
+
+ if (ret)
+ goto cleanup;
+
+ if (map_data)
+ map_data->offset += bio->bi_iter.bi_size;
+
+ /*
+ * success
+ */
+ if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
+ (map_data && map_data->from_user)) {
+ ret = bio_copy_from_iter(bio, iter);
+ if (ret)
+ goto cleanup;
+ } else {
+ if (bmd->is_our_pages)
+ zero_fill_bio(bio);
+ iov_iter_advance(iter, bio->bi_iter.bi_size);
+ }
+
+ bio->bi_private = bmd;
+ if (map_data && map_data->null_mapped)
+ bio_set_flag(bio, BIO_NULL_MAPPED);
+ return bio;
+cleanup:
+ if (!map_data)
+ bio_free_pages(bio);
+ bio_put(bio);
+out_bmd:
+ kfree(bmd);
+ return ERR_PTR(ret);
+}
+
+/**
+ * bio_map_user_iov - map user iovec into bio
+ * @q: the struct request_queue for the bio
+ * @iter: iovec iterator
+ * @gfp_mask: memory allocation flags
+ *
+ * Map the user space address into a bio suitable for io to a block
+ * device. Returns an error pointer in case of error.
+ */
+struct bio *bio_map_user_iov(struct request_queue *q,
+ struct iov_iter *iter,
+ gfp_t gfp_mask)
+{
+ int j;
+ struct bio *bio;
+ int ret;
+ struct bio_vec *bvec;
+
+ if (!iov_iter_count(iter))
+ return ERR_PTR(-EINVAL);
+
+ bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
+ if (!bio)
+ return ERR_PTR(-ENOMEM);
+
+ while (iov_iter_count(iter)) {
+ struct page **pages;
+ ssize_t bytes;
+ size_t offs, added = 0;
+ int npages;
+
+ bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
+ if (unlikely(bytes <= 0)) {
+ ret = bytes ? bytes : -EFAULT;
+ goto out_unmap;
+ }
+
+ npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
+
+ if (unlikely(offs & queue_dma_alignment(q))) {
+ ret = -EINVAL;
+ j = 0;
+ } else {
+ for (j = 0; j < npages; j++) {
+ struct page *page = pages[j];
+ unsigned int n = PAGE_SIZE - offs;
+ unsigned short prev_bi_vcnt = bio->bi_vcnt;
+
+ if (n > bytes)
+ n = bytes;
+
+ if (!bio_add_pc_page(q, bio, page, n, offs))
+ break;
+
+ /*
+ * check if vector was merged with previous
+ * drop page reference if needed
+ */
+ if (bio->bi_vcnt == prev_bi_vcnt)
+ put_page(page);
+
+ added += n;
+ bytes -= n;
+ offs = 0;
+ }
+ iov_iter_advance(iter, added);
+ }
+ /*
+ * release the pages we didn't map into the bio, if any
+ */
+ while (j < npages)
+ put_page(pages[j++]);
+ kvfree(pages);
+ /* couldn't stuff something into bio? */
+ if (bytes)
+ break;
+ }
+
+ bio_set_flag(bio, BIO_USER_MAPPED);
+
+ /*
+ * subtle -- if bio_map_user_iov() ended up bouncing a bio,
+ * it would normally disappear when its bi_end_io is run.
+ * however, we need it for the unmap, so grab an extra
+ * reference to it
+ */
+ bio_get(bio);
+ return bio;
+
+ out_unmap:
+ bio_for_each_segment_all(bvec, bio, j) {
+ put_page(bvec->bv_page);
+ }
+ bio_put(bio);
+ return ERR_PTR(ret);
+}
+
+static void __bio_unmap_user(struct bio *bio)
+{
+ struct bio_vec *bvec;
+ int i;
+
+ /*
+ * make sure we dirty pages we wrote to
+ */
+ bio_for_each_segment_all(bvec, bio, i) {
+ if (bio_data_dir(bio) == READ)
+ set_page_dirty_lock(bvec->bv_page);
+
+ put_page(bvec->bv_page);
+ }
+
+ bio_put(bio);
+}
+
+/**
+ * bio_unmap_user - unmap a bio
+ * @bio: the bio being unmapped
+ *
+ * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
+ * process context.
+ *
+ * bio_unmap_user() may sleep.
+ */
+void bio_unmap_user(struct bio *bio)
+{
+ __bio_unmap_user(bio);
+ bio_put(bio);
+}
+
+static void bio_map_kern_endio(struct bio *bio)
+{
+ bio_put(bio);
+}
+
+/**
+ * bio_map_kern - map kernel address into bio
+ * @q: the struct request_queue for the bio
+ * @data: pointer to buffer to map
+ * @len: length in bytes
+ * @gfp_mask: allocation flags for bio allocation
+ *
+ * Map the kernel address into a bio suitable for io to a block
+ * device. Returns an error pointer in case of error.
+ */
+struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
+ gfp_t gfp_mask)
+{
+ unsigned long kaddr = (unsigned long)data;
+ unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ unsigned long start = kaddr >> PAGE_SHIFT;
+ const int nr_pages = end - start;
+ int offset, i;
+ struct bio *bio;
+
+ bio = bio_kmalloc(gfp_mask, nr_pages);
+ if (!bio)
+ return ERR_PTR(-ENOMEM);
+
+ offset = offset_in_page(kaddr);
+ for (i = 0; i < nr_pages; i++) {
+ unsigned int bytes = PAGE_SIZE - offset;
+
+ if (len <= 0)
+ break;
+
+ if (bytes > len)
+ bytes = len;
+
+ if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
+ offset) < bytes) {
+ /* we don't support partial mappings */
+ bio_put(bio);
+ return ERR_PTR(-EINVAL);
+ }
+
+ data += bytes;
+ len -= bytes;
+ offset = 0;
+ }
+
+ bio->bi_end_io = bio_map_kern_endio;
+ return bio;
+}
+EXPORT_SYMBOL(bio_map_kern);
+
+static void bio_copy_kern_endio(struct bio *bio)
+{
+ bio_free_pages(bio);
+ bio_put(bio);
+}
+
+static void bio_copy_kern_endio_read(struct bio *bio)
+{
+ char *p = bio->bi_private;
+ struct bio_vec *bvec;
+ int i;
+
+ bio_for_each_segment_all(bvec, bio, i) {
+ memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
+ p += bvec->bv_len;
+ }
+
+ bio_copy_kern_endio(bio);
+}
+
+/**
+ * bio_copy_kern - copy kernel address into bio
+ * @q: the struct request_queue for the bio
+ * @data: pointer to buffer to copy
+ * @len: length in bytes
+ * @gfp_mask: allocation flags for bio and page allocation
+ * @reading: data direction is READ
+ *
+ * copy the kernel address into a bio suitable for io to a block
+ * device. Returns an error pointer in case of error.
+ */
+struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
+ gfp_t gfp_mask, int reading)
+{
+ unsigned long kaddr = (unsigned long)data;
+ unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ unsigned long start = kaddr >> PAGE_SHIFT;
+ struct bio *bio;
+ void *p = data;
+ int nr_pages = 0;
+
+ /*
+ * Overflow, abort
+ */
+ if (end < start)
+ return ERR_PTR(-EINVAL);
+
+ nr_pages = end - start;
+ bio = bio_kmalloc(gfp_mask, nr_pages);
+ if (!bio)
+ return ERR_PTR(-ENOMEM);
+
+ while (len) {
+ struct page *page;
+ unsigned int bytes = PAGE_SIZE;
+
+ if (bytes > len)
+ bytes = len;
+
+ page = alloc_page(q->bounce_gfp | __GFP_ZERO | gfp_mask);
+ if (!page)
+ goto cleanup;
+
+ if (!reading)
+ memcpy(page_address(page), p, bytes);
+
+ if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
+ break;
+
+ len -= bytes;
+ p += bytes;
+ }
+
+ if (reading) {
+ bio->bi_end_io = bio_copy_kern_endio_read;
+ bio->bi_private = data;
+ } else {
+ bio->bi_end_io = bio_copy_kern_endio;
+ }
+
+ return bio;
+
+cleanup:
+ bio_free_pages(bio);
+ bio_put(bio);
+ return ERR_PTR(-ENOMEM);
+}
+
+/*
+ * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
+ * for performing direct-IO in BIOs.
+ *
+ * The problem is that we cannot run set_page_dirty() from interrupt context
+ * because the required locks are not interrupt-safe. So what we can do is to
+ * mark the pages dirty _before_ performing IO. And in interrupt context,
+ * check that the pages are still dirty. If so, fine. If not, redirty them
+ * in process context.
+ *
+ * We special-case compound pages here: normally this means reads into hugetlb
+ * pages. The logic in here doesn't really work right for compound pages
+ * because the VM does not uniformly chase down the head page in all cases.
+ * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
+ * handle them at all. So we skip compound pages here at an early stage.
+ *
+ * Note that this code is very hard to test under normal circumstances because
+ * direct-io pins the pages with get_user_pages(). This makes
+ * is_page_cache_freeable return false, and the VM will not clean the pages.
+ * But other code (eg, flusher threads) could clean the pages if they are mapped
+ * pagecache.
+ *
+ * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
+ * deferred bio dirtying paths.
+ */
+
+/*
+ * bio_set_pages_dirty() will mark all the bio's pages as dirty.
+ */
+void bio_set_pages_dirty(struct bio *bio)
+{
+ struct bio_vec *bvec;
+ int i;
+
+ bio_for_each_segment_all(bvec, bio, i) {
+ if (!PageCompound(bvec->bv_page))
+ set_page_dirty_lock(bvec->bv_page);
+ }
+}
+EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
+
+static void bio_release_pages(struct bio *bio)
+{
+ struct bio_vec *bvec;
+ int i;
+
+ bio_for_each_segment_all(bvec, bio, i)
+ put_page(bvec->bv_page);
+}
+
+/*
+ * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
+ * If they are, then fine. If, however, some pages are clean then they must
+ * have been written out during the direct-IO read. So we take another ref on
+ * the BIO and re-dirty the pages in process context.
+ *
+ * It is expected that bio_check_pages_dirty() will wholly own the BIO from
+ * here on. It will run one put_page() against each page and will run one
+ * bio_put() against the BIO.
+ */
+
+static void bio_dirty_fn(struct work_struct *work);
+
+static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
+static DEFINE_SPINLOCK(bio_dirty_lock);
+static struct bio *bio_dirty_list;
+
+/*
+ * This runs in process context
+ */
+static void bio_dirty_fn(struct work_struct *work)
+{
+ struct bio *bio, *next;
+
+ spin_lock_irq(&bio_dirty_lock);
+ next = bio_dirty_list;
+ bio_dirty_list = NULL;
+ spin_unlock_irq(&bio_dirty_lock);
+
+ while ((bio = next) != NULL) {
+ next = bio->bi_private;
+
+ bio_set_pages_dirty(bio);
+ bio_release_pages(bio);
+ bio_put(bio);
+ }
+}
+
+void bio_check_pages_dirty(struct bio *bio)
+{
+ struct bio_vec *bvec;
+ unsigned long flags;
+ int i;
+
+ bio_for_each_segment_all(bvec, bio, i) {
+ if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
+ goto defer;
+ }
+
+ bio_release_pages(bio);
+ bio_put(bio);
+ return;
+defer:
+ spin_lock_irqsave(&bio_dirty_lock, flags);
+ bio->bi_private = bio_dirty_list;
+ bio_dirty_list = bio;
+ spin_unlock_irqrestore(&bio_dirty_lock, flags);
+ schedule_work(&bio_dirty_work);
+}
+EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
+
+void generic_start_io_acct(struct request_queue *q, int op,
+ unsigned long sectors, struct hd_struct *part)
+{
+ const int sgrp = op_stat_group(op);
+ int cpu = part_stat_lock();
+
+ part_round_stats(q, cpu, part);
+ part_stat_inc(cpu, part, ios[sgrp]);
+ part_stat_add(cpu, part, sectors[sgrp], sectors);
+ part_inc_in_flight(q, part, op_is_write(op));
+
+ part_stat_unlock();
+}
+EXPORT_SYMBOL(generic_start_io_acct);
+
+void generic_end_io_acct(struct request_queue *q, int req_op,
+ struct hd_struct *part, unsigned long start_time)
+{
+ unsigned long duration = jiffies - start_time;
+ const int sgrp = op_stat_group(req_op);
+ int cpu = part_stat_lock();
+
+ part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration));
+ part_round_stats(q, cpu, part);
+ part_dec_in_flight(q, part, op_is_write(req_op));
+
+ part_stat_unlock();
+}
+EXPORT_SYMBOL(generic_end_io_acct);
+
+#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
+void bio_flush_dcache_pages(struct bio *bi)
+{
+ struct bio_vec bvec;
+ struct bvec_iter iter;
+
+ bio_for_each_segment(bvec, bi, iter)
+ flush_dcache_page(bvec.bv_page);
+}
+EXPORT_SYMBOL(bio_flush_dcache_pages);
+#endif
+
+static inline bool bio_remaining_done(struct bio *bio)
+{
+ /*
+ * If we're not chaining, then ->__bi_remaining is always 1 and
+ * we always end io on the first invocation.
+ */
+ if (!bio_flagged(bio, BIO_CHAIN))
+ return true;
+
+ BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
+
+ if (atomic_dec_and_test(&bio->__bi_remaining)) {
+ bio_clear_flag(bio, BIO_CHAIN);
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * bio_endio - end I/O on a bio
+ * @bio: bio
+ *
+ * Description:
+ * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
+ * way to end I/O on a bio. No one should call bi_end_io() directly on a
+ * bio unless they own it and thus know that it has an end_io function.
+ *
+ * bio_endio() can be called several times on a bio that has been chained
+ * using bio_chain(). The ->bi_end_io() function will only be called the
+ * last time. At this point the BLK_TA_COMPLETE tracing event will be
+ * generated if BIO_TRACE_COMPLETION is set.
+ **/
+void bio_endio(struct bio *bio)
+{
+again:
+ if (!bio_remaining_done(bio))
+ return;
+ if (!bio_integrity_endio(bio))
+ return;
+
+ if (bio->bi_disk)
+ rq_qos_done_bio(bio->bi_disk->queue, bio);
+
+ /*
+ * Need to have a real endio function for chained bios, otherwise
+ * various corner cases will break (like stacking block devices that
+ * save/restore bi_end_io) - however, we want to avoid unbounded
+ * recursion and blowing the stack. Tail call optimization would
+ * handle this, but compiling with frame pointers also disables
+ * gcc's sibling call optimization.
+ */
+ if (bio->bi_end_io == bio_chain_endio) {
+ bio = __bio_chain_endio(bio);
+ goto again;
+ }
+
+ if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
+ trace_block_bio_complete(bio->bi_disk->queue, bio,
+ blk_status_to_errno(bio->bi_status));
+ bio_clear_flag(bio, BIO_TRACE_COMPLETION);
+ }
+
+ blk_throtl_bio_endio(bio);
+ /* release cgroup info */
+ bio_uninit(bio);
+ if (bio->bi_end_io)
+ bio->bi_end_io(bio);
+}
+EXPORT_SYMBOL(bio_endio);
+
+/**
+ * bio_split - split a bio
+ * @bio: bio to split
+ * @sectors: number of sectors to split from the front of @bio
+ * @gfp: gfp mask
+ * @bs: bio set to allocate from
+ *
+ * Allocates and returns a new bio which represents @sectors from the start of
+ * @bio, and updates @bio to represent the remaining sectors.
+ *
+ * Unless this is a discard request the newly allocated bio will point
+ * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
+ * @bio is not freed before the split.
+ */
+struct bio *bio_split(struct bio *bio, int sectors,
+ gfp_t gfp, struct bio_set *bs)
+{
+ struct bio *split;
+
+ BUG_ON(sectors <= 0);
+ BUG_ON(sectors >= bio_sectors(bio));
+
+ split = bio_clone_fast(bio, gfp, bs);
+ if (!split)
+ return NULL;
+
+ split->bi_iter.bi_size = sectors << 9;
+
+ if (bio_integrity(split))
+ bio_integrity_trim(split);
+
+ bio_advance(bio, split->bi_iter.bi_size);
+ bio->bi_iter.bi_done = 0;
+
+ if (bio_flagged(bio, BIO_TRACE_COMPLETION))
+ bio_set_flag(split, BIO_TRACE_COMPLETION);
+
+ return split;
+}
+EXPORT_SYMBOL(bio_split);
+
+/**
+ * bio_trim - trim a bio
+ * @bio: bio to trim
+ * @offset: number of sectors to trim from the front of @bio
+ * @size: size we want to trim @bio to, in sectors
+ */
+void bio_trim(struct bio *bio, int offset, int size)
+{
+ /* 'bio' is a cloned bio which we need to trim to match
+ * the given offset and size.
+ */
+
+ size <<= 9;
+ if (offset == 0 && size == bio->bi_iter.bi_size)
+ return;
+
+ bio_clear_flag(bio, BIO_SEG_VALID);
+
+ bio_advance(bio, offset << 9);
+
+ bio->bi_iter.bi_size = size;
+
+ if (bio_integrity(bio))
+ bio_integrity_trim(bio);
+
+}
+EXPORT_SYMBOL_GPL(bio_trim);
+
+/*
+ * create memory pools for biovec's in a bio_set.
+ * use the global biovec slabs created for general use.
+ */
+int biovec_init_pool(mempool_t *pool, int pool_entries)
+{
+ struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
+
+ return mempool_init_slab_pool(pool, pool_entries, bp->slab);
+}
+
+/*
+ * bioset_exit - exit a bioset initialized with bioset_init()
+ *
+ * May be called on a zeroed but uninitialized bioset (i.e. allocated with
+ * kzalloc()).
+ */
+void bioset_exit(struct bio_set *bs)
+{
+ if (bs->rescue_workqueue)
+ destroy_workqueue(bs->rescue_workqueue);
+ bs->rescue_workqueue = NULL;
+
+ mempool_exit(&bs->bio_pool);
+ mempool_exit(&bs->bvec_pool);
+
+ bioset_integrity_free(bs);
+ if (bs->bio_slab)
+ bio_put_slab(bs);
+ bs->bio_slab = NULL;
+}
+EXPORT_SYMBOL(bioset_exit);
+
+/**
+ * bioset_init - Initialize a bio_set
+ * @bs: pool to initialize
+ * @pool_size: Number of bio and bio_vecs to cache in the mempool
+ * @front_pad: Number of bytes to allocate in front of the returned bio
+ * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
+ * and %BIOSET_NEED_RESCUER
+ *
+ * Description:
+ * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
+ * to ask for a number of bytes to be allocated in front of the bio.
+ * Front pad allocation is useful for embedding the bio inside
+ * another structure, to avoid allocating extra data to go with the bio.
+ * Note that the bio must be embedded at the END of that structure always,
+ * or things will break badly.
+ * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
+ * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
+ * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
+ * dispatch queued requests when the mempool runs out of space.
+ *
+ */
+int bioset_init(struct bio_set *bs,
+ unsigned int pool_size,
+ unsigned int front_pad,
+ int flags)
+{
+ unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
+
+ bs->front_pad = front_pad;
+
+ spin_lock_init(&bs->rescue_lock);
+ bio_list_init(&bs->rescue_list);
+ INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
+
+ bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
+ if (!bs->bio_slab)
+ return -ENOMEM;
+
+ if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
+ goto bad;
+
+ if ((flags & BIOSET_NEED_BVECS) &&
+ biovec_init_pool(&bs->bvec_pool, pool_size))
+ goto bad;
+
+ if (!(flags & BIOSET_NEED_RESCUER))
+ return 0;
+
+ bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
+ if (!bs->rescue_workqueue)
+ goto bad;
+
+ return 0;
+bad:
+ bioset_exit(bs);
+ return -ENOMEM;
+}
+EXPORT_SYMBOL(bioset_init);
+
+/*
+ * Initialize and setup a new bio_set, based on the settings from
+ * another bio_set.
+ */
+int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
+{
+ int flags;
+
+ flags = 0;
+ if (src->bvec_pool.min_nr)
+ flags |= BIOSET_NEED_BVECS;
+ if (src->rescue_workqueue)
+ flags |= BIOSET_NEED_RESCUER;
+
+ return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
+}
+EXPORT_SYMBOL(bioset_init_from_src);
+
+#ifdef CONFIG_BLK_CGROUP
+
+#ifdef CONFIG_MEMCG
+/**
+ * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
+ * @bio: target bio
+ * @page: the page to lookup the blkcg from
+ *
+ * Associate @bio with the blkcg from @page's owning memcg. This works like
+ * every other associate function wrt references.
+ */
+int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
+{
+ struct cgroup_subsys_state *blkcg_css;
+
+ if (unlikely(bio->bi_css))
+ return -EBUSY;
+ if (!page->mem_cgroup)
+ return 0;
+ blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
+ &io_cgrp_subsys);
+ bio->bi_css = blkcg_css;
+ return 0;
+}
+#endif /* CONFIG_MEMCG */
+
+/**
+ * bio_associate_blkcg - associate a bio with the specified blkcg
+ * @bio: target bio
+ * @blkcg_css: css of the blkcg to associate
+ *
+ * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
+ * treat @bio as if it were issued by a task which belongs to the blkcg.
+ *
+ * This function takes an extra reference of @blkcg_css which will be put
+ * when @bio is released. The caller must own @bio and is responsible for
+ * synchronizing calls to this function.
+ */
+int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
+{
+ if (unlikely(bio->bi_css))
+ return -EBUSY;
+ css_get(blkcg_css);
+ bio->bi_css = blkcg_css;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(bio_associate_blkcg);
+
+/**
+ * bio_associate_blkg - associate a bio with the specified blkg
+ * @bio: target bio
+ * @blkg: the blkg to associate
+ *
+ * Associate @bio with the blkg specified by @blkg. This is the queue specific
+ * blkcg information associated with the @bio, a reference will be taken on the
+ * @blkg and will be freed when the bio is freed.
+ */
+int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
+{
+ if (unlikely(bio->bi_blkg))
+ return -EBUSY;
+ if (!blkg_try_get(blkg))
+ return -ENODEV;
+ bio->bi_blkg = blkg;
+ return 0;
+}
+
+/**
+ * bio_disassociate_task - undo bio_associate_current()
+ * @bio: target bio
+ */
+void bio_disassociate_task(struct bio *bio)
+{
+ if (bio->bi_ioc) {
+ put_io_context(bio->bi_ioc);
+ bio->bi_ioc = NULL;
+ }
+ if (bio->bi_css) {
+ css_put(bio->bi_css);
+ bio->bi_css = NULL;
+ }
+ if (bio->bi_blkg) {
+ blkg_put(bio->bi_blkg);
+ bio->bi_blkg = NULL;
+ }
+}
+
+/**
+ * bio_clone_blkcg_association - clone blkcg association from src to dst bio
+ * @dst: destination bio
+ * @src: source bio
+ */
+void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
+{
+ if (src->bi_css)
+ WARN_ON(bio_associate_blkcg(dst, src->bi_css));
+}
+EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
+#endif /* CONFIG_BLK_CGROUP */
+
+static void __init biovec_init_slabs(void)
+{
+ int i;
+
+ for (i = 0; i < BVEC_POOL_NR; i++) {
+ int size;
+ struct biovec_slab *bvs = bvec_slabs + i;
+
+ if (bvs->nr_vecs <= BIO_INLINE_VECS) {
+ bvs->slab = NULL;
+ continue;
+ }
+
+ size = bvs->nr_vecs * sizeof(struct bio_vec);
+ bvs->slab = kmem_cache_create(bvs->name, size, 0,
+ SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
+ }
+}
+
+static int __init init_bio(void)
+{
+ bio_slab_max = 2;
+ bio_slab_nr = 0;
+ bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
+ GFP_KERNEL);
+ if (!bio_slabs)
+ panic("bio: can't allocate bios\n");
+
+ bio_integrity_init();
+ biovec_init_slabs();
+
+ if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
+ panic("bio: can't allocate bios\n");
+
+ if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
+ panic("bio: can't create integrity pool\n");
+
+ return 0;
+}
+subsys_initcall(init_bio);