diff options
Diffstat (limited to 'drivers/edac/sb_edac.c')
-rw-r--r-- | drivers/edac/sb_edac.c | 3465 |
1 files changed, 3465 insertions, 0 deletions
diff --git a/drivers/edac/sb_edac.c b/drivers/edac/sb_edac.c new file mode 100644 index 000000000..f90feb0c4 --- /dev/null +++ b/drivers/edac/sb_edac.c @@ -0,0 +1,3465 @@ +/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module + * + * This driver supports the memory controllers found on the Intel + * processor family Sandy Bridge. + * + * This file may be distributed under the terms of the + * GNU General Public License version 2 only. + * + * Copyright (c) 2011 by: + * Mauro Carvalho Chehab + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/pci.h> +#include <linux/pci_ids.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/edac.h> +#include <linux/mmzone.h> +#include <linux/smp.h> +#include <linux/bitmap.h> +#include <linux/math64.h> +#include <linux/mod_devicetable.h> +#include <asm/cpu_device_id.h> +#include <asm/intel-family.h> +#include <asm/processor.h> +#include <asm/mce.h> + +#include "edac_module.h" + +/* Static vars */ +static LIST_HEAD(sbridge_edac_list); + +/* + * Alter this version for the module when modifications are made + */ +#define SBRIDGE_REVISION " Ver: 1.1.2 " +#define EDAC_MOD_STR "sb_edac" + +/* + * Debug macros + */ +#define sbridge_printk(level, fmt, arg...) \ + edac_printk(level, "sbridge", fmt, ##arg) + +#define sbridge_mc_printk(mci, level, fmt, arg...) \ + edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) + +/* + * Get a bit field at register value <v>, from bit <lo> to bit <hi> + */ +#define GET_BITFIELD(v, lo, hi) \ + (((v) & GENMASK_ULL(hi, lo)) >> (lo)) + +/* Devices 12 Function 6, Offsets 0x80 to 0xcc */ +static const u32 sbridge_dram_rule[] = { + 0x80, 0x88, 0x90, 0x98, 0xa0, + 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, +}; + +static const u32 ibridge_dram_rule[] = { + 0x60, 0x68, 0x70, 0x78, 0x80, + 0x88, 0x90, 0x98, 0xa0, 0xa8, + 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, + 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, +}; + +static const u32 knl_dram_rule[] = { + 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */ + 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */ + 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */ + 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */ + 0x100, 0x108, 0x110, 0x118, /* 20-23 */ +}; + +#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) +#define A7MODE(reg) GET_BITFIELD(reg, 26, 26) + +static char *show_dram_attr(u32 attr) +{ + switch (attr) { + case 0: + return "DRAM"; + case 1: + return "MMCFG"; + case 2: + return "NXM"; + default: + return "unknown"; + } +} + +static const u32 sbridge_interleave_list[] = { + 0x84, 0x8c, 0x94, 0x9c, 0xa4, + 0xac, 0xb4, 0xbc, 0xc4, 0xcc, +}; + +static const u32 ibridge_interleave_list[] = { + 0x64, 0x6c, 0x74, 0x7c, 0x84, + 0x8c, 0x94, 0x9c, 0xa4, 0xac, + 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, + 0xdc, 0xe4, 0xec, 0xf4, 0xfc, +}; + +static const u32 knl_interleave_list[] = { + 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */ + 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */ + 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */ + 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */ + 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */ +}; +#define MAX_INTERLEAVE \ + (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \ + max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \ + ARRAY_SIZE(knl_interleave_list)))) + +struct interleave_pkg { + unsigned char start; + unsigned char end; +}; + +static const struct interleave_pkg sbridge_interleave_pkg[] = { + { 0, 2 }, + { 3, 5 }, + { 8, 10 }, + { 11, 13 }, + { 16, 18 }, + { 19, 21 }, + { 24, 26 }, + { 27, 29 }, +}; + +static const struct interleave_pkg ibridge_interleave_pkg[] = { + { 0, 3 }, + { 4, 7 }, + { 8, 11 }, + { 12, 15 }, + { 16, 19 }, + { 20, 23 }, + { 24, 27 }, + { 28, 31 }, +}; + +static inline int sad_pkg(const struct interleave_pkg *table, u32 reg, + int interleave) +{ + return GET_BITFIELD(reg, table[interleave].start, + table[interleave].end); +} + +/* Devices 12 Function 7 */ + +#define TOLM 0x80 +#define TOHM 0x84 +#define HASWELL_TOLM 0xd0 +#define HASWELL_TOHM_0 0xd4 +#define HASWELL_TOHM_1 0xd8 +#define KNL_TOLM 0xd0 +#define KNL_TOHM_0 0xd4 +#define KNL_TOHM_1 0xd8 + +#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) +#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) + +/* Device 13 Function 6 */ + +#define SAD_TARGET 0xf0 + +#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) + +#define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14) + +#define SAD_CONTROL 0xf4 + +/* Device 14 function 0 */ + +static const u32 tad_dram_rule[] = { + 0x40, 0x44, 0x48, 0x4c, + 0x50, 0x54, 0x58, 0x5c, + 0x60, 0x64, 0x68, 0x6c, +}; +#define MAX_TAD ARRAY_SIZE(tad_dram_rule) + +#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) +#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) +#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) +#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) +#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) +#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) +#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) + +/* Device 15, function 0 */ + +#define MCMTR 0x7c +#define KNL_MCMTR 0x624 + +#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) +#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) +#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) + +/* Device 15, function 1 */ + +#define RASENABLES 0xac +#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) + +/* Device 15, functions 2-5 */ + +static const int mtr_regs[] = { + 0x80, 0x84, 0x88, +}; + +static const int knl_mtr_reg = 0xb60; + +#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) +#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) +#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) +#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) +#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) + +static const u32 tad_ch_nilv_offset[] = { + 0x90, 0x94, 0x98, 0x9c, + 0xa0, 0xa4, 0xa8, 0xac, + 0xb0, 0xb4, 0xb8, 0xbc, +}; +#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) +#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) + +static const u32 rir_way_limit[] = { + 0x108, 0x10c, 0x110, 0x114, 0x118, +}; +#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) + +#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) +#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) + +#define MAX_RIR_WAY 8 + +static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { + { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, + { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, + { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, + { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, + { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, +}; + +#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \ + GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19)) + +#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \ + GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14)) + +/* Device 16, functions 2-7 */ + +/* + * FIXME: Implement the error count reads directly + */ + +static const u32 correrrcnt[] = { + 0x104, 0x108, 0x10c, 0x110, +}; + +#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) +#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) +#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) +#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) + +static const u32 correrrthrsld[] = { + 0x11c, 0x120, 0x124, 0x128, +}; + +#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) +#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) + + +/* Device 17, function 0 */ + +#define SB_RANK_CFG_A 0x0328 + +#define IB_RANK_CFG_A 0x0320 + +/* + * sbridge structs + */ + +#define NUM_CHANNELS 6 /* Max channels per MC */ +#define MAX_DIMMS 3 /* Max DIMMS per channel */ +#define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */ +#define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */ +#define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */ +#define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */ + +enum type { + SANDY_BRIDGE, + IVY_BRIDGE, + HASWELL, + BROADWELL, + KNIGHTS_LANDING, +}; + +enum domain { + IMC0 = 0, + IMC1, + SOCK, +}; + +enum mirroring_mode { + NON_MIRRORING, + ADDR_RANGE_MIRRORING, + FULL_MIRRORING, +}; + +struct sbridge_pvt; +struct sbridge_info { + enum type type; + u32 mcmtr; + u32 rankcfgr; + u64 (*get_tolm)(struct sbridge_pvt *pvt); + u64 (*get_tohm)(struct sbridge_pvt *pvt); + u64 (*rir_limit)(u32 reg); + u64 (*sad_limit)(u32 reg); + u32 (*interleave_mode)(u32 reg); + u32 (*dram_attr)(u32 reg); + const u32 *dram_rule; + const u32 *interleave_list; + const struct interleave_pkg *interleave_pkg; + u8 max_sad; + u8 (*get_node_id)(struct sbridge_pvt *pvt); + enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt); + enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr); + struct pci_dev *pci_vtd; +}; + +struct sbridge_channel { + u32 ranks; + u32 dimms; +}; + +struct pci_id_descr { + int dev_id; + int optional; + enum domain dom; +}; + +struct pci_id_table { + const struct pci_id_descr *descr; + int n_devs_per_imc; + int n_devs_per_sock; + int n_imcs_per_sock; + enum type type; +}; + +struct sbridge_dev { + struct list_head list; + int seg; + u8 bus, mc; + u8 node_id, source_id; + struct pci_dev **pdev; + enum domain dom; + int n_devs; + int i_devs; + struct mem_ctl_info *mci; +}; + +struct knl_pvt { + struct pci_dev *pci_cha[KNL_MAX_CHAS]; + struct pci_dev *pci_channel[KNL_MAX_CHANNELS]; + struct pci_dev *pci_mc0; + struct pci_dev *pci_mc1; + struct pci_dev *pci_mc0_misc; + struct pci_dev *pci_mc1_misc; + struct pci_dev *pci_mc_info; /* tolm, tohm */ +}; + +struct sbridge_pvt { + /* Devices per socket */ + struct pci_dev *pci_ddrio; + struct pci_dev *pci_sad0, *pci_sad1; + struct pci_dev *pci_br0, *pci_br1; + /* Devices per memory controller */ + struct pci_dev *pci_ha, *pci_ta, *pci_ras; + struct pci_dev *pci_tad[NUM_CHANNELS]; + + struct sbridge_dev *sbridge_dev; + + struct sbridge_info info; + struct sbridge_channel channel[NUM_CHANNELS]; + + /* Memory type detection */ + bool is_cur_addr_mirrored, is_lockstep, is_close_pg; + bool is_chan_hash; + enum mirroring_mode mirror_mode; + + /* Memory description */ + u64 tolm, tohm; + struct knl_pvt knl; +}; + +#define PCI_DESCR(device_id, opt, domain) \ + .dev_id = (device_id), \ + .optional = opt, \ + .dom = domain + +static const struct pci_id_descr pci_dev_descr_sbridge[] = { + /* Processor Home Agent */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) }, + + /* Memory controller */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) }, + + /* System Address Decoder */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) }, + + /* Broadcast Registers */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) }, +}; + +#define PCI_ID_TABLE_ENTRY(A, N, M, T) { \ + .descr = A, \ + .n_devs_per_imc = N, \ + .n_devs_per_sock = ARRAY_SIZE(A), \ + .n_imcs_per_sock = M, \ + .type = T \ +} + +static const struct pci_id_table pci_dev_descr_sbridge_table[] = { + PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE), + {0,} /* 0 terminated list. */ +}; + +/* This changes depending if 1HA or 2HA: + * 1HA: + * 0x0eb8 (17.0) is DDRIO0 + * 2HA: + * 0x0ebc (17.4) is DDRIO0 + */ +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8 +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc + +/* pci ids */ +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0 +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8 +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71 +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead +#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8 +#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9 +#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60 +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68 +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79 +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c +#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d + +static const struct pci_id_descr pci_dev_descr_ibridge[] = { + /* Processor Home Agent */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) }, + + /* Memory controller */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) }, + + /* Optional, mode 2HA */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) }, + + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) }, + + /* System Address Decoder */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) }, + + /* Broadcast Registers */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) }, + +}; + +static const struct pci_id_table pci_dev_descr_ibridge_table[] = { + PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE), + {0,} /* 0 terminated list. */ +}; + +/* Haswell support */ +/* EN processor: + * - 1 IMC + * - 3 DDR3 channels, 2 DPC per channel + * EP processor: + * - 1 or 2 IMC + * - 4 DDR4 channels, 3 DPC per channel + * EP 4S processor: + * - 2 IMC + * - 4 DDR4 channels, 3 DPC per channel + * EX processor: + * - 2 IMC + * - each IMC interfaces with a SMI 2 channel + * - each SMI channel interfaces with a scalable memory buffer + * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC + */ +#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */ +#define HASWELL_HASYSDEFEATURE2 0x84 +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28 +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0 +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60 +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8 +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71 +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68 +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79 +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9 +#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb +static const struct pci_id_descr pci_dev_descr_haswell[] = { + /* first item must be the HA */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) }, + + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) }, + + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) }, + + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) }, +}; + +static const struct pci_id_table pci_dev_descr_haswell_table[] = { + PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL), + {0,} /* 0 terminated list. */ +}; + +/* Knight's Landing Support */ +/* + * KNL's memory channels are swizzled between memory controllers. + * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2 + */ +#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3) + +/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */ +#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840 +/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */ +#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843 +/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */ +#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844 +/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */ +#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a +/* SAD target - 1-29-1 (1 of these) */ +#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b +/* Caching / Home Agent */ +#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c +/* Device with TOLM and TOHM, 0-5-0 (1 of these) */ +#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810 + +/* + * KNL differs from SB, IB, and Haswell in that it has multiple + * instances of the same device with the same device ID, so we handle that + * by creating as many copies in the table as we expect to find. + * (Like device ID must be grouped together.) + */ + +static const struct pci_id_descr pci_dev_descr_knl[] = { + [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)}, + [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) }, + [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) }, + [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) }, + [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) }, + [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) }, + [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) }, +}; + +static const struct pci_id_table pci_dev_descr_knl_table[] = { + PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING), + {0,} +}; + +/* + * Broadwell support + * + * DE processor: + * - 1 IMC + * - 2 DDR3 channels, 2 DPC per channel + * EP processor: + * - 1 or 2 IMC + * - 4 DDR4 channels, 3 DPC per channel + * EP 4S processor: + * - 2 IMC + * - 4 DDR4 channels, 3 DPC per channel + * EX processor: + * - 2 IMC + * - each IMC interfaces with a SMI 2 channel + * - each SMI channel interfaces with a scalable memory buffer + * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC + */ +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28 +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0 +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60 +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8 +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71 +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68 +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79 +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d +#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf + +static const struct pci_id_descr pci_dev_descr_broadwell[] = { + /* first item must be the HA */ + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) }, + + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) }, + + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) }, + + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) }, + { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) }, +}; + +static const struct pci_id_table pci_dev_descr_broadwell_table[] = { + PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL), + {0,} /* 0 terminated list. */ +}; + + +/**************************************************************************** + Ancillary status routines + ****************************************************************************/ + +static inline int numrank(enum type type, u32 mtr) +{ + int ranks = (1 << RANK_CNT_BITS(mtr)); + int max = 4; + + if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING) + max = 8; + + if (ranks > max) { + edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n", + ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr); + return -EINVAL; + } + + return ranks; +} + +static inline int numrow(u32 mtr) +{ + int rows = (RANK_WIDTH_BITS(mtr) + 12); + + if (rows < 13 || rows > 18) { + edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n", + rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); + return -EINVAL; + } + + return 1 << rows; +} + +static inline int numcol(u32 mtr) +{ + int cols = (COL_WIDTH_BITS(mtr) + 10); + + if (cols > 12) { + edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n", + cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); + return -EINVAL; + } + + return 1 << cols; +} + +static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom, + int multi_bus, + struct sbridge_dev *prev) +{ + struct sbridge_dev *sbridge_dev; + + /* + * If we have devices scattered across several busses that pertain + * to the same memory controller, we'll lump them all together. + */ + if (multi_bus) { + return list_first_entry_or_null(&sbridge_edac_list, + struct sbridge_dev, list); + } + + sbridge_dev = list_entry(prev ? prev->list.next + : sbridge_edac_list.next, struct sbridge_dev, list); + + list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) { + if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) && + (dom == SOCK || dom == sbridge_dev->dom)) + return sbridge_dev; + } + + return NULL; +} + +static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom, + const struct pci_id_table *table) +{ + struct sbridge_dev *sbridge_dev; + + sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); + if (!sbridge_dev) + return NULL; + + sbridge_dev->pdev = kcalloc(table->n_devs_per_imc, + sizeof(*sbridge_dev->pdev), + GFP_KERNEL); + if (!sbridge_dev->pdev) { + kfree(sbridge_dev); + return NULL; + } + + sbridge_dev->seg = seg; + sbridge_dev->bus = bus; + sbridge_dev->dom = dom; + sbridge_dev->n_devs = table->n_devs_per_imc; + list_add_tail(&sbridge_dev->list, &sbridge_edac_list); + + return sbridge_dev; +} + +static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) +{ + list_del(&sbridge_dev->list); + kfree(sbridge_dev->pdev); + kfree(sbridge_dev); +} + +static u64 sbridge_get_tolm(struct sbridge_pvt *pvt) +{ + u32 reg; + + /* Address range is 32:28 */ + pci_read_config_dword(pvt->pci_sad1, TOLM, ®); + return GET_TOLM(reg); +} + +static u64 sbridge_get_tohm(struct sbridge_pvt *pvt) +{ + u32 reg; + + pci_read_config_dword(pvt->pci_sad1, TOHM, ®); + return GET_TOHM(reg); +} + +static u64 ibridge_get_tolm(struct sbridge_pvt *pvt) +{ + u32 reg; + + pci_read_config_dword(pvt->pci_br1, TOLM, ®); + + return GET_TOLM(reg); +} + +static u64 ibridge_get_tohm(struct sbridge_pvt *pvt) +{ + u32 reg; + + pci_read_config_dword(pvt->pci_br1, TOHM, ®); + + return GET_TOHM(reg); +} + +static u64 rir_limit(u32 reg) +{ + return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff; +} + +static u64 sad_limit(u32 reg) +{ + return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff; +} + +static u32 interleave_mode(u32 reg) +{ + return GET_BITFIELD(reg, 1, 1); +} + +static u32 dram_attr(u32 reg) +{ + return GET_BITFIELD(reg, 2, 3); +} + +static u64 knl_sad_limit(u32 reg) +{ + return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff; +} + +static u32 knl_interleave_mode(u32 reg) +{ + return GET_BITFIELD(reg, 1, 2); +} + +static const char * const knl_intlv_mode[] = { + "[8:6]", "[10:8]", "[14:12]", "[32:30]" +}; + +static const char *get_intlv_mode_str(u32 reg, enum type t) +{ + if (t == KNIGHTS_LANDING) + return knl_intlv_mode[knl_interleave_mode(reg)]; + else + return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]"; +} + +static u32 dram_attr_knl(u32 reg) +{ + return GET_BITFIELD(reg, 3, 4); +} + + +static enum mem_type get_memory_type(struct sbridge_pvt *pvt) +{ + u32 reg; + enum mem_type mtype; + + if (pvt->pci_ddrio) { + pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr, + ®); + if (GET_BITFIELD(reg, 11, 11)) + /* FIXME: Can also be LRDIMM */ + mtype = MEM_RDDR3; + else + mtype = MEM_DDR3; + } else + mtype = MEM_UNKNOWN; + + return mtype; +} + +static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt) +{ + u32 reg; + bool registered = false; + enum mem_type mtype = MEM_UNKNOWN; + + if (!pvt->pci_ddrio) + goto out; + + pci_read_config_dword(pvt->pci_ddrio, + HASWELL_DDRCRCLKCONTROLS, ®); + /* Is_Rdimm */ + if (GET_BITFIELD(reg, 16, 16)) + registered = true; + + pci_read_config_dword(pvt->pci_ta, MCMTR, ®); + if (GET_BITFIELD(reg, 14, 14)) { + if (registered) + mtype = MEM_RDDR4; + else + mtype = MEM_DDR4; + } else { + if (registered) + mtype = MEM_RDDR3; + else + mtype = MEM_DDR3; + } + +out: + return mtype; +} + +static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr) +{ + /* for KNL value is fixed */ + return DEV_X16; +} + +static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr) +{ + /* there's no way to figure out */ + return DEV_UNKNOWN; +} + +static enum dev_type __ibridge_get_width(u32 mtr) +{ + enum dev_type type; + + switch (mtr) { + case 3: + type = DEV_UNKNOWN; + break; + case 2: + type = DEV_X16; + break; + case 1: + type = DEV_X8; + break; + case 0: + type = DEV_X4; + break; + } + + return type; +} + +static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr) +{ + /* + * ddr3_width on the documentation but also valid for DDR4 on + * Haswell + */ + return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8)); +} + +static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr) +{ + /* ddr3_width on the documentation but also valid for DDR4 */ + return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9)); +} + +static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt) +{ + /* DDR4 RDIMMS and LRDIMMS are supported */ + return MEM_RDDR4; +} + +static u8 get_node_id(struct sbridge_pvt *pvt) +{ + u32 reg; + pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®); + return GET_BITFIELD(reg, 0, 2); +} + +static u8 haswell_get_node_id(struct sbridge_pvt *pvt) +{ + u32 reg; + + pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); + return GET_BITFIELD(reg, 0, 3); +} + +static u8 knl_get_node_id(struct sbridge_pvt *pvt) +{ + u32 reg; + + pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); + return GET_BITFIELD(reg, 0, 2); +} + + +static u64 haswell_get_tolm(struct sbridge_pvt *pvt) +{ + u32 reg; + + pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®); + return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; +} + +static u64 haswell_get_tohm(struct sbridge_pvt *pvt) +{ + u64 rc; + u32 reg; + + pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®); + rc = GET_BITFIELD(reg, 26, 31); + pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®); + rc = ((reg << 6) | rc) << 26; + + return rc | 0x3ffffff; +} + +static u64 knl_get_tolm(struct sbridge_pvt *pvt) +{ + u32 reg; + + pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, ®); + return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; +} + +static u64 knl_get_tohm(struct sbridge_pvt *pvt) +{ + u64 rc; + u32 reg_lo, reg_hi; + + pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, ®_lo); + pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, ®_hi); + rc = ((u64)reg_hi << 32) | reg_lo; + return rc | 0x3ffffff; +} + + +static u64 haswell_rir_limit(u32 reg) +{ + return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1; +} + +static inline u8 sad_pkg_socket(u8 pkg) +{ + /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */ + return ((pkg >> 3) << 2) | (pkg & 0x3); +} + +static inline u8 sad_pkg_ha(u8 pkg) +{ + return (pkg >> 2) & 0x1; +} + +static int haswell_chan_hash(int idx, u64 addr) +{ + int i; + + /* + * XOR even bits from 12:26 to bit0 of idx, + * odd bits from 13:27 to bit1 + */ + for (i = 12; i < 28; i += 2) + idx ^= (addr >> i) & 3; + + return idx; +} + +/* Low bits of TAD limit, and some metadata. */ +static const u32 knl_tad_dram_limit_lo[] = { + 0x400, 0x500, 0x600, 0x700, + 0x800, 0x900, 0xa00, 0xb00, +}; + +/* Low bits of TAD offset. */ +static const u32 knl_tad_dram_offset_lo[] = { + 0x404, 0x504, 0x604, 0x704, + 0x804, 0x904, 0xa04, 0xb04, +}; + +/* High 16 bits of TAD limit and offset. */ +static const u32 knl_tad_dram_hi[] = { + 0x408, 0x508, 0x608, 0x708, + 0x808, 0x908, 0xa08, 0xb08, +}; + +/* Number of ways a tad entry is interleaved. */ +static const u32 knl_tad_ways[] = { + 8, 6, 4, 3, 2, 1, +}; + +/* + * Retrieve the n'th Target Address Decode table entry + * from the memory controller's TAD table. + * + * @pvt: driver private data + * @entry: which entry you want to retrieve + * @mc: which memory controller (0 or 1) + * @offset: output tad range offset + * @limit: output address of first byte above tad range + * @ways: output number of interleave ways + * + * The offset value has curious semantics. It's a sort of running total + * of the sizes of all the memory regions that aren't mapped in this + * tad table. + */ +static int knl_get_tad(const struct sbridge_pvt *pvt, + const int entry, + const int mc, + u64 *offset, + u64 *limit, + int *ways) +{ + u32 reg_limit_lo, reg_offset_lo, reg_hi; + struct pci_dev *pci_mc; + int way_id; + + switch (mc) { + case 0: + pci_mc = pvt->knl.pci_mc0; + break; + case 1: + pci_mc = pvt->knl.pci_mc1; + break; + default: + WARN_ON(1); + return -EINVAL; + } + + pci_read_config_dword(pci_mc, + knl_tad_dram_limit_lo[entry], ®_limit_lo); + pci_read_config_dword(pci_mc, + knl_tad_dram_offset_lo[entry], ®_offset_lo); + pci_read_config_dword(pci_mc, + knl_tad_dram_hi[entry], ®_hi); + + /* Is this TAD entry enabled? */ + if (!GET_BITFIELD(reg_limit_lo, 0, 0)) + return -ENODEV; + + way_id = GET_BITFIELD(reg_limit_lo, 3, 5); + + if (way_id < ARRAY_SIZE(knl_tad_ways)) { + *ways = knl_tad_ways[way_id]; + } else { + *ways = 0; + sbridge_printk(KERN_ERR, + "Unexpected value %d in mc_tad_limit_lo wayness field\n", + way_id); + return -ENODEV; + } + + /* + * The least significant 6 bits of base and limit are truncated. + * For limit, we fill the missing bits with 1s. + */ + *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) | + ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32); + *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 | + ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32); + + return 0; +} + +/* Determine which memory controller is responsible for a given channel. */ +static int knl_channel_mc(int channel) +{ + WARN_ON(channel < 0 || channel >= 6); + + return channel < 3 ? 1 : 0; +} + +/* + * Get the Nth entry from EDC_ROUTE_TABLE register. + * (This is the per-tile mapping of logical interleave targets to + * physical EDC modules.) + * + * entry 0: 0:2 + * 1: 3:5 + * 2: 6:8 + * 3: 9:11 + * 4: 12:14 + * 5: 15:17 + * 6: 18:20 + * 7: 21:23 + * reserved: 24:31 + */ +static u32 knl_get_edc_route(int entry, u32 reg) +{ + WARN_ON(entry >= KNL_MAX_EDCS); + return GET_BITFIELD(reg, entry*3, (entry*3)+2); +} + +/* + * Get the Nth entry from MC_ROUTE_TABLE register. + * (This is the per-tile mapping of logical interleave targets to + * physical DRAM channels modules.) + * + * entry 0: mc 0:2 channel 18:19 + * 1: mc 3:5 channel 20:21 + * 2: mc 6:8 channel 22:23 + * 3: mc 9:11 channel 24:25 + * 4: mc 12:14 channel 26:27 + * 5: mc 15:17 channel 28:29 + * reserved: 30:31 + * + * Though we have 3 bits to identify the MC, we should only see + * the values 0 or 1. + */ + +static u32 knl_get_mc_route(int entry, u32 reg) +{ + int mc, chan; + + WARN_ON(entry >= KNL_MAX_CHANNELS); + + mc = GET_BITFIELD(reg, entry*3, (entry*3)+2); + chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1); + + return knl_channel_remap(mc, chan); +} + +/* + * Render the EDC_ROUTE register in human-readable form. + * Output string s should be at least KNL_MAX_EDCS*2 bytes. + */ +static void knl_show_edc_route(u32 reg, char *s) +{ + int i; + + for (i = 0; i < KNL_MAX_EDCS; i++) { + s[i*2] = knl_get_edc_route(i, reg) + '0'; + s[i*2+1] = '-'; + } + + s[KNL_MAX_EDCS*2 - 1] = '\0'; +} + +/* + * Render the MC_ROUTE register in human-readable form. + * Output string s should be at least KNL_MAX_CHANNELS*2 bytes. + */ +static void knl_show_mc_route(u32 reg, char *s) +{ + int i; + + for (i = 0; i < KNL_MAX_CHANNELS; i++) { + s[i*2] = knl_get_mc_route(i, reg) + '0'; + s[i*2+1] = '-'; + } + + s[KNL_MAX_CHANNELS*2 - 1] = '\0'; +} + +#define KNL_EDC_ROUTE 0xb8 +#define KNL_MC_ROUTE 0xb4 + +/* Is this dram rule backed by regular DRAM in flat mode? */ +#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29) + +/* Is this dram rule cached? */ +#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28) + +/* Is this rule backed by edc ? */ +#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29) + +/* Is this rule backed by DRAM, cacheable in EDRAM? */ +#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28) + +/* Is this rule mod3? */ +#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27) + +/* + * Figure out how big our RAM modules are. + * + * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we + * have to figure this out from the SAD rules, interleave lists, route tables, + * and TAD rules. + * + * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to + * inspect the TAD rules to figure out how large the SAD regions really are. + * + * When we know the real size of a SAD region and how many ways it's + * interleaved, we know the individual contribution of each channel to + * TAD is size/ways. + * + * Finally, we have to check whether each channel participates in each SAD + * region. + * + * Fortunately, KNL only supports one DIMM per channel, so once we know how + * much memory the channel uses, we know the DIMM is at least that large. + * (The BIOS might possibly choose not to map all available memory, in which + * case we will underreport the size of the DIMM.) + * + * In theory, we could try to determine the EDC sizes as well, but that would + * only work in flat mode, not in cache mode. + * + * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS + * elements) + */ +static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes) +{ + u64 sad_base, sad_size, sad_limit = 0; + u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace; + int sad_rule = 0; + int tad_rule = 0; + int intrlv_ways, tad_ways; + u32 first_pkg, pkg; + int i; + u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */ + u32 dram_rule, interleave_reg; + u32 mc_route_reg[KNL_MAX_CHAS]; + u32 edc_route_reg[KNL_MAX_CHAS]; + int edram_only; + char edc_route_string[KNL_MAX_EDCS*2]; + char mc_route_string[KNL_MAX_CHANNELS*2]; + int cur_reg_start; + int mc; + int channel; + int participants[KNL_MAX_CHANNELS]; + + for (i = 0; i < KNL_MAX_CHANNELS; i++) + mc_sizes[i] = 0; + + /* Read the EDC route table in each CHA. */ + cur_reg_start = 0; + for (i = 0; i < KNL_MAX_CHAS; i++) { + pci_read_config_dword(pvt->knl.pci_cha[i], + KNL_EDC_ROUTE, &edc_route_reg[i]); + + if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) { + knl_show_edc_route(edc_route_reg[i-1], + edc_route_string); + if (cur_reg_start == i-1) + edac_dbg(0, "edc route table for CHA %d: %s\n", + cur_reg_start, edc_route_string); + else + edac_dbg(0, "edc route table for CHA %d-%d: %s\n", + cur_reg_start, i-1, edc_route_string); + cur_reg_start = i; + } + } + knl_show_edc_route(edc_route_reg[i-1], edc_route_string); + if (cur_reg_start == i-1) + edac_dbg(0, "edc route table for CHA %d: %s\n", + cur_reg_start, edc_route_string); + else + edac_dbg(0, "edc route table for CHA %d-%d: %s\n", + cur_reg_start, i-1, edc_route_string); + + /* Read the MC route table in each CHA. */ + cur_reg_start = 0; + for (i = 0; i < KNL_MAX_CHAS; i++) { + pci_read_config_dword(pvt->knl.pci_cha[i], + KNL_MC_ROUTE, &mc_route_reg[i]); + + if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) { + knl_show_mc_route(mc_route_reg[i-1], mc_route_string); + if (cur_reg_start == i-1) + edac_dbg(0, "mc route table for CHA %d: %s\n", + cur_reg_start, mc_route_string); + else + edac_dbg(0, "mc route table for CHA %d-%d: %s\n", + cur_reg_start, i-1, mc_route_string); + cur_reg_start = i; + } + } + knl_show_mc_route(mc_route_reg[i-1], mc_route_string); + if (cur_reg_start == i-1) + edac_dbg(0, "mc route table for CHA %d: %s\n", + cur_reg_start, mc_route_string); + else + edac_dbg(0, "mc route table for CHA %d-%d: %s\n", + cur_reg_start, i-1, mc_route_string); + + /* Process DRAM rules */ + for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) { + /* previous limit becomes the new base */ + sad_base = sad_limit; + + pci_read_config_dword(pvt->pci_sad0, + pvt->info.dram_rule[sad_rule], &dram_rule); + + if (!DRAM_RULE_ENABLE(dram_rule)) + break; + + edram_only = KNL_EDRAM_ONLY(dram_rule); + + sad_limit = pvt->info.sad_limit(dram_rule)+1; + sad_size = sad_limit - sad_base; + + pci_read_config_dword(pvt->pci_sad0, + pvt->info.interleave_list[sad_rule], &interleave_reg); + + /* + * Find out how many ways this dram rule is interleaved. + * We stop when we see the first channel again. + */ + first_pkg = sad_pkg(pvt->info.interleave_pkg, + interleave_reg, 0); + for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) { + pkg = sad_pkg(pvt->info.interleave_pkg, + interleave_reg, intrlv_ways); + + if ((pkg & 0x8) == 0) { + /* + * 0 bit means memory is non-local, + * which KNL doesn't support + */ + edac_dbg(0, "Unexpected interleave target %d\n", + pkg); + return -1; + } + + if (pkg == first_pkg) + break; + } + if (KNL_MOD3(dram_rule)) + intrlv_ways *= 3; + + edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n", + sad_rule, + sad_base, + sad_limit, + intrlv_ways, + edram_only ? ", EDRAM" : ""); + + /* + * Find out how big the SAD region really is by iterating + * over TAD tables (SAD regions may contain holes). + * Each memory controller might have a different TAD table, so + * we have to look at both. + * + * Livespace is the memory that's mapped in this TAD table, + * deadspace is the holes (this could be the MMIO hole, or it + * could be memory that's mapped by the other TAD table but + * not this one). + */ + for (mc = 0; mc < 2; mc++) { + sad_actual_size[mc] = 0; + tad_livespace = 0; + for (tad_rule = 0; + tad_rule < ARRAY_SIZE( + knl_tad_dram_limit_lo); + tad_rule++) { + if (knl_get_tad(pvt, + tad_rule, + mc, + &tad_deadspace, + &tad_limit, + &tad_ways)) + break; + + tad_size = (tad_limit+1) - + (tad_livespace + tad_deadspace); + tad_livespace += tad_size; + tad_base = (tad_limit+1) - tad_size; + + if (tad_base < sad_base) { + if (tad_limit > sad_base) + edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n"); + } else if (tad_base < sad_limit) { + if (tad_limit+1 > sad_limit) { + edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n"); + } else { + /* TAD region is completely inside SAD region */ + edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n", + tad_rule, tad_base, + tad_limit, tad_size, + mc); + sad_actual_size[mc] += tad_size; + } + } + tad_base = tad_limit+1; + } + } + + for (mc = 0; mc < 2; mc++) { + edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n", + mc, sad_actual_size[mc], sad_actual_size[mc]); + } + + /* Ignore EDRAM rule */ + if (edram_only) + continue; + + /* Figure out which channels participate in interleave. */ + for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) + participants[channel] = 0; + + /* For each channel, does at least one CHA have + * this channel mapped to the given target? + */ + for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) { + int target; + int cha; + + for (target = 0; target < KNL_MAX_CHANNELS; target++) { + for (cha = 0; cha < KNL_MAX_CHAS; cha++) { + if (knl_get_mc_route(target, + mc_route_reg[cha]) == channel + && !participants[channel]) { + participants[channel] = 1; + break; + } + } + } + } + + for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) { + mc = knl_channel_mc(channel); + if (participants[channel]) { + edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n", + channel, + sad_actual_size[mc]/intrlv_ways, + sad_rule); + mc_sizes[channel] += + sad_actual_size[mc]/intrlv_ways; + } + } + } + + return 0; +} + +static void get_source_id(struct mem_ctl_info *mci) +{ + struct sbridge_pvt *pvt = mci->pvt_info; + u32 reg; + + if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL || + pvt->info.type == KNIGHTS_LANDING) + pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®); + else + pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®); + + if (pvt->info.type == KNIGHTS_LANDING) + pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg); + else + pvt->sbridge_dev->source_id = SOURCE_ID(reg); +} + +static int __populate_dimms(struct mem_ctl_info *mci, + u64 knl_mc_sizes[KNL_MAX_CHANNELS], + enum edac_type mode) +{ + struct sbridge_pvt *pvt = mci->pvt_info; + int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS + : NUM_CHANNELS; + unsigned int i, j, banks, ranks, rows, cols, npages; + struct dimm_info *dimm; + enum mem_type mtype; + u64 size; + + mtype = pvt->info.get_memory_type(pvt); + if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4) + edac_dbg(0, "Memory is registered\n"); + else if (mtype == MEM_UNKNOWN) + edac_dbg(0, "Cannot determine memory type\n"); + else + edac_dbg(0, "Memory is unregistered\n"); + + if (mtype == MEM_DDR4 || mtype == MEM_RDDR4) + banks = 16; + else + banks = 8; + + for (i = 0; i < channels; i++) { + u32 mtr; + + int max_dimms_per_channel; + + if (pvt->info.type == KNIGHTS_LANDING) { + max_dimms_per_channel = 1; + if (!pvt->knl.pci_channel[i]) + continue; + } else { + max_dimms_per_channel = ARRAY_SIZE(mtr_regs); + if (!pvt->pci_tad[i]) + continue; + } + + for (j = 0; j < max_dimms_per_channel; j++) { + dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); + if (pvt->info.type == KNIGHTS_LANDING) { + pci_read_config_dword(pvt->knl.pci_channel[i], + knl_mtr_reg, &mtr); + } else { + pci_read_config_dword(pvt->pci_tad[i], + mtr_regs[j], &mtr); + } + edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr); + if (IS_DIMM_PRESENT(mtr)) { + if (!IS_ECC_ENABLED(pvt->info.mcmtr)) { + sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n", + pvt->sbridge_dev->source_id, + pvt->sbridge_dev->dom, i); + return -ENODEV; + } + pvt->channel[i].dimms++; + + ranks = numrank(pvt->info.type, mtr); + + if (pvt->info.type == KNIGHTS_LANDING) { + /* For DDR4, this is fixed. */ + cols = 1 << 10; + rows = knl_mc_sizes[i] / + ((u64) cols * ranks * banks * 8); + } else { + rows = numrow(mtr); + cols = numcol(mtr); + } + + size = ((u64)rows * cols * banks * ranks) >> (20 - 3); + npages = MiB_TO_PAGES(size); + + edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", + pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j, + size, npages, + banks, ranks, rows, cols); + + dimm->nr_pages = npages; + dimm->grain = 32; + dimm->dtype = pvt->info.get_width(pvt, mtr); + dimm->mtype = mtype; + dimm->edac_mode = mode; + snprintf(dimm->label, sizeof(dimm->label), + "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u", + pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j); + } + } + } + + return 0; +} + +static int get_dimm_config(struct mem_ctl_info *mci) +{ + struct sbridge_pvt *pvt = mci->pvt_info; + u64 knl_mc_sizes[KNL_MAX_CHANNELS]; + enum edac_type mode; + u32 reg; + + pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt); + edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n", + pvt->sbridge_dev->mc, + pvt->sbridge_dev->node_id, + pvt->sbridge_dev->source_id); + + /* KNL doesn't support mirroring or lockstep, + * and is always closed page + */ + if (pvt->info.type == KNIGHTS_LANDING) { + mode = EDAC_S4ECD4ED; + pvt->mirror_mode = NON_MIRRORING; + pvt->is_cur_addr_mirrored = false; + + if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0) + return -1; + if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) { + edac_dbg(0, "Failed to read KNL_MCMTR register\n"); + return -ENODEV; + } + } else { + if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { + if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®)) { + edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n"); + return -ENODEV; + } + pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21); + if (GET_BITFIELD(reg, 28, 28)) { + pvt->mirror_mode = ADDR_RANGE_MIRRORING; + edac_dbg(0, "Address range partial memory mirroring is enabled\n"); + goto next; + } + } + if (pci_read_config_dword(pvt->pci_ras, RASENABLES, ®)) { + edac_dbg(0, "Failed to read RASENABLES register\n"); + return -ENODEV; + } + if (IS_MIRROR_ENABLED(reg)) { + pvt->mirror_mode = FULL_MIRRORING; + edac_dbg(0, "Full memory mirroring is enabled\n"); + } else { + pvt->mirror_mode = NON_MIRRORING; + edac_dbg(0, "Memory mirroring is disabled\n"); + } + +next: + if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) { + edac_dbg(0, "Failed to read MCMTR register\n"); + return -ENODEV; + } + if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { + edac_dbg(0, "Lockstep is enabled\n"); + mode = EDAC_S8ECD8ED; + pvt->is_lockstep = true; + } else { + edac_dbg(0, "Lockstep is disabled\n"); + mode = EDAC_S4ECD4ED; + pvt->is_lockstep = false; + } + if (IS_CLOSE_PG(pvt->info.mcmtr)) { + edac_dbg(0, "address map is on closed page mode\n"); + pvt->is_close_pg = true; + } else { + edac_dbg(0, "address map is on open page mode\n"); + pvt->is_close_pg = false; + } + } + + return __populate_dimms(mci, knl_mc_sizes, mode); +} + +static void get_memory_layout(const struct mem_ctl_info *mci) +{ + struct sbridge_pvt *pvt = mci->pvt_info; + int i, j, k, n_sads, n_tads, sad_interl; + u32 reg; + u64 limit, prv = 0; + u64 tmp_mb; + u32 gb, mb; + u32 rir_way; + + /* + * Step 1) Get TOLM/TOHM ranges + */ + + pvt->tolm = pvt->info.get_tolm(pvt); + tmp_mb = (1 + pvt->tolm) >> 20; + + gb = div_u64_rem(tmp_mb, 1024, &mb); + edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", + gb, (mb*1000)/1024, (u64)pvt->tolm); + + /* Address range is already 45:25 */ + pvt->tohm = pvt->info.get_tohm(pvt); + tmp_mb = (1 + pvt->tohm) >> 20; + + gb = div_u64_rem(tmp_mb, 1024, &mb); + edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", + gb, (mb*1000)/1024, (u64)pvt->tohm); + + /* + * Step 2) Get SAD range and SAD Interleave list + * TAD registers contain the interleave wayness. However, it + * seems simpler to just discover it indirectly, with the + * algorithm bellow. + */ + prv = 0; + for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { + /* SAD_LIMIT Address range is 45:26 */ + pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], + ®); + limit = pvt->info.sad_limit(reg); + + if (!DRAM_RULE_ENABLE(reg)) + continue; + + if (limit <= prv) + break; + + tmp_mb = (limit + 1) >> 20; + gb = div_u64_rem(tmp_mb, 1024, &mb); + edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n", + n_sads, + show_dram_attr(pvt->info.dram_attr(reg)), + gb, (mb*1000)/1024, + ((u64)tmp_mb) << 20L, + get_intlv_mode_str(reg, pvt->info.type), + reg); + prv = limit; + + pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], + ®); + sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); + for (j = 0; j < 8; j++) { + u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j); + if (j > 0 && sad_interl == pkg) + break; + + edac_dbg(0, "SAD#%d, interleave #%d: %d\n", + n_sads, j, pkg); + } + } + + if (pvt->info.type == KNIGHTS_LANDING) + return; + + /* + * Step 3) Get TAD range + */ + prv = 0; + for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { + pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], ®); + limit = TAD_LIMIT(reg); + if (limit <= prv) + break; + tmp_mb = (limit + 1) >> 20; + + gb = div_u64_rem(tmp_mb, 1024, &mb); + edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", + n_tads, gb, (mb*1000)/1024, + ((u64)tmp_mb) << 20L, + (u32)(1 << TAD_SOCK(reg)), + (u32)TAD_CH(reg) + 1, + (u32)TAD_TGT0(reg), + (u32)TAD_TGT1(reg), + (u32)TAD_TGT2(reg), + (u32)TAD_TGT3(reg), + reg); + prv = limit; + } + + /* + * Step 4) Get TAD offsets, per each channel + */ + for (i = 0; i < NUM_CHANNELS; i++) { + if (!pvt->channel[i].dimms) + continue; + for (j = 0; j < n_tads; j++) { + pci_read_config_dword(pvt->pci_tad[i], + tad_ch_nilv_offset[j], + ®); + tmp_mb = TAD_OFFSET(reg) >> 20; + gb = div_u64_rem(tmp_mb, 1024, &mb); + edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", + i, j, + gb, (mb*1000)/1024, + ((u64)tmp_mb) << 20L, + reg); + } + } + + /* + * Step 6) Get RIR Wayness/Limit, per each channel + */ + for (i = 0; i < NUM_CHANNELS; i++) { + if (!pvt->channel[i].dimms) + continue; + for (j = 0; j < MAX_RIR_RANGES; j++) { + pci_read_config_dword(pvt->pci_tad[i], + rir_way_limit[j], + ®); + + if (!IS_RIR_VALID(reg)) + continue; + + tmp_mb = pvt->info.rir_limit(reg) >> 20; + rir_way = 1 << RIR_WAY(reg); + gb = div_u64_rem(tmp_mb, 1024, &mb); + edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", + i, j, + gb, (mb*1000)/1024, + ((u64)tmp_mb) << 20L, + rir_way, + reg); + + for (k = 0; k < rir_way; k++) { + pci_read_config_dword(pvt->pci_tad[i], + rir_offset[j][k], + ®); + tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6; + + gb = div_u64_rem(tmp_mb, 1024, &mb); + edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", + i, j, k, + gb, (mb*1000)/1024, + ((u64)tmp_mb) << 20L, + (u32)RIR_RNK_TGT(pvt->info.type, reg), + reg); + } + } + } +} + +static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha) +{ + struct sbridge_dev *sbridge_dev; + + list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { + if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha) + return sbridge_dev->mci; + } + return NULL; +} + +static int get_memory_error_data(struct mem_ctl_info *mci, + u64 addr, + u8 *socket, u8 *ha, + long *channel_mask, + u8 *rank, + char **area_type, char *msg) +{ + struct mem_ctl_info *new_mci; + struct sbridge_pvt *pvt = mci->pvt_info; + struct pci_dev *pci_ha; + int n_rir, n_sads, n_tads, sad_way, sck_xch; + int sad_interl, idx, base_ch; + int interleave_mode, shiftup = 0; + unsigned int sad_interleave[MAX_INTERLEAVE]; + u32 reg, dram_rule; + u8 ch_way, sck_way, pkg, sad_ha = 0; + u32 tad_offset; + u32 rir_way; + u32 mb, gb; + u64 ch_addr, offset, limit = 0, prv = 0; + + + /* + * Step 0) Check if the address is at special memory ranges + * The check bellow is probably enough to fill all cases where + * the error is not inside a memory, except for the legacy + * range (e. g. VGA addresses). It is unlikely, however, that the + * memory controller would generate an error on that range. + */ + if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { + sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); + return -EINVAL; + } + if (addr >= (u64)pvt->tohm) { + sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); + return -EINVAL; + } + + /* + * Step 1) Get socket + */ + for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { + pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], + ®); + + if (!DRAM_RULE_ENABLE(reg)) + continue; + + limit = pvt->info.sad_limit(reg); + if (limit <= prv) { + sprintf(msg, "Can't discover the memory socket"); + return -EINVAL; + } + if (addr <= limit) + break; + prv = limit; + } + if (n_sads == pvt->info.max_sad) { + sprintf(msg, "Can't discover the memory socket"); + return -EINVAL; + } + dram_rule = reg; + *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule)); + interleave_mode = pvt->info.interleave_mode(dram_rule); + + pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], + ®); + + if (pvt->info.type == SANDY_BRIDGE) { + sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); + for (sad_way = 0; sad_way < 8; sad_way++) { + u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way); + if (sad_way > 0 && sad_interl == pkg) + break; + sad_interleave[sad_way] = pkg; + edac_dbg(0, "SAD interleave #%d: %d\n", + sad_way, sad_interleave[sad_way]); + } + edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", + pvt->sbridge_dev->mc, + n_sads, + addr, + limit, + sad_way + 7, + !interleave_mode ? "" : "XOR[18:16]"); + if (interleave_mode) + idx = ((addr >> 6) ^ (addr >> 16)) & 7; + else + idx = (addr >> 6) & 7; + switch (sad_way) { + case 1: + idx = 0; + break; + case 2: + idx = idx & 1; + break; + case 4: + idx = idx & 3; + break; + case 8: + break; + default: + sprintf(msg, "Can't discover socket interleave"); + return -EINVAL; + } + *socket = sad_interleave[idx]; + edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n", + idx, sad_way, *socket); + } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { + int bits, a7mode = A7MODE(dram_rule); + + if (a7mode) { + /* A7 mode swaps P9 with P6 */ + bits = GET_BITFIELD(addr, 7, 8) << 1; + bits |= GET_BITFIELD(addr, 9, 9); + } else + bits = GET_BITFIELD(addr, 6, 8); + + if (interleave_mode == 0) { + /* interleave mode will XOR {8,7,6} with {18,17,16} */ + idx = GET_BITFIELD(addr, 16, 18); + idx ^= bits; + } else + idx = bits; + + pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); + *socket = sad_pkg_socket(pkg); + sad_ha = sad_pkg_ha(pkg); + + if (a7mode) { + /* MCChanShiftUpEnable */ + pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®); + shiftup = GET_BITFIELD(reg, 22, 22); + } + + edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n", + idx, *socket, sad_ha, shiftup); + } else { + /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */ + idx = (addr >> 6) & 7; + pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); + *socket = sad_pkg_socket(pkg); + sad_ha = sad_pkg_ha(pkg); + edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n", + idx, *socket, sad_ha); + } + + *ha = sad_ha; + + /* + * Move to the proper node structure, in order to access the + * right PCI registers + */ + new_mci = get_mci_for_node_id(*socket, sad_ha); + if (!new_mci) { + sprintf(msg, "Struct for socket #%u wasn't initialized", + *socket); + return -EINVAL; + } + mci = new_mci; + pvt = mci->pvt_info; + + /* + * Step 2) Get memory channel + */ + prv = 0; + pci_ha = pvt->pci_ha; + for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { + pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®); + limit = TAD_LIMIT(reg); + if (limit <= prv) { + sprintf(msg, "Can't discover the memory channel"); + return -EINVAL; + } + if (addr <= limit) + break; + prv = limit; + } + if (n_tads == MAX_TAD) { + sprintf(msg, "Can't discover the memory channel"); + return -EINVAL; + } + + ch_way = TAD_CH(reg) + 1; + sck_way = TAD_SOCK(reg); + + if (ch_way == 3) + idx = addr >> 6; + else { + idx = (addr >> (6 + sck_way + shiftup)) & 0x3; + if (pvt->is_chan_hash) + idx = haswell_chan_hash(idx, addr); + } + idx = idx % ch_way; + + /* + * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? + */ + switch (idx) { + case 0: + base_ch = TAD_TGT0(reg); + break; + case 1: + base_ch = TAD_TGT1(reg); + break; + case 2: + base_ch = TAD_TGT2(reg); + break; + case 3: + base_ch = TAD_TGT3(reg); + break; + default: + sprintf(msg, "Can't discover the TAD target"); + return -EINVAL; + } + *channel_mask = 1 << base_ch; + + pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset); + + if (pvt->mirror_mode == FULL_MIRRORING || + (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) { + *channel_mask |= 1 << ((base_ch + 2) % 4); + switch(ch_way) { + case 2: + case 4: + sck_xch = (1 << sck_way) * (ch_way >> 1); + break; + default: + sprintf(msg, "Invalid mirror set. Can't decode addr"); + return -EINVAL; + } + + pvt->is_cur_addr_mirrored = true; + } else { + sck_xch = (1 << sck_way) * ch_way; + pvt->is_cur_addr_mirrored = false; + } + + if (pvt->is_lockstep) + *channel_mask |= 1 << ((base_ch + 1) % 4); + + offset = TAD_OFFSET(tad_offset); + + edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", + n_tads, + addr, + limit, + sck_way, + ch_way, + offset, + idx, + base_ch, + *channel_mask); + + /* Calculate channel address */ + /* Remove the TAD offset */ + + if (offset > addr) { + sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", + offset, addr); + return -EINVAL; + } + + ch_addr = addr - offset; + ch_addr >>= (6 + shiftup); + ch_addr /= sck_xch; + ch_addr <<= (6 + shiftup); + ch_addr |= addr & ((1 << (6 + shiftup)) - 1); + + /* + * Step 3) Decode rank + */ + for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { + pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], ®); + + if (!IS_RIR_VALID(reg)) + continue; + + limit = pvt->info.rir_limit(reg); + gb = div_u64_rem(limit >> 20, 1024, &mb); + edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", + n_rir, + gb, (mb*1000)/1024, + limit, + 1 << RIR_WAY(reg)); + if (ch_addr <= limit) + break; + } + if (n_rir == MAX_RIR_RANGES) { + sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", + ch_addr); + return -EINVAL; + } + rir_way = RIR_WAY(reg); + + if (pvt->is_close_pg) + idx = (ch_addr >> 6); + else + idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ + idx %= 1 << rir_way; + + pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], ®); + *rank = RIR_RNK_TGT(pvt->info.type, reg); + + edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", + n_rir, + ch_addr, + limit, + rir_way, + idx); + + return 0; +} + +/**************************************************************************** + Device initialization routines: put/get, init/exit + ****************************************************************************/ + +/* + * sbridge_put_all_devices 'put' all the devices that we have + * reserved via 'get' + */ +static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) +{ + int i; + + edac_dbg(0, "\n"); + for (i = 0; i < sbridge_dev->n_devs; i++) { + struct pci_dev *pdev = sbridge_dev->pdev[i]; + if (!pdev) + continue; + edac_dbg(0, "Removing dev %02x:%02x.%d\n", + pdev->bus->number, + PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); + pci_dev_put(pdev); + } +} + +static void sbridge_put_all_devices(void) +{ + struct sbridge_dev *sbridge_dev, *tmp; + + list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { + sbridge_put_devices(sbridge_dev); + free_sbridge_dev(sbridge_dev); + } +} + +static int sbridge_get_onedevice(struct pci_dev **prev, + u8 *num_mc, + const struct pci_id_table *table, + const unsigned devno, + const int multi_bus) +{ + struct sbridge_dev *sbridge_dev = NULL; + const struct pci_id_descr *dev_descr = &table->descr[devno]; + struct pci_dev *pdev = NULL; + int seg = 0; + u8 bus = 0; + int i = 0; + + sbridge_printk(KERN_DEBUG, + "Seeking for: PCI ID %04x:%04x\n", + PCI_VENDOR_ID_INTEL, dev_descr->dev_id); + + pdev = pci_get_device(PCI_VENDOR_ID_INTEL, + dev_descr->dev_id, *prev); + + if (!pdev) { + if (*prev) { + *prev = pdev; + return 0; + } + + if (dev_descr->optional) + return 0; + + /* if the HA wasn't found */ + if (devno == 0) + return -ENODEV; + + sbridge_printk(KERN_INFO, + "Device not found: %04x:%04x\n", + PCI_VENDOR_ID_INTEL, dev_descr->dev_id); + + /* End of list, leave */ + return -ENODEV; + } + seg = pci_domain_nr(pdev->bus); + bus = pdev->bus->number; + +next_imc: + sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom, + multi_bus, sbridge_dev); + if (!sbridge_dev) { + /* If the HA1 wasn't found, don't create EDAC second memory controller */ + if (dev_descr->dom == IMC1 && devno != 1) { + edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n", + PCI_VENDOR_ID_INTEL, dev_descr->dev_id); + pci_dev_put(pdev); + return 0; + } + + if (dev_descr->dom == SOCK) + goto out_imc; + + sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table); + if (!sbridge_dev) { + pci_dev_put(pdev); + return -ENOMEM; + } + (*num_mc)++; + } + + if (sbridge_dev->pdev[sbridge_dev->i_devs]) { + sbridge_printk(KERN_ERR, + "Duplicated device for %04x:%04x\n", + PCI_VENDOR_ID_INTEL, dev_descr->dev_id); + pci_dev_put(pdev); + return -ENODEV; + } + + sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev; + + /* pdev belongs to more than one IMC, do extra gets */ + if (++i > 1) + pci_dev_get(pdev); + + if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock) + goto next_imc; + +out_imc: + /* Be sure that the device is enabled */ + if (unlikely(pci_enable_device(pdev) < 0)) { + sbridge_printk(KERN_ERR, + "Couldn't enable %04x:%04x\n", + PCI_VENDOR_ID_INTEL, dev_descr->dev_id); + return -ENODEV; + } + + edac_dbg(0, "Detected %04x:%04x\n", + PCI_VENDOR_ID_INTEL, dev_descr->dev_id); + + /* + * As stated on drivers/pci/search.c, the reference count for + * @from is always decremented if it is not %NULL. So, as we need + * to get all devices up to null, we need to do a get for the device + */ + pci_dev_get(pdev); + + *prev = pdev; + + return 0; +} + +/* + * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's + * devices we want to reference for this driver. + * @num_mc: pointer to the memory controllers count, to be incremented in case + * of success. + * @table: model specific table + * + * returns 0 in case of success or error code + */ +static int sbridge_get_all_devices(u8 *num_mc, + const struct pci_id_table *table) +{ + int i, rc; + struct pci_dev *pdev = NULL; + int allow_dups = 0; + int multi_bus = 0; + + if (table->type == KNIGHTS_LANDING) + allow_dups = multi_bus = 1; + while (table && table->descr) { + for (i = 0; i < table->n_devs_per_sock; i++) { + if (!allow_dups || i == 0 || + table->descr[i].dev_id != + table->descr[i-1].dev_id) { + pdev = NULL; + } + do { + rc = sbridge_get_onedevice(&pdev, num_mc, + table, i, multi_bus); + if (rc < 0) { + if (i == 0) { + i = table->n_devs_per_sock; + break; + } + sbridge_put_all_devices(); + return -ENODEV; + } + } while (pdev && !allow_dups); + } + table++; + } + + return 0; +} + +/* + * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in + * the format: XXXa. So we can convert from a device to the corresponding + * channel like this + */ +#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa) + +static int sbridge_mci_bind_devs(struct mem_ctl_info *mci, + struct sbridge_dev *sbridge_dev) +{ + struct sbridge_pvt *pvt = mci->pvt_info; + struct pci_dev *pdev; + u8 saw_chan_mask = 0; + int i; + + for (i = 0; i < sbridge_dev->n_devs; i++) { + pdev = sbridge_dev->pdev[i]; + if (!pdev) + continue; + + switch (pdev->device) { + case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0: + pvt->pci_sad0 = pdev; + break; + case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1: + pvt->pci_sad1 = pdev; + break; + case PCI_DEVICE_ID_INTEL_SBRIDGE_BR: + pvt->pci_br0 = pdev; + break; + case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0: + pvt->pci_ha = pdev; + break; + case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA: + pvt->pci_ta = pdev; + break; + case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS: + pvt->pci_ras = pdev; + break; + case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0: + case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1: + case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2: + case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3: + { + int id = TAD_DEV_TO_CHAN(pdev->device); + pvt->pci_tad[id] = pdev; + saw_chan_mask |= 1 << id; + } + break; + case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO: + pvt->pci_ddrio = pdev; + break; + default: + goto error; + } + + edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n", + pdev->vendor, pdev->device, + sbridge_dev->bus, + pdev); + } + + /* Check if everything were registered */ + if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha || + !pvt->pci_ras || !pvt->pci_ta) + goto enodev; + + if (saw_chan_mask != 0x0f) + goto enodev; + return 0; + +enodev: + sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); + return -ENODEV; + +error: + sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n", + PCI_VENDOR_ID_INTEL, pdev->device); + return -EINVAL; +} + +static int ibridge_mci_bind_devs(struct mem_ctl_info *mci, + struct sbridge_dev *sbridge_dev) +{ + struct sbridge_pvt *pvt = mci->pvt_info; + struct pci_dev *pdev; + u8 saw_chan_mask = 0; + int i; + + for (i = 0; i < sbridge_dev->n_devs; i++) { + pdev = sbridge_dev->pdev[i]; + if (!pdev) + continue; + + switch (pdev->device) { + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1: + pvt->pci_ha = pdev; + break; + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA: + pvt->pci_ta = pdev; + break; + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS: + pvt->pci_ras = pdev; + break; + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2: + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3: + { + int id = TAD_DEV_TO_CHAN(pdev->device); + pvt->pci_tad[id] = pdev; + saw_chan_mask |= 1 << id; + } + break; + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0: + pvt->pci_ddrio = pdev; + break; + case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0: + pvt->pci_ddrio = pdev; + break; + case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD: + pvt->pci_sad0 = pdev; + break; + case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0: + pvt->pci_br0 = pdev; + break; + case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1: + pvt->pci_br1 = pdev; + break; + default: + goto error; + } + + edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", + sbridge_dev->bus, + PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), + pdev); + } + + /* Check if everything were registered */ + if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 || + !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta) + goto enodev; + + if (saw_chan_mask != 0x0f && /* -EN/-EX */ + saw_chan_mask != 0x03) /* -EP */ + goto enodev; + return 0; + +enodev: + sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); + return -ENODEV; + +error: + sbridge_printk(KERN_ERR, + "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL, + pdev->device); + return -EINVAL; +} + +static int haswell_mci_bind_devs(struct mem_ctl_info *mci, + struct sbridge_dev *sbridge_dev) +{ + struct sbridge_pvt *pvt = mci->pvt_info; + struct pci_dev *pdev; + u8 saw_chan_mask = 0; + int i; + + /* there's only one device per system; not tied to any bus */ + if (pvt->info.pci_vtd == NULL) + /* result will be checked later */ + pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC, + NULL); + + for (i = 0; i < sbridge_dev->n_devs; i++) { + pdev = sbridge_dev->pdev[i]; + if (!pdev) + continue; + + switch (pdev->device) { + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0: + pvt->pci_sad0 = pdev; + break; + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1: + pvt->pci_sad1 = pdev; + break; + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1: + pvt->pci_ha = pdev; + break; + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA: + pvt->pci_ta = pdev; + break; + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM: + pvt->pci_ras = pdev; + break; + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3: + { + int id = TAD_DEV_TO_CHAN(pdev->device); + pvt->pci_tad[id] = pdev; + saw_chan_mask |= 1 << id; + } + break; + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2: + case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3: + if (!pvt->pci_ddrio) + pvt->pci_ddrio = pdev; + break; + default: + break; + } + + edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", + sbridge_dev->bus, + PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), + pdev); + } + + /* Check if everything were registered */ + if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 || + !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd) + goto enodev; + + if (saw_chan_mask != 0x0f && /* -EN/-EX */ + saw_chan_mask != 0x03) /* -EP */ + goto enodev; + return 0; + +enodev: + sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); + return -ENODEV; +} + +static int broadwell_mci_bind_devs(struct mem_ctl_info *mci, + struct sbridge_dev *sbridge_dev) +{ + struct sbridge_pvt *pvt = mci->pvt_info; + struct pci_dev *pdev; + u8 saw_chan_mask = 0; + int i; + + /* there's only one device per system; not tied to any bus */ + if (pvt->info.pci_vtd == NULL) + /* result will be checked later */ + pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC, + NULL); + + for (i = 0; i < sbridge_dev->n_devs; i++) { + pdev = sbridge_dev->pdev[i]; + if (!pdev) + continue; + + switch (pdev->device) { + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0: + pvt->pci_sad0 = pdev; + break; + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1: + pvt->pci_sad1 = pdev; + break; + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1: + pvt->pci_ha = pdev; + break; + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA: + pvt->pci_ta = pdev; + break; + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM: + pvt->pci_ras = pdev; + break; + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2: + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3: + { + int id = TAD_DEV_TO_CHAN(pdev->device); + pvt->pci_tad[id] = pdev; + saw_chan_mask |= 1 << id; + } + break; + case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0: + pvt->pci_ddrio = pdev; + break; + default: + break; + } + + edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", + sbridge_dev->bus, + PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), + pdev); + } + + /* Check if everything were registered */ + if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 || + !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd) + goto enodev; + + if (saw_chan_mask != 0x0f && /* -EN/-EX */ + saw_chan_mask != 0x03) /* -EP */ + goto enodev; + return 0; + +enodev: + sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); + return -ENODEV; +} + +static int knl_mci_bind_devs(struct mem_ctl_info *mci, + struct sbridge_dev *sbridge_dev) +{ + struct sbridge_pvt *pvt = mci->pvt_info; + struct pci_dev *pdev; + int dev, func; + + int i; + int devidx; + + for (i = 0; i < sbridge_dev->n_devs; i++) { + pdev = sbridge_dev->pdev[i]; + if (!pdev) + continue; + + /* Extract PCI device and function. */ + dev = (pdev->devfn >> 3) & 0x1f; + func = pdev->devfn & 0x7; + + switch (pdev->device) { + case PCI_DEVICE_ID_INTEL_KNL_IMC_MC: + if (dev == 8) + pvt->knl.pci_mc0 = pdev; + else if (dev == 9) + pvt->knl.pci_mc1 = pdev; + else { + sbridge_printk(KERN_ERR, + "Memory controller in unexpected place! (dev %d, fn %d)\n", + dev, func); + continue; + } + break; + + case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0: + pvt->pci_sad0 = pdev; + break; + + case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1: + pvt->pci_sad1 = pdev; + break; + + case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA: + /* There are one of these per tile, and range from + * 1.14.0 to 1.18.5. + */ + devidx = ((dev-14)*8)+func; + + if (devidx < 0 || devidx >= KNL_MAX_CHAS) { + sbridge_printk(KERN_ERR, + "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n", + dev, func); + continue; + } + + WARN_ON(pvt->knl.pci_cha[devidx] != NULL); + + pvt->knl.pci_cha[devidx] = pdev; + break; + + case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN: + devidx = -1; + + /* + * MC0 channels 0-2 are device 9 function 2-4, + * MC1 channels 3-5 are device 8 function 2-4. + */ + + if (dev == 9) + devidx = func-2; + else if (dev == 8) + devidx = 3 + (func-2); + + if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) { + sbridge_printk(KERN_ERR, + "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n", + dev, func); + continue; + } + + WARN_ON(pvt->knl.pci_channel[devidx] != NULL); + pvt->knl.pci_channel[devidx] = pdev; + break; + + case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM: + pvt->knl.pci_mc_info = pdev; + break; + + case PCI_DEVICE_ID_INTEL_KNL_IMC_TA: + pvt->pci_ta = pdev; + break; + + default: + sbridge_printk(KERN_ERR, "Unexpected device %d\n", + pdev->device); + break; + } + } + + if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 || + !pvt->pci_sad0 || !pvt->pci_sad1 || + !pvt->pci_ta) { + goto enodev; + } + + for (i = 0; i < KNL_MAX_CHANNELS; i++) { + if (!pvt->knl.pci_channel[i]) { + sbridge_printk(KERN_ERR, "Missing channel %d\n", i); + goto enodev; + } + } + + for (i = 0; i < KNL_MAX_CHAS; i++) { + if (!pvt->knl.pci_cha[i]) { + sbridge_printk(KERN_ERR, "Missing CHA %d\n", i); + goto enodev; + } + } + + return 0; + +enodev: + sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); + return -ENODEV; +} + +/**************************************************************************** + Error check routines + ****************************************************************************/ + +/* + * While Sandy Bridge has error count registers, SMI BIOS read values from + * and resets the counters. So, they are not reliable for the OS to read + * from them. So, we have no option but to just trust on whatever MCE is + * telling us about the errors. + */ +static void sbridge_mce_output_error(struct mem_ctl_info *mci, + const struct mce *m) +{ + struct mem_ctl_info *new_mci; + struct sbridge_pvt *pvt = mci->pvt_info; + enum hw_event_mc_err_type tp_event; + char *type, *optype, msg[256]; + bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); + bool overflow = GET_BITFIELD(m->status, 62, 62); + bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); + bool recoverable; + u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); + u32 mscod = GET_BITFIELD(m->status, 16, 31); + u32 errcode = GET_BITFIELD(m->status, 0, 15); + u32 channel = GET_BITFIELD(m->status, 0, 3); + u32 optypenum = GET_BITFIELD(m->status, 4, 6); + long channel_mask, first_channel; + u8 rank, socket, ha; + int rc, dimm; + char *area_type = NULL; + + if (pvt->info.type != SANDY_BRIDGE) + recoverable = true; + else + recoverable = GET_BITFIELD(m->status, 56, 56); + + if (uncorrected_error) { + core_err_cnt = 1; + if (ripv) { + type = "FATAL"; + tp_event = HW_EVENT_ERR_FATAL; + } else { + type = "NON_FATAL"; + tp_event = HW_EVENT_ERR_UNCORRECTED; + } + } else { + type = "CORRECTED"; + tp_event = HW_EVENT_ERR_CORRECTED; + } + + /* + * According with Table 15-9 of the Intel Architecture spec vol 3A, + * memory errors should fit in this mask: + * 000f 0000 1mmm cccc (binary) + * where: + * f = Correction Report Filtering Bit. If 1, subsequent errors + * won't be shown + * mmm = error type + * cccc = channel + * If the mask doesn't match, report an error to the parsing logic + */ + switch (optypenum) { + case 0: + optype = "generic undef request error"; + break; + case 1: + optype = "memory read error"; + break; + case 2: + optype = "memory write error"; + break; + case 3: + optype = "addr/cmd error"; + break; + case 4: + optype = "memory scrubbing error"; + break; + default: + optype = "reserved"; + break; + } + + if (pvt->info.type == KNIGHTS_LANDING) { + if (channel == 14) { + edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n", + overflow ? " OVERFLOW" : "", + (uncorrected_error && recoverable) + ? " recoverable" : "", + mscod, errcode, + m->bank); + } else { + char A = *("A"); + + /* + * Reported channel is in range 0-2, so we can't map it + * back to mc. To figure out mc we check machine check + * bank register that reported this error. + * bank15 means mc0 and bank16 means mc1. + */ + channel = knl_channel_remap(m->bank == 16, channel); + channel_mask = 1 << channel; + + snprintf(msg, sizeof(msg), + "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)", + overflow ? " OVERFLOW" : "", + (uncorrected_error && recoverable) + ? " recoverable" : " ", + mscod, errcode, channel, A + channel); + edac_mc_handle_error(tp_event, mci, core_err_cnt, + m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, + channel, 0, -1, + optype, msg); + } + return; + } else { + rc = get_memory_error_data(mci, m->addr, &socket, &ha, + &channel_mask, &rank, &area_type, msg); + } + + if (rc < 0) + goto err_parsing; + new_mci = get_mci_for_node_id(socket, ha); + if (!new_mci) { + strcpy(msg, "Error: socket got corrupted!"); + goto err_parsing; + } + mci = new_mci; + pvt = mci->pvt_info; + + first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); + + if (rank < 4) + dimm = 0; + else if (rank < 8) + dimm = 1; + else + dimm = 2; + + + /* + * FIXME: On some memory configurations (mirror, lockstep), the + * Memory Controller can't point the error to a single DIMM. The + * EDAC core should be handling the channel mask, in order to point + * to the group of dimm's where the error may be happening. + */ + if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg) + channel = first_channel; + + snprintf(msg, sizeof(msg), + "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d", + overflow ? " OVERFLOW" : "", + (uncorrected_error && recoverable) ? " recoverable" : "", + area_type, + mscod, errcode, + socket, ha, + channel_mask, + rank); + + edac_dbg(0, "%s\n", msg); + + /* FIXME: need support for channel mask */ + + if (channel == CHANNEL_UNSPECIFIED) + channel = -1; + + /* Call the helper to output message */ + edac_mc_handle_error(tp_event, mci, core_err_cnt, + m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, + channel, dimm, -1, + optype, msg); + return; +err_parsing: + edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, + -1, -1, -1, + msg, ""); + +} + +/* + * Check that logging is enabled and that this is the right type + * of error for us to handle. + */ +static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, + void *data) +{ + struct mce *mce = (struct mce *)data; + struct mem_ctl_info *mci; + char *type; + + if (edac_get_report_status() == EDAC_REPORTING_DISABLED) + return NOTIFY_DONE; + + /* + * Just let mcelog handle it if the error is + * outside the memory controller. A memory error + * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. + * bit 12 has an special meaning. + */ + if ((mce->status & 0xefff) >> 7 != 1) + return NOTIFY_DONE; + + /* Check ADDRV bit in STATUS */ + if (!GET_BITFIELD(mce->status, 58, 58)) + return NOTIFY_DONE; + + /* Check MISCV bit in STATUS */ + if (!GET_BITFIELD(mce->status, 59, 59)) + return NOTIFY_DONE; + + /* Check address type in MISC (physical address only) */ + if (GET_BITFIELD(mce->misc, 6, 8) != 2) + return NOTIFY_DONE; + + mci = get_mci_for_node_id(mce->socketid, IMC0); + if (!mci) + return NOTIFY_DONE; + + if (mce->mcgstatus & MCG_STATUS_MCIP) + type = "Exception"; + else + type = "Event"; + + sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); + + sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " + "Bank %d: %016Lx\n", mce->extcpu, type, + mce->mcgstatus, mce->bank, mce->status); + sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); + sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); + sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); + + sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " + "%u APIC %x\n", mce->cpuvendor, mce->cpuid, + mce->time, mce->socketid, mce->apicid); + + sbridge_mce_output_error(mci, mce); + + /* Advice mcelog that the error were handled */ + return NOTIFY_STOP; +} + +static struct notifier_block sbridge_mce_dec = { + .notifier_call = sbridge_mce_check_error, + .priority = MCE_PRIO_EDAC, +}; + +/**************************************************************************** + EDAC register/unregister logic + ****************************************************************************/ + +static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) +{ + struct mem_ctl_info *mci = sbridge_dev->mci; + struct sbridge_pvt *pvt; + + if (unlikely(!mci || !mci->pvt_info)) { + edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev); + + sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); + return; + } + + pvt = mci->pvt_info; + + edac_dbg(0, "MC: mci = %p, dev = %p\n", + mci, &sbridge_dev->pdev[0]->dev); + + /* Remove MC sysfs nodes */ + edac_mc_del_mc(mci->pdev); + + edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); + kfree(mci->ctl_name); + edac_mc_free(mci); + sbridge_dev->mci = NULL; +} + +static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type) +{ + struct mem_ctl_info *mci; + struct edac_mc_layer layers[2]; + struct sbridge_pvt *pvt; + struct pci_dev *pdev = sbridge_dev->pdev[0]; + int rc; + + /* allocate a new MC control structure */ + layers[0].type = EDAC_MC_LAYER_CHANNEL; + layers[0].size = type == KNIGHTS_LANDING ? + KNL_MAX_CHANNELS : NUM_CHANNELS; + layers[0].is_virt_csrow = false; + layers[1].type = EDAC_MC_LAYER_SLOT; + layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS; + layers[1].is_virt_csrow = true; + mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, + sizeof(*pvt)); + + if (unlikely(!mci)) + return -ENOMEM; + + edac_dbg(0, "MC: mci = %p, dev = %p\n", + mci, &pdev->dev); + + pvt = mci->pvt_info; + memset(pvt, 0, sizeof(*pvt)); + + /* Associate sbridge_dev and mci for future usage */ + pvt->sbridge_dev = sbridge_dev; + sbridge_dev->mci = mci; + + mci->mtype_cap = type == KNIGHTS_LANDING ? + MEM_FLAG_DDR4 : MEM_FLAG_DDR3; + mci->edac_ctl_cap = EDAC_FLAG_NONE; + mci->edac_cap = EDAC_FLAG_NONE; + mci->mod_name = EDAC_MOD_STR; + mci->dev_name = pci_name(pdev); + mci->ctl_page_to_phys = NULL; + + pvt->info.type = type; + switch (type) { + case IVY_BRIDGE: + pvt->info.rankcfgr = IB_RANK_CFG_A; + pvt->info.get_tolm = ibridge_get_tolm; + pvt->info.get_tohm = ibridge_get_tohm; + pvt->info.dram_rule = ibridge_dram_rule; + pvt->info.get_memory_type = get_memory_type; + pvt->info.get_node_id = get_node_id; + pvt->info.rir_limit = rir_limit; + pvt->info.sad_limit = sad_limit; + pvt->info.interleave_mode = interleave_mode; + pvt->info.dram_attr = dram_attr; + pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); + pvt->info.interleave_list = ibridge_interleave_list; + pvt->info.interleave_pkg = ibridge_interleave_pkg; + pvt->info.get_width = ibridge_get_width; + + /* Store pci devices at mci for faster access */ + rc = ibridge_mci_bind_devs(mci, sbridge_dev); + if (unlikely(rc < 0)) + goto fail0; + get_source_id(mci); + mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d", + pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); + break; + case SANDY_BRIDGE: + pvt->info.rankcfgr = SB_RANK_CFG_A; + pvt->info.get_tolm = sbridge_get_tolm; + pvt->info.get_tohm = sbridge_get_tohm; + pvt->info.dram_rule = sbridge_dram_rule; + pvt->info.get_memory_type = get_memory_type; + pvt->info.get_node_id = get_node_id; + pvt->info.rir_limit = rir_limit; + pvt->info.sad_limit = sad_limit; + pvt->info.interleave_mode = interleave_mode; + pvt->info.dram_attr = dram_attr; + pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule); + pvt->info.interleave_list = sbridge_interleave_list; + pvt->info.interleave_pkg = sbridge_interleave_pkg; + pvt->info.get_width = sbridge_get_width; + + /* Store pci devices at mci for faster access */ + rc = sbridge_mci_bind_devs(mci, sbridge_dev); + if (unlikely(rc < 0)) + goto fail0; + get_source_id(mci); + mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d", + pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); + break; + case HASWELL: + /* rankcfgr isn't used */ + pvt->info.get_tolm = haswell_get_tolm; + pvt->info.get_tohm = haswell_get_tohm; + pvt->info.dram_rule = ibridge_dram_rule; + pvt->info.get_memory_type = haswell_get_memory_type; + pvt->info.get_node_id = haswell_get_node_id; + pvt->info.rir_limit = haswell_rir_limit; + pvt->info.sad_limit = sad_limit; + pvt->info.interleave_mode = interleave_mode; + pvt->info.dram_attr = dram_attr; + pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); + pvt->info.interleave_list = ibridge_interleave_list; + pvt->info.interleave_pkg = ibridge_interleave_pkg; + pvt->info.get_width = ibridge_get_width; + + /* Store pci devices at mci for faster access */ + rc = haswell_mci_bind_devs(mci, sbridge_dev); + if (unlikely(rc < 0)) + goto fail0; + get_source_id(mci); + mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d", + pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); + break; + case BROADWELL: + /* rankcfgr isn't used */ + pvt->info.get_tolm = haswell_get_tolm; + pvt->info.get_tohm = haswell_get_tohm; + pvt->info.dram_rule = ibridge_dram_rule; + pvt->info.get_memory_type = haswell_get_memory_type; + pvt->info.get_node_id = haswell_get_node_id; + pvt->info.rir_limit = haswell_rir_limit; + pvt->info.sad_limit = sad_limit; + pvt->info.interleave_mode = interleave_mode; + pvt->info.dram_attr = dram_attr; + pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); + pvt->info.interleave_list = ibridge_interleave_list; + pvt->info.interleave_pkg = ibridge_interleave_pkg; + pvt->info.get_width = broadwell_get_width; + + /* Store pci devices at mci for faster access */ + rc = broadwell_mci_bind_devs(mci, sbridge_dev); + if (unlikely(rc < 0)) + goto fail0; + get_source_id(mci); + mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d", + pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); + break; + case KNIGHTS_LANDING: + /* pvt->info.rankcfgr == ??? */ + pvt->info.get_tolm = knl_get_tolm; + pvt->info.get_tohm = knl_get_tohm; + pvt->info.dram_rule = knl_dram_rule; + pvt->info.get_memory_type = knl_get_memory_type; + pvt->info.get_node_id = knl_get_node_id; + pvt->info.rir_limit = NULL; + pvt->info.sad_limit = knl_sad_limit; + pvt->info.interleave_mode = knl_interleave_mode; + pvt->info.dram_attr = dram_attr_knl; + pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule); + pvt->info.interleave_list = knl_interleave_list; + pvt->info.interleave_pkg = ibridge_interleave_pkg; + pvt->info.get_width = knl_get_width; + + rc = knl_mci_bind_devs(mci, sbridge_dev); + if (unlikely(rc < 0)) + goto fail0; + get_source_id(mci); + mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d", + pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); + break; + } + + if (!mci->ctl_name) { + rc = -ENOMEM; + goto fail0; + } + + /* Get dimm basic config and the memory layout */ + rc = get_dimm_config(mci); + if (rc < 0) { + edac_dbg(0, "MC: failed to get_dimm_config()\n"); + goto fail; + } + get_memory_layout(mci); + + /* record ptr to the generic device */ + mci->pdev = &pdev->dev; + + /* add this new MC control structure to EDAC's list of MCs */ + if (unlikely(edac_mc_add_mc(mci))) { + edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); + rc = -EINVAL; + goto fail; + } + + return 0; + +fail: + kfree(mci->ctl_name); +fail0: + edac_mc_free(mci); + sbridge_dev->mci = NULL; + return rc; +} + +#define ICPU(model, table) \ + { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table } + +static const struct x86_cpu_id sbridge_cpuids[] = { + ICPU(INTEL_FAM6_SANDYBRIDGE_X, pci_dev_descr_sbridge_table), + ICPU(INTEL_FAM6_IVYBRIDGE_X, pci_dev_descr_ibridge_table), + ICPU(INTEL_FAM6_HASWELL_X, pci_dev_descr_haswell_table), + ICPU(INTEL_FAM6_BROADWELL_X, pci_dev_descr_broadwell_table), + ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table), + ICPU(INTEL_FAM6_XEON_PHI_KNL, pci_dev_descr_knl_table), + ICPU(INTEL_FAM6_XEON_PHI_KNM, pci_dev_descr_knl_table), + { } +}; +MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids); + +/* + * sbridge_probe Get all devices and register memory controllers + * present. + * return: + * 0 for FOUND a device + * < 0 for error code + */ + +static int sbridge_probe(const struct x86_cpu_id *id) +{ + int rc = -ENODEV; + u8 mc, num_mc = 0; + struct sbridge_dev *sbridge_dev; + struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data; + + /* get the pci devices we want to reserve for our use */ + rc = sbridge_get_all_devices(&num_mc, ptable); + + if (unlikely(rc < 0)) { + edac_dbg(0, "couldn't get all devices\n"); + goto fail0; + } + + mc = 0; + + list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { + edac_dbg(0, "Registering MC#%d (%d of %d)\n", + mc, mc + 1, num_mc); + + sbridge_dev->mc = mc++; + rc = sbridge_register_mci(sbridge_dev, ptable->type); + if (unlikely(rc < 0)) + goto fail1; + } + + sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION); + + return 0; + +fail1: + list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) + sbridge_unregister_mci(sbridge_dev); + + sbridge_put_all_devices(); +fail0: + return rc; +} + +/* + * sbridge_remove cleanup + * + */ +static void sbridge_remove(void) +{ + struct sbridge_dev *sbridge_dev; + + edac_dbg(0, "\n"); + + list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) + sbridge_unregister_mci(sbridge_dev); + + /* Release PCI resources */ + sbridge_put_all_devices(); +} + +/* + * sbridge_init Module entry function + * Try to initialize this module for its devices + */ +static int __init sbridge_init(void) +{ + const struct x86_cpu_id *id; + const char *owner; + int rc; + + edac_dbg(2, "\n"); + + owner = edac_get_owner(); + if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) + return -EBUSY; + + id = x86_match_cpu(sbridge_cpuids); + if (!id) + return -ENODEV; + + /* Ensure that the OPSTATE is set correctly for POLL or NMI */ + opstate_init(); + + rc = sbridge_probe(id); + + if (rc >= 0) { + mce_register_decode_chain(&sbridge_mce_dec); + if (edac_get_report_status() == EDAC_REPORTING_DISABLED) + sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n"); + return 0; + } + + sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", + rc); + + return rc; +} + +/* + * sbridge_exit() Module exit function + * Unregister the driver + */ +static void __exit sbridge_exit(void) +{ + edac_dbg(2, "\n"); + sbridge_remove(); + mce_unregister_decode_chain(&sbridge_mce_dec); +} + +module_init(sbridge_init); +module_exit(sbridge_exit); + +module_param(edac_op_state, int, 0444); +MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mauro Carvalho Chehab"); +MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); +MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - " + SBRIDGE_REVISION); |