diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/net/wireless/ralink/rt2x00/rt73usb.c | 2550 |
1 files changed, 2550 insertions, 0 deletions
diff --git a/drivers/net/wireless/ralink/rt2x00/rt73usb.c b/drivers/net/wireless/ralink/rt2x00/rt73usb.c new file mode 100644 index 000000000..319ec4f2d --- /dev/null +++ b/drivers/net/wireless/ralink/rt2x00/rt73usb.c @@ -0,0 +1,2550 @@ +/* + Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> + <http://rt2x00.serialmonkey.com> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. + */ + +/* + Module: rt73usb + Abstract: rt73usb device specific routines. + Supported chipsets: rt2571W & rt2671. + */ + +#include <linux/crc-itu-t.h> +#include <linux/delay.h> +#include <linux/etherdevice.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/usb.h> + +#include "rt2x00.h" +#include "rt2x00usb.h" +#include "rt73usb.h" + +/* + * Allow hardware encryption to be disabled. + */ +static bool modparam_nohwcrypt; +module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444); +MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); + +/* + * Register access. + * All access to the CSR registers will go through the methods + * rt2x00usb_register_read and rt2x00usb_register_write. + * BBP and RF register require indirect register access, + * and use the CSR registers BBPCSR and RFCSR to achieve this. + * These indirect registers work with busy bits, + * and we will try maximal REGISTER_BUSY_COUNT times to access + * the register while taking a REGISTER_BUSY_DELAY us delay + * between each attampt. When the busy bit is still set at that time, + * the access attempt is considered to have failed, + * and we will print an error. + * The _lock versions must be used if you already hold the csr_mutex + */ +#define WAIT_FOR_BBP(__dev, __reg) \ + rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) +#define WAIT_FOR_RF(__dev, __reg) \ + rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) + +static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev, + const unsigned int word, const u8 value) +{ + u32 reg; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the BBP becomes available, afterwards we + * can safely write the new data into the register. + */ + if (WAIT_FOR_BBP(rt2x00dev, ®)) { + reg = 0; + rt2x00_set_field32(®, PHY_CSR3_VALUE, value); + rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); + rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); + rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); + + rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); + } + + mutex_unlock(&rt2x00dev->csr_mutex); +} + +static u8 rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev, + const unsigned int word) +{ + u32 reg; + u8 value; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the BBP becomes available, afterwards we + * can safely write the read request into the register. + * After the data has been written, we wait until hardware + * returns the correct value, if at any time the register + * doesn't become available in time, reg will be 0xffffffff + * which means we return 0xff to the caller. + */ + if (WAIT_FOR_BBP(rt2x00dev, ®)) { + reg = 0; + rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); + rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); + rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); + + rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); + + WAIT_FOR_BBP(rt2x00dev, ®); + } + + value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); + + mutex_unlock(&rt2x00dev->csr_mutex); + + return value; +} + +static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev, + const unsigned int word, const u32 value) +{ + u32 reg; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the RF becomes available, afterwards we + * can safely write the new data into the register. + */ + if (WAIT_FOR_RF(rt2x00dev, ®)) { + reg = 0; + rt2x00_set_field32(®, PHY_CSR4_VALUE, value); + /* + * RF5225 and RF2527 contain 21 bits per RF register value, + * all others contain 20 bits. + */ + rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, + 20 + (rt2x00_rf(rt2x00dev, RF5225) || + rt2x00_rf(rt2x00dev, RF2527))); + rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); + rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); + + rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg); + rt2x00_rf_write(rt2x00dev, word, value); + } + + mutex_unlock(&rt2x00dev->csr_mutex); +} + +#ifdef CONFIG_RT2X00_LIB_DEBUGFS +static const struct rt2x00debug rt73usb_rt2x00debug = { + .owner = THIS_MODULE, + .csr = { + .read = rt2x00usb_register_read, + .write = rt2x00usb_register_write, + .flags = RT2X00DEBUGFS_OFFSET, + .word_base = CSR_REG_BASE, + .word_size = sizeof(u32), + .word_count = CSR_REG_SIZE / sizeof(u32), + }, + .eeprom = { + .read = rt2x00_eeprom_read, + .write = rt2x00_eeprom_write, + .word_base = EEPROM_BASE, + .word_size = sizeof(u16), + .word_count = EEPROM_SIZE / sizeof(u16), + }, + .bbp = { + .read = rt73usb_bbp_read, + .write = rt73usb_bbp_write, + .word_base = BBP_BASE, + .word_size = sizeof(u8), + .word_count = BBP_SIZE / sizeof(u8), + }, + .rf = { + .read = rt2x00_rf_read, + .write = rt73usb_rf_write, + .word_base = RF_BASE, + .word_size = sizeof(u32), + .word_count = RF_SIZE / sizeof(u32), + }, +}; +#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ + +static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13); + return rt2x00_get_field32(reg, MAC_CSR13_VAL7); +} + +#ifdef CONFIG_RT2X00_LIB_LEDS +static void rt73usb_brightness_set(struct led_classdev *led_cdev, + enum led_brightness brightness) +{ + struct rt2x00_led *led = + container_of(led_cdev, struct rt2x00_led, led_dev); + unsigned int enabled = brightness != LED_OFF; + unsigned int a_mode = + (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ); + unsigned int bg_mode = + (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ); + + if (led->type == LED_TYPE_RADIO) { + rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, + MCU_LEDCS_RADIO_STATUS, enabled); + + rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, + 0, led->rt2x00dev->led_mcu_reg, + REGISTER_TIMEOUT); + } else if (led->type == LED_TYPE_ASSOC) { + rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, + MCU_LEDCS_LINK_BG_STATUS, bg_mode); + rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, + MCU_LEDCS_LINK_A_STATUS, a_mode); + + rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, + 0, led->rt2x00dev->led_mcu_reg, + REGISTER_TIMEOUT); + } else if (led->type == LED_TYPE_QUALITY) { + /* + * The brightness is divided into 6 levels (0 - 5), + * this means we need to convert the brightness + * argument into the matching level within that range. + */ + rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, + brightness / (LED_FULL / 6), + led->rt2x00dev->led_mcu_reg, + REGISTER_TIMEOUT); + } +} + +static int rt73usb_blink_set(struct led_classdev *led_cdev, + unsigned long *delay_on, + unsigned long *delay_off) +{ + struct rt2x00_led *led = + container_of(led_cdev, struct rt2x00_led, led_dev); + u32 reg; + + reg = rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14); + rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); + rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); + rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg); + + return 0; +} + +static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev, + struct rt2x00_led *led, + enum led_type type) +{ + led->rt2x00dev = rt2x00dev; + led->type = type; + led->led_dev.brightness_set = rt73usb_brightness_set; + led->led_dev.blink_set = rt73usb_blink_set; + led->flags = LED_INITIALIZED; +} +#endif /* CONFIG_RT2X00_LIB_LEDS */ + +/* + * Configuration handlers. + */ +static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_crypto *crypto, + struct ieee80211_key_conf *key) +{ + struct hw_key_entry key_entry; + struct rt2x00_field32 field; + u32 mask; + u32 reg; + + if (crypto->cmd == SET_KEY) { + /* + * rt2x00lib can't determine the correct free + * key_idx for shared keys. We have 1 register + * with key valid bits. The goal is simple, read + * the register, if that is full we have no slots + * left. + * Note that each BSS is allowed to have up to 4 + * shared keys, so put a mask over the allowed + * entries. + */ + mask = (0xf << crypto->bssidx); + + reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0); + reg &= mask; + + if (reg && reg == mask) + return -ENOSPC; + + key->hw_key_idx += reg ? ffz(reg) : 0; + + /* + * Upload key to hardware + */ + memcpy(key_entry.key, crypto->key, + sizeof(key_entry.key)); + memcpy(key_entry.tx_mic, crypto->tx_mic, + sizeof(key_entry.tx_mic)); + memcpy(key_entry.rx_mic, crypto->rx_mic, + sizeof(key_entry.rx_mic)); + + reg = SHARED_KEY_ENTRY(key->hw_key_idx); + rt2x00usb_register_multiwrite(rt2x00dev, reg, + &key_entry, sizeof(key_entry)); + + /* + * The cipher types are stored over 2 registers. + * bssidx 0 and 1 keys are stored in SEC_CSR1 and + * bssidx 1 and 2 keys are stored in SEC_CSR5. + * Using the correct defines correctly will cause overhead, + * so just calculate the correct offset. + */ + if (key->hw_key_idx < 8) { + field.bit_offset = (3 * key->hw_key_idx); + field.bit_mask = 0x7 << field.bit_offset; + + reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR1); + rt2x00_set_field32(®, field, crypto->cipher); + rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg); + } else { + field.bit_offset = (3 * (key->hw_key_idx - 8)); + field.bit_mask = 0x7 << field.bit_offset; + + reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR5); + rt2x00_set_field32(®, field, crypto->cipher); + rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg); + } + + /* + * The driver does not support the IV/EIV generation + * in hardware. However it doesn't support the IV/EIV + * inside the ieee80211 frame either, but requires it + * to be provided separately for the descriptor. + * rt2x00lib will cut the IV/EIV data out of all frames + * given to us by mac80211, but we must tell mac80211 + * to generate the IV/EIV data. + */ + key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; + } + + /* + * SEC_CSR0 contains only single-bit fields to indicate + * a particular key is valid. Because using the FIELD32() + * defines directly will cause a lot of overhead we use + * a calculation to determine the correct bit directly. + */ + mask = 1 << key->hw_key_idx; + + reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0); + if (crypto->cmd == SET_KEY) + reg |= mask; + else if (crypto->cmd == DISABLE_KEY) + reg &= ~mask; + rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg); + + return 0; +} + +static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_crypto *crypto, + struct ieee80211_key_conf *key) +{ + struct hw_pairwise_ta_entry addr_entry; + struct hw_key_entry key_entry; + u32 mask; + u32 reg; + + if (crypto->cmd == SET_KEY) { + /* + * rt2x00lib can't determine the correct free + * key_idx for pairwise keys. We have 2 registers + * with key valid bits. The goal is simple, read + * the first register, if that is full move to + * the next register. + * When both registers are full, we drop the key, + * otherwise we use the first invalid entry. + */ + reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2); + if (reg && reg == ~0) { + key->hw_key_idx = 32; + reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3); + if (reg && reg == ~0) + return -ENOSPC; + } + + key->hw_key_idx += reg ? ffz(reg) : 0; + + /* + * Upload key to hardware + */ + memcpy(key_entry.key, crypto->key, + sizeof(key_entry.key)); + memcpy(key_entry.tx_mic, crypto->tx_mic, + sizeof(key_entry.tx_mic)); + memcpy(key_entry.rx_mic, crypto->rx_mic, + sizeof(key_entry.rx_mic)); + + reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); + rt2x00usb_register_multiwrite(rt2x00dev, reg, + &key_entry, sizeof(key_entry)); + + /* + * Send the address and cipher type to the hardware register. + */ + memset(&addr_entry, 0, sizeof(addr_entry)); + memcpy(&addr_entry, crypto->address, ETH_ALEN); + addr_entry.cipher = crypto->cipher; + + reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); + rt2x00usb_register_multiwrite(rt2x00dev, reg, + &addr_entry, sizeof(addr_entry)); + + /* + * Enable pairwise lookup table for given BSS idx, + * without this received frames will not be decrypted + * by the hardware. + */ + reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR4); + reg |= (1 << crypto->bssidx); + rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg); + + /* + * The driver does not support the IV/EIV generation + * in hardware. However it doesn't support the IV/EIV + * inside the ieee80211 frame either, but requires it + * to be provided separately for the descriptor. + * rt2x00lib will cut the IV/EIV data out of all frames + * given to us by mac80211, but we must tell mac80211 + * to generate the IV/EIV data. + */ + key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; + } + + /* + * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate + * a particular key is valid. Because using the FIELD32() + * defines directly will cause a lot of overhead we use + * a calculation to determine the correct bit directly. + */ + if (key->hw_key_idx < 32) { + mask = 1 << key->hw_key_idx; + + reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2); + if (crypto->cmd == SET_KEY) + reg |= mask; + else if (crypto->cmd == DISABLE_KEY) + reg &= ~mask; + rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg); + } else { + mask = 1 << (key->hw_key_idx - 32); + + reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3); + if (crypto->cmd == SET_KEY) + reg |= mask; + else if (crypto->cmd == DISABLE_KEY) + reg &= ~mask; + rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg); + } + + return 0; +} + +static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev, + const unsigned int filter_flags) +{ + u32 reg; + + /* + * Start configuration steps. + * Note that the version error will always be dropped + * and broadcast frames will always be accepted since + * there is no filter for it at this time. + */ + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, + !(filter_flags & FIF_FCSFAIL)); + rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, + !(filter_flags & FIF_PLCPFAIL)); + rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, + !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); + rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, + !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); + rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, + !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && + !rt2x00dev->intf_ap_count); + rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); + rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, + !(filter_flags & FIF_ALLMULTI)); + rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); + rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, + !(filter_flags & FIF_CONTROL)); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); +} + +static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev, + struct rt2x00_intf *intf, + struct rt2x00intf_conf *conf, + const unsigned int flags) +{ + u32 reg; + + if (flags & CONFIG_UPDATE_TYPE) { + /* + * Enable synchronisation. + */ + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); + } + + if (flags & CONFIG_UPDATE_MAC) { + reg = le32_to_cpu(conf->mac[1]); + rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); + conf->mac[1] = cpu_to_le32(reg); + + rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2, + conf->mac, sizeof(conf->mac)); + } + + if (flags & CONFIG_UPDATE_BSSID) { + reg = le32_to_cpu(conf->bssid[1]); + rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); + conf->bssid[1] = cpu_to_le32(reg); + + rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4, + conf->bssid, sizeof(conf->bssid)); + } +} + +static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_erp *erp, + u32 changed) +{ + u32 reg; + + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); + rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); + + if (changed & BSS_CHANGED_ERP_PREAMBLE) { + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4); + rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); + rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, + !!erp->short_preamble); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); + } + + if (changed & BSS_CHANGED_BASIC_RATES) + rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, + erp->basic_rates); + + if (changed & BSS_CHANGED_BEACON_INT) { + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, + erp->beacon_int * 16); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); + } + + if (changed & BSS_CHANGED_ERP_SLOT) { + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9); + rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); + rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); + + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR8); + rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); + rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); + rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); + rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg); + } +} + +static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev, + struct antenna_setup *ant) +{ + u8 r3; + u8 r4; + u8 r77; + u8 temp; + + r3 = rt73usb_bbp_read(rt2x00dev, 3); + r4 = rt73usb_bbp_read(rt2x00dev, 4); + r77 = rt73usb_bbp_read(rt2x00dev, 77); + + rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); + + /* + * Configure the RX antenna. + */ + switch (ant->rx) { + case ANTENNA_HW_DIVERSITY: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); + temp = !rt2x00_has_cap_frame_type(rt2x00dev) && + (rt2x00dev->curr_band != NL80211_BAND_5GHZ); + rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp); + break; + case ANTENNA_A: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); + else + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); + break; + case ANTENNA_B: + default: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); + else + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); + break; + } + + rt73usb_bbp_write(rt2x00dev, 77, r77); + rt73usb_bbp_write(rt2x00dev, 3, r3); + rt73usb_bbp_write(rt2x00dev, 4, r4); +} + +static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev, + struct antenna_setup *ant) +{ + u8 r3; + u8 r4; + u8 r77; + + r3 = rt73usb_bbp_read(rt2x00dev, 3); + r4 = rt73usb_bbp_read(rt2x00dev, 4); + r77 = rt73usb_bbp_read(rt2x00dev, 77); + + rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); + rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, + !rt2x00_has_cap_frame_type(rt2x00dev)); + + /* + * Configure the RX antenna. + */ + switch (ant->rx) { + case ANTENNA_HW_DIVERSITY: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); + break; + case ANTENNA_A: + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + break; + case ANTENNA_B: + default: + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + break; + } + + rt73usb_bbp_write(rt2x00dev, 77, r77); + rt73usb_bbp_write(rt2x00dev, 3, r3); + rt73usb_bbp_write(rt2x00dev, 4, r4); +} + +struct antenna_sel { + u8 word; + /* + * value[0] -> non-LNA + * value[1] -> LNA + */ + u8 value[2]; +}; + +static const struct antenna_sel antenna_sel_a[] = { + { 96, { 0x58, 0x78 } }, + { 104, { 0x38, 0x48 } }, + { 75, { 0xfe, 0x80 } }, + { 86, { 0xfe, 0x80 } }, + { 88, { 0xfe, 0x80 } }, + { 35, { 0x60, 0x60 } }, + { 97, { 0x58, 0x58 } }, + { 98, { 0x58, 0x58 } }, +}; + +static const struct antenna_sel antenna_sel_bg[] = { + { 96, { 0x48, 0x68 } }, + { 104, { 0x2c, 0x3c } }, + { 75, { 0xfe, 0x80 } }, + { 86, { 0xfe, 0x80 } }, + { 88, { 0xfe, 0x80 } }, + { 35, { 0x50, 0x50 } }, + { 97, { 0x48, 0x48 } }, + { 98, { 0x48, 0x48 } }, +}; + +static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev, + struct antenna_setup *ant) +{ + const struct antenna_sel *sel; + unsigned int lna; + unsigned int i; + u32 reg; + + /* + * We should never come here because rt2x00lib is supposed + * to catch this and send us the correct antenna explicitely. + */ + BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || + ant->tx == ANTENNA_SW_DIVERSITY); + + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { + sel = antenna_sel_a; + lna = rt2x00_has_cap_external_lna_a(rt2x00dev); + } else { + sel = antenna_sel_bg; + lna = rt2x00_has_cap_external_lna_bg(rt2x00dev); + } + + for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) + rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); + + reg = rt2x00usb_register_read(rt2x00dev, PHY_CSR0); + + rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, + (rt2x00dev->curr_band == NL80211_BAND_2GHZ)); + rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, + (rt2x00dev->curr_band == NL80211_BAND_5GHZ)); + + rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg); + + if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225)) + rt73usb_config_antenna_5x(rt2x00dev, ant); + else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527)) + rt73usb_config_antenna_2x(rt2x00dev, ant); +} + +static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf) +{ + u16 eeprom; + short lna_gain = 0; + + if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) { + if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) + lna_gain += 14; + + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); + lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); + } else { + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); + lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); + } + + rt2x00dev->lna_gain = lna_gain; +} + +static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev, + struct rf_channel *rf, const int txpower) +{ + u8 r3; + u8 r94; + u8 smart; + + rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); + rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); + + smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); + + r3 = rt73usb_bbp_read(rt2x00dev, 3); + rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); + rt73usb_bbp_write(rt2x00dev, 3, r3); + + r94 = 6; + if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) + r94 += txpower - MAX_TXPOWER; + else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) + r94 += txpower; + rt73usb_bbp_write(rt2x00dev, 94, r94); + + rt73usb_rf_write(rt2x00dev, 1, rf->rf1); + rt73usb_rf_write(rt2x00dev, 2, rf->rf2); + rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); + rt73usb_rf_write(rt2x00dev, 4, rf->rf4); + + rt73usb_rf_write(rt2x00dev, 1, rf->rf1); + rt73usb_rf_write(rt2x00dev, 2, rf->rf2); + rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); + rt73usb_rf_write(rt2x00dev, 4, rf->rf4); + + rt73usb_rf_write(rt2x00dev, 1, rf->rf1); + rt73usb_rf_write(rt2x00dev, 2, rf->rf2); + rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); + rt73usb_rf_write(rt2x00dev, 4, rf->rf4); + + udelay(10); +} + +static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev, + const int txpower) +{ + struct rf_channel rf; + + rf.rf1 = rt2x00_rf_read(rt2x00dev, 1); + rf.rf2 = rt2x00_rf_read(rt2x00dev, 2); + rf.rf3 = rt2x00_rf_read(rt2x00dev, 3); + rf.rf4 = rt2x00_rf_read(rt2x00dev, 4); + + rt73usb_config_channel(rt2x00dev, &rf, txpower); +} + +static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf) +{ + u32 reg; + + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4); + rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); + rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); + rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); + rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, + libconf->conf->long_frame_max_tx_count); + rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, + libconf->conf->short_frame_max_tx_count); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); +} + +static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf) +{ + enum dev_state state = + (libconf->conf->flags & IEEE80211_CONF_PS) ? + STATE_SLEEP : STATE_AWAKE; + u32 reg; + + if (state == STATE_SLEEP) { + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11); + rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, + rt2x00dev->beacon_int - 10); + rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, + libconf->conf->listen_interval - 1); + rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); + + /* We must first disable autowake before it can be enabled */ + rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); + rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); + + rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); + rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); + + rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, + USB_MODE_SLEEP, REGISTER_TIMEOUT); + } else { + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11); + rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); + rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); + rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); + rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); + rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); + + rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, + USB_MODE_WAKEUP, REGISTER_TIMEOUT); + } +} + +static void rt73usb_config(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf, + const unsigned int flags) +{ + /* Always recalculate LNA gain before changing configuration */ + rt73usb_config_lna_gain(rt2x00dev, libconf); + + if (flags & IEEE80211_CONF_CHANGE_CHANNEL) + rt73usb_config_channel(rt2x00dev, &libconf->rf, + libconf->conf->power_level); + if ((flags & IEEE80211_CONF_CHANGE_POWER) && + !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) + rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level); + if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) + rt73usb_config_retry_limit(rt2x00dev, libconf); + if (flags & IEEE80211_CONF_CHANGE_PS) + rt73usb_config_ps(rt2x00dev, libconf); +} + +/* + * Link tuning + */ +static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual) +{ + u32 reg; + + /* + * Update FCS error count from register. + */ + reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0); + qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); + + /* + * Update False CCA count from register. + */ + reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1); + qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); +} + +static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual, u8 vgc_level) +{ + if (qual->vgc_level != vgc_level) { + rt73usb_bbp_write(rt2x00dev, 17, vgc_level); + qual->vgc_level = vgc_level; + qual->vgc_level_reg = vgc_level; + } +} + +static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual) +{ + rt73usb_set_vgc(rt2x00dev, qual, 0x20); +} + +static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual, const u32 count) +{ + u8 up_bound; + u8 low_bound; + + /* + * Determine r17 bounds. + */ + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { + low_bound = 0x28; + up_bound = 0x48; + + if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { + low_bound += 0x10; + up_bound += 0x10; + } + } else { + if (qual->rssi > -82) { + low_bound = 0x1c; + up_bound = 0x40; + } else if (qual->rssi > -84) { + low_bound = 0x1c; + up_bound = 0x20; + } else { + low_bound = 0x1c; + up_bound = 0x1c; + } + + if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) { + low_bound += 0x14; + up_bound += 0x10; + } + } + + /* + * If we are not associated, we should go straight to the + * dynamic CCA tuning. + */ + if (!rt2x00dev->intf_associated) + goto dynamic_cca_tune; + + /* + * Special big-R17 for very short distance + */ + if (qual->rssi > -35) { + rt73usb_set_vgc(rt2x00dev, qual, 0x60); + return; + } + + /* + * Special big-R17 for short distance + */ + if (qual->rssi >= -58) { + rt73usb_set_vgc(rt2x00dev, qual, up_bound); + return; + } + + /* + * Special big-R17 for middle-short distance + */ + if (qual->rssi >= -66) { + rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10); + return; + } + + /* + * Special mid-R17 for middle distance + */ + if (qual->rssi >= -74) { + rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08); + return; + } + + /* + * Special case: Change up_bound based on the rssi. + * Lower up_bound when rssi is weaker then -74 dBm. + */ + up_bound -= 2 * (-74 - qual->rssi); + if (low_bound > up_bound) + up_bound = low_bound; + + if (qual->vgc_level > up_bound) { + rt73usb_set_vgc(rt2x00dev, qual, up_bound); + return; + } + +dynamic_cca_tune: + + /* + * r17 does not yet exceed upper limit, continue and base + * the r17 tuning on the false CCA count. + */ + if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) + rt73usb_set_vgc(rt2x00dev, qual, + min_t(u8, qual->vgc_level + 4, up_bound)); + else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) + rt73usb_set_vgc(rt2x00dev, qual, + max_t(u8, qual->vgc_level - 4, low_bound)); +} + +/* + * Queue handlers. + */ +static void rt73usb_start_queue(struct data_queue *queue) +{ + struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; + u32 reg; + + switch (queue->qid) { + case QID_RX: + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); + break; + case QID_BEACON: + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); + rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); + break; + default: + break; + } +} + +static void rt73usb_stop_queue(struct data_queue *queue) +{ + struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; + u32 reg; + + switch (queue->qid) { + case QID_RX: + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); + break; + case QID_BEACON: + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); + rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); + break; + default: + break; + } +} + +/* + * Firmware functions + */ +static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev) +{ + return FIRMWARE_RT2571; +} + +static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev, + const u8 *data, const size_t len) +{ + u16 fw_crc; + u16 crc; + + /* + * Only support 2kb firmware files. + */ + if (len != 2048) + return FW_BAD_LENGTH; + + /* + * The last 2 bytes in the firmware array are the crc checksum itself, + * this means that we should never pass those 2 bytes to the crc + * algorithm. + */ + fw_crc = (data[len - 2] << 8 | data[len - 1]); + + /* + * Use the crc itu-t algorithm. + */ + crc = crc_itu_t(0, data, len - 2); + crc = crc_itu_t_byte(crc, 0); + crc = crc_itu_t_byte(crc, 0); + + return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; +} + +static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, + const u8 *data, const size_t len) +{ + unsigned int i; + int status; + u32 reg; + + /* + * Wait for stable hardware. + */ + for (i = 0; i < 100; i++) { + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0); + if (reg) + break; + msleep(1); + } + + if (!reg) { + rt2x00_err(rt2x00dev, "Unstable hardware\n"); + return -EBUSY; + } + + /* + * Write firmware to device. + */ + rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); + + /* + * Send firmware request to device to load firmware, + * we need to specify a long timeout time. + */ + status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, + 0, USB_MODE_FIRMWARE, + REGISTER_TIMEOUT_FIRMWARE); + if (status < 0) { + rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n"); + return status; + } + + return 0; +} + +/* + * Initialization functions. + */ +static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); + rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); + rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); + + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR1); + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg); + + /* + * CCK TXD BBP registers + */ + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR2); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg); + + /* + * OFDM TXD BBP registers + */ + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR3); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg); + + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR7); + rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); + rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); + rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); + rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg); + + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR8); + rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); + rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); + rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); + rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg); + + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); + rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); + rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); + rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); + rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); + + rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); + + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR6); + rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff); + rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg); + + rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718); + + if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) + return -EBUSY; + + rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00); + + /* + * Invalidate all Shared Keys (SEC_CSR0), + * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) + */ + rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000); + rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000); + rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000); + + reg = 0x000023b0; + if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)) + rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1); + rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg); + + rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06); + rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606); + rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408); + + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9); + rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); + rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); + + /* + * Clear all beacons + * For the Beacon base registers we only need to clear + * the first byte since that byte contains the VALID and OWNER + * bits which (when set to 0) will invalidate the entire beacon. + */ + rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0); + rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0); + rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0); + rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0); + + /* + * We must clear the error counters. + * These registers are cleared on read, + * so we may pass a useless variable to store the value. + */ + reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0); + reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1); + reg = rt2x00usb_register_read(rt2x00dev, STA_CSR2); + + /* + * Reset MAC and BBP registers. + */ + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1); + rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); + rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); + rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); + + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1); + rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); + rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); + rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); + + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1); + rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); + rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); + + return 0; +} + +static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) +{ + unsigned int i; + u8 value; + + for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { + value = rt73usb_bbp_read(rt2x00dev, 0); + if ((value != 0xff) && (value != 0x00)) + return 0; + udelay(REGISTER_BUSY_DELAY); + } + + rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); + return -EACCES; +} + +static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev) +{ + unsigned int i; + u16 eeprom; + u8 reg_id; + u8 value; + + if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev))) + return -EACCES; + + rt73usb_bbp_write(rt2x00dev, 3, 0x80); + rt73usb_bbp_write(rt2x00dev, 15, 0x30); + rt73usb_bbp_write(rt2x00dev, 21, 0xc8); + rt73usb_bbp_write(rt2x00dev, 22, 0x38); + rt73usb_bbp_write(rt2x00dev, 23, 0x06); + rt73usb_bbp_write(rt2x00dev, 24, 0xfe); + rt73usb_bbp_write(rt2x00dev, 25, 0x0a); + rt73usb_bbp_write(rt2x00dev, 26, 0x0d); + rt73usb_bbp_write(rt2x00dev, 32, 0x0b); + rt73usb_bbp_write(rt2x00dev, 34, 0x12); + rt73usb_bbp_write(rt2x00dev, 37, 0x07); + rt73usb_bbp_write(rt2x00dev, 39, 0xf8); + rt73usb_bbp_write(rt2x00dev, 41, 0x60); + rt73usb_bbp_write(rt2x00dev, 53, 0x10); + rt73usb_bbp_write(rt2x00dev, 54, 0x18); + rt73usb_bbp_write(rt2x00dev, 60, 0x10); + rt73usb_bbp_write(rt2x00dev, 61, 0x04); + rt73usb_bbp_write(rt2x00dev, 62, 0x04); + rt73usb_bbp_write(rt2x00dev, 75, 0xfe); + rt73usb_bbp_write(rt2x00dev, 86, 0xfe); + rt73usb_bbp_write(rt2x00dev, 88, 0xfe); + rt73usb_bbp_write(rt2x00dev, 90, 0x0f); + rt73usb_bbp_write(rt2x00dev, 99, 0x00); + rt73usb_bbp_write(rt2x00dev, 102, 0x16); + rt73usb_bbp_write(rt2x00dev, 107, 0x04); + + for (i = 0; i < EEPROM_BBP_SIZE; i++) { + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); + + if (eeprom != 0xffff && eeprom != 0x0000) { + reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); + value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); + rt73usb_bbp_write(rt2x00dev, reg_id, value); + } + } + + return 0; +} + +/* + * Device state switch handlers. + */ +static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev) +{ + /* + * Initialize all registers. + */ + if (unlikely(rt73usb_init_registers(rt2x00dev) || + rt73usb_init_bbp(rt2x00dev))) + return -EIO; + + return 0; +} + +static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev) +{ + rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818); + + /* + * Disable synchronisation. + */ + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0); + + rt2x00usb_disable_radio(rt2x00dev); +} + +static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) +{ + u32 reg, reg2; + unsigned int i; + char put_to_sleep; + + put_to_sleep = (state != STATE_AWAKE); + + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR12); + rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); + rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); + rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); + + /* + * Device is not guaranteed to be in the requested state yet. + * We must wait until the register indicates that the + * device has entered the correct state. + */ + for (i = 0; i < REGISTER_BUSY_COUNT; i++) { + reg2 = rt2x00usb_register_read(rt2x00dev, MAC_CSR12); + state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); + if (state == !put_to_sleep) + return 0; + rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); + msleep(10); + } + + return -EBUSY; +} + +static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev, + enum dev_state state) +{ + int retval = 0; + + switch (state) { + case STATE_RADIO_ON: + retval = rt73usb_enable_radio(rt2x00dev); + break; + case STATE_RADIO_OFF: + rt73usb_disable_radio(rt2x00dev); + break; + case STATE_RADIO_IRQ_ON: + case STATE_RADIO_IRQ_OFF: + /* No support, but no error either */ + break; + case STATE_DEEP_SLEEP: + case STATE_SLEEP: + case STATE_STANDBY: + case STATE_AWAKE: + retval = rt73usb_set_state(rt2x00dev, state); + break; + default: + retval = -ENOTSUPP; + break; + } + + if (unlikely(retval)) + rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", + state, retval); + + return retval; +} + +/* + * TX descriptor initialization + */ +static void rt73usb_write_tx_desc(struct queue_entry *entry, + struct txentry_desc *txdesc) +{ + struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); + __le32 *txd = (__le32 *) entry->skb->data; + u32 word; + + /* + * Start writing the descriptor words. + */ + word = rt2x00_desc_read(txd, 0); + rt2x00_set_field32(&word, TXD_W0_BURST, + test_bit(ENTRY_TXD_BURST, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_VALID, 1); + rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, + test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_ACK, + test_bit(ENTRY_TXD_ACK, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, + test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_OFDM, + (txdesc->rate_mode == RATE_MODE_OFDM)); + rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); + rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, + test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, + test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, + test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); + rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); + rt2x00_set_field32(&word, TXD_W0_BURST2, + test_bit(ENTRY_TXD_BURST, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); + rt2x00_desc_write(txd, 0, word); + + word = rt2x00_desc_read(txd, 1); + rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); + rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); + rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); + rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); + rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); + rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, + test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); + rt2x00_desc_write(txd, 1, word); + + word = rt2x00_desc_read(txd, 2); + rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); + rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); + rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, + txdesc->u.plcp.length_low); + rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, + txdesc->u.plcp.length_high); + rt2x00_desc_write(txd, 2, word); + + if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { + _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); + _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); + } + + word = rt2x00_desc_read(txd, 5); + rt2x00_set_field32(&word, TXD_W5_TX_POWER, + TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); + rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); + rt2x00_desc_write(txd, 5, word); + + /* + * Register descriptor details in skb frame descriptor. + */ + skbdesc->flags |= SKBDESC_DESC_IN_SKB; + skbdesc->desc = txd; + skbdesc->desc_len = TXD_DESC_SIZE; +} + +/* + * TX data initialization + */ +static void rt73usb_write_beacon(struct queue_entry *entry, + struct txentry_desc *txdesc) +{ + struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; + unsigned int beacon_base; + unsigned int padding_len; + u32 orig_reg, reg; + + /* + * Disable beaconing while we are reloading the beacon data, + * otherwise we might be sending out invalid data. + */ + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); + orig_reg = reg; + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); + + /* + * Add space for the descriptor in front of the skb. + */ + skb_push(entry->skb, TXD_DESC_SIZE); + memset(entry->skb->data, 0, TXD_DESC_SIZE); + + /* + * Write the TX descriptor for the beacon. + */ + rt73usb_write_tx_desc(entry, txdesc); + + /* + * Dump beacon to userspace through debugfs. + */ + rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); + + /* + * Write entire beacon with descriptor and padding to register. + */ + padding_len = roundup(entry->skb->len, 4) - entry->skb->len; + if (padding_len && skb_pad(entry->skb, padding_len)) { + rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n"); + /* skb freed by skb_pad() on failure */ + entry->skb = NULL; + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); + return; + } + + beacon_base = HW_BEACON_OFFSET(entry->entry_idx); + rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data, + entry->skb->len + padding_len); + + /* + * Enable beaconing again. + * + * For Wi-Fi faily generated beacons between participating stations. + * Set TBTT phase adaptive adjustment step to 8us (default 16us) + */ + rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); + + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); + + /* + * Clean up the beacon skb. + */ + dev_kfree_skb(entry->skb); + entry->skb = NULL; +} + +static void rt73usb_clear_beacon(struct queue_entry *entry) +{ + struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; + unsigned int beacon_base; + u32 orig_reg, reg; + + /* + * Disable beaconing while we are reloading the beacon data, + * otherwise we might be sending out invalid data. + */ + orig_reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); + reg = orig_reg; + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); + + /* + * Clear beacon. + */ + beacon_base = HW_BEACON_OFFSET(entry->entry_idx); + rt2x00usb_register_write(rt2x00dev, beacon_base, 0); + + /* + * Restore beaconing state. + */ + rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); +} + +static int rt73usb_get_tx_data_len(struct queue_entry *entry) +{ + int length; + + /* + * The length _must_ be a multiple of 4, + * but it must _not_ be a multiple of the USB packet size. + */ + length = roundup(entry->skb->len, 4); + length += (4 * !(length % entry->queue->usb_maxpacket)); + + return length; +} + +/* + * RX control handlers + */ +static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) +{ + u8 offset = rt2x00dev->lna_gain; + u8 lna; + + lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); + switch (lna) { + case 3: + offset += 90; + break; + case 2: + offset += 74; + break; + case 1: + offset += 64; + break; + default: + return 0; + } + + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { + if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { + if (lna == 3 || lna == 2) + offset += 10; + } else { + if (lna == 3) + offset += 6; + else if (lna == 2) + offset += 8; + } + } + + return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; +} + +static void rt73usb_fill_rxdone(struct queue_entry *entry, + struct rxdone_entry_desc *rxdesc) +{ + struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; + struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); + __le32 *rxd = (__le32 *)entry->skb->data; + u32 word0; + u32 word1; + + /* + * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of + * frame data in rt2x00usb. + */ + memcpy(skbdesc->desc, rxd, skbdesc->desc_len); + rxd = (__le32 *)skbdesc->desc; + + /* + * It is now safe to read the descriptor on all architectures. + */ + word0 = rt2x00_desc_read(rxd, 0); + word1 = rt2x00_desc_read(rxd, 1); + + if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) + rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; + + rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); + rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); + + if (rxdesc->cipher != CIPHER_NONE) { + rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2); + rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3); + rxdesc->dev_flags |= RXDONE_CRYPTO_IV; + + rxdesc->icv = _rt2x00_desc_read(rxd, 4); + rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; + + /* + * Hardware has stripped IV/EIV data from 802.11 frame during + * decryption. It has provided the data separately but rt2x00lib + * should decide if it should be reinserted. + */ + rxdesc->flags |= RX_FLAG_IV_STRIPPED; + + /* + * The hardware has already checked the Michael Mic and has + * stripped it from the frame. Signal this to mac80211. + */ + rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; + + if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) + rxdesc->flags |= RX_FLAG_DECRYPTED; + else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) + rxdesc->flags |= RX_FLAG_MMIC_ERROR; + } + + /* + * Obtain the status about this packet. + * When frame was received with an OFDM bitrate, + * the signal is the PLCP value. If it was received with + * a CCK bitrate the signal is the rate in 100kbit/s. + */ + rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); + rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1); + rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); + + if (rt2x00_get_field32(word0, RXD_W0_OFDM)) + rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; + else + rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; + if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) + rxdesc->dev_flags |= RXDONE_MY_BSS; + + /* + * Set skb pointers, and update frame information. + */ + skb_pull(entry->skb, entry->queue->desc_size); + skb_trim(entry->skb, rxdesc->size); +} + +/* + * Device probe functions. + */ +static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) +{ + u16 word; + u8 *mac; + s8 value; + + rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); + + /* + * Start validation of the data that has been read. + */ + mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); + rt2x00lib_set_mac_address(rt2x00dev, mac); + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); + rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, + ANTENNA_B); + rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, + ANTENNA_B); + rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226); + rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); + rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); + rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0); + rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0); + rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0); + rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0); + rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0); + rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0); + rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0); + rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0); + rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, + LED_MODE_DEFAULT); + rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); + rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); + rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); + rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); + rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); + } else { + value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); + if (value < -10 || value > 10) + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); + value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); + if (value < -10 || value > 10) + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); + rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); + } else { + value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); + if (value < -10 || value > 10) + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); + value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); + if (value < -10 || value > 10) + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); + } + + return 0; +} + +static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + u16 value; + u16 eeprom; + + /* + * Read EEPROM word for configuration. + */ + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); + + /* + * Identify RF chipset. + */ + value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0); + rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), + value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); + + if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) { + rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n"); + return -ENODEV; + } + + if (!rt2x00_rf(rt2x00dev, RF5226) && + !rt2x00_rf(rt2x00dev, RF2528) && + !rt2x00_rf(rt2x00dev, RF5225) && + !rt2x00_rf(rt2x00dev, RF2527)) { + rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); + return -ENODEV; + } + + /* + * Identify default antenna configuration. + */ + rt2x00dev->default_ant.tx = + rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); + rt2x00dev->default_ant.rx = + rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); + + /* + * Read the Frame type. + */ + if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) + __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); + + /* + * Detect if this device has an hardware controlled radio. + */ + if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) + __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); + + /* + * Read frequency offset. + */ + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); + rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); + + /* + * Read external LNA informations. + */ + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); + + if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) { + __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); + __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); + } + + /* + * Store led settings, for correct led behaviour. + */ +#ifdef CONFIG_RT2X00_LIB_LEDS + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); + + rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); + rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); + if (value == LED_MODE_SIGNAL_STRENGTH) + rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual, + LED_TYPE_QUALITY); + + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_0)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_1)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_2)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_3)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_4)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, + rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_RDY_G)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_RDY_A)); +#endif /* CONFIG_RT2X00_LIB_LEDS */ + + return 0; +} + +/* + * RF value list for RF2528 + * Supports: 2.4 GHz + */ +static const struct rf_channel rf_vals_bg_2528[] = { + { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, + { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, + { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, + { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, + { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, + { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, + { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, + { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, + { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, + { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, + { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, + { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, + { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, + { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, +}; + +/* + * RF value list for RF5226 + * Supports: 2.4 GHz & 5.2 GHz + */ +static const struct rf_channel rf_vals_5226[] = { + { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, + { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, + { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, + { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, + { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, + { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, + { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, + { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, + { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, + { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, + { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, + { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, + { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, + { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, + + /* 802.11 UNI / HyperLan 2 */ + { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 }, + { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 }, + { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b }, + { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 }, + { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b }, + { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 }, + { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 }, + { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b }, + + /* 802.11 HyperLan 2 */ + { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 }, + { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b }, + { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 }, + { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b }, + { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 }, + { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 }, + { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b }, + { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 }, + { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b }, + { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 }, + + /* 802.11 UNII */ + { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 }, + { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f }, + { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 }, + { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 }, + { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f }, + { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 }, + + /* MMAC(Japan)J52 ch 34,38,42,46 */ + { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b }, + { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 }, + { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b }, + { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 }, +}; + +/* + * RF value list for RF5225 & RF2527 + * Supports: 2.4 GHz & 5.2 GHz + */ +static const struct rf_channel rf_vals_5225_2527[] = { + { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, + { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, + { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, + { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, + { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, + { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, + { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, + { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, + { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, + { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, + { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, + { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, + { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, + { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, + + /* 802.11 UNI / HyperLan 2 */ + { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, + { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, + { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, + { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, + { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, + { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, + { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, + { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, + + /* 802.11 HyperLan 2 */ + { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, + { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, + { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, + { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, + { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, + { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, + { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, + { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, + { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, + { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, + + /* 802.11 UNII */ + { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, + { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, + { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, + { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, + { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, + { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, + + /* MMAC(Japan)J52 ch 34,38,42,46 */ + { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, + { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, + { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, + { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, +}; + + +static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) +{ + struct hw_mode_spec *spec = &rt2x00dev->spec; + struct channel_info *info; + char *tx_power; + unsigned int i; + + /* + * Initialize all hw fields. + * + * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are + * capable of sending the buffered frames out after the DTIM + * transmission using rt2x00lib_beacondone. This will send out + * multicast and broadcast traffic immediately instead of buffering it + * infinitly and thus dropping it after some time. + */ + ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); + ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); + ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); + + SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); + SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, + rt2x00_eeprom_addr(rt2x00dev, + EEPROM_MAC_ADDR_0)); + + /* + * Initialize hw_mode information. + */ + spec->supported_bands = SUPPORT_BAND_2GHZ; + spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; + + if (rt2x00_rf(rt2x00dev, RF2528)) { + spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528); + spec->channels = rf_vals_bg_2528; + } else if (rt2x00_rf(rt2x00dev, RF5226)) { + spec->supported_bands |= SUPPORT_BAND_5GHZ; + spec->num_channels = ARRAY_SIZE(rf_vals_5226); + spec->channels = rf_vals_5226; + } else if (rt2x00_rf(rt2x00dev, RF2527)) { + spec->num_channels = 14; + spec->channels = rf_vals_5225_2527; + } else if (rt2x00_rf(rt2x00dev, RF5225)) { + spec->supported_bands |= SUPPORT_BAND_5GHZ; + spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527); + spec->channels = rf_vals_5225_2527; + } + + /* + * Create channel information array + */ + info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + spec->channels_info = info; + + tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); + for (i = 0; i < 14; i++) { + info[i].max_power = MAX_TXPOWER; + info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); + } + + if (spec->num_channels > 14) { + tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); + for (i = 14; i < spec->num_channels; i++) { + info[i].max_power = MAX_TXPOWER; + info[i].default_power1 = + TXPOWER_FROM_DEV(tx_power[i - 14]); + } + } + + return 0; +} + +static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev) +{ + int retval; + u32 reg; + + /* + * Allocate eeprom data. + */ + retval = rt73usb_validate_eeprom(rt2x00dev); + if (retval) + return retval; + + retval = rt73usb_init_eeprom(rt2x00dev); + if (retval) + return retval; + + /* + * Enable rfkill polling by setting GPIO direction of the + * rfkill switch GPIO pin correctly. + */ + reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13); + rt2x00_set_field32(®, MAC_CSR13_DIR7, 0); + rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg); + + /* + * Initialize hw specifications. + */ + retval = rt73usb_probe_hw_mode(rt2x00dev); + if (retval) + return retval; + + /* + * This device has multiple filters for control frames, + * but has no a separate filter for PS Poll frames. + */ + __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); + + /* + * This device requires firmware. + */ + __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); + if (!modparam_nohwcrypt) + __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); + __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); + __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); + + /* + * Set the rssi offset. + */ + rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; + + return 0; +} + +/* + * IEEE80211 stack callback functions. + */ +static int rt73usb_conf_tx(struct ieee80211_hw *hw, + struct ieee80211_vif *vif, u16 queue_idx, + const struct ieee80211_tx_queue_params *params) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + struct data_queue *queue; + struct rt2x00_field32 field; + int retval; + u32 reg; + u32 offset; + + /* + * First pass the configuration through rt2x00lib, that will + * update the queue settings and validate the input. After that + * we are free to update the registers based on the value + * in the queue parameter. + */ + retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); + if (retval) + return retval; + + /* + * We only need to perform additional register initialization + * for WMM queues/ + */ + if (queue_idx >= 4) + return 0; + + queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); + + /* Update WMM TXOP register */ + offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); + field.bit_offset = (queue_idx & 1) * 16; + field.bit_mask = 0xffff << field.bit_offset; + + reg = rt2x00usb_register_read(rt2x00dev, offset); + rt2x00_set_field32(®, field, queue->txop); + rt2x00usb_register_write(rt2x00dev, offset, reg); + + /* Update WMM registers */ + field.bit_offset = queue_idx * 4; + field.bit_mask = 0xf << field.bit_offset; + + reg = rt2x00usb_register_read(rt2x00dev, AIFSN_CSR); + rt2x00_set_field32(®, field, queue->aifs); + rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg); + + reg = rt2x00usb_register_read(rt2x00dev, CWMIN_CSR); + rt2x00_set_field32(®, field, queue->cw_min); + rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg); + + reg = rt2x00usb_register_read(rt2x00dev, CWMAX_CSR); + rt2x00_set_field32(®, field, queue->cw_max); + rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg); + + return 0; +} + +static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + u64 tsf; + u32 reg; + + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR13); + tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; + reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR12); + tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); + + return tsf; +} + +static const struct ieee80211_ops rt73usb_mac80211_ops = { + .tx = rt2x00mac_tx, + .start = rt2x00mac_start, + .stop = rt2x00mac_stop, + .add_interface = rt2x00mac_add_interface, + .remove_interface = rt2x00mac_remove_interface, + .config = rt2x00mac_config, + .configure_filter = rt2x00mac_configure_filter, + .set_tim = rt2x00mac_set_tim, + .set_key = rt2x00mac_set_key, + .sw_scan_start = rt2x00mac_sw_scan_start, + .sw_scan_complete = rt2x00mac_sw_scan_complete, + .get_stats = rt2x00mac_get_stats, + .bss_info_changed = rt2x00mac_bss_info_changed, + .conf_tx = rt73usb_conf_tx, + .get_tsf = rt73usb_get_tsf, + .rfkill_poll = rt2x00mac_rfkill_poll, + .flush = rt2x00mac_flush, + .set_antenna = rt2x00mac_set_antenna, + .get_antenna = rt2x00mac_get_antenna, + .get_ringparam = rt2x00mac_get_ringparam, + .tx_frames_pending = rt2x00mac_tx_frames_pending, +}; + +static const struct rt2x00lib_ops rt73usb_rt2x00_ops = { + .probe_hw = rt73usb_probe_hw, + .get_firmware_name = rt73usb_get_firmware_name, + .check_firmware = rt73usb_check_firmware, + .load_firmware = rt73usb_load_firmware, + .initialize = rt2x00usb_initialize, + .uninitialize = rt2x00usb_uninitialize, + .clear_entry = rt2x00usb_clear_entry, + .set_device_state = rt73usb_set_device_state, + .rfkill_poll = rt73usb_rfkill_poll, + .link_stats = rt73usb_link_stats, + .reset_tuner = rt73usb_reset_tuner, + .link_tuner = rt73usb_link_tuner, + .watchdog = rt2x00usb_watchdog, + .start_queue = rt73usb_start_queue, + .kick_queue = rt2x00usb_kick_queue, + .stop_queue = rt73usb_stop_queue, + .flush_queue = rt2x00usb_flush_queue, + .write_tx_desc = rt73usb_write_tx_desc, + .write_beacon = rt73usb_write_beacon, + .clear_beacon = rt73usb_clear_beacon, + .get_tx_data_len = rt73usb_get_tx_data_len, + .fill_rxdone = rt73usb_fill_rxdone, + .config_shared_key = rt73usb_config_shared_key, + .config_pairwise_key = rt73usb_config_pairwise_key, + .config_filter = rt73usb_config_filter, + .config_intf = rt73usb_config_intf, + .config_erp = rt73usb_config_erp, + .config_ant = rt73usb_config_ant, + .config = rt73usb_config, +}; + +static void rt73usb_queue_init(struct data_queue *queue) +{ + switch (queue->qid) { + case QID_RX: + queue->limit = 32; + queue->data_size = DATA_FRAME_SIZE; + queue->desc_size = RXD_DESC_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_usb); + break; + + case QID_AC_VO: + case QID_AC_VI: + case QID_AC_BE: + case QID_AC_BK: + queue->limit = 32; + queue->data_size = DATA_FRAME_SIZE; + queue->desc_size = TXD_DESC_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_usb); + break; + + case QID_BEACON: + queue->limit = 4; + queue->data_size = MGMT_FRAME_SIZE; + queue->desc_size = TXINFO_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_usb); + break; + + case QID_ATIM: + /* fallthrough */ + default: + BUG(); + break; + } +} + +static const struct rt2x00_ops rt73usb_ops = { + .name = KBUILD_MODNAME, + .max_ap_intf = 4, + .eeprom_size = EEPROM_SIZE, + .rf_size = RF_SIZE, + .tx_queues = NUM_TX_QUEUES, + .queue_init = rt73usb_queue_init, + .lib = &rt73usb_rt2x00_ops, + .hw = &rt73usb_mac80211_ops, +#ifdef CONFIG_RT2X00_LIB_DEBUGFS + .debugfs = &rt73usb_rt2x00debug, +#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ +}; + +/* + * rt73usb module information. + */ +static const struct usb_device_id rt73usb_device_table[] = { + /* AboCom */ + { USB_DEVICE(0x07b8, 0xb21b) }, + { USB_DEVICE(0x07b8, 0xb21c) }, + { USB_DEVICE(0x07b8, 0xb21d) }, + { USB_DEVICE(0x07b8, 0xb21e) }, + { USB_DEVICE(0x07b8, 0xb21f) }, + /* AL */ + { USB_DEVICE(0x14b2, 0x3c10) }, + /* Amigo */ + { USB_DEVICE(0x148f, 0x9021) }, + { USB_DEVICE(0x0eb0, 0x9021) }, + /* AMIT */ + { USB_DEVICE(0x18c5, 0x0002) }, + /* Askey */ + { USB_DEVICE(0x1690, 0x0722) }, + /* ASUS */ + { USB_DEVICE(0x0b05, 0x1723) }, + { USB_DEVICE(0x0b05, 0x1724) }, + /* Belkin */ + { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */ + { USB_DEVICE(0x050d, 0x705a) }, + { USB_DEVICE(0x050d, 0x905b) }, + { USB_DEVICE(0x050d, 0x905c) }, + /* Billionton */ + { USB_DEVICE(0x1631, 0xc019) }, + { USB_DEVICE(0x08dd, 0x0120) }, + /* Buffalo */ + { USB_DEVICE(0x0411, 0x00d8) }, + { USB_DEVICE(0x0411, 0x00d9) }, + { USB_DEVICE(0x0411, 0x00e6) }, + { USB_DEVICE(0x0411, 0x00f4) }, + { USB_DEVICE(0x0411, 0x0116) }, + { USB_DEVICE(0x0411, 0x0119) }, + { USB_DEVICE(0x0411, 0x0137) }, + /* CEIVA */ + { USB_DEVICE(0x178d, 0x02be) }, + /* CNet */ + { USB_DEVICE(0x1371, 0x9022) }, + { USB_DEVICE(0x1371, 0x9032) }, + /* Conceptronic */ + { USB_DEVICE(0x14b2, 0x3c22) }, + /* Corega */ + { USB_DEVICE(0x07aa, 0x002e) }, + /* D-Link */ + { USB_DEVICE(0x07d1, 0x3c03) }, + { USB_DEVICE(0x07d1, 0x3c04) }, + { USB_DEVICE(0x07d1, 0x3c06) }, + { USB_DEVICE(0x07d1, 0x3c07) }, + /* Edimax */ + { USB_DEVICE(0x7392, 0x7318) }, + { USB_DEVICE(0x7392, 0x7618) }, + /* EnGenius */ + { USB_DEVICE(0x1740, 0x3701) }, + /* Gemtek */ + { USB_DEVICE(0x15a9, 0x0004) }, + /* Gigabyte */ + { USB_DEVICE(0x1044, 0x8008) }, + { USB_DEVICE(0x1044, 0x800a) }, + /* Huawei-3Com */ + { USB_DEVICE(0x1472, 0x0009) }, + /* Hercules */ + { USB_DEVICE(0x06f8, 0xe002) }, + { USB_DEVICE(0x06f8, 0xe010) }, + { USB_DEVICE(0x06f8, 0xe020) }, + /* Linksys */ + { USB_DEVICE(0x13b1, 0x0020) }, + { USB_DEVICE(0x13b1, 0x0023) }, + { USB_DEVICE(0x13b1, 0x0028) }, + /* MSI */ + { USB_DEVICE(0x0db0, 0x4600) }, + { USB_DEVICE(0x0db0, 0x6877) }, + { USB_DEVICE(0x0db0, 0x6874) }, + { USB_DEVICE(0x0db0, 0xa861) }, + { USB_DEVICE(0x0db0, 0xa874) }, + /* Ovislink */ + { USB_DEVICE(0x1b75, 0x7318) }, + /* Ralink */ + { USB_DEVICE(0x04bb, 0x093d) }, + { USB_DEVICE(0x148f, 0x2573) }, + { USB_DEVICE(0x148f, 0x2671) }, + { USB_DEVICE(0x0812, 0x3101) }, + /* Qcom */ + { USB_DEVICE(0x18e8, 0x6196) }, + { USB_DEVICE(0x18e8, 0x6229) }, + { USB_DEVICE(0x18e8, 0x6238) }, + /* Samsung */ + { USB_DEVICE(0x04e8, 0x4471) }, + /* Senao */ + { USB_DEVICE(0x1740, 0x7100) }, + /* Sitecom */ + { USB_DEVICE(0x0df6, 0x0024) }, + { USB_DEVICE(0x0df6, 0x0027) }, + { USB_DEVICE(0x0df6, 0x002f) }, + { USB_DEVICE(0x0df6, 0x90ac) }, + { USB_DEVICE(0x0df6, 0x9712) }, + /* Surecom */ + { USB_DEVICE(0x0769, 0x31f3) }, + /* Tilgin */ + { USB_DEVICE(0x6933, 0x5001) }, + /* Philips */ + { USB_DEVICE(0x0471, 0x200a) }, + /* Planex */ + { USB_DEVICE(0x2019, 0xab01) }, + { USB_DEVICE(0x2019, 0xab50) }, + /* WideTell */ + { USB_DEVICE(0x7167, 0x3840) }, + /* Zcom */ + { USB_DEVICE(0x0cde, 0x001c) }, + /* ZyXEL */ + { USB_DEVICE(0x0586, 0x3415) }, + { 0, } +}; + +MODULE_AUTHOR(DRV_PROJECT); +MODULE_VERSION(DRV_VERSION); +MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver."); +MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards"); +MODULE_DEVICE_TABLE(usb, rt73usb_device_table); +MODULE_FIRMWARE(FIRMWARE_RT2571); +MODULE_LICENSE("GPL"); + +static int rt73usb_probe(struct usb_interface *usb_intf, + const struct usb_device_id *id) +{ + return rt2x00usb_probe(usb_intf, &rt73usb_ops); +} + +static struct usb_driver rt73usb_driver = { + .name = KBUILD_MODNAME, + .id_table = rt73usb_device_table, + .probe = rt73usb_probe, + .disconnect = rt2x00usb_disconnect, + .suspend = rt2x00usb_suspend, + .resume = rt2x00usb_resume, + .reset_resume = rt2x00usb_resume, + .disable_hub_initiated_lpm = 1, +}; + +module_usb_driver(rt73usb_driver); |