diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/nvme/host/pci.c | 2775 |
1 files changed, 2775 insertions, 0 deletions
diff --git a/drivers/nvme/host/pci.c b/drivers/nvme/host/pci.c new file mode 100644 index 000000000..b06d2b6bd --- /dev/null +++ b/drivers/nvme/host/pci.c @@ -0,0 +1,2775 @@ +/* + * NVM Express device driver + * Copyright (c) 2011-2014, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ + +#include <linux/aer.h> +#include <linux/async.h> +#include <linux/blkdev.h> +#include <linux/blk-mq.h> +#include <linux/blk-mq-pci.h> +#include <linux/dmi.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/once.h> +#include <linux/pci.h> +#include <linux/t10-pi.h> +#include <linux/types.h> +#include <linux/io-64-nonatomic-lo-hi.h> +#include <linux/sed-opal.h> + +#include "nvme.h" + +#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) +#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) + +#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) + +/* + * These can be higher, but we need to ensure that any command doesn't + * require an sg allocation that needs more than a page of data. + */ +#define NVME_MAX_KB_SZ 4096 +#define NVME_MAX_SEGS 127 + +static int use_threaded_interrupts; +module_param(use_threaded_interrupts, int, 0); + +static bool use_cmb_sqes = true; +module_param(use_cmb_sqes, bool, 0444); +MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); + +static unsigned int max_host_mem_size_mb = 128; +module_param(max_host_mem_size_mb, uint, 0444); +MODULE_PARM_DESC(max_host_mem_size_mb, + "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); + +static unsigned int sgl_threshold = SZ_32K; +module_param(sgl_threshold, uint, 0644); +MODULE_PARM_DESC(sgl_threshold, + "Use SGLs when average request segment size is larger or equal to " + "this size. Use 0 to disable SGLs."); + +static int io_queue_depth_set(const char *val, const struct kernel_param *kp); +static const struct kernel_param_ops io_queue_depth_ops = { + .set = io_queue_depth_set, + .get = param_get_int, +}; + +static int io_queue_depth = 1024; +module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); +MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); + +struct nvme_dev; +struct nvme_queue; + +static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); + +/* + * Represents an NVM Express device. Each nvme_dev is a PCI function. + */ +struct nvme_dev { + struct nvme_queue *queues; + struct blk_mq_tag_set tagset; + struct blk_mq_tag_set admin_tagset; + u32 __iomem *dbs; + struct device *dev; + struct dma_pool *prp_page_pool; + struct dma_pool *prp_small_pool; + unsigned online_queues; + unsigned max_qid; + unsigned int num_vecs; + int q_depth; + u32 db_stride; + void __iomem *bar; + unsigned long bar_mapped_size; + struct work_struct remove_work; + struct mutex shutdown_lock; + bool subsystem; + void __iomem *cmb; + pci_bus_addr_t cmb_bus_addr; + u64 cmb_size; + u32 cmbsz; + u32 cmbloc; + struct nvme_ctrl ctrl; + struct completion ioq_wait; + + mempool_t *iod_mempool; + + /* shadow doorbell buffer support: */ + u32 *dbbuf_dbs; + dma_addr_t dbbuf_dbs_dma_addr; + u32 *dbbuf_eis; + dma_addr_t dbbuf_eis_dma_addr; + + /* host memory buffer support: */ + u64 host_mem_size; + u32 nr_host_mem_descs; + dma_addr_t host_mem_descs_dma; + struct nvme_host_mem_buf_desc *host_mem_descs; + void **host_mem_desc_bufs; +}; + +static int io_queue_depth_set(const char *val, const struct kernel_param *kp) +{ + int n = 0, ret; + + ret = kstrtoint(val, 10, &n); + if (ret != 0 || n < 2) + return -EINVAL; + + return param_set_int(val, kp); +} + +static inline unsigned int sq_idx(unsigned int qid, u32 stride) +{ + return qid * 2 * stride; +} + +static inline unsigned int cq_idx(unsigned int qid, u32 stride) +{ + return (qid * 2 + 1) * stride; +} + +static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) +{ + return container_of(ctrl, struct nvme_dev, ctrl); +} + +/* + * An NVM Express queue. Each device has at least two (one for admin + * commands and one for I/O commands). + */ +struct nvme_queue { + struct device *q_dmadev; + struct nvme_dev *dev; + spinlock_t sq_lock; + struct nvme_command *sq_cmds; + struct nvme_command __iomem *sq_cmds_io; + spinlock_t cq_lock ____cacheline_aligned_in_smp; + volatile struct nvme_completion *cqes; + struct blk_mq_tags **tags; + dma_addr_t sq_dma_addr; + dma_addr_t cq_dma_addr; + u32 __iomem *q_db; + u16 q_depth; + s16 cq_vector; + u16 sq_tail; + u16 cq_head; + u16 last_cq_head; + u16 qid; + u8 cq_phase; + u32 *dbbuf_sq_db; + u32 *dbbuf_cq_db; + u32 *dbbuf_sq_ei; + u32 *dbbuf_cq_ei; +}; + +/* + * The nvme_iod describes the data in an I/O, including the list of PRP + * entries. You can't see it in this data structure because C doesn't let + * me express that. Use nvme_init_iod to ensure there's enough space + * allocated to store the PRP list. + */ +struct nvme_iod { + struct nvme_request req; + struct nvme_queue *nvmeq; + bool use_sgl; + int aborted; + int npages; /* In the PRP list. 0 means small pool in use */ + int nents; /* Used in scatterlist */ + int length; /* Of data, in bytes */ + dma_addr_t first_dma; + struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ + struct scatterlist *sg; + struct scatterlist inline_sg[0]; +}; + +/* + * Check we didin't inadvertently grow the command struct + */ +static inline void _nvme_check_size(void) +{ + BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); + BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); + BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); + BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); + BUILD_BUG_ON(sizeof(struct nvme_features) != 64); + BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); + BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); + BUILD_BUG_ON(sizeof(struct nvme_command) != 64); + BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); + BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); + BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); + BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); + BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); +} + +static inline unsigned int nvme_dbbuf_size(u32 stride) +{ + return ((num_possible_cpus() + 1) * 8 * stride); +} + +static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) +{ + unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); + + if (dev->dbbuf_dbs) + return 0; + + dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, + &dev->dbbuf_dbs_dma_addr, + GFP_KERNEL); + if (!dev->dbbuf_dbs) + return -ENOMEM; + dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, + &dev->dbbuf_eis_dma_addr, + GFP_KERNEL); + if (!dev->dbbuf_eis) { + dma_free_coherent(dev->dev, mem_size, + dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); + dev->dbbuf_dbs = NULL; + return -ENOMEM; + } + + return 0; +} + +static void nvme_dbbuf_dma_free(struct nvme_dev *dev) +{ + unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); + + if (dev->dbbuf_dbs) { + dma_free_coherent(dev->dev, mem_size, + dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); + dev->dbbuf_dbs = NULL; + } + if (dev->dbbuf_eis) { + dma_free_coherent(dev->dev, mem_size, + dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); + dev->dbbuf_eis = NULL; + } +} + +static void nvme_dbbuf_init(struct nvme_dev *dev, + struct nvme_queue *nvmeq, int qid) +{ + if (!dev->dbbuf_dbs || !qid) + return; + + nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; + nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; + nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; + nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; +} + +static void nvme_dbbuf_free(struct nvme_queue *nvmeq) +{ + if (!nvmeq->qid) + return; + + nvmeq->dbbuf_sq_db = NULL; + nvmeq->dbbuf_cq_db = NULL; + nvmeq->dbbuf_sq_ei = NULL; + nvmeq->dbbuf_cq_ei = NULL; +} + +static void nvme_dbbuf_set(struct nvme_dev *dev) +{ + struct nvme_command c; + unsigned int i; + + if (!dev->dbbuf_dbs) + return; + + memset(&c, 0, sizeof(c)); + c.dbbuf.opcode = nvme_admin_dbbuf; + c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); + c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); + + if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { + dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); + /* Free memory and continue on */ + nvme_dbbuf_dma_free(dev); + + for (i = 1; i <= dev->online_queues; i++) + nvme_dbbuf_free(&dev->queues[i]); + } +} + +static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) +{ + return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); +} + +/* Update dbbuf and return true if an MMIO is required */ +static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, + volatile u32 *dbbuf_ei) +{ + if (dbbuf_db) { + u16 old_value; + + /* + * Ensure that the queue is written before updating + * the doorbell in memory + */ + wmb(); + + old_value = *dbbuf_db; + *dbbuf_db = value; + + /* + * Ensure that the doorbell is updated before reading the event + * index from memory. The controller needs to provide similar + * ordering to ensure the envent index is updated before reading + * the doorbell. + */ + mb(); + + if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) + return false; + } + + return true; +} + +/* + * Max size of iod being embedded in the request payload + */ +#define NVME_INT_PAGES 2 +#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) + +/* + * Will slightly overestimate the number of pages needed. This is OK + * as it only leads to a small amount of wasted memory for the lifetime of + * the I/O. + */ +static int nvme_npages(unsigned size, struct nvme_dev *dev) +{ + unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, + dev->ctrl.page_size); + return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); +} + +/* + * Calculates the number of pages needed for the SGL segments. For example a 4k + * page can accommodate 256 SGL descriptors. + */ +static int nvme_pci_npages_sgl(unsigned int num_seg) +{ + return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); +} + +static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, + unsigned int size, unsigned int nseg, bool use_sgl) +{ + size_t alloc_size; + + if (use_sgl) + alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); + else + alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); + + return alloc_size + sizeof(struct scatterlist) * nseg; +} + +static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl) +{ + unsigned int alloc_size = nvme_pci_iod_alloc_size(dev, + NVME_INT_BYTES(dev), NVME_INT_PAGES, + use_sgl); + + return sizeof(struct nvme_iod) + alloc_size; +} + +static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, + unsigned int hctx_idx) +{ + struct nvme_dev *dev = data; + struct nvme_queue *nvmeq = &dev->queues[0]; + + WARN_ON(hctx_idx != 0); + WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); + WARN_ON(nvmeq->tags); + + hctx->driver_data = nvmeq; + nvmeq->tags = &dev->admin_tagset.tags[0]; + return 0; +} + +static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) +{ + struct nvme_queue *nvmeq = hctx->driver_data; + + nvmeq->tags = NULL; +} + +static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, + unsigned int hctx_idx) +{ + struct nvme_dev *dev = data; + struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; + + if (!nvmeq->tags) + nvmeq->tags = &dev->tagset.tags[hctx_idx]; + + WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); + hctx->driver_data = nvmeq; + return 0; +} + +static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, + unsigned int hctx_idx, unsigned int numa_node) +{ + struct nvme_dev *dev = set->driver_data; + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; + struct nvme_queue *nvmeq = &dev->queues[queue_idx]; + + BUG_ON(!nvmeq); + iod->nvmeq = nvmeq; + + nvme_req(req)->ctrl = &dev->ctrl; + return 0; +} + +static int nvme_pci_map_queues(struct blk_mq_tag_set *set) +{ + struct nvme_dev *dev = set->driver_data; + + return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev), + dev->num_vecs > 1 ? 1 /* admin queue */ : 0); +} + +/** + * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell + * @nvmeq: The queue to use + * @cmd: The command to send + */ +static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) +{ + spin_lock(&nvmeq->sq_lock); + if (nvmeq->sq_cmds_io) + memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd, + sizeof(*cmd)); + else + memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd)); + + if (++nvmeq->sq_tail == nvmeq->q_depth) + nvmeq->sq_tail = 0; + if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, + nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) + writel(nvmeq->sq_tail, nvmeq->q_db); + spin_unlock(&nvmeq->sq_lock); +} + +static void **nvme_pci_iod_list(struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); +} + +static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + int nseg = blk_rq_nr_phys_segments(req); + unsigned int avg_seg_size; + + if (nseg == 0) + return false; + + avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); + + if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) + return false; + if (!iod->nvmeq->qid) + return false; + if (!sgl_threshold || avg_seg_size < sgl_threshold) + return false; + return true; +} + +static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); + int nseg = blk_rq_nr_phys_segments(rq); + unsigned int size = blk_rq_payload_bytes(rq); + + iod->use_sgl = nvme_pci_use_sgls(dev, rq); + + if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { + iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); + if (!iod->sg) + return BLK_STS_RESOURCE; + } else { + iod->sg = iod->inline_sg; + } + + iod->aborted = 0; + iod->npages = -1; + iod->nents = 0; + iod->length = size; + + return BLK_STS_OK; +} + +static void nvme_free_iod(struct nvme_dev *dev, struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; + dma_addr_t dma_addr = iod->first_dma, next_dma_addr; + + int i; + + if (iod->npages == 0) + dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], + dma_addr); + + for (i = 0; i < iod->npages; i++) { + void *addr = nvme_pci_iod_list(req)[i]; + + if (iod->use_sgl) { + struct nvme_sgl_desc *sg_list = addr; + + next_dma_addr = + le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); + } else { + __le64 *prp_list = addr; + + next_dma_addr = le64_to_cpu(prp_list[last_prp]); + } + + dma_pool_free(dev->prp_page_pool, addr, dma_addr); + dma_addr = next_dma_addr; + } + + if (iod->sg != iod->inline_sg) + mempool_free(iod->sg, dev->iod_mempool); +} + +static void nvme_print_sgl(struct scatterlist *sgl, int nents) +{ + int i; + struct scatterlist *sg; + + for_each_sg(sgl, sg, nents, i) { + dma_addr_t phys = sg_phys(sg); + pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " + "dma_address:%pad dma_length:%d\n", + i, &phys, sg->offset, sg->length, &sg_dma_address(sg), + sg_dma_len(sg)); + } +} + +static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, + struct request *req, struct nvme_rw_command *cmnd) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct dma_pool *pool; + int length = blk_rq_payload_bytes(req); + struct scatterlist *sg = iod->sg; + int dma_len = sg_dma_len(sg); + u64 dma_addr = sg_dma_address(sg); + u32 page_size = dev->ctrl.page_size; + int offset = dma_addr & (page_size - 1); + __le64 *prp_list; + void **list = nvme_pci_iod_list(req); + dma_addr_t prp_dma; + int nprps, i; + + length -= (page_size - offset); + if (length <= 0) { + iod->first_dma = 0; + goto done; + } + + dma_len -= (page_size - offset); + if (dma_len) { + dma_addr += (page_size - offset); + } else { + sg = sg_next(sg); + dma_addr = sg_dma_address(sg); + dma_len = sg_dma_len(sg); + } + + if (length <= page_size) { + iod->first_dma = dma_addr; + goto done; + } + + nprps = DIV_ROUND_UP(length, page_size); + if (nprps <= (256 / 8)) { + pool = dev->prp_small_pool; + iod->npages = 0; + } else { + pool = dev->prp_page_pool; + iod->npages = 1; + } + + prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); + if (!prp_list) { + iod->first_dma = dma_addr; + iod->npages = -1; + return BLK_STS_RESOURCE; + } + list[0] = prp_list; + iod->first_dma = prp_dma; + i = 0; + for (;;) { + if (i == page_size >> 3) { + __le64 *old_prp_list = prp_list; + prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); + if (!prp_list) + return BLK_STS_RESOURCE; + list[iod->npages++] = prp_list; + prp_list[0] = old_prp_list[i - 1]; + old_prp_list[i - 1] = cpu_to_le64(prp_dma); + i = 1; + } + prp_list[i++] = cpu_to_le64(dma_addr); + dma_len -= page_size; + dma_addr += page_size; + length -= page_size; + if (length <= 0) + break; + if (dma_len > 0) + continue; + if (unlikely(dma_len < 0)) + goto bad_sgl; + sg = sg_next(sg); + dma_addr = sg_dma_address(sg); + dma_len = sg_dma_len(sg); + } + +done: + cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); + cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); + + return BLK_STS_OK; + + bad_sgl: + WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), + "Invalid SGL for payload:%d nents:%d\n", + blk_rq_payload_bytes(req), iod->nents); + return BLK_STS_IOERR; +} + +static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, + struct scatterlist *sg) +{ + sge->addr = cpu_to_le64(sg_dma_address(sg)); + sge->length = cpu_to_le32(sg_dma_len(sg)); + sge->type = NVME_SGL_FMT_DATA_DESC << 4; +} + +static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, + dma_addr_t dma_addr, int entries) +{ + sge->addr = cpu_to_le64(dma_addr); + if (entries < SGES_PER_PAGE) { + sge->length = cpu_to_le32(entries * sizeof(*sge)); + sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; + } else { + sge->length = cpu_to_le32(PAGE_SIZE); + sge->type = NVME_SGL_FMT_SEG_DESC << 4; + } +} + +static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, + struct request *req, struct nvme_rw_command *cmd, int entries) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct dma_pool *pool; + struct nvme_sgl_desc *sg_list; + struct scatterlist *sg = iod->sg; + dma_addr_t sgl_dma; + int i = 0; + + /* setting the transfer type as SGL */ + cmd->flags = NVME_CMD_SGL_METABUF; + + if (entries == 1) { + nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); + return BLK_STS_OK; + } + + if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { + pool = dev->prp_small_pool; + iod->npages = 0; + } else { + pool = dev->prp_page_pool; + iod->npages = 1; + } + + sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); + if (!sg_list) { + iod->npages = -1; + return BLK_STS_RESOURCE; + } + + nvme_pci_iod_list(req)[0] = sg_list; + iod->first_dma = sgl_dma; + + nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); + + do { + if (i == SGES_PER_PAGE) { + struct nvme_sgl_desc *old_sg_desc = sg_list; + struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; + + sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); + if (!sg_list) + return BLK_STS_RESOURCE; + + i = 0; + nvme_pci_iod_list(req)[iod->npages++] = sg_list; + sg_list[i++] = *link; + nvme_pci_sgl_set_seg(link, sgl_dma, entries); + } + + nvme_pci_sgl_set_data(&sg_list[i++], sg); + sg = sg_next(sg); + } while (--entries > 0); + + return BLK_STS_OK; +} + +static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, + struct nvme_command *cmnd) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct request_queue *q = req->q; + enum dma_data_direction dma_dir = rq_data_dir(req) ? + DMA_TO_DEVICE : DMA_FROM_DEVICE; + blk_status_t ret = BLK_STS_IOERR; + int nr_mapped; + + sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); + iod->nents = blk_rq_map_sg(q, req, iod->sg); + if (!iod->nents) + goto out; + + ret = BLK_STS_RESOURCE; + nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, + DMA_ATTR_NO_WARN); + if (!nr_mapped) + goto out; + + if (iod->use_sgl) + ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); + else + ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); + + if (ret != BLK_STS_OK) + goto out_unmap; + + ret = BLK_STS_IOERR; + if (blk_integrity_rq(req)) { + if (blk_rq_count_integrity_sg(q, req->bio) != 1) + goto out_unmap; + + sg_init_table(&iod->meta_sg, 1); + if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) + goto out_unmap; + + if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) + goto out_unmap; + } + + if (blk_integrity_rq(req)) + cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); + return BLK_STS_OK; + +out_unmap: + dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); +out: + return ret; +} + +static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + enum dma_data_direction dma_dir = rq_data_dir(req) ? + DMA_TO_DEVICE : DMA_FROM_DEVICE; + + if (iod->nents) { + dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); + if (blk_integrity_rq(req)) + dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); + } + + nvme_cleanup_cmd(req); + nvme_free_iod(dev, req); +} + +/* + * NOTE: ns is NULL when called on the admin queue. + */ +static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, + const struct blk_mq_queue_data *bd) +{ + struct nvme_ns *ns = hctx->queue->queuedata; + struct nvme_queue *nvmeq = hctx->driver_data; + struct nvme_dev *dev = nvmeq->dev; + struct request *req = bd->rq; + struct nvme_command cmnd; + blk_status_t ret; + + /* + * We should not need to do this, but we're still using this to + * ensure we can drain requests on a dying queue. + */ + if (unlikely(nvmeq->cq_vector < 0)) + return BLK_STS_IOERR; + + ret = nvme_setup_cmd(ns, req, &cmnd); + if (ret) + return ret; + + ret = nvme_init_iod(req, dev); + if (ret) + goto out_free_cmd; + + if (blk_rq_nr_phys_segments(req)) { + ret = nvme_map_data(dev, req, &cmnd); + if (ret) + goto out_cleanup_iod; + } + + blk_mq_start_request(req); + nvme_submit_cmd(nvmeq, &cmnd); + return BLK_STS_OK; +out_cleanup_iod: + nvme_free_iod(dev, req); +out_free_cmd: + nvme_cleanup_cmd(req); + return ret; +} + +static void nvme_pci_complete_rq(struct request *req) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + + nvme_unmap_data(iod->nvmeq->dev, req); + nvme_complete_rq(req); +} + +/* We read the CQE phase first to check if the rest of the entry is valid */ +static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) +{ + return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == + nvmeq->cq_phase; +} + +static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) +{ + u16 head = nvmeq->cq_head; + + if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, + nvmeq->dbbuf_cq_ei)) + writel(head, nvmeq->q_db + nvmeq->dev->db_stride); +} + +static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) +{ + volatile struct nvme_completion *cqe = &nvmeq->cqes[idx]; + struct request *req; + + if (unlikely(cqe->command_id >= nvmeq->q_depth)) { + dev_warn(nvmeq->dev->ctrl.device, + "invalid id %d completed on queue %d\n", + cqe->command_id, le16_to_cpu(cqe->sq_id)); + return; + } + + /* + * AEN requests are special as they don't time out and can + * survive any kind of queue freeze and often don't respond to + * aborts. We don't even bother to allocate a struct request + * for them but rather special case them here. + */ + if (unlikely(nvmeq->qid == 0 && + cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) { + nvme_complete_async_event(&nvmeq->dev->ctrl, + cqe->status, &cqe->result); + return; + } + + req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); + nvme_end_request(req, cqe->status, cqe->result); +} + +static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end) +{ + while (start != end) { + nvme_handle_cqe(nvmeq, start); + if (++start == nvmeq->q_depth) + start = 0; + } +} + +static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) +{ + if (nvmeq->cq_head == nvmeq->q_depth - 1) { + nvmeq->cq_head = 0; + nvmeq->cq_phase = !nvmeq->cq_phase; + } else { + nvmeq->cq_head++; + } +} + +static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start, + u16 *end, int tag) +{ + bool found = false; + + *start = nvmeq->cq_head; + while (!found && nvme_cqe_pending(nvmeq)) { + if (nvmeq->cqes[nvmeq->cq_head].command_id == tag) + found = true; + nvme_update_cq_head(nvmeq); + } + *end = nvmeq->cq_head; + + if (*start != *end) + nvme_ring_cq_doorbell(nvmeq); + return found; +} + +static irqreturn_t nvme_irq(int irq, void *data) +{ + struct nvme_queue *nvmeq = data; + irqreturn_t ret = IRQ_NONE; + u16 start, end; + + spin_lock(&nvmeq->cq_lock); + if (nvmeq->cq_head != nvmeq->last_cq_head) + ret = IRQ_HANDLED; + nvme_process_cq(nvmeq, &start, &end, -1); + nvmeq->last_cq_head = nvmeq->cq_head; + spin_unlock(&nvmeq->cq_lock); + + if (start != end) { + nvme_complete_cqes(nvmeq, start, end); + return IRQ_HANDLED; + } + + return ret; +} + +static irqreturn_t nvme_irq_check(int irq, void *data) +{ + struct nvme_queue *nvmeq = data; + if (nvme_cqe_pending(nvmeq)) + return IRQ_WAKE_THREAD; + return IRQ_NONE; +} + +static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag) +{ + u16 start, end; + bool found; + + if (!nvme_cqe_pending(nvmeq)) + return 0; + + spin_lock_irq(&nvmeq->cq_lock); + found = nvme_process_cq(nvmeq, &start, &end, tag); + spin_unlock_irq(&nvmeq->cq_lock); + + nvme_complete_cqes(nvmeq, start, end); + return found; +} + +static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) +{ + struct nvme_queue *nvmeq = hctx->driver_data; + + return __nvme_poll(nvmeq, tag); +} + +static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) +{ + struct nvme_dev *dev = to_nvme_dev(ctrl); + struct nvme_queue *nvmeq = &dev->queues[0]; + struct nvme_command c; + + memset(&c, 0, sizeof(c)); + c.common.opcode = nvme_admin_async_event; + c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; + nvme_submit_cmd(nvmeq, &c); +} + +static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) +{ + struct nvme_command c; + + memset(&c, 0, sizeof(c)); + c.delete_queue.opcode = opcode; + c.delete_queue.qid = cpu_to_le16(id); + + return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); +} + +static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, + struct nvme_queue *nvmeq, s16 vector) +{ + struct nvme_command c; + int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; + + /* + * Note: we (ab)use the fact that the prp fields survive if no data + * is attached to the request. + */ + memset(&c, 0, sizeof(c)); + c.create_cq.opcode = nvme_admin_create_cq; + c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); + c.create_cq.cqid = cpu_to_le16(qid); + c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); + c.create_cq.cq_flags = cpu_to_le16(flags); + c.create_cq.irq_vector = cpu_to_le16(vector); + + return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); +} + +static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, + struct nvme_queue *nvmeq) +{ + struct nvme_ctrl *ctrl = &dev->ctrl; + struct nvme_command c; + int flags = NVME_QUEUE_PHYS_CONTIG; + + /* + * Some drives have a bug that auto-enables WRRU if MEDIUM isn't + * set. Since URGENT priority is zeroes, it makes all queues + * URGENT. + */ + if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) + flags |= NVME_SQ_PRIO_MEDIUM; + + /* + * Note: we (ab)use the fact that the prp fields survive if no data + * is attached to the request. + */ + memset(&c, 0, sizeof(c)); + c.create_sq.opcode = nvme_admin_create_sq; + c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); + c.create_sq.sqid = cpu_to_le16(qid); + c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); + c.create_sq.sq_flags = cpu_to_le16(flags); + c.create_sq.cqid = cpu_to_le16(qid); + + return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); +} + +static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) +{ + return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); +} + +static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) +{ + return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); +} + +static void abort_endio(struct request *req, blk_status_t error) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = iod->nvmeq; + + dev_warn(nvmeq->dev->ctrl.device, + "Abort status: 0x%x", nvme_req(req)->status); + atomic_inc(&nvmeq->dev->ctrl.abort_limit); + blk_mq_free_request(req); +} + +static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) +{ + + /* If true, indicates loss of adapter communication, possibly by a + * NVMe Subsystem reset. + */ + bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); + + /* If there is a reset/reinit ongoing, we shouldn't reset again. */ + switch (dev->ctrl.state) { + case NVME_CTRL_RESETTING: + case NVME_CTRL_CONNECTING: + return false; + default: + break; + } + + /* We shouldn't reset unless the controller is on fatal error state + * _or_ if we lost the communication with it. + */ + if (!(csts & NVME_CSTS_CFS) && !nssro) + return false; + + return true; +} + +static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) +{ + /* Read a config register to help see what died. */ + u16 pci_status; + int result; + + result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, + &pci_status); + if (result == PCIBIOS_SUCCESSFUL) + dev_warn(dev->ctrl.device, + "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", + csts, pci_status); + else + dev_warn(dev->ctrl.device, + "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", + csts, result); +} + +static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) +{ + struct nvme_iod *iod = blk_mq_rq_to_pdu(req); + struct nvme_queue *nvmeq = iod->nvmeq; + struct nvme_dev *dev = nvmeq->dev; + struct request *abort_req; + struct nvme_command cmd; + bool shutdown = false; + u32 csts = readl(dev->bar + NVME_REG_CSTS); + + /* If PCI error recovery process is happening, we cannot reset or + * the recovery mechanism will surely fail. + */ + mb(); + if (pci_channel_offline(to_pci_dev(dev->dev))) + return BLK_EH_RESET_TIMER; + + /* + * Reset immediately if the controller is failed + */ + if (nvme_should_reset(dev, csts)) { + nvme_warn_reset(dev, csts); + nvme_dev_disable(dev, false); + nvme_reset_ctrl(&dev->ctrl); + return BLK_EH_DONE; + } + + /* + * Did we miss an interrupt? + */ + if (__nvme_poll(nvmeq, req->tag)) { + dev_warn(dev->ctrl.device, + "I/O %d QID %d timeout, completion polled\n", + req->tag, nvmeq->qid); + return BLK_EH_DONE; + } + + /* + * Shutdown immediately if controller times out while starting. The + * reset work will see the pci device disabled when it gets the forced + * cancellation error. All outstanding requests are completed on + * shutdown, so we return BLK_EH_DONE. + */ + switch (dev->ctrl.state) { + case NVME_CTRL_DELETING: + shutdown = true; + case NVME_CTRL_CONNECTING: + case NVME_CTRL_RESETTING: + dev_warn_ratelimited(dev->ctrl.device, + "I/O %d QID %d timeout, disable controller\n", + req->tag, nvmeq->qid); + nvme_dev_disable(dev, shutdown); + nvme_req(req)->flags |= NVME_REQ_CANCELLED; + return BLK_EH_DONE; + default: + break; + } + + /* + * Shutdown the controller immediately and schedule a reset if the + * command was already aborted once before and still hasn't been + * returned to the driver, or if this is the admin queue. + */ + if (!nvmeq->qid || iod->aborted) { + dev_warn(dev->ctrl.device, + "I/O %d QID %d timeout, reset controller\n", + req->tag, nvmeq->qid); + nvme_dev_disable(dev, false); + nvme_reset_ctrl(&dev->ctrl); + + nvme_req(req)->flags |= NVME_REQ_CANCELLED; + return BLK_EH_DONE; + } + + if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { + atomic_inc(&dev->ctrl.abort_limit); + return BLK_EH_RESET_TIMER; + } + iod->aborted = 1; + + memset(&cmd, 0, sizeof(cmd)); + cmd.abort.opcode = nvme_admin_abort_cmd; + cmd.abort.cid = req->tag; + cmd.abort.sqid = cpu_to_le16(nvmeq->qid); + + dev_warn(nvmeq->dev->ctrl.device, + "I/O %d QID %d timeout, aborting\n", + req->tag, nvmeq->qid); + + abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, + BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); + if (IS_ERR(abort_req)) { + atomic_inc(&dev->ctrl.abort_limit); + return BLK_EH_RESET_TIMER; + } + + abort_req->timeout = ADMIN_TIMEOUT; + abort_req->end_io_data = NULL; + blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); + + /* + * The aborted req will be completed on receiving the abort req. + * We enable the timer again. If hit twice, it'll cause a device reset, + * as the device then is in a faulty state. + */ + return BLK_EH_RESET_TIMER; +} + +static void nvme_free_queue(struct nvme_queue *nvmeq) +{ + dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), + (void *)nvmeq->cqes, nvmeq->cq_dma_addr); + if (nvmeq->sq_cmds) + dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), + nvmeq->sq_cmds, nvmeq->sq_dma_addr); +} + +static void nvme_free_queues(struct nvme_dev *dev, int lowest) +{ + int i; + + for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { + dev->ctrl.queue_count--; + nvme_free_queue(&dev->queues[i]); + } +} + +/** + * nvme_suspend_queue - put queue into suspended state + * @nvmeq - queue to suspend + */ +static int nvme_suspend_queue(struct nvme_queue *nvmeq) +{ + int vector; + + spin_lock_irq(&nvmeq->cq_lock); + if (nvmeq->cq_vector == -1) { + spin_unlock_irq(&nvmeq->cq_lock); + return 1; + } + vector = nvmeq->cq_vector; + nvmeq->dev->online_queues--; + nvmeq->cq_vector = -1; + spin_unlock_irq(&nvmeq->cq_lock); + + /* + * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without + * having to grab the lock. + */ + mb(); + + if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) + blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); + + pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq); + + return 0; +} + +static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) +{ + struct nvme_queue *nvmeq = &dev->queues[0]; + u16 start, end; + + if (shutdown) + nvme_shutdown_ctrl(&dev->ctrl); + else + nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); + + spin_lock_irq(&nvmeq->cq_lock); + nvme_process_cq(nvmeq, &start, &end, -1); + spin_unlock_irq(&nvmeq->cq_lock); + + nvme_complete_cqes(nvmeq, start, end); +} + +static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, + int entry_size) +{ + int q_depth = dev->q_depth; + unsigned q_size_aligned = roundup(q_depth * entry_size, + dev->ctrl.page_size); + + if (q_size_aligned * nr_io_queues > dev->cmb_size) { + u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); + mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); + q_depth = div_u64(mem_per_q, entry_size); + + /* + * Ensure the reduced q_depth is above some threshold where it + * would be better to map queues in system memory with the + * original depth + */ + if (q_depth < 64) + return -ENOMEM; + } + + return q_depth; +} + +static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, + int qid, int depth) +{ + /* CMB SQEs will be mapped before creation */ + if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) + return 0; + + nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), + &nvmeq->sq_dma_addr, GFP_KERNEL); + if (!nvmeq->sq_cmds) + return -ENOMEM; + return 0; +} + +static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) +{ + struct nvme_queue *nvmeq = &dev->queues[qid]; + + if (dev->ctrl.queue_count > qid) + return 0; + + nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), + &nvmeq->cq_dma_addr, GFP_KERNEL); + if (!nvmeq->cqes) + goto free_nvmeq; + + if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) + goto free_cqdma; + + nvmeq->q_dmadev = dev->dev; + nvmeq->dev = dev; + spin_lock_init(&nvmeq->sq_lock); + spin_lock_init(&nvmeq->cq_lock); + nvmeq->cq_head = 0; + nvmeq->cq_phase = 1; + nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; + nvmeq->q_depth = depth; + nvmeq->qid = qid; + nvmeq->cq_vector = -1; + dev->ctrl.queue_count++; + + return 0; + + free_cqdma: + dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, + nvmeq->cq_dma_addr); + free_nvmeq: + return -ENOMEM; +} + +static int queue_request_irq(struct nvme_queue *nvmeq) +{ + struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); + int nr = nvmeq->dev->ctrl.instance; + + if (use_threaded_interrupts) { + return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, + nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); + } else { + return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, + NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); + } +} + +static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) +{ + struct nvme_dev *dev = nvmeq->dev; + + spin_lock_irq(&nvmeq->cq_lock); + nvmeq->sq_tail = 0; + nvmeq->cq_head = 0; + nvmeq->cq_phase = 1; + nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; + memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); + nvme_dbbuf_init(dev, nvmeq, qid); + dev->online_queues++; + spin_unlock_irq(&nvmeq->cq_lock); +} + +static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) +{ + struct nvme_dev *dev = nvmeq->dev; + int result; + s16 vector; + + if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { + unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth), + dev->ctrl.page_size); + nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset; + nvmeq->sq_cmds_io = dev->cmb + offset; + } + + /* + * A queue's vector matches the queue identifier unless the controller + * has only one vector available. + */ + vector = dev->num_vecs == 1 ? 0 : qid; + result = adapter_alloc_cq(dev, qid, nvmeq, vector); + if (result) + return result; + + result = adapter_alloc_sq(dev, qid, nvmeq); + if (result < 0) + return result; + else if (result) + goto release_cq; + + /* + * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will + * invoke free_irq for it and cause a 'Trying to free already-free IRQ + * xxx' warning if the create CQ/SQ command times out. + */ + nvmeq->cq_vector = vector; + nvme_init_queue(nvmeq, qid); + result = queue_request_irq(nvmeq); + if (result < 0) + goto release_sq; + + return result; + +release_sq: + nvmeq->cq_vector = -1; + dev->online_queues--; + adapter_delete_sq(dev, qid); +release_cq: + adapter_delete_cq(dev, qid); + return result; +} + +static const struct blk_mq_ops nvme_mq_admin_ops = { + .queue_rq = nvme_queue_rq, + .complete = nvme_pci_complete_rq, + .init_hctx = nvme_admin_init_hctx, + .exit_hctx = nvme_admin_exit_hctx, + .init_request = nvme_init_request, + .timeout = nvme_timeout, +}; + +static const struct blk_mq_ops nvme_mq_ops = { + .queue_rq = nvme_queue_rq, + .complete = nvme_pci_complete_rq, + .init_hctx = nvme_init_hctx, + .init_request = nvme_init_request, + .map_queues = nvme_pci_map_queues, + .timeout = nvme_timeout, + .poll = nvme_poll, +}; + +static void nvme_dev_remove_admin(struct nvme_dev *dev) +{ + if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { + /* + * If the controller was reset during removal, it's possible + * user requests may be waiting on a stopped queue. Start the + * queue to flush these to completion. + */ + blk_mq_unquiesce_queue(dev->ctrl.admin_q); + blk_cleanup_queue(dev->ctrl.admin_q); + blk_mq_free_tag_set(&dev->admin_tagset); + } +} + +static int nvme_alloc_admin_tags(struct nvme_dev *dev) +{ + if (!dev->ctrl.admin_q) { + dev->admin_tagset.ops = &nvme_mq_admin_ops; + dev->admin_tagset.nr_hw_queues = 1; + + dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; + dev->admin_tagset.timeout = ADMIN_TIMEOUT; + dev->admin_tagset.numa_node = dev_to_node(dev->dev); + dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false); + dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; + dev->admin_tagset.driver_data = dev; + + if (blk_mq_alloc_tag_set(&dev->admin_tagset)) + return -ENOMEM; + dev->ctrl.admin_tagset = &dev->admin_tagset; + + dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); + if (IS_ERR(dev->ctrl.admin_q)) { + blk_mq_free_tag_set(&dev->admin_tagset); + dev->ctrl.admin_q = NULL; + return -ENOMEM; + } + if (!blk_get_queue(dev->ctrl.admin_q)) { + nvme_dev_remove_admin(dev); + dev->ctrl.admin_q = NULL; + return -ENODEV; + } + } else + blk_mq_unquiesce_queue(dev->ctrl.admin_q); + + return 0; +} + +static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) +{ + return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); +} + +static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (size <= dev->bar_mapped_size) + return 0; + if (size > pci_resource_len(pdev, 0)) + return -ENOMEM; + if (dev->bar) + iounmap(dev->bar); + dev->bar = ioremap(pci_resource_start(pdev, 0), size); + if (!dev->bar) { + dev->bar_mapped_size = 0; + return -ENOMEM; + } + dev->bar_mapped_size = size; + dev->dbs = dev->bar + NVME_REG_DBS; + + return 0; +} + +static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) +{ + int result; + u32 aqa; + struct nvme_queue *nvmeq; + + result = nvme_remap_bar(dev, db_bar_size(dev, 0)); + if (result < 0) + return result; + + dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? + NVME_CAP_NSSRC(dev->ctrl.cap) : 0; + + if (dev->subsystem && + (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) + writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); + + result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); + if (result < 0) + return result; + + result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); + if (result) + return result; + + nvmeq = &dev->queues[0]; + aqa = nvmeq->q_depth - 1; + aqa |= aqa << 16; + + writel(aqa, dev->bar + NVME_REG_AQA); + lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); + lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); + + result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap); + if (result) + return result; + + nvmeq->cq_vector = 0; + nvme_init_queue(nvmeq, 0); + result = queue_request_irq(nvmeq); + if (result) { + nvmeq->cq_vector = -1; + return result; + } + + return result; +} + +static int nvme_create_io_queues(struct nvme_dev *dev) +{ + unsigned i, max; + int ret = 0; + + for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { + if (nvme_alloc_queue(dev, i, dev->q_depth)) { + ret = -ENOMEM; + break; + } + } + + max = min(dev->max_qid, dev->ctrl.queue_count - 1); + for (i = dev->online_queues; i <= max; i++) { + ret = nvme_create_queue(&dev->queues[i], i); + if (ret) + break; + } + + /* + * Ignore failing Create SQ/CQ commands, we can continue with less + * than the desired amount of queues, and even a controller without + * I/O queues can still be used to issue admin commands. This might + * be useful to upgrade a buggy firmware for example. + */ + return ret >= 0 ? 0 : ret; +} + +static ssize_t nvme_cmb_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); + + return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", + ndev->cmbloc, ndev->cmbsz); +} +static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); + +static u64 nvme_cmb_size_unit(struct nvme_dev *dev) +{ + u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; + + return 1ULL << (12 + 4 * szu); +} + +static u32 nvme_cmb_size(struct nvme_dev *dev) +{ + return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; +} + +static void nvme_map_cmb(struct nvme_dev *dev) +{ + u64 size, offset; + resource_size_t bar_size; + struct pci_dev *pdev = to_pci_dev(dev->dev); + int bar; + + if (dev->cmb_size) + return; + + dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); + if (!dev->cmbsz) + return; + dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); + + if (!use_cmb_sqes) + return; + + size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); + offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); + bar = NVME_CMB_BIR(dev->cmbloc); + bar_size = pci_resource_len(pdev, bar); + + if (offset > bar_size) + return; + + /* + * Controllers may support a CMB size larger than their BAR, + * for example, due to being behind a bridge. Reduce the CMB to + * the reported size of the BAR + */ + if (size > bar_size - offset) + size = bar_size - offset; + + dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size); + if (!dev->cmb) + return; + dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset; + dev->cmb_size = size; + + if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, + &dev_attr_cmb.attr, NULL)) + dev_warn(dev->ctrl.device, + "failed to add sysfs attribute for CMB\n"); +} + +static inline void nvme_release_cmb(struct nvme_dev *dev) +{ + if (dev->cmb) { + iounmap(dev->cmb); + dev->cmb = NULL; + sysfs_remove_file_from_group(&dev->ctrl.device->kobj, + &dev_attr_cmb.attr, NULL); + dev->cmbsz = 0; + } +} + +static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) +{ + u64 dma_addr = dev->host_mem_descs_dma; + struct nvme_command c; + int ret; + + memset(&c, 0, sizeof(c)); + c.features.opcode = nvme_admin_set_features; + c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); + c.features.dword11 = cpu_to_le32(bits); + c.features.dword12 = cpu_to_le32(dev->host_mem_size >> + ilog2(dev->ctrl.page_size)); + c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); + c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); + c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); + + ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); + if (ret) { + dev_warn(dev->ctrl.device, + "failed to set host mem (err %d, flags %#x).\n", + ret, bits); + } + return ret; +} + +static void nvme_free_host_mem(struct nvme_dev *dev) +{ + int i; + + for (i = 0; i < dev->nr_host_mem_descs; i++) { + struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; + size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; + + dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], + le64_to_cpu(desc->addr), + DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); + } + + kfree(dev->host_mem_desc_bufs); + dev->host_mem_desc_bufs = NULL; + dma_free_coherent(dev->dev, + dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), + dev->host_mem_descs, dev->host_mem_descs_dma); + dev->host_mem_descs = NULL; + dev->nr_host_mem_descs = 0; +} + +static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, + u32 chunk_size) +{ + struct nvme_host_mem_buf_desc *descs; + u32 max_entries, len; + dma_addr_t descs_dma; + int i = 0; + void **bufs; + u64 size, tmp; + + tmp = (preferred + chunk_size - 1); + do_div(tmp, chunk_size); + max_entries = tmp; + + if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) + max_entries = dev->ctrl.hmmaxd; + + descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs), + &descs_dma, GFP_KERNEL); + if (!descs) + goto out; + + bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); + if (!bufs) + goto out_free_descs; + + for (size = 0; size < preferred && i < max_entries; size += len) { + dma_addr_t dma_addr; + + len = min_t(u64, chunk_size, preferred - size); + bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, + DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); + if (!bufs[i]) + break; + + descs[i].addr = cpu_to_le64(dma_addr); + descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); + i++; + } + + if (!size) + goto out_free_bufs; + + dev->nr_host_mem_descs = i; + dev->host_mem_size = size; + dev->host_mem_descs = descs; + dev->host_mem_descs_dma = descs_dma; + dev->host_mem_desc_bufs = bufs; + return 0; + +out_free_bufs: + while (--i >= 0) { + size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; + + dma_free_attrs(dev->dev, size, bufs[i], + le64_to_cpu(descs[i].addr), + DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); + } + + kfree(bufs); +out_free_descs: + dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, + descs_dma); +out: + dev->host_mem_descs = NULL; + return -ENOMEM; +} + +static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) +{ + u32 chunk_size; + + /* start big and work our way down */ + for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); + chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); + chunk_size /= 2) { + if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { + if (!min || dev->host_mem_size >= min) + return 0; + nvme_free_host_mem(dev); + } + } + + return -ENOMEM; +} + +static int nvme_setup_host_mem(struct nvme_dev *dev) +{ + u64 max = (u64)max_host_mem_size_mb * SZ_1M; + u64 preferred = (u64)dev->ctrl.hmpre * 4096; + u64 min = (u64)dev->ctrl.hmmin * 4096; + u32 enable_bits = NVME_HOST_MEM_ENABLE; + int ret; + + preferred = min(preferred, max); + if (min > max) { + dev_warn(dev->ctrl.device, + "min host memory (%lld MiB) above limit (%d MiB).\n", + min >> ilog2(SZ_1M), max_host_mem_size_mb); + nvme_free_host_mem(dev); + return 0; + } + + /* + * If we already have a buffer allocated check if we can reuse it. + */ + if (dev->host_mem_descs) { + if (dev->host_mem_size >= min) + enable_bits |= NVME_HOST_MEM_RETURN; + else + nvme_free_host_mem(dev); + } + + if (!dev->host_mem_descs) { + if (nvme_alloc_host_mem(dev, min, preferred)) { + dev_warn(dev->ctrl.device, + "failed to allocate host memory buffer.\n"); + return 0; /* controller must work without HMB */ + } + + dev_info(dev->ctrl.device, + "allocated %lld MiB host memory buffer.\n", + dev->host_mem_size >> ilog2(SZ_1M)); + } + + ret = nvme_set_host_mem(dev, enable_bits); + if (ret) + nvme_free_host_mem(dev); + return ret; +} + +static int nvme_setup_io_queues(struct nvme_dev *dev) +{ + struct nvme_queue *adminq = &dev->queues[0]; + struct pci_dev *pdev = to_pci_dev(dev->dev); + int result, nr_io_queues; + unsigned long size; + + struct irq_affinity affd = { + .pre_vectors = 1 + }; + + nr_io_queues = num_possible_cpus(); + result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); + if (result < 0) + return result; + + if (nr_io_queues == 0) + return 0; + + if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) { + result = nvme_cmb_qdepth(dev, nr_io_queues, + sizeof(struct nvme_command)); + if (result > 0) + dev->q_depth = result; + else + nvme_release_cmb(dev); + } + + do { + size = db_bar_size(dev, nr_io_queues); + result = nvme_remap_bar(dev, size); + if (!result) + break; + if (!--nr_io_queues) + return -ENOMEM; + } while (1); + adminq->q_db = dev->dbs; + + /* Deregister the admin queue's interrupt */ + pci_free_irq(pdev, 0, adminq); + + /* + * If we enable msix early due to not intx, disable it again before + * setting up the full range we need. + */ + pci_free_irq_vectors(pdev); + result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1, + PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); + if (result <= 0) + return -EIO; + dev->num_vecs = result; + dev->max_qid = max(result - 1, 1); + + /* + * Should investigate if there's a performance win from allocating + * more queues than interrupt vectors; it might allow the submission + * path to scale better, even if the receive path is limited by the + * number of interrupts. + */ + + result = queue_request_irq(adminq); + if (result) { + adminq->cq_vector = -1; + return result; + } + return nvme_create_io_queues(dev); +} + +static void nvme_del_queue_end(struct request *req, blk_status_t error) +{ + struct nvme_queue *nvmeq = req->end_io_data; + + blk_mq_free_request(req); + complete(&nvmeq->dev->ioq_wait); +} + +static void nvme_del_cq_end(struct request *req, blk_status_t error) +{ + struct nvme_queue *nvmeq = req->end_io_data; + u16 start, end; + + if (!error) { + unsigned long flags; + + spin_lock_irqsave(&nvmeq->cq_lock, flags); + nvme_process_cq(nvmeq, &start, &end, -1); + spin_unlock_irqrestore(&nvmeq->cq_lock, flags); + + nvme_complete_cqes(nvmeq, start, end); + } + + nvme_del_queue_end(req, error); +} + +static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) +{ + struct request_queue *q = nvmeq->dev->ctrl.admin_q; + struct request *req; + struct nvme_command cmd; + + memset(&cmd, 0, sizeof(cmd)); + cmd.delete_queue.opcode = opcode; + cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); + + req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); + if (IS_ERR(req)) + return PTR_ERR(req); + + req->timeout = ADMIN_TIMEOUT; + req->end_io_data = nvmeq; + + blk_execute_rq_nowait(q, NULL, req, false, + opcode == nvme_admin_delete_cq ? + nvme_del_cq_end : nvme_del_queue_end); + return 0; +} + +static void nvme_disable_io_queues(struct nvme_dev *dev) +{ + int pass, queues = dev->online_queues - 1; + unsigned long timeout; + u8 opcode = nvme_admin_delete_sq; + + for (pass = 0; pass < 2; pass++) { + int sent = 0, i = queues; + + reinit_completion(&dev->ioq_wait); + retry: + timeout = ADMIN_TIMEOUT; + for (; i > 0; i--, sent++) + if (nvme_delete_queue(&dev->queues[i], opcode)) + break; + + while (sent--) { + timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); + if (timeout == 0) + return; + if (i) + goto retry; + } + opcode = nvme_admin_delete_cq; + } +} + +/* + * return error value only when tagset allocation failed + */ +static int nvme_dev_add(struct nvme_dev *dev) +{ + int ret; + + if (!dev->ctrl.tagset) { + dev->tagset.ops = &nvme_mq_ops; + dev->tagset.nr_hw_queues = dev->online_queues - 1; + dev->tagset.timeout = NVME_IO_TIMEOUT; + dev->tagset.numa_node = dev_to_node(dev->dev); + dev->tagset.queue_depth = + min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; + dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false); + if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) { + dev->tagset.cmd_size = max(dev->tagset.cmd_size, + nvme_pci_cmd_size(dev, true)); + } + dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; + dev->tagset.driver_data = dev; + + ret = blk_mq_alloc_tag_set(&dev->tagset); + if (ret) { + dev_warn(dev->ctrl.device, + "IO queues tagset allocation failed %d\n", ret); + return ret; + } + dev->ctrl.tagset = &dev->tagset; + + nvme_dbbuf_set(dev); + } else { + blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); + + /* Free previously allocated queues that are no longer usable */ + nvme_free_queues(dev, dev->online_queues); + } + + return 0; +} + +static int nvme_pci_enable(struct nvme_dev *dev) +{ + int result = -ENOMEM; + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (pci_enable_device_mem(pdev)) + return result; + + pci_set_master(pdev); + + if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && + dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) + goto disable; + + if (readl(dev->bar + NVME_REG_CSTS) == -1) { + result = -ENODEV; + goto disable; + } + + /* + * Some devices and/or platforms don't advertise or work with INTx + * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll + * adjust this later. + */ + result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); + if (result < 0) + return result; + + dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); + + dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, + io_queue_depth); + dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); + dev->dbs = dev->bar + 4096; + + /* + * Temporary fix for the Apple controller found in the MacBook8,1 and + * some MacBook7,1 to avoid controller resets and data loss. + */ + if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { + dev->q_depth = 2; + dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " + "set queue depth=%u to work around controller resets\n", + dev->q_depth); + } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && + (pdev->device == 0xa821 || pdev->device == 0xa822) && + NVME_CAP_MQES(dev->ctrl.cap) == 0) { + dev->q_depth = 64; + dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " + "set queue depth=%u\n", dev->q_depth); + } + + nvme_map_cmb(dev); + + pci_enable_pcie_error_reporting(pdev); + pci_save_state(pdev); + return 0; + + disable: + pci_disable_device(pdev); + return result; +} + +static void nvme_dev_unmap(struct nvme_dev *dev) +{ + if (dev->bar) + iounmap(dev->bar); + pci_release_mem_regions(to_pci_dev(dev->dev)); +} + +static void nvme_pci_disable(struct nvme_dev *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + + pci_free_irq_vectors(pdev); + + if (pci_is_enabled(pdev)) { + pci_disable_pcie_error_reporting(pdev); + pci_disable_device(pdev); + } +} + +static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) +{ + int i; + bool dead = true; + struct pci_dev *pdev = to_pci_dev(dev->dev); + + mutex_lock(&dev->shutdown_lock); + if (pci_is_enabled(pdev)) { + u32 csts = readl(dev->bar + NVME_REG_CSTS); + + if (dev->ctrl.state == NVME_CTRL_LIVE || + dev->ctrl.state == NVME_CTRL_RESETTING) + nvme_start_freeze(&dev->ctrl); + dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || + pdev->error_state != pci_channel_io_normal); + } + + /* + * Give the controller a chance to complete all entered requests if + * doing a safe shutdown. + */ + if (!dead) { + if (shutdown) + nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); + } + + nvme_stop_queues(&dev->ctrl); + + if (!dead && dev->ctrl.queue_count > 0) { + nvme_disable_io_queues(dev); + nvme_disable_admin_queue(dev, shutdown); + } + for (i = dev->ctrl.queue_count - 1; i >= 0; i--) + nvme_suspend_queue(&dev->queues[i]); + + nvme_pci_disable(dev); + + blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); + blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); + + /* + * The driver will not be starting up queues again if shutting down so + * must flush all entered requests to their failed completion to avoid + * deadlocking blk-mq hot-cpu notifier. + */ + if (shutdown) { + nvme_start_queues(&dev->ctrl); + if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) + blk_mq_unquiesce_queue(dev->ctrl.admin_q); + } + mutex_unlock(&dev->shutdown_lock); +} + +static int nvme_setup_prp_pools(struct nvme_dev *dev) +{ + dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, + PAGE_SIZE, PAGE_SIZE, 0); + if (!dev->prp_page_pool) + return -ENOMEM; + + /* Optimisation for I/Os between 4k and 128k */ + dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, + 256, 256, 0); + if (!dev->prp_small_pool) { + dma_pool_destroy(dev->prp_page_pool); + return -ENOMEM; + } + return 0; +} + +static void nvme_release_prp_pools(struct nvme_dev *dev) +{ + dma_pool_destroy(dev->prp_page_pool); + dma_pool_destroy(dev->prp_small_pool); +} + +static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) +{ + struct nvme_dev *dev = to_nvme_dev(ctrl); + + nvme_dbbuf_dma_free(dev); + put_device(dev->dev); + if (dev->tagset.tags) + blk_mq_free_tag_set(&dev->tagset); + if (dev->ctrl.admin_q) + blk_put_queue(dev->ctrl.admin_q); + kfree(dev->queues); + free_opal_dev(dev->ctrl.opal_dev); + mempool_destroy(dev->iod_mempool); + kfree(dev); +} + +static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) +{ + dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); + + nvme_get_ctrl(&dev->ctrl); + nvme_dev_disable(dev, false); + nvme_kill_queues(&dev->ctrl); + if (!queue_work(nvme_wq, &dev->remove_work)) + nvme_put_ctrl(&dev->ctrl); +} + +static void nvme_reset_work(struct work_struct *work) +{ + struct nvme_dev *dev = + container_of(work, struct nvme_dev, ctrl.reset_work); + bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); + int result; + enum nvme_ctrl_state new_state = NVME_CTRL_LIVE; + + if (dev->ctrl.state != NVME_CTRL_RESETTING) { + dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", + dev->ctrl.state); + result = -ENODEV; + goto out; + } + + /* + * If we're called to reset a live controller first shut it down before + * moving on. + */ + if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) + nvme_dev_disable(dev, false); + + mutex_lock(&dev->shutdown_lock); + result = nvme_pci_enable(dev); + if (result) + goto out_unlock; + + result = nvme_pci_configure_admin_queue(dev); + if (result) + goto out_unlock; + + result = nvme_alloc_admin_tags(dev); + if (result) + goto out_unlock; + + /* + * Limit the max command size to prevent iod->sg allocations going + * over a single page. + */ + dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1; + dev->ctrl.max_segments = NVME_MAX_SEGS; + mutex_unlock(&dev->shutdown_lock); + + /* + * Introduce CONNECTING state from nvme-fc/rdma transports to mark the + * initializing procedure here. + */ + if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { + dev_warn(dev->ctrl.device, + "failed to mark controller CONNECTING\n"); + result = -EBUSY; + goto out; + } + + result = nvme_init_identify(&dev->ctrl); + if (result) + goto out; + + if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { + if (!dev->ctrl.opal_dev) + dev->ctrl.opal_dev = + init_opal_dev(&dev->ctrl, &nvme_sec_submit); + else if (was_suspend) + opal_unlock_from_suspend(dev->ctrl.opal_dev); + } else { + free_opal_dev(dev->ctrl.opal_dev); + dev->ctrl.opal_dev = NULL; + } + + if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { + result = nvme_dbbuf_dma_alloc(dev); + if (result) + dev_warn(dev->dev, + "unable to allocate dma for dbbuf\n"); + } + + if (dev->ctrl.hmpre) { + result = nvme_setup_host_mem(dev); + if (result < 0) + goto out; + } + + result = nvme_setup_io_queues(dev); + if (result) + goto out; + + /* + * Keep the controller around but remove all namespaces if we don't have + * any working I/O queue. + */ + if (dev->online_queues < 2) { + dev_warn(dev->ctrl.device, "IO queues not created\n"); + nvme_kill_queues(&dev->ctrl); + nvme_remove_namespaces(&dev->ctrl); + new_state = NVME_CTRL_ADMIN_ONLY; + } else { + nvme_start_queues(&dev->ctrl); + nvme_wait_freeze(&dev->ctrl); + /* hit this only when allocate tagset fails */ + if (nvme_dev_add(dev)) + new_state = NVME_CTRL_ADMIN_ONLY; + nvme_unfreeze(&dev->ctrl); + } + + /* + * If only admin queue live, keep it to do further investigation or + * recovery. + */ + if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) { + dev_warn(dev->ctrl.device, + "failed to mark controller state %d\n", new_state); + result = -ENODEV; + goto out; + } + + nvme_start_ctrl(&dev->ctrl); + return; + + out_unlock: + mutex_unlock(&dev->shutdown_lock); + out: + nvme_remove_dead_ctrl(dev, result); +} + +static void nvme_remove_dead_ctrl_work(struct work_struct *work) +{ + struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (pci_get_drvdata(pdev)) + device_release_driver(&pdev->dev); + nvme_put_ctrl(&dev->ctrl); +} + +static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) +{ + *val = readl(to_nvme_dev(ctrl)->bar + off); + return 0; +} + +static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) +{ + writel(val, to_nvme_dev(ctrl)->bar + off); + return 0; +} + +static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) +{ + *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); + return 0; +} + +static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) +{ + struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); + + return snprintf(buf, size, "%s", dev_name(&pdev->dev)); +} + +static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { + .name = "pcie", + .module = THIS_MODULE, + .flags = NVME_F_METADATA_SUPPORTED, + .reg_read32 = nvme_pci_reg_read32, + .reg_write32 = nvme_pci_reg_write32, + .reg_read64 = nvme_pci_reg_read64, + .free_ctrl = nvme_pci_free_ctrl, + .submit_async_event = nvme_pci_submit_async_event, + .get_address = nvme_pci_get_address, +}; + +static int nvme_dev_map(struct nvme_dev *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev->dev); + + if (pci_request_mem_regions(pdev, "nvme")) + return -ENODEV; + + if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) + goto release; + + return 0; + release: + pci_release_mem_regions(pdev); + return -ENODEV; +} + +static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) +{ + if (pdev->vendor == 0x144d && pdev->device == 0xa802) { + /* + * Several Samsung devices seem to drop off the PCIe bus + * randomly when APST is on and uses the deepest sleep state. + * This has been observed on a Samsung "SM951 NVMe SAMSUNG + * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD + * 950 PRO 256GB", but it seems to be restricted to two Dell + * laptops. + */ + if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && + (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || + dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) + return NVME_QUIRK_NO_DEEPEST_PS; + } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { + /* + * Samsung SSD 960 EVO drops off the PCIe bus after system + * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as + * within few minutes after bootup on a Coffee Lake board - + * ASUS PRIME Z370-A + */ + if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && + (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || + dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) + return NVME_QUIRK_NO_APST; + } + + return 0; +} + +static void nvme_async_probe(void *data, async_cookie_t cookie) +{ + struct nvme_dev *dev = data; + + flush_work(&dev->ctrl.reset_work); + flush_work(&dev->ctrl.scan_work); + nvme_put_ctrl(&dev->ctrl); +} + +static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) +{ + int node, result = -ENOMEM; + struct nvme_dev *dev; + unsigned long quirks = id->driver_data; + size_t alloc_size; + + node = dev_to_node(&pdev->dev); + if (node == NUMA_NO_NODE) + set_dev_node(&pdev->dev, first_memory_node); + + dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); + if (!dev) + return -ENOMEM; + + dev->queues = kcalloc_node(num_possible_cpus() + 1, + sizeof(struct nvme_queue), GFP_KERNEL, node); + if (!dev->queues) + goto free; + + dev->dev = get_device(&pdev->dev); + pci_set_drvdata(pdev, dev); + + result = nvme_dev_map(dev); + if (result) + goto put_pci; + + INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); + INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); + mutex_init(&dev->shutdown_lock); + init_completion(&dev->ioq_wait); + + result = nvme_setup_prp_pools(dev); + if (result) + goto unmap; + + quirks |= check_vendor_combination_bug(pdev); + + /* + * Double check that our mempool alloc size will cover the biggest + * command we support. + */ + alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, + NVME_MAX_SEGS, true); + WARN_ON_ONCE(alloc_size > PAGE_SIZE); + + dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, + mempool_kfree, + (void *) alloc_size, + GFP_KERNEL, node); + if (!dev->iod_mempool) { + result = -ENOMEM; + goto release_pools; + } + + result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, + quirks); + if (result) + goto release_mempool; + + dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); + + nvme_reset_ctrl(&dev->ctrl); + nvme_get_ctrl(&dev->ctrl); + async_schedule(nvme_async_probe, dev); + + return 0; + + release_mempool: + mempool_destroy(dev->iod_mempool); + release_pools: + nvme_release_prp_pools(dev); + unmap: + nvme_dev_unmap(dev); + put_pci: + put_device(dev->dev); + free: + kfree(dev->queues); + kfree(dev); + return result; +} + +static void nvme_reset_prepare(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + nvme_dev_disable(dev, false); +} + +static void nvme_reset_done(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + nvme_reset_ctrl_sync(&dev->ctrl); +} + +static void nvme_shutdown(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + nvme_dev_disable(dev, true); +} + +/* + * The driver's remove may be called on a device in a partially initialized + * state. This function must not have any dependencies on the device state in + * order to proceed. + */ +static void nvme_remove(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); + pci_set_drvdata(pdev, NULL); + + if (!pci_device_is_present(pdev)) { + nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); + nvme_dev_disable(dev, true); + } + + flush_work(&dev->ctrl.reset_work); + nvme_stop_ctrl(&dev->ctrl); + nvme_remove_namespaces(&dev->ctrl); + nvme_dev_disable(dev, true); + nvme_release_cmb(dev); + nvme_free_host_mem(dev); + nvme_dev_remove_admin(dev); + nvme_free_queues(dev, 0); + nvme_uninit_ctrl(&dev->ctrl); + nvme_release_prp_pools(dev); + nvme_dev_unmap(dev); + nvme_put_ctrl(&dev->ctrl); +} + +#ifdef CONFIG_PM_SLEEP +static int nvme_suspend(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct nvme_dev *ndev = pci_get_drvdata(pdev); + + nvme_dev_disable(ndev, true); + return 0; +} + +static int nvme_resume(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct nvme_dev *ndev = pci_get_drvdata(pdev); + + nvme_reset_ctrl(&ndev->ctrl); + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); + +static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, + pci_channel_state_t state) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + /* + * A frozen channel requires a reset. When detected, this method will + * shutdown the controller to quiesce. The controller will be restarted + * after the slot reset through driver's slot_reset callback. + */ + switch (state) { + case pci_channel_io_normal: + return PCI_ERS_RESULT_CAN_RECOVER; + case pci_channel_io_frozen: + dev_warn(dev->ctrl.device, + "frozen state error detected, reset controller\n"); + nvme_dev_disable(dev, false); + return PCI_ERS_RESULT_NEED_RESET; + case pci_channel_io_perm_failure: + dev_warn(dev->ctrl.device, + "failure state error detected, request disconnect\n"); + return PCI_ERS_RESULT_DISCONNECT; + } + return PCI_ERS_RESULT_NEED_RESET; +} + +static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + dev_info(dev->ctrl.device, "restart after slot reset\n"); + pci_restore_state(pdev); + nvme_reset_ctrl(&dev->ctrl); + return PCI_ERS_RESULT_RECOVERED; +} + +static void nvme_error_resume(struct pci_dev *pdev) +{ + struct nvme_dev *dev = pci_get_drvdata(pdev); + + flush_work(&dev->ctrl.reset_work); + pci_cleanup_aer_uncorrect_error_status(pdev); +} + +static const struct pci_error_handlers nvme_err_handler = { + .error_detected = nvme_error_detected, + .slot_reset = nvme_slot_reset, + .resume = nvme_error_resume, + .reset_prepare = nvme_reset_prepare, + .reset_done = nvme_reset_done, +}; + +static const struct pci_device_id nvme_id_table[] = { + { PCI_VDEVICE(INTEL, 0x0953), + .driver_data = NVME_QUIRK_STRIPE_SIZE | + NVME_QUIRK_DEALLOCATE_ZEROES, }, + { PCI_VDEVICE(INTEL, 0x0a53), + .driver_data = NVME_QUIRK_STRIPE_SIZE | + NVME_QUIRK_DEALLOCATE_ZEROES, }, + { PCI_VDEVICE(INTEL, 0x0a54), + .driver_data = NVME_QUIRK_STRIPE_SIZE | + NVME_QUIRK_DEALLOCATE_ZEROES, }, + { PCI_VDEVICE(INTEL, 0x0a55), + .driver_data = NVME_QUIRK_STRIPE_SIZE | + NVME_QUIRK_DEALLOCATE_ZEROES, }, + { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS | + NVME_QUIRK_MEDIUM_PRIO_SQ }, + { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ + .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, + { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ + .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, + { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ + .driver_data = NVME_QUIRK_LIGHTNVM, }, + { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ + .driver_data = NVME_QUIRK_LIGHTNVM, }, + { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ + .driver_data = NVME_QUIRK_LIGHTNVM, }, + { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, + { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ + .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, + { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, + { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, + { 0, } +}; +MODULE_DEVICE_TABLE(pci, nvme_id_table); + +static struct pci_driver nvme_driver = { + .name = "nvme", + .id_table = nvme_id_table, + .probe = nvme_probe, + .remove = nvme_remove, + .shutdown = nvme_shutdown, + .driver = { + .pm = &nvme_dev_pm_ops, + }, + .sriov_configure = pci_sriov_configure_simple, + .err_handler = &nvme_err_handler, +}; + +static int __init nvme_init(void) +{ + return pci_register_driver(&nvme_driver); +} + +static void __exit nvme_exit(void) +{ + pci_unregister_driver(&nvme_driver); + flush_workqueue(nvme_wq); + _nvme_check_size(); +} + +MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); +MODULE_LICENSE("GPL"); +MODULE_VERSION("1.0"); +module_init(nvme_init); +module_exit(nvme_exit); |