diff options
Diffstat (limited to '')
-rw-r--r-- | fs/ocfs2/journal.c | 2385 |
1 files changed, 2385 insertions, 0 deletions
diff --git a/fs/ocfs2/journal.c b/fs/ocfs2/journal.c new file mode 100644 index 000000000..c27d8ef47 --- /dev/null +++ b/fs/ocfs2/journal.c @@ -0,0 +1,2385 @@ +/* -*- mode: c; c-basic-offset: 8; -*- + * vim: noexpandtab sw=8 ts=8 sts=0: + * + * journal.c + * + * Defines functions of journalling api + * + * Copyright (C) 2003, 2004 Oracle. All rights reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 021110-1307, USA. + */ + +#include <linux/fs.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/highmem.h> +#include <linux/kthread.h> +#include <linux/time.h> +#include <linux/random.h> +#include <linux/delay.h> + +#include <cluster/masklog.h> + +#include "ocfs2.h" + +#include "alloc.h" +#include "blockcheck.h" +#include "dir.h" +#include "dlmglue.h" +#include "extent_map.h" +#include "heartbeat.h" +#include "inode.h" +#include "journal.h" +#include "localalloc.h" +#include "slot_map.h" +#include "super.h" +#include "sysfile.h" +#include "uptodate.h" +#include "quota.h" +#include "file.h" +#include "namei.h" + +#include "buffer_head_io.h" +#include "ocfs2_trace.h" + +DEFINE_SPINLOCK(trans_inc_lock); + +#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 + +static int ocfs2_force_read_journal(struct inode *inode); +static int ocfs2_recover_node(struct ocfs2_super *osb, + int node_num, int slot_num); +static int __ocfs2_recovery_thread(void *arg); +static int ocfs2_commit_cache(struct ocfs2_super *osb); +static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); +static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, + int dirty, int replayed); +static int ocfs2_trylock_journal(struct ocfs2_super *osb, + int slot_num); +static int ocfs2_recover_orphans(struct ocfs2_super *osb, + int slot, + enum ocfs2_orphan_reco_type orphan_reco_type); +static int ocfs2_commit_thread(void *arg); +static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, + int slot_num, + struct ocfs2_dinode *la_dinode, + struct ocfs2_dinode *tl_dinode, + struct ocfs2_quota_recovery *qrec, + enum ocfs2_orphan_reco_type orphan_reco_type); + +static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) +{ + return __ocfs2_wait_on_mount(osb, 0); +} + +static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) +{ + return __ocfs2_wait_on_mount(osb, 1); +} + +/* + * This replay_map is to track online/offline slots, so we could recover + * offline slots during recovery and mount + */ + +enum ocfs2_replay_state { + REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ + REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ + REPLAY_DONE /* Replay was already queued */ +}; + +struct ocfs2_replay_map { + unsigned int rm_slots; + enum ocfs2_replay_state rm_state; + unsigned char rm_replay_slots[0]; +}; + +static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) +{ + if (!osb->replay_map) + return; + + /* If we've already queued the replay, we don't have any more to do */ + if (osb->replay_map->rm_state == REPLAY_DONE) + return; + + osb->replay_map->rm_state = state; +} + +int ocfs2_compute_replay_slots(struct ocfs2_super *osb) +{ + struct ocfs2_replay_map *replay_map; + int i, node_num; + + /* If replay map is already set, we don't do it again */ + if (osb->replay_map) + return 0; + + replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + + (osb->max_slots * sizeof(char)), GFP_KERNEL); + + if (!replay_map) { + mlog_errno(-ENOMEM); + return -ENOMEM; + } + + spin_lock(&osb->osb_lock); + + replay_map->rm_slots = osb->max_slots; + replay_map->rm_state = REPLAY_UNNEEDED; + + /* set rm_replay_slots for offline slot(s) */ + for (i = 0; i < replay_map->rm_slots; i++) { + if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) + replay_map->rm_replay_slots[i] = 1; + } + + osb->replay_map = replay_map; + spin_unlock(&osb->osb_lock); + return 0; +} + +static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, + enum ocfs2_orphan_reco_type orphan_reco_type) +{ + struct ocfs2_replay_map *replay_map = osb->replay_map; + int i; + + if (!replay_map) + return; + + if (replay_map->rm_state != REPLAY_NEEDED) + return; + + for (i = 0; i < replay_map->rm_slots; i++) + if (replay_map->rm_replay_slots[i]) + ocfs2_queue_recovery_completion(osb->journal, i, NULL, + NULL, NULL, + orphan_reco_type); + replay_map->rm_state = REPLAY_DONE; +} + +static void ocfs2_free_replay_slots(struct ocfs2_super *osb) +{ + struct ocfs2_replay_map *replay_map = osb->replay_map; + + if (!osb->replay_map) + return; + + kfree(replay_map); + osb->replay_map = NULL; +} + +int ocfs2_recovery_init(struct ocfs2_super *osb) +{ + struct ocfs2_recovery_map *rm; + + mutex_init(&osb->recovery_lock); + osb->disable_recovery = 0; + osb->recovery_thread_task = NULL; + init_waitqueue_head(&osb->recovery_event); + + rm = kzalloc(sizeof(struct ocfs2_recovery_map) + + osb->max_slots * sizeof(unsigned int), + GFP_KERNEL); + if (!rm) { + mlog_errno(-ENOMEM); + return -ENOMEM; + } + + rm->rm_entries = (unsigned int *)((char *)rm + + sizeof(struct ocfs2_recovery_map)); + osb->recovery_map = rm; + + return 0; +} + +/* we can't grab the goofy sem lock from inside wait_event, so we use + * memory barriers to make sure that we'll see the null task before + * being woken up */ +static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) +{ + mb(); + return osb->recovery_thread_task != NULL; +} + +void ocfs2_recovery_exit(struct ocfs2_super *osb) +{ + struct ocfs2_recovery_map *rm; + + /* disable any new recovery threads and wait for any currently + * running ones to exit. Do this before setting the vol_state. */ + mutex_lock(&osb->recovery_lock); + osb->disable_recovery = 1; + mutex_unlock(&osb->recovery_lock); + wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); + + /* At this point, we know that no more recovery threads can be + * launched, so wait for any recovery completion work to + * complete. */ + if (osb->ocfs2_wq) + flush_workqueue(osb->ocfs2_wq); + + /* + * Now that recovery is shut down, and the osb is about to be + * freed, the osb_lock is not taken here. + */ + rm = osb->recovery_map; + /* XXX: Should we bug if there are dirty entries? */ + + kfree(rm); +} + +static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, + unsigned int node_num) +{ + int i; + struct ocfs2_recovery_map *rm = osb->recovery_map; + + assert_spin_locked(&osb->osb_lock); + + for (i = 0; i < rm->rm_used; i++) { + if (rm->rm_entries[i] == node_num) + return 1; + } + + return 0; +} + +/* Behaves like test-and-set. Returns the previous value */ +static int ocfs2_recovery_map_set(struct ocfs2_super *osb, + unsigned int node_num) +{ + struct ocfs2_recovery_map *rm = osb->recovery_map; + + spin_lock(&osb->osb_lock); + if (__ocfs2_recovery_map_test(osb, node_num)) { + spin_unlock(&osb->osb_lock); + return 1; + } + + /* XXX: Can this be exploited? Not from o2dlm... */ + BUG_ON(rm->rm_used >= osb->max_slots); + + rm->rm_entries[rm->rm_used] = node_num; + rm->rm_used++; + spin_unlock(&osb->osb_lock); + + return 0; +} + +static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, + unsigned int node_num) +{ + int i; + struct ocfs2_recovery_map *rm = osb->recovery_map; + + spin_lock(&osb->osb_lock); + + for (i = 0; i < rm->rm_used; i++) { + if (rm->rm_entries[i] == node_num) + break; + } + + if (i < rm->rm_used) { + /* XXX: be careful with the pointer math */ + memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), + (rm->rm_used - i - 1) * sizeof(unsigned int)); + rm->rm_used--; + } + + spin_unlock(&osb->osb_lock); +} + +static int ocfs2_commit_cache(struct ocfs2_super *osb) +{ + int status = 0; + unsigned int flushed; + struct ocfs2_journal *journal = NULL; + + journal = osb->journal; + + /* Flush all pending commits and checkpoint the journal. */ + down_write(&journal->j_trans_barrier); + + flushed = atomic_read(&journal->j_num_trans); + trace_ocfs2_commit_cache_begin(flushed); + if (flushed == 0) { + up_write(&journal->j_trans_barrier); + goto finally; + } + + jbd2_journal_lock_updates(journal->j_journal); + status = jbd2_journal_flush(journal->j_journal); + jbd2_journal_unlock_updates(journal->j_journal); + if (status < 0) { + up_write(&journal->j_trans_barrier); + mlog_errno(status); + goto finally; + } + + ocfs2_inc_trans_id(journal); + + flushed = atomic_read(&journal->j_num_trans); + atomic_set(&journal->j_num_trans, 0); + up_write(&journal->j_trans_barrier); + + trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); + + ocfs2_wake_downconvert_thread(osb); + wake_up(&journal->j_checkpointed); +finally: + return status; +} + +handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) +{ + journal_t *journal = osb->journal->j_journal; + handle_t *handle; + + BUG_ON(!osb || !osb->journal->j_journal); + + if (ocfs2_is_hard_readonly(osb)) + return ERR_PTR(-EROFS); + + BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); + BUG_ON(max_buffs <= 0); + + /* Nested transaction? Just return the handle... */ + if (journal_current_handle()) + return jbd2_journal_start(journal, max_buffs); + + sb_start_intwrite(osb->sb); + + down_read(&osb->journal->j_trans_barrier); + + handle = jbd2_journal_start(journal, max_buffs); + if (IS_ERR(handle)) { + up_read(&osb->journal->j_trans_barrier); + sb_end_intwrite(osb->sb); + + mlog_errno(PTR_ERR(handle)); + + if (is_journal_aborted(journal)) { + ocfs2_abort(osb->sb, "Detected aborted journal\n"); + handle = ERR_PTR(-EROFS); + } + } else { + if (!ocfs2_mount_local(osb)) + atomic_inc(&(osb->journal->j_num_trans)); + } + + return handle; +} + +int ocfs2_commit_trans(struct ocfs2_super *osb, + handle_t *handle) +{ + int ret, nested; + struct ocfs2_journal *journal = osb->journal; + + BUG_ON(!handle); + + nested = handle->h_ref > 1; + ret = jbd2_journal_stop(handle); + if (ret < 0) + mlog_errno(ret); + + if (!nested) { + up_read(&journal->j_trans_barrier); + sb_end_intwrite(osb->sb); + } + + return ret; +} + +/* + * 'nblocks' is what you want to add to the current transaction. + * + * This might call jbd2_journal_restart() which will commit dirty buffers + * and then restart the transaction. Before calling + * ocfs2_extend_trans(), any changed blocks should have been + * dirtied. After calling it, all blocks which need to be changed must + * go through another set of journal_access/journal_dirty calls. + * + * WARNING: This will not release any semaphores or disk locks taken + * during the transaction, so make sure they were taken *before* + * start_trans or we'll have ordering deadlocks. + * + * WARNING2: Note that we do *not* drop j_trans_barrier here. This is + * good because transaction ids haven't yet been recorded on the + * cluster locks associated with this handle. + */ +int ocfs2_extend_trans(handle_t *handle, int nblocks) +{ + int status, old_nblocks; + + BUG_ON(!handle); + BUG_ON(nblocks < 0); + + if (!nblocks) + return 0; + + old_nblocks = handle->h_buffer_credits; + + trace_ocfs2_extend_trans(old_nblocks, nblocks); + +#ifdef CONFIG_OCFS2_DEBUG_FS + status = 1; +#else + status = jbd2_journal_extend(handle, nblocks); + if (status < 0) { + mlog_errno(status); + goto bail; + } +#endif + + if (status > 0) { + trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); + status = jbd2_journal_restart(handle, + old_nblocks + nblocks); + if (status < 0) { + mlog_errno(status); + goto bail; + } + } + + status = 0; +bail: + return status; +} + +/* + * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. + * If that fails, restart the transaction & regain write access for the + * buffer head which is used for metadata modifications. + * Taken from Ext4: extend_or_restart_transaction() + */ +int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) +{ + int status, old_nblks; + + BUG_ON(!handle); + + old_nblks = handle->h_buffer_credits; + trace_ocfs2_allocate_extend_trans(old_nblks, thresh); + + if (old_nblks < thresh) + return 0; + + status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA); + if (status < 0) { + mlog_errno(status); + goto bail; + } + + if (status > 0) { + status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); + if (status < 0) + mlog_errno(status); + } + +bail: + return status; +} + + +struct ocfs2_triggers { + struct jbd2_buffer_trigger_type ot_triggers; + int ot_offset; +}; + +static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) +{ + return container_of(triggers, struct ocfs2_triggers, ot_triggers); +} + +static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, + struct buffer_head *bh, + void *data, size_t size) +{ + struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); + + /* + * We aren't guaranteed to have the superblock here, so we + * must unconditionally compute the ecc data. + * __ocfs2_journal_access() will only set the triggers if + * metaecc is enabled. + */ + ocfs2_block_check_compute(data, size, data + ot->ot_offset); +} + +/* + * Quota blocks have their own trigger because the struct ocfs2_block_check + * offset depends on the blocksize. + */ +static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, + struct buffer_head *bh, + void *data, size_t size) +{ + struct ocfs2_disk_dqtrailer *dqt = + ocfs2_block_dqtrailer(size, data); + + /* + * We aren't guaranteed to have the superblock here, so we + * must unconditionally compute the ecc data. + * __ocfs2_journal_access() will only set the triggers if + * metaecc is enabled. + */ + ocfs2_block_check_compute(data, size, &dqt->dq_check); +} + +/* + * Directory blocks also have their own trigger because the + * struct ocfs2_block_check offset depends on the blocksize. + */ +static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, + struct buffer_head *bh, + void *data, size_t size) +{ + struct ocfs2_dir_block_trailer *trailer = + ocfs2_dir_trailer_from_size(size, data); + + /* + * We aren't guaranteed to have the superblock here, so we + * must unconditionally compute the ecc data. + * __ocfs2_journal_access() will only set the triggers if + * metaecc is enabled. + */ + ocfs2_block_check_compute(data, size, &trailer->db_check); +} + +static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, + struct buffer_head *bh) +{ + mlog(ML_ERROR, + "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " + "bh->b_blocknr = %llu\n", + (unsigned long)bh, + (unsigned long long)bh->b_blocknr); + + ocfs2_error(bh->b_bdev->bd_super, + "JBD2 has aborted our journal, ocfs2 cannot continue\n"); +} + +static struct ocfs2_triggers di_triggers = { + .ot_triggers = { + .t_frozen = ocfs2_frozen_trigger, + .t_abort = ocfs2_abort_trigger, + }, + .ot_offset = offsetof(struct ocfs2_dinode, i_check), +}; + +static struct ocfs2_triggers eb_triggers = { + .ot_triggers = { + .t_frozen = ocfs2_frozen_trigger, + .t_abort = ocfs2_abort_trigger, + }, + .ot_offset = offsetof(struct ocfs2_extent_block, h_check), +}; + +static struct ocfs2_triggers rb_triggers = { + .ot_triggers = { + .t_frozen = ocfs2_frozen_trigger, + .t_abort = ocfs2_abort_trigger, + }, + .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), +}; + +static struct ocfs2_triggers gd_triggers = { + .ot_triggers = { + .t_frozen = ocfs2_frozen_trigger, + .t_abort = ocfs2_abort_trigger, + }, + .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), +}; + +static struct ocfs2_triggers db_triggers = { + .ot_triggers = { + .t_frozen = ocfs2_db_frozen_trigger, + .t_abort = ocfs2_abort_trigger, + }, +}; + +static struct ocfs2_triggers xb_triggers = { + .ot_triggers = { + .t_frozen = ocfs2_frozen_trigger, + .t_abort = ocfs2_abort_trigger, + }, + .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), +}; + +static struct ocfs2_triggers dq_triggers = { + .ot_triggers = { + .t_frozen = ocfs2_dq_frozen_trigger, + .t_abort = ocfs2_abort_trigger, + }, +}; + +static struct ocfs2_triggers dr_triggers = { + .ot_triggers = { + .t_frozen = ocfs2_frozen_trigger, + .t_abort = ocfs2_abort_trigger, + }, + .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), +}; + +static struct ocfs2_triggers dl_triggers = { + .ot_triggers = { + .t_frozen = ocfs2_frozen_trigger, + .t_abort = ocfs2_abort_trigger, + }, + .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), +}; + +static int __ocfs2_journal_access(handle_t *handle, + struct ocfs2_caching_info *ci, + struct buffer_head *bh, + struct ocfs2_triggers *triggers, + int type) +{ + int status; + struct ocfs2_super *osb = + OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); + + BUG_ON(!ci || !ci->ci_ops); + BUG_ON(!handle); + BUG_ON(!bh); + + trace_ocfs2_journal_access( + (unsigned long long)ocfs2_metadata_cache_owner(ci), + (unsigned long long)bh->b_blocknr, type, bh->b_size); + + /* we can safely remove this assertion after testing. */ + if (!buffer_uptodate(bh)) { + mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); + mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", + (unsigned long long)bh->b_blocknr, bh->b_state); + + lock_buffer(bh); + /* + * A previous transaction with a couple of buffer heads fail + * to checkpoint, so all the bhs are marked as BH_Write_EIO. + * For current transaction, the bh is just among those error + * bhs which previous transaction handle. We can't just clear + * its BH_Write_EIO and reuse directly, since other bhs are + * not written to disk yet and that will cause metadata + * inconsistency. So we should set fs read-only to avoid + * further damage. + */ + if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { + unlock_buffer(bh); + return ocfs2_error(osb->sb, "A previous attempt to " + "write this buffer head failed\n"); + } + unlock_buffer(bh); + } + + /* Set the current transaction information on the ci so + * that the locking code knows whether it can drop it's locks + * on this ci or not. We're protected from the commit + * thread updating the current transaction id until + * ocfs2_commit_trans() because ocfs2_start_trans() took + * j_trans_barrier for us. */ + ocfs2_set_ci_lock_trans(osb->journal, ci); + + ocfs2_metadata_cache_io_lock(ci); + switch (type) { + case OCFS2_JOURNAL_ACCESS_CREATE: + case OCFS2_JOURNAL_ACCESS_WRITE: + status = jbd2_journal_get_write_access(handle, bh); + break; + + case OCFS2_JOURNAL_ACCESS_UNDO: + status = jbd2_journal_get_undo_access(handle, bh); + break; + + default: + status = -EINVAL; + mlog(ML_ERROR, "Unknown access type!\n"); + } + if (!status && ocfs2_meta_ecc(osb) && triggers) + jbd2_journal_set_triggers(bh, &triggers->ot_triggers); + ocfs2_metadata_cache_io_unlock(ci); + + if (status < 0) + mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", + status, type); + + return status; +} + +int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); +} + +int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); +} + +int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, + type); +} + +int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); +} + +int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); +} + +int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); +} + +int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); +} + +int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); +} + +int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); +} + +int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, + struct buffer_head *bh, int type) +{ + return __ocfs2_journal_access(handle, ci, bh, NULL, type); +} + +void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) +{ + int status; + + trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); + + status = jbd2_journal_dirty_metadata(handle, bh); + if (status) { + mlog_errno(status); + if (!is_handle_aborted(handle)) { + journal_t *journal = handle->h_transaction->t_journal; + struct super_block *sb = bh->b_bdev->bd_super; + + mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " + "Aborting transaction and journal.\n"); + handle->h_err = status; + jbd2_journal_abort_handle(handle); + jbd2_journal_abort(journal, status); + ocfs2_abort(sb, "Journal already aborted.\n"); + } + } +} + +#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) + +void ocfs2_set_journal_params(struct ocfs2_super *osb) +{ + journal_t *journal = osb->journal->j_journal; + unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; + + if (osb->osb_commit_interval) + commit_interval = osb->osb_commit_interval; + + write_lock(&journal->j_state_lock); + journal->j_commit_interval = commit_interval; + if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) + journal->j_flags |= JBD2_BARRIER; + else + journal->j_flags &= ~JBD2_BARRIER; + write_unlock(&journal->j_state_lock); +} + +int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) +{ + int status = -1; + struct inode *inode = NULL; /* the journal inode */ + journal_t *j_journal = NULL; + struct ocfs2_dinode *di = NULL; + struct buffer_head *bh = NULL; + struct ocfs2_super *osb; + int inode_lock = 0; + + BUG_ON(!journal); + + osb = journal->j_osb; + + /* already have the inode for our journal */ + inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, + osb->slot_num); + if (inode == NULL) { + status = -EACCES; + mlog_errno(status); + goto done; + } + if (is_bad_inode(inode)) { + mlog(ML_ERROR, "access error (bad inode)\n"); + iput(inode); + inode = NULL; + status = -EACCES; + goto done; + } + + SET_INODE_JOURNAL(inode); + OCFS2_I(inode)->ip_open_count++; + + /* Skip recovery waits here - journal inode metadata never + * changes in a live cluster so it can be considered an + * exception to the rule. */ + status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); + if (status < 0) { + if (status != -ERESTARTSYS) + mlog(ML_ERROR, "Could not get lock on journal!\n"); + goto done; + } + + inode_lock = 1; + di = (struct ocfs2_dinode *)bh->b_data; + + if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { + mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", + i_size_read(inode)); + status = -EINVAL; + goto done; + } + + trace_ocfs2_journal_init(i_size_read(inode), + (unsigned long long)inode->i_blocks, + OCFS2_I(inode)->ip_clusters); + + /* call the kernels journal init function now */ + j_journal = jbd2_journal_init_inode(inode); + if (j_journal == NULL) { + mlog(ML_ERROR, "Linux journal layer error\n"); + status = -EINVAL; + goto done; + } + + trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); + + *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & + OCFS2_JOURNAL_DIRTY_FL); + + journal->j_journal = j_journal; + journal->j_inode = inode; + journal->j_bh = bh; + + ocfs2_set_journal_params(osb); + + journal->j_state = OCFS2_JOURNAL_LOADED; + + status = 0; +done: + if (status < 0) { + if (inode_lock) + ocfs2_inode_unlock(inode, 1); + brelse(bh); + if (inode) { + OCFS2_I(inode)->ip_open_count--; + iput(inode); + } + } + + return status; +} + +static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) +{ + le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); +} + +static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) +{ + return le32_to_cpu(di->id1.journal1.ij_recovery_generation); +} + +static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, + int dirty, int replayed) +{ + int status; + unsigned int flags; + struct ocfs2_journal *journal = osb->journal; + struct buffer_head *bh = journal->j_bh; + struct ocfs2_dinode *fe; + + fe = (struct ocfs2_dinode *)bh->b_data; + + /* The journal bh on the osb always comes from ocfs2_journal_init() + * and was validated there inside ocfs2_inode_lock_full(). It's a + * code bug if we mess it up. */ + BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); + + flags = le32_to_cpu(fe->id1.journal1.ij_flags); + if (dirty) + flags |= OCFS2_JOURNAL_DIRTY_FL; + else + flags &= ~OCFS2_JOURNAL_DIRTY_FL; + fe->id1.journal1.ij_flags = cpu_to_le32(flags); + + if (replayed) + ocfs2_bump_recovery_generation(fe); + + ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); + status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); + if (status < 0) + mlog_errno(status); + + return status; +} + +/* + * If the journal has been kmalloc'd it needs to be freed after this + * call. + */ +void ocfs2_journal_shutdown(struct ocfs2_super *osb) +{ + struct ocfs2_journal *journal = NULL; + int status = 0; + struct inode *inode = NULL; + int num_running_trans = 0; + + BUG_ON(!osb); + + journal = osb->journal; + if (!journal) + goto done; + + inode = journal->j_inode; + + if (journal->j_state != OCFS2_JOURNAL_LOADED) + goto done; + + /* need to inc inode use count - jbd2_journal_destroy will iput. */ + if (!igrab(inode)) + BUG(); + + num_running_trans = atomic_read(&(osb->journal->j_num_trans)); + trace_ocfs2_journal_shutdown(num_running_trans); + + /* Do a commit_cache here. It will flush our journal, *and* + * release any locks that are still held. + * set the SHUTDOWN flag and release the trans lock. + * the commit thread will take the trans lock for us below. */ + journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; + + /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not + * drop the trans_lock (which we want to hold until we + * completely destroy the journal. */ + if (osb->commit_task) { + /* Wait for the commit thread */ + trace_ocfs2_journal_shutdown_wait(osb->commit_task); + kthread_stop(osb->commit_task); + osb->commit_task = NULL; + } + + BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); + + if (ocfs2_mount_local(osb)) { + jbd2_journal_lock_updates(journal->j_journal); + status = jbd2_journal_flush(journal->j_journal); + jbd2_journal_unlock_updates(journal->j_journal); + if (status < 0) + mlog_errno(status); + } + + /* Shutdown the kernel journal system */ + if (!jbd2_journal_destroy(journal->j_journal) && !status) { + /* + * Do not toggle if flush was unsuccessful otherwise + * will leave dirty metadata in a "clean" journal + */ + status = ocfs2_journal_toggle_dirty(osb, 0, 0); + if (status < 0) + mlog_errno(status); + } + journal->j_journal = NULL; + + OCFS2_I(inode)->ip_open_count--; + + /* unlock our journal */ + ocfs2_inode_unlock(inode, 1); + + brelse(journal->j_bh); + journal->j_bh = NULL; + + journal->j_state = OCFS2_JOURNAL_FREE; + +// up_write(&journal->j_trans_barrier); +done: + iput(inode); +} + +static void ocfs2_clear_journal_error(struct super_block *sb, + journal_t *journal, + int slot) +{ + int olderr; + + olderr = jbd2_journal_errno(journal); + if (olderr) { + mlog(ML_ERROR, "File system error %d recorded in " + "journal %u.\n", olderr, slot); + mlog(ML_ERROR, "File system on device %s needs checking.\n", + sb->s_id); + + jbd2_journal_ack_err(journal); + jbd2_journal_clear_err(journal); + } +} + +int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) +{ + int status = 0; + struct ocfs2_super *osb; + + BUG_ON(!journal); + + osb = journal->j_osb; + + status = jbd2_journal_load(journal->j_journal); + if (status < 0) { + mlog(ML_ERROR, "Failed to load journal!\n"); + goto done; + } + + ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); + + if (replayed) { + jbd2_journal_lock_updates(journal->j_journal); + status = jbd2_journal_flush(journal->j_journal); + jbd2_journal_unlock_updates(journal->j_journal); + if (status < 0) + mlog_errno(status); + } + + status = ocfs2_journal_toggle_dirty(osb, 1, replayed); + if (status < 0) { + mlog_errno(status); + goto done; + } + + /* Launch the commit thread */ + if (!local) { + osb->commit_task = kthread_run(ocfs2_commit_thread, osb, + "ocfs2cmt-%s", osb->uuid_str); + if (IS_ERR(osb->commit_task)) { + status = PTR_ERR(osb->commit_task); + osb->commit_task = NULL; + mlog(ML_ERROR, "unable to launch ocfs2commit thread, " + "error=%d", status); + goto done; + } + } else + osb->commit_task = NULL; + +done: + return status; +} + + +/* 'full' flag tells us whether we clear out all blocks or if we just + * mark the journal clean */ +int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) +{ + int status; + + BUG_ON(!journal); + + status = jbd2_journal_wipe(journal->j_journal, full); + if (status < 0) { + mlog_errno(status); + goto bail; + } + + status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); + if (status < 0) + mlog_errno(status); + +bail: + return status; +} + +static int ocfs2_recovery_completed(struct ocfs2_super *osb) +{ + int empty; + struct ocfs2_recovery_map *rm = osb->recovery_map; + + spin_lock(&osb->osb_lock); + empty = (rm->rm_used == 0); + spin_unlock(&osb->osb_lock); + + return empty; +} + +void ocfs2_wait_for_recovery(struct ocfs2_super *osb) +{ + wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); +} + +/* + * JBD Might read a cached version of another nodes journal file. We + * don't want this as this file changes often and we get no + * notification on those changes. The only way to be sure that we've + * got the most up to date version of those blocks then is to force + * read them off disk. Just searching through the buffer cache won't + * work as there may be pages backing this file which are still marked + * up to date. We know things can't change on this file underneath us + * as we have the lock by now :) + */ +static int ocfs2_force_read_journal(struct inode *inode) +{ + int status = 0; + int i; + u64 v_blkno, p_blkno, p_blocks, num_blocks; + struct buffer_head *bh = NULL; + struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); + + num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); + v_blkno = 0; + while (v_blkno < num_blocks) { + status = ocfs2_extent_map_get_blocks(inode, v_blkno, + &p_blkno, &p_blocks, NULL); + if (status < 0) { + mlog_errno(status); + goto bail; + } + + for (i = 0; i < p_blocks; i++, p_blkno++) { + bh = __find_get_block(osb->sb->s_bdev, p_blkno, + osb->sb->s_blocksize); + /* block not cached. */ + if (!bh) + continue; + + brelse(bh); + bh = NULL; + /* We are reading journal data which should not + * be put in the uptodate cache. + */ + status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); + if (status < 0) { + mlog_errno(status); + goto bail; + } + + brelse(bh); + bh = NULL; + } + + v_blkno += p_blocks; + } + +bail: + return status; +} + +struct ocfs2_la_recovery_item { + struct list_head lri_list; + int lri_slot; + struct ocfs2_dinode *lri_la_dinode; + struct ocfs2_dinode *lri_tl_dinode; + struct ocfs2_quota_recovery *lri_qrec; + enum ocfs2_orphan_reco_type lri_orphan_reco_type; +}; + +/* Does the second half of the recovery process. By this point, the + * node is marked clean and can actually be considered recovered, + * hence it's no longer in the recovery map, but there's still some + * cleanup we can do which shouldn't happen within the recovery thread + * as locking in that context becomes very difficult if we are to take + * recovering nodes into account. + * + * NOTE: This function can and will sleep on recovery of other nodes + * during cluster locking, just like any other ocfs2 process. + */ +void ocfs2_complete_recovery(struct work_struct *work) +{ + int ret = 0; + struct ocfs2_journal *journal = + container_of(work, struct ocfs2_journal, j_recovery_work); + struct ocfs2_super *osb = journal->j_osb; + struct ocfs2_dinode *la_dinode, *tl_dinode; + struct ocfs2_la_recovery_item *item, *n; + struct ocfs2_quota_recovery *qrec; + enum ocfs2_orphan_reco_type orphan_reco_type; + LIST_HEAD(tmp_la_list); + + trace_ocfs2_complete_recovery( + (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); + + spin_lock(&journal->j_lock); + list_splice_init(&journal->j_la_cleanups, &tmp_la_list); + spin_unlock(&journal->j_lock); + + list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { + list_del_init(&item->lri_list); + + ocfs2_wait_on_quotas(osb); + + la_dinode = item->lri_la_dinode; + tl_dinode = item->lri_tl_dinode; + qrec = item->lri_qrec; + orphan_reco_type = item->lri_orphan_reco_type; + + trace_ocfs2_complete_recovery_slot(item->lri_slot, + la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, + tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, + qrec); + + if (la_dinode) { + ret = ocfs2_complete_local_alloc_recovery(osb, + la_dinode); + if (ret < 0) + mlog_errno(ret); + + kfree(la_dinode); + } + + if (tl_dinode) { + ret = ocfs2_complete_truncate_log_recovery(osb, + tl_dinode); + if (ret < 0) + mlog_errno(ret); + + kfree(tl_dinode); + } + + ret = ocfs2_recover_orphans(osb, item->lri_slot, + orphan_reco_type); + if (ret < 0) + mlog_errno(ret); + + if (qrec) { + ret = ocfs2_finish_quota_recovery(osb, qrec, + item->lri_slot); + if (ret < 0) + mlog_errno(ret); + /* Recovery info is already freed now */ + } + + kfree(item); + } + + trace_ocfs2_complete_recovery_end(ret); +} + +/* NOTE: This function always eats your references to la_dinode and + * tl_dinode, either manually on error, or by passing them to + * ocfs2_complete_recovery */ +static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, + int slot_num, + struct ocfs2_dinode *la_dinode, + struct ocfs2_dinode *tl_dinode, + struct ocfs2_quota_recovery *qrec, + enum ocfs2_orphan_reco_type orphan_reco_type) +{ + struct ocfs2_la_recovery_item *item; + + item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); + if (!item) { + /* Though we wish to avoid it, we are in fact safe in + * skipping local alloc cleanup as fsck.ocfs2 is more + * than capable of reclaiming unused space. */ + kfree(la_dinode); + kfree(tl_dinode); + + if (qrec) + ocfs2_free_quota_recovery(qrec); + + mlog_errno(-ENOMEM); + return; + } + + INIT_LIST_HEAD(&item->lri_list); + item->lri_la_dinode = la_dinode; + item->lri_slot = slot_num; + item->lri_tl_dinode = tl_dinode; + item->lri_qrec = qrec; + item->lri_orphan_reco_type = orphan_reco_type; + + spin_lock(&journal->j_lock); + list_add_tail(&item->lri_list, &journal->j_la_cleanups); + queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); + spin_unlock(&journal->j_lock); +} + +/* Called by the mount code to queue recovery the last part of + * recovery for it's own and offline slot(s). */ +void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) +{ + struct ocfs2_journal *journal = osb->journal; + + if (ocfs2_is_hard_readonly(osb)) + return; + + /* No need to queue up our truncate_log as regular cleanup will catch + * that */ + ocfs2_queue_recovery_completion(journal, osb->slot_num, + osb->local_alloc_copy, NULL, NULL, + ORPHAN_NEED_TRUNCATE); + ocfs2_schedule_truncate_log_flush(osb, 0); + + osb->local_alloc_copy = NULL; + + /* queue to recover orphan slots for all offline slots */ + ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); + ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); + ocfs2_free_replay_slots(osb); +} + +void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) +{ + if (osb->quota_rec) { + ocfs2_queue_recovery_completion(osb->journal, + osb->slot_num, + NULL, + NULL, + osb->quota_rec, + ORPHAN_NEED_TRUNCATE); + osb->quota_rec = NULL; + } +} + +static int __ocfs2_recovery_thread(void *arg) +{ + int status, node_num, slot_num; + struct ocfs2_super *osb = arg; + struct ocfs2_recovery_map *rm = osb->recovery_map; + int *rm_quota = NULL; + int rm_quota_used = 0, i; + struct ocfs2_quota_recovery *qrec; + + /* Whether the quota supported. */ + int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, + OCFS2_FEATURE_RO_COMPAT_USRQUOTA) + || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, + OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); + + status = ocfs2_wait_on_mount(osb); + if (status < 0) { + goto bail; + } + + if (quota_enabled) { + rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); + if (!rm_quota) { + status = -ENOMEM; + goto bail; + } + } +restart: + status = ocfs2_super_lock(osb, 1); + if (status < 0) { + mlog_errno(status); + goto bail; + } + + status = ocfs2_compute_replay_slots(osb); + if (status < 0) + mlog_errno(status); + + /* queue recovery for our own slot */ + ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, + NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); + + spin_lock(&osb->osb_lock); + while (rm->rm_used) { + /* It's always safe to remove entry zero, as we won't + * clear it until ocfs2_recover_node() has succeeded. */ + node_num = rm->rm_entries[0]; + spin_unlock(&osb->osb_lock); + slot_num = ocfs2_node_num_to_slot(osb, node_num); + trace_ocfs2_recovery_thread_node(node_num, slot_num); + if (slot_num == -ENOENT) { + status = 0; + goto skip_recovery; + } + + /* It is a bit subtle with quota recovery. We cannot do it + * immediately because we have to obtain cluster locks from + * quota files and we also don't want to just skip it because + * then quota usage would be out of sync until some node takes + * the slot. So we remember which nodes need quota recovery + * and when everything else is done, we recover quotas. */ + if (quota_enabled) { + for (i = 0; i < rm_quota_used + && rm_quota[i] != slot_num; i++) + ; + + if (i == rm_quota_used) + rm_quota[rm_quota_used++] = slot_num; + } + + status = ocfs2_recover_node(osb, node_num, slot_num); +skip_recovery: + if (!status) { + ocfs2_recovery_map_clear(osb, node_num); + } else { + mlog(ML_ERROR, + "Error %d recovering node %d on device (%u,%u)!\n", + status, node_num, + MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); + mlog(ML_ERROR, "Volume requires unmount.\n"); + } + + spin_lock(&osb->osb_lock); + } + spin_unlock(&osb->osb_lock); + trace_ocfs2_recovery_thread_end(status); + + /* Refresh all journal recovery generations from disk */ + status = ocfs2_check_journals_nolocks(osb); + status = (status == -EROFS) ? 0 : status; + if (status < 0) + mlog_errno(status); + + /* Now it is right time to recover quotas... We have to do this under + * superblock lock so that no one can start using the slot (and crash) + * before we recover it */ + if (quota_enabled) { + for (i = 0; i < rm_quota_used; i++) { + qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); + if (IS_ERR(qrec)) { + status = PTR_ERR(qrec); + mlog_errno(status); + continue; + } + ocfs2_queue_recovery_completion(osb->journal, + rm_quota[i], + NULL, NULL, qrec, + ORPHAN_NEED_TRUNCATE); + } + } + + ocfs2_super_unlock(osb, 1); + + /* queue recovery for offline slots */ + ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); + +bail: + mutex_lock(&osb->recovery_lock); + if (!status && !ocfs2_recovery_completed(osb)) { + mutex_unlock(&osb->recovery_lock); + goto restart; + } + + ocfs2_free_replay_slots(osb); + osb->recovery_thread_task = NULL; + mb(); /* sync with ocfs2_recovery_thread_running */ + wake_up(&osb->recovery_event); + + mutex_unlock(&osb->recovery_lock); + + if (quota_enabled) + kfree(rm_quota); + + /* no one is callint kthread_stop() for us so the kthread() api + * requires that we call do_exit(). And it isn't exported, but + * complete_and_exit() seems to be a minimal wrapper around it. */ + complete_and_exit(NULL, status); +} + +void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) +{ + mutex_lock(&osb->recovery_lock); + + trace_ocfs2_recovery_thread(node_num, osb->node_num, + osb->disable_recovery, osb->recovery_thread_task, + osb->disable_recovery ? + -1 : ocfs2_recovery_map_set(osb, node_num)); + + if (osb->disable_recovery) + goto out; + + if (osb->recovery_thread_task) + goto out; + + osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, + "ocfs2rec-%s", osb->uuid_str); + if (IS_ERR(osb->recovery_thread_task)) { + mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); + osb->recovery_thread_task = NULL; + } + +out: + mutex_unlock(&osb->recovery_lock); + wake_up(&osb->recovery_event); +} + +static int ocfs2_read_journal_inode(struct ocfs2_super *osb, + int slot_num, + struct buffer_head **bh, + struct inode **ret_inode) +{ + int status = -EACCES; + struct inode *inode = NULL; + + BUG_ON(slot_num >= osb->max_slots); + + inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, + slot_num); + if (!inode || is_bad_inode(inode)) { + mlog_errno(status); + goto bail; + } + SET_INODE_JOURNAL(inode); + + status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); + if (status < 0) { + mlog_errno(status); + goto bail; + } + + status = 0; + +bail: + if (inode) { + if (status || !ret_inode) + iput(inode); + else + *ret_inode = inode; + } + return status; +} + +/* Does the actual journal replay and marks the journal inode as + * clean. Will only replay if the journal inode is marked dirty. */ +static int ocfs2_replay_journal(struct ocfs2_super *osb, + int node_num, + int slot_num) +{ + int status; + int got_lock = 0; + unsigned int flags; + struct inode *inode = NULL; + struct ocfs2_dinode *fe; + journal_t *journal = NULL; + struct buffer_head *bh = NULL; + u32 slot_reco_gen; + + status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); + if (status) { + mlog_errno(status); + goto done; + } + + fe = (struct ocfs2_dinode *)bh->b_data; + slot_reco_gen = ocfs2_get_recovery_generation(fe); + brelse(bh); + bh = NULL; + + /* + * As the fs recovery is asynchronous, there is a small chance that + * another node mounted (and recovered) the slot before the recovery + * thread could get the lock. To handle that, we dirty read the journal + * inode for that slot to get the recovery generation. If it is + * different than what we expected, the slot has been recovered. + * If not, it needs recovery. + */ + if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { + trace_ocfs2_replay_journal_recovered(slot_num, + osb->slot_recovery_generations[slot_num], slot_reco_gen); + osb->slot_recovery_generations[slot_num] = slot_reco_gen; + status = -EBUSY; + goto done; + } + + /* Continue with recovery as the journal has not yet been recovered */ + + status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); + if (status < 0) { + trace_ocfs2_replay_journal_lock_err(status); + if (status != -ERESTARTSYS) + mlog(ML_ERROR, "Could not lock journal!\n"); + goto done; + } + got_lock = 1; + + fe = (struct ocfs2_dinode *) bh->b_data; + + flags = le32_to_cpu(fe->id1.journal1.ij_flags); + slot_reco_gen = ocfs2_get_recovery_generation(fe); + + if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { + trace_ocfs2_replay_journal_skip(node_num); + /* Refresh recovery generation for the slot */ + osb->slot_recovery_generations[slot_num] = slot_reco_gen; + goto done; + } + + /* we need to run complete recovery for offline orphan slots */ + ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); + + printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ + "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), + MINOR(osb->sb->s_dev)); + + OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); + + status = ocfs2_force_read_journal(inode); + if (status < 0) { + mlog_errno(status); + goto done; + } + + journal = jbd2_journal_init_inode(inode); + if (journal == NULL) { + mlog(ML_ERROR, "Linux journal layer error\n"); + status = -EIO; + goto done; + } + + status = jbd2_journal_load(journal); + if (status < 0) { + mlog_errno(status); + if (!igrab(inode)) + BUG(); + jbd2_journal_destroy(journal); + goto done; + } + + ocfs2_clear_journal_error(osb->sb, journal, slot_num); + + /* wipe the journal */ + jbd2_journal_lock_updates(journal); + status = jbd2_journal_flush(journal); + jbd2_journal_unlock_updates(journal); + if (status < 0) + mlog_errno(status); + + /* This will mark the node clean */ + flags = le32_to_cpu(fe->id1.journal1.ij_flags); + flags &= ~OCFS2_JOURNAL_DIRTY_FL; + fe->id1.journal1.ij_flags = cpu_to_le32(flags); + + /* Increment recovery generation to indicate successful recovery */ + ocfs2_bump_recovery_generation(fe); + osb->slot_recovery_generations[slot_num] = + ocfs2_get_recovery_generation(fe); + + ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); + status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); + if (status < 0) + mlog_errno(status); + + if (!igrab(inode)) + BUG(); + + jbd2_journal_destroy(journal); + + printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ + "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), + MINOR(osb->sb->s_dev)); +done: + /* drop the lock on this nodes journal */ + if (got_lock) + ocfs2_inode_unlock(inode, 1); + + iput(inode); + brelse(bh); + + return status; +} + +/* + * Do the most important parts of node recovery: + * - Replay it's journal + * - Stamp a clean local allocator file + * - Stamp a clean truncate log + * - Mark the node clean + * + * If this function completes without error, a node in OCFS2 can be + * said to have been safely recovered. As a result, failure during the + * second part of a nodes recovery process (local alloc recovery) is + * far less concerning. + */ +static int ocfs2_recover_node(struct ocfs2_super *osb, + int node_num, int slot_num) +{ + int status = 0; + struct ocfs2_dinode *la_copy = NULL; + struct ocfs2_dinode *tl_copy = NULL; + + trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); + + /* Should not ever be called to recover ourselves -- in that + * case we should've called ocfs2_journal_load instead. */ + BUG_ON(osb->node_num == node_num); + + status = ocfs2_replay_journal(osb, node_num, slot_num); + if (status < 0) { + if (status == -EBUSY) { + trace_ocfs2_recover_node_skip(slot_num, node_num); + status = 0; + goto done; + } + mlog_errno(status); + goto done; + } + + /* Stamp a clean local alloc file AFTER recovering the journal... */ + status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); + if (status < 0) { + mlog_errno(status); + goto done; + } + + /* An error from begin_truncate_log_recovery is not + * serious enough to warrant halting the rest of + * recovery. */ + status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); + if (status < 0) + mlog_errno(status); + + /* Likewise, this would be a strange but ultimately not so + * harmful place to get an error... */ + status = ocfs2_clear_slot(osb, slot_num); + if (status < 0) + mlog_errno(status); + + /* This will kfree the memory pointed to by la_copy and tl_copy */ + ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, + tl_copy, NULL, ORPHAN_NEED_TRUNCATE); + + status = 0; +done: + + return status; +} + +/* Test node liveness by trylocking his journal. If we get the lock, + * we drop it here. Return 0 if we got the lock, -EAGAIN if node is + * still alive (we couldn't get the lock) and < 0 on error. */ +static int ocfs2_trylock_journal(struct ocfs2_super *osb, + int slot_num) +{ + int status, flags; + struct inode *inode = NULL; + + inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, + slot_num); + if (inode == NULL) { + mlog(ML_ERROR, "access error\n"); + status = -EACCES; + goto bail; + } + if (is_bad_inode(inode)) { + mlog(ML_ERROR, "access error (bad inode)\n"); + iput(inode); + inode = NULL; + status = -EACCES; + goto bail; + } + SET_INODE_JOURNAL(inode); + + flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; + status = ocfs2_inode_lock_full(inode, NULL, 1, flags); + if (status < 0) { + if (status != -EAGAIN) + mlog_errno(status); + goto bail; + } + + ocfs2_inode_unlock(inode, 1); +bail: + iput(inode); + + return status; +} + +/* Call this underneath ocfs2_super_lock. It also assumes that the + * slot info struct has been updated from disk. */ +int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) +{ + unsigned int node_num; + int status, i; + u32 gen; + struct buffer_head *bh = NULL; + struct ocfs2_dinode *di; + + /* This is called with the super block cluster lock, so we + * know that the slot map can't change underneath us. */ + + for (i = 0; i < osb->max_slots; i++) { + /* Read journal inode to get the recovery generation */ + status = ocfs2_read_journal_inode(osb, i, &bh, NULL); + if (status) { + mlog_errno(status); + goto bail; + } + di = (struct ocfs2_dinode *)bh->b_data; + gen = ocfs2_get_recovery_generation(di); + brelse(bh); + bh = NULL; + + spin_lock(&osb->osb_lock); + osb->slot_recovery_generations[i] = gen; + + trace_ocfs2_mark_dead_nodes(i, + osb->slot_recovery_generations[i]); + + if (i == osb->slot_num) { + spin_unlock(&osb->osb_lock); + continue; + } + + status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); + if (status == -ENOENT) { + spin_unlock(&osb->osb_lock); + continue; + } + + if (__ocfs2_recovery_map_test(osb, node_num)) { + spin_unlock(&osb->osb_lock); + continue; + } + spin_unlock(&osb->osb_lock); + + /* Ok, we have a slot occupied by another node which + * is not in the recovery map. We trylock his journal + * file here to test if he's alive. */ + status = ocfs2_trylock_journal(osb, i); + if (!status) { + /* Since we're called from mount, we know that + * the recovery thread can't race us on + * setting / checking the recovery bits. */ + ocfs2_recovery_thread(osb, node_num); + } else if ((status < 0) && (status != -EAGAIN)) { + mlog_errno(status); + goto bail; + } + } + + status = 0; +bail: + return status; +} + +/* + * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some + * randomness to the timeout to minimize multple nodes firing the timer at the + * same time. + */ +static inline unsigned long ocfs2_orphan_scan_timeout(void) +{ + unsigned long time; + + get_random_bytes(&time, sizeof(time)); + time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); + return msecs_to_jiffies(time); +} + +/* + * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for + * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This + * is done to catch any orphans that are left over in orphan directories. + * + * It scans all slots, even ones that are in use. It does so to handle the + * case described below: + * + * Node 1 has an inode it was using. The dentry went away due to memory + * pressure. Node 1 closes the inode, but it's on the free list. The node + * has the open lock. + * Node 2 unlinks the inode. It grabs the dentry lock to notify others, + * but node 1 has no dentry and doesn't get the message. It trylocks the + * open lock, sees that another node has a PR, and does nothing. + * Later node 2 runs its orphan dir. It igets the inode, trylocks the + * open lock, sees the PR still, and does nothing. + * Basically, we have to trigger an orphan iput on node 1. The only way + * for this to happen is if node 1 runs node 2's orphan dir. + * + * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT + * seconds. It gets an EX lock on os_lockres and checks sequence number + * stored in LVB. If the sequence number has changed, it means some other + * node has done the scan. This node skips the scan and tracks the + * sequence number. If the sequence number didn't change, it means a scan + * hasn't happened. The node queues a scan and increments the + * sequence number in the LVB. + */ +static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) +{ + struct ocfs2_orphan_scan *os; + int status, i; + u32 seqno = 0; + + os = &osb->osb_orphan_scan; + + if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) + goto out; + + trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, + atomic_read(&os->os_state)); + + status = ocfs2_orphan_scan_lock(osb, &seqno); + if (status < 0) { + if (status != -EAGAIN) + mlog_errno(status); + goto out; + } + + /* Do no queue the tasks if the volume is being umounted */ + if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) + goto unlock; + + if (os->os_seqno != seqno) { + os->os_seqno = seqno; + goto unlock; + } + + for (i = 0; i < osb->max_slots; i++) + ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, + NULL, ORPHAN_NO_NEED_TRUNCATE); + /* + * We queued a recovery on orphan slots, increment the sequence + * number and update LVB so other node will skip the scan for a while + */ + seqno++; + os->os_count++; + os->os_scantime = ktime_get_seconds(); +unlock: + ocfs2_orphan_scan_unlock(osb, seqno); +out: + trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, + atomic_read(&os->os_state)); + return; +} + +/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ +static void ocfs2_orphan_scan_work(struct work_struct *work) +{ + struct ocfs2_orphan_scan *os; + struct ocfs2_super *osb; + + os = container_of(work, struct ocfs2_orphan_scan, + os_orphan_scan_work.work); + osb = os->os_osb; + + mutex_lock(&os->os_lock); + ocfs2_queue_orphan_scan(osb); + if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) + queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, + ocfs2_orphan_scan_timeout()); + mutex_unlock(&os->os_lock); +} + +void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) +{ + struct ocfs2_orphan_scan *os; + + os = &osb->osb_orphan_scan; + if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { + atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); + mutex_lock(&os->os_lock); + cancel_delayed_work(&os->os_orphan_scan_work); + mutex_unlock(&os->os_lock); + } +} + +void ocfs2_orphan_scan_init(struct ocfs2_super *osb) +{ + struct ocfs2_orphan_scan *os; + + os = &osb->osb_orphan_scan; + os->os_osb = osb; + os->os_count = 0; + os->os_seqno = 0; + mutex_init(&os->os_lock); + INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); +} + +void ocfs2_orphan_scan_start(struct ocfs2_super *osb) +{ + struct ocfs2_orphan_scan *os; + + os = &osb->osb_orphan_scan; + os->os_scantime = ktime_get_seconds(); + if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) + atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); + else { + atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); + queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, + ocfs2_orphan_scan_timeout()); + } +} + +struct ocfs2_orphan_filldir_priv { + struct dir_context ctx; + struct inode *head; + struct ocfs2_super *osb; + enum ocfs2_orphan_reco_type orphan_reco_type; +}; + +static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, + int name_len, loff_t pos, u64 ino, + unsigned type) +{ + struct ocfs2_orphan_filldir_priv *p = + container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); + struct inode *iter; + + if (name_len == 1 && !strncmp(".", name, 1)) + return 0; + if (name_len == 2 && !strncmp("..", name, 2)) + return 0; + + /* do not include dio entry in case of orphan scan */ + if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && + (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, + OCFS2_DIO_ORPHAN_PREFIX_LEN))) + return 0; + + /* Skip bad inodes so that recovery can continue */ + iter = ocfs2_iget(p->osb, ino, + OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); + if (IS_ERR(iter)) + return 0; + + if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, + OCFS2_DIO_ORPHAN_PREFIX_LEN)) + OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; + + /* Skip inodes which are already added to recover list, since dio may + * happen concurrently with unlink/rename */ + if (OCFS2_I(iter)->ip_next_orphan) { + iput(iter); + return 0; + } + + trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); + /* No locking is required for the next_orphan queue as there + * is only ever a single process doing orphan recovery. */ + OCFS2_I(iter)->ip_next_orphan = p->head; + p->head = iter; + + return 0; +} + +static int ocfs2_queue_orphans(struct ocfs2_super *osb, + int slot, + struct inode **head, + enum ocfs2_orphan_reco_type orphan_reco_type) +{ + int status; + struct inode *orphan_dir_inode = NULL; + struct ocfs2_orphan_filldir_priv priv = { + .ctx.actor = ocfs2_orphan_filldir, + .osb = osb, + .head = *head, + .orphan_reco_type = orphan_reco_type + }; + + orphan_dir_inode = ocfs2_get_system_file_inode(osb, + ORPHAN_DIR_SYSTEM_INODE, + slot); + if (!orphan_dir_inode) { + status = -ENOENT; + mlog_errno(status); + return status; + } + + inode_lock(orphan_dir_inode); + status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); + if (status < 0) { + mlog_errno(status); + goto out; + } + + status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); + if (status) { + mlog_errno(status); + goto out_cluster; + } + + *head = priv.head; + +out_cluster: + ocfs2_inode_unlock(orphan_dir_inode, 0); +out: + inode_unlock(orphan_dir_inode); + iput(orphan_dir_inode); + return status; +} + +static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, + int slot) +{ + int ret; + + spin_lock(&osb->osb_lock); + ret = !osb->osb_orphan_wipes[slot]; + spin_unlock(&osb->osb_lock); + return ret; +} + +static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, + int slot) +{ + spin_lock(&osb->osb_lock); + /* Mark ourselves such that new processes in delete_inode() + * know to quit early. */ + ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); + while (osb->osb_orphan_wipes[slot]) { + /* If any processes are already in the middle of an + * orphan wipe on this dir, then we need to wait for + * them. */ + spin_unlock(&osb->osb_lock); + wait_event_interruptible(osb->osb_wipe_event, + ocfs2_orphan_recovery_can_continue(osb, slot)); + spin_lock(&osb->osb_lock); + } + spin_unlock(&osb->osb_lock); +} + +static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, + int slot) +{ + ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); +} + +/* + * Orphan recovery. Each mounted node has it's own orphan dir which we + * must run during recovery. Our strategy here is to build a list of + * the inodes in the orphan dir and iget/iput them. The VFS does + * (most) of the rest of the work. + * + * Orphan recovery can happen at any time, not just mount so we have a + * couple of extra considerations. + * + * - We grab as many inodes as we can under the orphan dir lock - + * doing iget() outside the orphan dir risks getting a reference on + * an invalid inode. + * - We must be sure not to deadlock with other processes on the + * system wanting to run delete_inode(). This can happen when they go + * to lock the orphan dir and the orphan recovery process attempts to + * iget() inside the orphan dir lock. This can be avoided by + * advertising our state to ocfs2_delete_inode(). + */ +static int ocfs2_recover_orphans(struct ocfs2_super *osb, + int slot, + enum ocfs2_orphan_reco_type orphan_reco_type) +{ + int ret = 0; + struct inode *inode = NULL; + struct inode *iter; + struct ocfs2_inode_info *oi; + struct buffer_head *di_bh = NULL; + struct ocfs2_dinode *di = NULL; + + trace_ocfs2_recover_orphans(slot); + + ocfs2_mark_recovering_orphan_dir(osb, slot); + ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); + ocfs2_clear_recovering_orphan_dir(osb, slot); + + /* Error here should be noted, but we want to continue with as + * many queued inodes as we've got. */ + if (ret) + mlog_errno(ret); + + while (inode) { + oi = OCFS2_I(inode); + trace_ocfs2_recover_orphans_iput( + (unsigned long long)oi->ip_blkno); + + iter = oi->ip_next_orphan; + oi->ip_next_orphan = NULL; + + if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { + inode_lock(inode); + ret = ocfs2_rw_lock(inode, 1); + if (ret < 0) { + mlog_errno(ret); + goto unlock_mutex; + } + /* + * We need to take and drop the inode lock to + * force read inode from disk. + */ + ret = ocfs2_inode_lock(inode, &di_bh, 1); + if (ret) { + mlog_errno(ret); + goto unlock_rw; + } + + di = (struct ocfs2_dinode *)di_bh->b_data; + + if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { + ret = ocfs2_truncate_file(inode, di_bh, + i_size_read(inode)); + if (ret < 0) { + if (ret != -ENOSPC) + mlog_errno(ret); + goto unlock_inode; + } + + ret = ocfs2_del_inode_from_orphan(osb, inode, + di_bh, 0, 0); + if (ret) + mlog_errno(ret); + } +unlock_inode: + ocfs2_inode_unlock(inode, 1); + brelse(di_bh); + di_bh = NULL; +unlock_rw: + ocfs2_rw_unlock(inode, 1); +unlock_mutex: + inode_unlock(inode); + + /* clear dio flag in ocfs2_inode_info */ + oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; + } else { + spin_lock(&oi->ip_lock); + /* Set the proper information to get us going into + * ocfs2_delete_inode. */ + oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; + spin_unlock(&oi->ip_lock); + } + + iput(inode); + inode = iter; + } + + return ret; +} + +static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) +{ + /* This check is good because ocfs2 will wait on our recovery + * thread before changing it to something other than MOUNTED + * or DISABLED. */ + wait_event(osb->osb_mount_event, + (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || + atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || + atomic_read(&osb->vol_state) == VOLUME_DISABLED); + + /* If there's an error on mount, then we may never get to the + * MOUNTED flag, but this is set right before + * dismount_volume() so we can trust it. */ + if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { + trace_ocfs2_wait_on_mount(VOLUME_DISABLED); + mlog(0, "mount error, exiting!\n"); + return -EBUSY; + } + + return 0; +} + +static int ocfs2_commit_thread(void *arg) +{ + int status; + struct ocfs2_super *osb = arg; + struct ocfs2_journal *journal = osb->journal; + + /* we can trust j_num_trans here because _should_stop() is only set in + * shutdown and nobody other than ourselves should be able to start + * transactions. committing on shutdown might take a few iterations + * as final transactions put deleted inodes on the list */ + while (!(kthread_should_stop() && + atomic_read(&journal->j_num_trans) == 0)) { + + wait_event_interruptible(osb->checkpoint_event, + atomic_read(&journal->j_num_trans) + || kthread_should_stop()); + + status = ocfs2_commit_cache(osb); + if (status < 0) { + static unsigned long abort_warn_time; + + /* Warn about this once per minute */ + if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) + mlog(ML_ERROR, "status = %d, journal is " + "already aborted.\n", status); + /* + * After ocfs2_commit_cache() fails, j_num_trans has a + * non-zero value. Sleep here to avoid a busy-wait + * loop. + */ + msleep_interruptible(1000); + } + + if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ + mlog(ML_KTHREAD, + "commit_thread: %u transactions pending on " + "shutdown\n", + atomic_read(&journal->j_num_trans)); + } + } + + return 0; +} + +/* Reads all the journal inodes without taking any cluster locks. Used + * for hard readonly access to determine whether any journal requires + * recovery. Also used to refresh the recovery generation numbers after + * a journal has been recovered by another node. + */ +int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) +{ + int ret = 0; + unsigned int slot; + struct buffer_head *di_bh = NULL; + struct ocfs2_dinode *di; + int journal_dirty = 0; + + for(slot = 0; slot < osb->max_slots; slot++) { + ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); + if (ret) { + mlog_errno(ret); + goto out; + } + + di = (struct ocfs2_dinode *) di_bh->b_data; + + osb->slot_recovery_generations[slot] = + ocfs2_get_recovery_generation(di); + + if (le32_to_cpu(di->id1.journal1.ij_flags) & + OCFS2_JOURNAL_DIRTY_FL) + journal_dirty = 1; + + brelse(di_bh); + di_bh = NULL; + } + +out: + if (journal_dirty) + ret = -EROFS; + return ret; +} |