summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_extfree_item.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_extfree_item.c')
-rw-r--r--fs/xfs/xfs_extfree_item.c546
1 files changed, 546 insertions, 0 deletions
diff --git a/fs/xfs/xfs_extfree_item.c b/fs/xfs/xfs_extfree_item.c
new file mode 100644
index 000000000..d9da66c71
--- /dev/null
+++ b/fs/xfs/xfs_extfree_item.c
@@ -0,0 +1,546 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_bit.h"
+#include "xfs_mount.h"
+#include "xfs_trans.h"
+#include "xfs_trans_priv.h"
+#include "xfs_buf_item.h"
+#include "xfs_extfree_item.h"
+#include "xfs_log.h"
+#include "xfs_btree.h"
+#include "xfs_rmap.h"
+
+
+kmem_zone_t *xfs_efi_zone;
+kmem_zone_t *xfs_efd_zone;
+
+static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
+{
+ return container_of(lip, struct xfs_efi_log_item, efi_item);
+}
+
+void
+xfs_efi_item_free(
+ struct xfs_efi_log_item *efip)
+{
+ kmem_free(efip->efi_item.li_lv_shadow);
+ if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
+ kmem_free(efip);
+ else
+ kmem_zone_free(xfs_efi_zone, efip);
+}
+
+/*
+ * Freeing the efi requires that we remove it from the AIL if it has already
+ * been placed there. However, the EFI may not yet have been placed in the AIL
+ * when called by xfs_efi_release() from EFD processing due to the ordering of
+ * committed vs unpin operations in bulk insert operations. Hence the reference
+ * count to ensure only the last caller frees the EFI.
+ */
+void
+xfs_efi_release(
+ struct xfs_efi_log_item *efip)
+{
+ ASSERT(atomic_read(&efip->efi_refcount) > 0);
+ if (atomic_dec_and_test(&efip->efi_refcount)) {
+ xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
+ xfs_efi_item_free(efip);
+ }
+}
+
+/*
+ * This returns the number of iovecs needed to log the given efi item.
+ * We only need 1 iovec for an efi item. It just logs the efi_log_format
+ * structure.
+ */
+static inline int
+xfs_efi_item_sizeof(
+ struct xfs_efi_log_item *efip)
+{
+ return sizeof(struct xfs_efi_log_format) +
+ (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
+}
+
+STATIC void
+xfs_efi_item_size(
+ struct xfs_log_item *lip,
+ int *nvecs,
+ int *nbytes)
+{
+ *nvecs += 1;
+ *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
+}
+
+/*
+ * This is called to fill in the vector of log iovecs for the
+ * given efi log item. We use only 1 iovec, and we point that
+ * at the efi_log_format structure embedded in the efi item.
+ * It is at this point that we assert that all of the extent
+ * slots in the efi item have been filled.
+ */
+STATIC void
+xfs_efi_item_format(
+ struct xfs_log_item *lip,
+ struct xfs_log_vec *lv)
+{
+ struct xfs_efi_log_item *efip = EFI_ITEM(lip);
+ struct xfs_log_iovec *vecp = NULL;
+
+ ASSERT(atomic_read(&efip->efi_next_extent) ==
+ efip->efi_format.efi_nextents);
+
+ efip->efi_format.efi_type = XFS_LI_EFI;
+ efip->efi_format.efi_size = 1;
+
+ xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
+ &efip->efi_format,
+ xfs_efi_item_sizeof(efip));
+}
+
+
+/*
+ * Pinning has no meaning for an efi item, so just return.
+ */
+STATIC void
+xfs_efi_item_pin(
+ struct xfs_log_item *lip)
+{
+}
+
+/*
+ * The unpin operation is the last place an EFI is manipulated in the log. It is
+ * either inserted in the AIL or aborted in the event of a log I/O error. In
+ * either case, the EFI transaction has been successfully committed to make it
+ * this far. Therefore, we expect whoever committed the EFI to either construct
+ * and commit the EFD or drop the EFD's reference in the event of error. Simply
+ * drop the log's EFI reference now that the log is done with it.
+ */
+STATIC void
+xfs_efi_item_unpin(
+ struct xfs_log_item *lip,
+ int remove)
+{
+ struct xfs_efi_log_item *efip = EFI_ITEM(lip);
+ xfs_efi_release(efip);
+}
+
+/*
+ * Efi items have no locking or pushing. However, since EFIs are pulled from
+ * the AIL when their corresponding EFDs are committed to disk, their situation
+ * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
+ * will eventually flush the log. This should help in getting the EFI out of
+ * the AIL.
+ */
+STATIC uint
+xfs_efi_item_push(
+ struct xfs_log_item *lip,
+ struct list_head *buffer_list)
+{
+ return XFS_ITEM_PINNED;
+}
+
+/*
+ * The EFI has been either committed or aborted if the transaction has been
+ * cancelled. If the transaction was cancelled, an EFD isn't going to be
+ * constructed and thus we free the EFI here directly.
+ */
+STATIC void
+xfs_efi_item_unlock(
+ struct xfs_log_item *lip)
+{
+ if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
+ xfs_efi_release(EFI_ITEM(lip));
+}
+
+/*
+ * The EFI is logged only once and cannot be moved in the log, so simply return
+ * the lsn at which it's been logged.
+ */
+STATIC xfs_lsn_t
+xfs_efi_item_committed(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+ return lsn;
+}
+
+/*
+ * The EFI dependency tracking op doesn't do squat. It can't because
+ * it doesn't know where the free extent is coming from. The dependency
+ * tracking has to be handled by the "enclosing" metadata object. For
+ * example, for inodes, the inode is locked throughout the extent freeing
+ * so the dependency should be recorded there.
+ */
+STATIC void
+xfs_efi_item_committing(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+}
+
+/*
+ * This is the ops vector shared by all efi log items.
+ */
+static const struct xfs_item_ops xfs_efi_item_ops = {
+ .iop_size = xfs_efi_item_size,
+ .iop_format = xfs_efi_item_format,
+ .iop_pin = xfs_efi_item_pin,
+ .iop_unpin = xfs_efi_item_unpin,
+ .iop_unlock = xfs_efi_item_unlock,
+ .iop_committed = xfs_efi_item_committed,
+ .iop_push = xfs_efi_item_push,
+ .iop_committing = xfs_efi_item_committing
+};
+
+
+/*
+ * Allocate and initialize an efi item with the given number of extents.
+ */
+struct xfs_efi_log_item *
+xfs_efi_init(
+ struct xfs_mount *mp,
+ uint nextents)
+
+{
+ struct xfs_efi_log_item *efip;
+ uint size;
+
+ ASSERT(nextents > 0);
+ if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
+ size = (uint)(sizeof(xfs_efi_log_item_t) +
+ ((nextents - 1) * sizeof(xfs_extent_t)));
+ efip = kmem_zalloc(size, KM_SLEEP);
+ } else {
+ efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
+ }
+
+ xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
+ efip->efi_format.efi_nextents = nextents;
+ efip->efi_format.efi_id = (uintptr_t)(void *)efip;
+ atomic_set(&efip->efi_next_extent, 0);
+ atomic_set(&efip->efi_refcount, 2);
+
+ return efip;
+}
+
+/*
+ * Copy an EFI format buffer from the given buf, and into the destination
+ * EFI format structure.
+ * The given buffer can be in 32 bit or 64 bit form (which has different padding),
+ * one of which will be the native format for this kernel.
+ * It will handle the conversion of formats if necessary.
+ */
+int
+xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
+{
+ xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
+ uint i;
+ uint len = sizeof(xfs_efi_log_format_t) +
+ (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
+ uint len32 = sizeof(xfs_efi_log_format_32_t) +
+ (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
+ uint len64 = sizeof(xfs_efi_log_format_64_t) +
+ (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
+
+ if (buf->i_len == len) {
+ memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
+ return 0;
+ } else if (buf->i_len == len32) {
+ xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
+
+ dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
+ dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
+ dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
+ dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
+ for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
+ dst_efi_fmt->efi_extents[i].ext_start =
+ src_efi_fmt_32->efi_extents[i].ext_start;
+ dst_efi_fmt->efi_extents[i].ext_len =
+ src_efi_fmt_32->efi_extents[i].ext_len;
+ }
+ return 0;
+ } else if (buf->i_len == len64) {
+ xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
+
+ dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
+ dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
+ dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
+ dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
+ for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
+ dst_efi_fmt->efi_extents[i].ext_start =
+ src_efi_fmt_64->efi_extents[i].ext_start;
+ dst_efi_fmt->efi_extents[i].ext_len =
+ src_efi_fmt_64->efi_extents[i].ext_len;
+ }
+ return 0;
+ }
+ return -EFSCORRUPTED;
+}
+
+static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
+{
+ return container_of(lip, struct xfs_efd_log_item, efd_item);
+}
+
+STATIC void
+xfs_efd_item_free(struct xfs_efd_log_item *efdp)
+{
+ kmem_free(efdp->efd_item.li_lv_shadow);
+ if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
+ kmem_free(efdp);
+ else
+ kmem_zone_free(xfs_efd_zone, efdp);
+}
+
+/*
+ * This returns the number of iovecs needed to log the given efd item.
+ * We only need 1 iovec for an efd item. It just logs the efd_log_format
+ * structure.
+ */
+static inline int
+xfs_efd_item_sizeof(
+ struct xfs_efd_log_item *efdp)
+{
+ return sizeof(xfs_efd_log_format_t) +
+ (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
+}
+
+STATIC void
+xfs_efd_item_size(
+ struct xfs_log_item *lip,
+ int *nvecs,
+ int *nbytes)
+{
+ *nvecs += 1;
+ *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
+}
+
+/*
+ * This is called to fill in the vector of log iovecs for the
+ * given efd log item. We use only 1 iovec, and we point that
+ * at the efd_log_format structure embedded in the efd item.
+ * It is at this point that we assert that all of the extent
+ * slots in the efd item have been filled.
+ */
+STATIC void
+xfs_efd_item_format(
+ struct xfs_log_item *lip,
+ struct xfs_log_vec *lv)
+{
+ struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
+ struct xfs_log_iovec *vecp = NULL;
+
+ ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
+
+ efdp->efd_format.efd_type = XFS_LI_EFD;
+ efdp->efd_format.efd_size = 1;
+
+ xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
+ &efdp->efd_format,
+ xfs_efd_item_sizeof(efdp));
+}
+
+/*
+ * Pinning has no meaning for an efd item, so just return.
+ */
+STATIC void
+xfs_efd_item_pin(
+ struct xfs_log_item *lip)
+{
+}
+
+/*
+ * Since pinning has no meaning for an efd item, unpinning does
+ * not either.
+ */
+STATIC void
+xfs_efd_item_unpin(
+ struct xfs_log_item *lip,
+ int remove)
+{
+}
+
+/*
+ * There isn't much you can do to push on an efd item. It is simply stuck
+ * waiting for the log to be flushed to disk.
+ */
+STATIC uint
+xfs_efd_item_push(
+ struct xfs_log_item *lip,
+ struct list_head *buffer_list)
+{
+ return XFS_ITEM_PINNED;
+}
+
+/*
+ * The EFD is either committed or aborted if the transaction is cancelled. If
+ * the transaction is cancelled, drop our reference to the EFI and free the EFD.
+ */
+STATIC void
+xfs_efd_item_unlock(
+ struct xfs_log_item *lip)
+{
+ struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
+
+ if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
+ xfs_efi_release(efdp->efd_efip);
+ xfs_efd_item_free(efdp);
+ }
+}
+
+/*
+ * When the efd item is committed to disk, all we need to do is delete our
+ * reference to our partner efi item and then free ourselves. Since we're
+ * freeing ourselves we must return -1 to keep the transaction code from further
+ * referencing this item.
+ */
+STATIC xfs_lsn_t
+xfs_efd_item_committed(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+ struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
+
+ /*
+ * Drop the EFI reference regardless of whether the EFD has been
+ * aborted. Once the EFD transaction is constructed, it is the sole
+ * responsibility of the EFD to release the EFI (even if the EFI is
+ * aborted due to log I/O error).
+ */
+ xfs_efi_release(efdp->efd_efip);
+ xfs_efd_item_free(efdp);
+
+ return (xfs_lsn_t)-1;
+}
+
+/*
+ * The EFD dependency tracking op doesn't do squat. It can't because
+ * it doesn't know where the free extent is coming from. The dependency
+ * tracking has to be handled by the "enclosing" metadata object. For
+ * example, for inodes, the inode is locked throughout the extent freeing
+ * so the dependency should be recorded there.
+ */
+STATIC void
+xfs_efd_item_committing(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+}
+
+/*
+ * This is the ops vector shared by all efd log items.
+ */
+static const struct xfs_item_ops xfs_efd_item_ops = {
+ .iop_size = xfs_efd_item_size,
+ .iop_format = xfs_efd_item_format,
+ .iop_pin = xfs_efd_item_pin,
+ .iop_unpin = xfs_efd_item_unpin,
+ .iop_unlock = xfs_efd_item_unlock,
+ .iop_committed = xfs_efd_item_committed,
+ .iop_push = xfs_efd_item_push,
+ .iop_committing = xfs_efd_item_committing
+};
+
+/*
+ * Allocate and initialize an efd item with the given number of extents.
+ */
+struct xfs_efd_log_item *
+xfs_efd_init(
+ struct xfs_mount *mp,
+ struct xfs_efi_log_item *efip,
+ uint nextents)
+
+{
+ struct xfs_efd_log_item *efdp;
+ uint size;
+
+ ASSERT(nextents > 0);
+ if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
+ size = (uint)(sizeof(xfs_efd_log_item_t) +
+ ((nextents - 1) * sizeof(xfs_extent_t)));
+ efdp = kmem_zalloc(size, KM_SLEEP);
+ } else {
+ efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
+ }
+
+ xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
+ efdp->efd_efip = efip;
+ efdp->efd_format.efd_nextents = nextents;
+ efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
+
+ return efdp;
+}
+
+/*
+ * Process an extent free intent item that was recovered from
+ * the log. We need to free the extents that it describes.
+ */
+int
+xfs_efi_recover(
+ struct xfs_mount *mp,
+ struct xfs_efi_log_item *efip)
+{
+ struct xfs_efd_log_item *efdp;
+ struct xfs_trans *tp;
+ int i;
+ int error = 0;
+ xfs_extent_t *extp;
+ xfs_fsblock_t startblock_fsb;
+ struct xfs_owner_info oinfo;
+
+ ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
+
+ /*
+ * First check the validity of the extents described by the
+ * EFI. If any are bad, then assume that all are bad and
+ * just toss the EFI.
+ */
+ for (i = 0; i < efip->efi_format.efi_nextents; i++) {
+ extp = &efip->efi_format.efi_extents[i];
+ startblock_fsb = XFS_BB_TO_FSB(mp,
+ XFS_FSB_TO_DADDR(mp, extp->ext_start));
+ if (startblock_fsb == 0 ||
+ extp->ext_len == 0 ||
+ startblock_fsb >= mp->m_sb.sb_dblocks ||
+ extp->ext_len >= mp->m_sb.sb_agblocks) {
+ /*
+ * This will pull the EFI from the AIL and
+ * free the memory associated with it.
+ */
+ set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
+ xfs_efi_release(efip);
+ return -EIO;
+ }
+ }
+
+ error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
+ if (error)
+ return error;
+ efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
+
+ xfs_rmap_any_owner_update(&oinfo);
+ for (i = 0; i < efip->efi_format.efi_nextents; i++) {
+ extp = &efip->efi_format.efi_extents[i];
+ error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
+ extp->ext_len, &oinfo, false);
+ if (error)
+ goto abort_error;
+
+ }
+
+ set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
+ error = xfs_trans_commit(tp);
+ return error;
+
+abort_error:
+ xfs_trans_cancel(tp);
+ return error;
+}