diff options
Diffstat (limited to 'fs/xfs/xfs_extfree_item.c')
-rw-r--r-- | fs/xfs/xfs_extfree_item.c | 546 |
1 files changed, 546 insertions, 0 deletions
diff --git a/fs/xfs/xfs_extfree_item.c b/fs/xfs/xfs_extfree_item.c new file mode 100644 index 000000000..d9da66c71 --- /dev/null +++ b/fs/xfs/xfs_extfree_item.c @@ -0,0 +1,546 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. + * All Rights Reserved. + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_bit.h" +#include "xfs_mount.h" +#include "xfs_trans.h" +#include "xfs_trans_priv.h" +#include "xfs_buf_item.h" +#include "xfs_extfree_item.h" +#include "xfs_log.h" +#include "xfs_btree.h" +#include "xfs_rmap.h" + + +kmem_zone_t *xfs_efi_zone; +kmem_zone_t *xfs_efd_zone; + +static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) +{ + return container_of(lip, struct xfs_efi_log_item, efi_item); +} + +void +xfs_efi_item_free( + struct xfs_efi_log_item *efip) +{ + kmem_free(efip->efi_item.li_lv_shadow); + if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) + kmem_free(efip); + else + kmem_zone_free(xfs_efi_zone, efip); +} + +/* + * Freeing the efi requires that we remove it from the AIL if it has already + * been placed there. However, the EFI may not yet have been placed in the AIL + * when called by xfs_efi_release() from EFD processing due to the ordering of + * committed vs unpin operations in bulk insert operations. Hence the reference + * count to ensure only the last caller frees the EFI. + */ +void +xfs_efi_release( + struct xfs_efi_log_item *efip) +{ + ASSERT(atomic_read(&efip->efi_refcount) > 0); + if (atomic_dec_and_test(&efip->efi_refcount)) { + xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); + xfs_efi_item_free(efip); + } +} + +/* + * This returns the number of iovecs needed to log the given efi item. + * We only need 1 iovec for an efi item. It just logs the efi_log_format + * structure. + */ +static inline int +xfs_efi_item_sizeof( + struct xfs_efi_log_item *efip) +{ + return sizeof(struct xfs_efi_log_format) + + (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); +} + +STATIC void +xfs_efi_item_size( + struct xfs_log_item *lip, + int *nvecs, + int *nbytes) +{ + *nvecs += 1; + *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); +} + +/* + * This is called to fill in the vector of log iovecs for the + * given efi log item. We use only 1 iovec, and we point that + * at the efi_log_format structure embedded in the efi item. + * It is at this point that we assert that all of the extent + * slots in the efi item have been filled. + */ +STATIC void +xfs_efi_item_format( + struct xfs_log_item *lip, + struct xfs_log_vec *lv) +{ + struct xfs_efi_log_item *efip = EFI_ITEM(lip); + struct xfs_log_iovec *vecp = NULL; + + ASSERT(atomic_read(&efip->efi_next_extent) == + efip->efi_format.efi_nextents); + + efip->efi_format.efi_type = XFS_LI_EFI; + efip->efi_format.efi_size = 1; + + xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, + &efip->efi_format, + xfs_efi_item_sizeof(efip)); +} + + +/* + * Pinning has no meaning for an efi item, so just return. + */ +STATIC void +xfs_efi_item_pin( + struct xfs_log_item *lip) +{ +} + +/* + * The unpin operation is the last place an EFI is manipulated in the log. It is + * either inserted in the AIL or aborted in the event of a log I/O error. In + * either case, the EFI transaction has been successfully committed to make it + * this far. Therefore, we expect whoever committed the EFI to either construct + * and commit the EFD or drop the EFD's reference in the event of error. Simply + * drop the log's EFI reference now that the log is done with it. + */ +STATIC void +xfs_efi_item_unpin( + struct xfs_log_item *lip, + int remove) +{ + struct xfs_efi_log_item *efip = EFI_ITEM(lip); + xfs_efi_release(efip); +} + +/* + * Efi items have no locking or pushing. However, since EFIs are pulled from + * the AIL when their corresponding EFDs are committed to disk, their situation + * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller + * will eventually flush the log. This should help in getting the EFI out of + * the AIL. + */ +STATIC uint +xfs_efi_item_push( + struct xfs_log_item *lip, + struct list_head *buffer_list) +{ + return XFS_ITEM_PINNED; +} + +/* + * The EFI has been either committed or aborted if the transaction has been + * cancelled. If the transaction was cancelled, an EFD isn't going to be + * constructed and thus we free the EFI here directly. + */ +STATIC void +xfs_efi_item_unlock( + struct xfs_log_item *lip) +{ + if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) + xfs_efi_release(EFI_ITEM(lip)); +} + +/* + * The EFI is logged only once and cannot be moved in the log, so simply return + * the lsn at which it's been logged. + */ +STATIC xfs_lsn_t +xfs_efi_item_committed( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ + return lsn; +} + +/* + * The EFI dependency tracking op doesn't do squat. It can't because + * it doesn't know where the free extent is coming from. The dependency + * tracking has to be handled by the "enclosing" metadata object. For + * example, for inodes, the inode is locked throughout the extent freeing + * so the dependency should be recorded there. + */ +STATIC void +xfs_efi_item_committing( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ +} + +/* + * This is the ops vector shared by all efi log items. + */ +static const struct xfs_item_ops xfs_efi_item_ops = { + .iop_size = xfs_efi_item_size, + .iop_format = xfs_efi_item_format, + .iop_pin = xfs_efi_item_pin, + .iop_unpin = xfs_efi_item_unpin, + .iop_unlock = xfs_efi_item_unlock, + .iop_committed = xfs_efi_item_committed, + .iop_push = xfs_efi_item_push, + .iop_committing = xfs_efi_item_committing +}; + + +/* + * Allocate and initialize an efi item with the given number of extents. + */ +struct xfs_efi_log_item * +xfs_efi_init( + struct xfs_mount *mp, + uint nextents) + +{ + struct xfs_efi_log_item *efip; + uint size; + + ASSERT(nextents > 0); + if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { + size = (uint)(sizeof(xfs_efi_log_item_t) + + ((nextents - 1) * sizeof(xfs_extent_t))); + efip = kmem_zalloc(size, KM_SLEEP); + } else { + efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); + } + + xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); + efip->efi_format.efi_nextents = nextents; + efip->efi_format.efi_id = (uintptr_t)(void *)efip; + atomic_set(&efip->efi_next_extent, 0); + atomic_set(&efip->efi_refcount, 2); + + return efip; +} + +/* + * Copy an EFI format buffer from the given buf, and into the destination + * EFI format structure. + * The given buffer can be in 32 bit or 64 bit form (which has different padding), + * one of which will be the native format for this kernel. + * It will handle the conversion of formats if necessary. + */ +int +xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) +{ + xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; + uint i; + uint len = sizeof(xfs_efi_log_format_t) + + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); + uint len32 = sizeof(xfs_efi_log_format_32_t) + + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); + uint len64 = sizeof(xfs_efi_log_format_64_t) + + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); + + if (buf->i_len == len) { + memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); + return 0; + } else if (buf->i_len == len32) { + xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; + + dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; + dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; + dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; + dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; + for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { + dst_efi_fmt->efi_extents[i].ext_start = + src_efi_fmt_32->efi_extents[i].ext_start; + dst_efi_fmt->efi_extents[i].ext_len = + src_efi_fmt_32->efi_extents[i].ext_len; + } + return 0; + } else if (buf->i_len == len64) { + xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; + + dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; + dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; + dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; + dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; + for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { + dst_efi_fmt->efi_extents[i].ext_start = + src_efi_fmt_64->efi_extents[i].ext_start; + dst_efi_fmt->efi_extents[i].ext_len = + src_efi_fmt_64->efi_extents[i].ext_len; + } + return 0; + } + return -EFSCORRUPTED; +} + +static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) +{ + return container_of(lip, struct xfs_efd_log_item, efd_item); +} + +STATIC void +xfs_efd_item_free(struct xfs_efd_log_item *efdp) +{ + kmem_free(efdp->efd_item.li_lv_shadow); + if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) + kmem_free(efdp); + else + kmem_zone_free(xfs_efd_zone, efdp); +} + +/* + * This returns the number of iovecs needed to log the given efd item. + * We only need 1 iovec for an efd item. It just logs the efd_log_format + * structure. + */ +static inline int +xfs_efd_item_sizeof( + struct xfs_efd_log_item *efdp) +{ + return sizeof(xfs_efd_log_format_t) + + (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); +} + +STATIC void +xfs_efd_item_size( + struct xfs_log_item *lip, + int *nvecs, + int *nbytes) +{ + *nvecs += 1; + *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); +} + +/* + * This is called to fill in the vector of log iovecs for the + * given efd log item. We use only 1 iovec, and we point that + * at the efd_log_format structure embedded in the efd item. + * It is at this point that we assert that all of the extent + * slots in the efd item have been filled. + */ +STATIC void +xfs_efd_item_format( + struct xfs_log_item *lip, + struct xfs_log_vec *lv) +{ + struct xfs_efd_log_item *efdp = EFD_ITEM(lip); + struct xfs_log_iovec *vecp = NULL; + + ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); + + efdp->efd_format.efd_type = XFS_LI_EFD; + efdp->efd_format.efd_size = 1; + + xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, + &efdp->efd_format, + xfs_efd_item_sizeof(efdp)); +} + +/* + * Pinning has no meaning for an efd item, so just return. + */ +STATIC void +xfs_efd_item_pin( + struct xfs_log_item *lip) +{ +} + +/* + * Since pinning has no meaning for an efd item, unpinning does + * not either. + */ +STATIC void +xfs_efd_item_unpin( + struct xfs_log_item *lip, + int remove) +{ +} + +/* + * There isn't much you can do to push on an efd item. It is simply stuck + * waiting for the log to be flushed to disk. + */ +STATIC uint +xfs_efd_item_push( + struct xfs_log_item *lip, + struct list_head *buffer_list) +{ + return XFS_ITEM_PINNED; +} + +/* + * The EFD is either committed or aborted if the transaction is cancelled. If + * the transaction is cancelled, drop our reference to the EFI and free the EFD. + */ +STATIC void +xfs_efd_item_unlock( + struct xfs_log_item *lip) +{ + struct xfs_efd_log_item *efdp = EFD_ITEM(lip); + + if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) { + xfs_efi_release(efdp->efd_efip); + xfs_efd_item_free(efdp); + } +} + +/* + * When the efd item is committed to disk, all we need to do is delete our + * reference to our partner efi item and then free ourselves. Since we're + * freeing ourselves we must return -1 to keep the transaction code from further + * referencing this item. + */ +STATIC xfs_lsn_t +xfs_efd_item_committed( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ + struct xfs_efd_log_item *efdp = EFD_ITEM(lip); + + /* + * Drop the EFI reference regardless of whether the EFD has been + * aborted. Once the EFD transaction is constructed, it is the sole + * responsibility of the EFD to release the EFI (even if the EFI is + * aborted due to log I/O error). + */ + xfs_efi_release(efdp->efd_efip); + xfs_efd_item_free(efdp); + + return (xfs_lsn_t)-1; +} + +/* + * The EFD dependency tracking op doesn't do squat. It can't because + * it doesn't know where the free extent is coming from. The dependency + * tracking has to be handled by the "enclosing" metadata object. For + * example, for inodes, the inode is locked throughout the extent freeing + * so the dependency should be recorded there. + */ +STATIC void +xfs_efd_item_committing( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ +} + +/* + * This is the ops vector shared by all efd log items. + */ +static const struct xfs_item_ops xfs_efd_item_ops = { + .iop_size = xfs_efd_item_size, + .iop_format = xfs_efd_item_format, + .iop_pin = xfs_efd_item_pin, + .iop_unpin = xfs_efd_item_unpin, + .iop_unlock = xfs_efd_item_unlock, + .iop_committed = xfs_efd_item_committed, + .iop_push = xfs_efd_item_push, + .iop_committing = xfs_efd_item_committing +}; + +/* + * Allocate and initialize an efd item with the given number of extents. + */ +struct xfs_efd_log_item * +xfs_efd_init( + struct xfs_mount *mp, + struct xfs_efi_log_item *efip, + uint nextents) + +{ + struct xfs_efd_log_item *efdp; + uint size; + + ASSERT(nextents > 0); + if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { + size = (uint)(sizeof(xfs_efd_log_item_t) + + ((nextents - 1) * sizeof(xfs_extent_t))); + efdp = kmem_zalloc(size, KM_SLEEP); + } else { + efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); + } + + xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); + efdp->efd_efip = efip; + efdp->efd_format.efd_nextents = nextents; + efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; + + return efdp; +} + +/* + * Process an extent free intent item that was recovered from + * the log. We need to free the extents that it describes. + */ +int +xfs_efi_recover( + struct xfs_mount *mp, + struct xfs_efi_log_item *efip) +{ + struct xfs_efd_log_item *efdp; + struct xfs_trans *tp; + int i; + int error = 0; + xfs_extent_t *extp; + xfs_fsblock_t startblock_fsb; + struct xfs_owner_info oinfo; + + ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); + + /* + * First check the validity of the extents described by the + * EFI. If any are bad, then assume that all are bad and + * just toss the EFI. + */ + for (i = 0; i < efip->efi_format.efi_nextents; i++) { + extp = &efip->efi_format.efi_extents[i]; + startblock_fsb = XFS_BB_TO_FSB(mp, + XFS_FSB_TO_DADDR(mp, extp->ext_start)); + if (startblock_fsb == 0 || + extp->ext_len == 0 || + startblock_fsb >= mp->m_sb.sb_dblocks || + extp->ext_len >= mp->m_sb.sb_agblocks) { + /* + * This will pull the EFI from the AIL and + * free the memory associated with it. + */ + set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); + xfs_efi_release(efip); + return -EIO; + } + } + + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); + if (error) + return error; + efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); + + xfs_rmap_any_owner_update(&oinfo); + for (i = 0; i < efip->efi_format.efi_nextents; i++) { + extp = &efip->efi_format.efi_extents[i]; + error = xfs_trans_free_extent(tp, efdp, extp->ext_start, + extp->ext_len, &oinfo, false); + if (error) + goto abort_error; + + } + + set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); + error = xfs_trans_commit(tp); + return error; + +abort_error: + xfs_trans_cancel(tp); + return error; +} |