diff options
Diffstat (limited to '')
-rw-r--r-- | include/media/v4l2-mem2mem.h | 649 |
1 files changed, 649 insertions, 0 deletions
diff --git a/include/media/v4l2-mem2mem.h b/include/media/v4l2-mem2mem.h new file mode 100644 index 000000000..d655720e1 --- /dev/null +++ b/include/media/v4l2-mem2mem.h @@ -0,0 +1,649 @@ +/* + * Memory-to-memory device framework for Video for Linux 2. + * + * Helper functions for devices that use memory buffers for both source + * and destination. + * + * Copyright (c) 2009 Samsung Electronics Co., Ltd. + * Pawel Osciak, <pawel@osciak.com> + * Marek Szyprowski, <m.szyprowski@samsung.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the + * License, or (at your option) any later version + */ + +#ifndef _MEDIA_V4L2_MEM2MEM_H +#define _MEDIA_V4L2_MEM2MEM_H + +#include <media/videobuf2-v4l2.h> + +/** + * struct v4l2_m2m_ops - mem-to-mem device driver callbacks + * @device_run: required. Begin the actual job (transaction) inside this + * callback. + * The job does NOT have to end before this callback returns + * (and it will be the usual case). When the job finishes, + * v4l2_m2m_job_finish() has to be called. + * @job_ready: optional. Should return 0 if the driver does not have a job + * fully prepared to run yet (i.e. it will not be able to finish a + * transaction without sleeping). If not provided, it will be + * assumed that one source and one destination buffer are all + * that is required for the driver to perform one full transaction. + * This method may not sleep. + * @job_abort: optional. Informs the driver that it has to abort the currently + * running transaction as soon as possible (i.e. as soon as it can + * stop the device safely; e.g. in the next interrupt handler), + * even if the transaction would not have been finished by then. + * After the driver performs the necessary steps, it has to call + * v4l2_m2m_job_finish() (as if the transaction ended normally). + * This function does not have to (and will usually not) wait + * until the device enters a state when it can be stopped. + */ +struct v4l2_m2m_ops { + void (*device_run)(void *priv); + int (*job_ready)(void *priv); + void (*job_abort)(void *priv); +}; + +struct video_device; +struct v4l2_m2m_dev; + +/** + * struct v4l2_m2m_queue_ctx - represents a queue for buffers ready to be + * processed + * + * @q: pointer to struct &vb2_queue + * @rdy_queue: List of V4L2 mem-to-mem queues + * @rdy_spinlock: spin lock to protect the struct usage + * @num_rdy: number of buffers ready to be processed + * @buffered: is the queue buffered? + * + * Queue for buffers ready to be processed as soon as this + * instance receives access to the device. + */ + +struct v4l2_m2m_queue_ctx { + struct vb2_queue q; + + struct list_head rdy_queue; + spinlock_t rdy_spinlock; + u8 num_rdy; + bool buffered; +}; + +/** + * struct v4l2_m2m_ctx - Memory to memory context structure + * + * @q_lock: struct &mutex lock + * @m2m_dev: opaque pointer to the internal data to handle M2M context + * @cap_q_ctx: Capture (output to memory) queue context + * @out_q_ctx: Output (input from memory) queue context + * @queue: List of memory to memory contexts + * @job_flags: Job queue flags, used internally by v4l2-mem2mem.c: + * %TRANS_QUEUED, %TRANS_RUNNING and %TRANS_ABORT. + * @finished: Wait queue used to signalize when a job queue finished. + * @priv: Instance private data + * + * The memory to memory context is specific to a file handle, NOT to e.g. + * a device. + */ +struct v4l2_m2m_ctx { + /* optional cap/out vb2 queues lock */ + struct mutex *q_lock; + + /* internal use only */ + struct v4l2_m2m_dev *m2m_dev; + + struct v4l2_m2m_queue_ctx cap_q_ctx; + + struct v4l2_m2m_queue_ctx out_q_ctx; + + /* For device job queue */ + struct list_head queue; + unsigned long job_flags; + wait_queue_head_t finished; + + void *priv; +}; + +/** + * struct v4l2_m2m_buffer - Memory to memory buffer + * + * @vb: pointer to struct &vb2_v4l2_buffer + * @list: list of m2m buffers + */ +struct v4l2_m2m_buffer { + struct vb2_v4l2_buffer vb; + struct list_head list; +}; + +/** + * v4l2_m2m_get_curr_priv() - return driver private data for the currently + * running instance or NULL if no instance is running + * + * @m2m_dev: opaque pointer to the internal data to handle M2M context + */ +void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev); + +/** + * v4l2_m2m_get_vq() - return vb2_queue for the given type + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @type: type of the V4L2 buffer, as defined by enum &v4l2_buf_type + */ +struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx, + enum v4l2_buf_type type); + +/** + * v4l2_m2m_try_schedule() - check whether an instance is ready to be added to + * the pending job queue and add it if so. + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * + * There are three basic requirements an instance has to meet to be able to run: + * 1) at least one source buffer has to be queued, + * 2) at least one destination buffer has to be queued, + * 3) streaming has to be on. + * + * If a queue is buffered (for example a decoder hardware ringbuffer that has + * to be drained before doing streamoff), allow scheduling without v4l2 buffers + * on that queue. + * + * There may also be additional, custom requirements. In such case the driver + * should supply a custom callback (job_ready in v4l2_m2m_ops) that should + * return 1 if the instance is ready. + * An example of the above could be an instance that requires more than one + * src/dst buffer per transaction. + */ +void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx); + +/** + * v4l2_m2m_job_finish() - inform the framework that a job has been finished + * and have it clean up + * + * @m2m_dev: opaque pointer to the internal data to handle M2M context + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * + * Called by a driver to yield back the device after it has finished with it. + * Should be called as soon as possible after reaching a state which allows + * other instances to take control of the device. + * + * This function has to be called only after &v4l2_m2m_ops->device_run + * callback has been called on the driver. To prevent recursion, it should + * not be called directly from the &v4l2_m2m_ops->device_run callback though. + */ +void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, + struct v4l2_m2m_ctx *m2m_ctx); + +static inline void +v4l2_m2m_buf_done(struct vb2_v4l2_buffer *buf, enum vb2_buffer_state state) +{ + vb2_buffer_done(&buf->vb2_buf, state); +} + +/** + * v4l2_m2m_reqbufs() - multi-queue-aware REQBUFS multiplexer + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @reqbufs: pointer to struct &v4l2_requestbuffers + */ +int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + struct v4l2_requestbuffers *reqbufs); + +/** + * v4l2_m2m_querybuf() - multi-queue-aware QUERYBUF multiplexer + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @buf: pointer to struct &v4l2_buffer + * + * See v4l2_m2m_mmap() documentation for details. + */ +int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + struct v4l2_buffer *buf); + +/** + * v4l2_m2m_qbuf() - enqueue a source or destination buffer, depending on + * the type + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @buf: pointer to struct &v4l2_buffer + */ +int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + struct v4l2_buffer *buf); + +/** + * v4l2_m2m_dqbuf() - dequeue a source or destination buffer, depending on + * the type + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @buf: pointer to struct &v4l2_buffer + */ +int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + struct v4l2_buffer *buf); + +/** + * v4l2_m2m_prepare_buf() - prepare a source or destination buffer, depending on + * the type + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @buf: pointer to struct &v4l2_buffer + */ +int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + struct v4l2_buffer *buf); + +/** + * v4l2_m2m_create_bufs() - create a source or destination buffer, depending + * on the type + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @create: pointer to struct &v4l2_create_buffers + */ +int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + struct v4l2_create_buffers *create); + +/** + * v4l2_m2m_expbuf() - export a source or destination buffer, depending on + * the type + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @eb: pointer to struct &v4l2_exportbuffer + */ +int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + struct v4l2_exportbuffer *eb); + +/** + * v4l2_m2m_streamon() - turn on streaming for a video queue + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @type: type of the V4L2 buffer, as defined by enum &v4l2_buf_type + */ +int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + enum v4l2_buf_type type); + +/** + * v4l2_m2m_streamoff() - turn off streaming for a video queue + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @type: type of the V4L2 buffer, as defined by enum &v4l2_buf_type + */ +int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + enum v4l2_buf_type type); + +/** + * v4l2_m2m_poll() - poll replacement, for destination buffers only + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @wait: pointer to struct &poll_table_struct + * + * Call from the driver's poll() function. Will poll both queues. If a buffer + * is available to dequeue (with dqbuf) from the source queue, this will + * indicate that a non-blocking write can be performed, while read will be + * returned in case of the destination queue. + */ +__poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + struct poll_table_struct *wait); + +/** + * v4l2_m2m_mmap() - source and destination queues-aware mmap multiplexer + * + * @file: pointer to struct &file + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @vma: pointer to struct &vm_area_struct + * + * Call from driver's mmap() function. Will handle mmap() for both queues + * seamlessly for videobuffer, which will receive normal per-queue offsets and + * proper videobuf queue pointers. The differentiation is made outside videobuf + * by adding a predefined offset to buffers from one of the queues and + * subtracting it before passing it back to videobuf. Only drivers (and + * thus applications) receive modified offsets. + */ +int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, + struct vm_area_struct *vma); + +/** + * v4l2_m2m_init() - initialize per-driver m2m data + * + * @m2m_ops: pointer to struct v4l2_m2m_ops + * + * Usually called from driver's ``probe()`` function. + * + * Return: returns an opaque pointer to the internal data to handle M2M context + */ +struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops); + +#if defined(CONFIG_MEDIA_CONTROLLER) +void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev); +int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev, + struct video_device *vdev, int function); +#else +static inline void +v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev) +{ +} + +static inline int +v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev, + struct video_device *vdev, int function) +{ + return 0; +} +#endif + +/** + * v4l2_m2m_release() - cleans up and frees a m2m_dev structure + * + * @m2m_dev: opaque pointer to the internal data to handle M2M context + * + * Usually called from driver's ``remove()`` function. + */ +void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev); + +/** + * v4l2_m2m_ctx_init() - allocate and initialize a m2m context + * + * @m2m_dev: opaque pointer to the internal data to handle M2M context + * @drv_priv: driver's instance private data + * @queue_init: a callback for queue type-specific initialization function + * to be used for initializing videobuf_queues + * + * Usually called from driver's ``open()`` function. + */ +struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev, + void *drv_priv, + int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq)); + +static inline void v4l2_m2m_set_src_buffered(struct v4l2_m2m_ctx *m2m_ctx, + bool buffered) +{ + m2m_ctx->out_q_ctx.buffered = buffered; +} + +static inline void v4l2_m2m_set_dst_buffered(struct v4l2_m2m_ctx *m2m_ctx, + bool buffered) +{ + m2m_ctx->cap_q_ctx.buffered = buffered; +} + +/** + * v4l2_m2m_ctx_release() - release m2m context + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * + * Usually called from driver's release() function. + */ +void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx); + +/** + * v4l2_m2m_buf_queue() - add a buffer to the proper ready buffers list. + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @vbuf: pointer to struct &vb2_v4l2_buffer + * + * Call from videobuf_queue_ops->ops->buf_queue, videobuf_queue_ops callback. + */ +void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, + struct vb2_v4l2_buffer *vbuf); + +/** + * v4l2_m2m_num_src_bufs_ready() - return the number of source buffers ready for + * use + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline +unsigned int v4l2_m2m_num_src_bufs_ready(struct v4l2_m2m_ctx *m2m_ctx) +{ + return m2m_ctx->out_q_ctx.num_rdy; +} + +/** + * v4l2_m2m_num_dst_bufs_ready() - return the number of destination buffers + * ready for use + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline +unsigned int v4l2_m2m_num_dst_bufs_ready(struct v4l2_m2m_ctx *m2m_ctx) +{ + return m2m_ctx->cap_q_ctx.num_rdy; +} + +/** + * v4l2_m2m_next_buf() - return next buffer from the list of ready buffers + * + * @q_ctx: pointer to struct @v4l2_m2m_queue_ctx + */ +void *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx); + +/** + * v4l2_m2m_next_src_buf() - return next source buffer from the list of ready + * buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline void *v4l2_m2m_next_src_buf(struct v4l2_m2m_ctx *m2m_ctx) +{ + return v4l2_m2m_next_buf(&m2m_ctx->out_q_ctx); +} + +/** + * v4l2_m2m_next_dst_buf() - return next destination buffer from the list of + * ready buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline void *v4l2_m2m_next_dst_buf(struct v4l2_m2m_ctx *m2m_ctx) +{ + return v4l2_m2m_next_buf(&m2m_ctx->cap_q_ctx); +} + +/** + * v4l2_m2m_last_buf() - return last buffer from the list of ready buffers + * + * @q_ctx: pointer to struct @v4l2_m2m_queue_ctx + */ +void *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx); + +/** + * v4l2_m2m_last_src_buf() - return last destination buffer from the list of + * ready buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline void *v4l2_m2m_last_src_buf(struct v4l2_m2m_ctx *m2m_ctx) +{ + return v4l2_m2m_last_buf(&m2m_ctx->out_q_ctx); +} + +/** + * v4l2_m2m_last_dst_buf() - return last destination buffer from the list of + * ready buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline void *v4l2_m2m_last_dst_buf(struct v4l2_m2m_ctx *m2m_ctx) +{ + return v4l2_m2m_last_buf(&m2m_ctx->cap_q_ctx); +} + +/** + * v4l2_m2m_for_each_dst_buf() - iterate over a list of destination ready + * buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @b: current buffer of type struct v4l2_m2m_buffer + */ +#define v4l2_m2m_for_each_dst_buf(m2m_ctx, b) \ + list_for_each_entry(b, &m2m_ctx->cap_q_ctx.rdy_queue, list) + +/** + * v4l2_m2m_for_each_src_buf() - iterate over a list of source ready buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @b: current buffer of type struct v4l2_m2m_buffer + */ +#define v4l2_m2m_for_each_src_buf(m2m_ctx, b) \ + list_for_each_entry(b, &m2m_ctx->out_q_ctx.rdy_queue, list) + +/** + * v4l2_m2m_for_each_dst_buf_safe() - iterate over a list of destination ready + * buffers safely + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @b: current buffer of type struct v4l2_m2m_buffer + * @n: used as temporary storage + */ +#define v4l2_m2m_for_each_dst_buf_safe(m2m_ctx, b, n) \ + list_for_each_entry_safe(b, n, &m2m_ctx->cap_q_ctx.rdy_queue, list) + +/** + * v4l2_m2m_for_each_src_buf_safe() - iterate over a list of source ready + * buffers safely + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @b: current buffer of type struct v4l2_m2m_buffer + * @n: used as temporary storage + */ +#define v4l2_m2m_for_each_src_buf_safe(m2m_ctx, b, n) \ + list_for_each_entry_safe(b, n, &m2m_ctx->out_q_ctx.rdy_queue, list) + +/** + * v4l2_m2m_get_src_vq() - return vb2_queue for source buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline +struct vb2_queue *v4l2_m2m_get_src_vq(struct v4l2_m2m_ctx *m2m_ctx) +{ + return &m2m_ctx->out_q_ctx.q; +} + +/** + * v4l2_m2m_get_dst_vq() - return vb2_queue for destination buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline +struct vb2_queue *v4l2_m2m_get_dst_vq(struct v4l2_m2m_ctx *m2m_ctx) +{ + return &m2m_ctx->cap_q_ctx.q; +} + +/** + * v4l2_m2m_buf_remove() - take off a buffer from the list of ready buffers and + * return it + * + * @q_ctx: pointer to struct @v4l2_m2m_queue_ctx + */ +void *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx); + +/** + * v4l2_m2m_src_buf_remove() - take off a source buffer from the list of ready + * buffers and return it + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline void *v4l2_m2m_src_buf_remove(struct v4l2_m2m_ctx *m2m_ctx) +{ + return v4l2_m2m_buf_remove(&m2m_ctx->out_q_ctx); +} + +/** + * v4l2_m2m_dst_buf_remove() - take off a destination buffer from the list of + * ready buffers and return it + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + */ +static inline void *v4l2_m2m_dst_buf_remove(struct v4l2_m2m_ctx *m2m_ctx) +{ + return v4l2_m2m_buf_remove(&m2m_ctx->cap_q_ctx); +} + +/** + * v4l2_m2m_buf_remove_by_buf() - take off exact buffer from the list of ready + * buffers + * + * @q_ctx: pointer to struct @v4l2_m2m_queue_ctx + * @vbuf: the buffer to be removed + */ +void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx, + struct vb2_v4l2_buffer *vbuf); + +/** + * v4l2_m2m_src_buf_remove_by_buf() - take off exact source buffer from the list + * of ready buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @vbuf: the buffer to be removed + */ +static inline void v4l2_m2m_src_buf_remove_by_buf(struct v4l2_m2m_ctx *m2m_ctx, + struct vb2_v4l2_buffer *vbuf) +{ + v4l2_m2m_buf_remove_by_buf(&m2m_ctx->out_q_ctx, vbuf); +} + +/** + * v4l2_m2m_dst_buf_remove_by_buf() - take off exact destination buffer from the + * list of ready buffers + * + * @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx + * @vbuf: the buffer to be removed + */ +static inline void v4l2_m2m_dst_buf_remove_by_buf(struct v4l2_m2m_ctx *m2m_ctx, + struct vb2_v4l2_buffer *vbuf) +{ + v4l2_m2m_buf_remove_by_buf(&m2m_ctx->cap_q_ctx, vbuf); +} + +struct vb2_v4l2_buffer * +v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx); + +static inline struct vb2_v4l2_buffer * +v4l2_m2m_src_buf_remove_by_idx(struct v4l2_m2m_ctx *m2m_ctx, unsigned int idx) +{ + return v4l2_m2m_buf_remove_by_idx(&m2m_ctx->out_q_ctx, idx); +} + +static inline struct vb2_v4l2_buffer * +v4l2_m2m_dst_buf_remove_by_idx(struct v4l2_m2m_ctx *m2m_ctx, unsigned int idx) +{ + return v4l2_m2m_buf_remove_by_idx(&m2m_ctx->cap_q_ctx, idx); +} + +/* v4l2 ioctl helpers */ + +int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv, + struct v4l2_requestbuffers *rb); +int v4l2_m2m_ioctl_create_bufs(struct file *file, void *fh, + struct v4l2_create_buffers *create); +int v4l2_m2m_ioctl_querybuf(struct file *file, void *fh, + struct v4l2_buffer *buf); +int v4l2_m2m_ioctl_expbuf(struct file *file, void *fh, + struct v4l2_exportbuffer *eb); +int v4l2_m2m_ioctl_qbuf(struct file *file, void *fh, + struct v4l2_buffer *buf); +int v4l2_m2m_ioctl_dqbuf(struct file *file, void *fh, + struct v4l2_buffer *buf); +int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *fh, + struct v4l2_buffer *buf); +int v4l2_m2m_ioctl_streamon(struct file *file, void *fh, + enum v4l2_buf_type type); +int v4l2_m2m_ioctl_streamoff(struct file *file, void *fh, + enum v4l2_buf_type type); +int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma); +__poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait); + +#endif /* _MEDIA_V4L2_MEM2MEM_H */ + |