summaryrefslogtreecommitdiffstats
path: root/kernel/rcu/update.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--kernel/rcu/update.c977
1 files changed, 977 insertions, 0 deletions
diff --git a/kernel/rcu/update.c b/kernel/rcu/update.c
new file mode 100644
index 000000000..81688a133
--- /dev/null
+++ b/kernel/rcu/update.c
@@ -0,0 +1,977 @@
+/*
+ * Read-Copy Update mechanism for mutual exclusion
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, you can access it online at
+ * http://www.gnu.org/licenses/gpl-2.0.html.
+ *
+ * Copyright IBM Corporation, 2001
+ *
+ * Authors: Dipankar Sarma <dipankar@in.ibm.com>
+ * Manfred Spraul <manfred@colorfullife.com>
+ *
+ * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
+ * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
+ * Papers:
+ * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
+ * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
+ *
+ * For detailed explanation of Read-Copy Update mechanism see -
+ * http://lse.sourceforge.net/locking/rcupdate.html
+ *
+ */
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/spinlock.h>
+#include <linux/smp.h>
+#include <linux/interrupt.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/debug.h>
+#include <linux/atomic.h>
+#include <linux/bitops.h>
+#include <linux/percpu.h>
+#include <linux/notifier.h>
+#include <linux/cpu.h>
+#include <linux/mutex.h>
+#include <linux/export.h>
+#include <linux/hardirq.h>
+#include <linux/delay.h>
+#include <linux/moduleparam.h>
+#include <linux/kthread.h>
+#include <linux/tick.h>
+#include <linux/rcupdate_wait.h>
+#include <linux/sched/isolation.h>
+#include <linux/kprobes.h>
+
+#define CREATE_TRACE_POINTS
+
+#include "rcu.h"
+
+#ifdef MODULE_PARAM_PREFIX
+#undef MODULE_PARAM_PREFIX
+#endif
+#define MODULE_PARAM_PREFIX "rcupdate."
+
+#ifndef CONFIG_TINY_RCU
+extern int rcu_expedited; /* from sysctl */
+module_param(rcu_expedited, int, 0);
+extern int rcu_normal; /* from sysctl */
+module_param(rcu_normal, int, 0);
+static int rcu_normal_after_boot;
+module_param(rcu_normal_after_boot, int, 0);
+#endif /* #ifndef CONFIG_TINY_RCU */
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+/**
+ * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
+ *
+ * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
+ * RCU-sched read-side critical section. In absence of
+ * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
+ * critical section unless it can prove otherwise. Note that disabling
+ * of preemption (including disabling irqs) counts as an RCU-sched
+ * read-side critical section. This is useful for debug checks in functions
+ * that required that they be called within an RCU-sched read-side
+ * critical section.
+ *
+ * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
+ * and while lockdep is disabled.
+ *
+ * Note that if the CPU is in the idle loop from an RCU point of
+ * view (ie: that we are in the section between rcu_idle_enter() and
+ * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
+ * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
+ * that are in such a section, considering these as in extended quiescent
+ * state, so such a CPU is effectively never in an RCU read-side critical
+ * section regardless of what RCU primitives it invokes. This state of
+ * affairs is required --- we need to keep an RCU-free window in idle
+ * where the CPU may possibly enter into low power mode. This way we can
+ * notice an extended quiescent state to other CPUs that started a grace
+ * period. Otherwise we would delay any grace period as long as we run in
+ * the idle task.
+ *
+ * Similarly, we avoid claiming an SRCU read lock held if the current
+ * CPU is offline.
+ */
+int rcu_read_lock_sched_held(void)
+{
+ int lockdep_opinion = 0;
+
+ if (!debug_lockdep_rcu_enabled())
+ return 1;
+ if (!rcu_is_watching())
+ return 0;
+ if (!rcu_lockdep_current_cpu_online())
+ return 0;
+ if (debug_locks)
+ lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
+ return lockdep_opinion || !preemptible();
+}
+EXPORT_SYMBOL(rcu_read_lock_sched_held);
+#endif
+
+#ifndef CONFIG_TINY_RCU
+
+/*
+ * Should expedited grace-period primitives always fall back to their
+ * non-expedited counterparts? Intended for use within RCU. Note
+ * that if the user specifies both rcu_expedited and rcu_normal, then
+ * rcu_normal wins. (Except during the time period during boot from
+ * when the first task is spawned until the rcu_set_runtime_mode()
+ * core_initcall() is invoked, at which point everything is expedited.)
+ */
+bool rcu_gp_is_normal(void)
+{
+ return READ_ONCE(rcu_normal) &&
+ rcu_scheduler_active != RCU_SCHEDULER_INIT;
+}
+EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
+
+static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
+
+/*
+ * Should normal grace-period primitives be expedited? Intended for
+ * use within RCU. Note that this function takes the rcu_expedited
+ * sysfs/boot variable and rcu_scheduler_active into account as well
+ * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
+ * until rcu_gp_is_expedited() returns false is a -really- bad idea.
+ */
+bool rcu_gp_is_expedited(void)
+{
+ return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
+ rcu_scheduler_active == RCU_SCHEDULER_INIT;
+}
+EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
+
+/**
+ * rcu_expedite_gp - Expedite future RCU grace periods
+ *
+ * After a call to this function, future calls to synchronize_rcu() and
+ * friends act as the corresponding synchronize_rcu_expedited() function
+ * had instead been called.
+ */
+void rcu_expedite_gp(void)
+{
+ atomic_inc(&rcu_expedited_nesting);
+}
+EXPORT_SYMBOL_GPL(rcu_expedite_gp);
+
+/**
+ * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
+ *
+ * Undo a prior call to rcu_expedite_gp(). If all prior calls to
+ * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
+ * and if the rcu_expedited sysfs/boot parameter is not set, then all
+ * subsequent calls to synchronize_rcu() and friends will return to
+ * their normal non-expedited behavior.
+ */
+void rcu_unexpedite_gp(void)
+{
+ atomic_dec(&rcu_expedited_nesting);
+}
+EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
+
+/*
+ * Inform RCU of the end of the in-kernel boot sequence.
+ */
+void rcu_end_inkernel_boot(void)
+{
+ rcu_unexpedite_gp();
+ if (rcu_normal_after_boot)
+ WRITE_ONCE(rcu_normal, 1);
+}
+
+#endif /* #ifndef CONFIG_TINY_RCU */
+
+/*
+ * Test each non-SRCU synchronous grace-period wait API. This is
+ * useful just after a change in mode for these primitives, and
+ * during early boot.
+ */
+void rcu_test_sync_prims(void)
+{
+ if (!IS_ENABLED(CONFIG_PROVE_RCU))
+ return;
+ synchronize_rcu();
+ synchronize_rcu_bh();
+ synchronize_sched();
+ synchronize_rcu_expedited();
+ synchronize_rcu_bh_expedited();
+ synchronize_sched_expedited();
+}
+
+#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
+
+/*
+ * Switch to run-time mode once RCU has fully initialized.
+ */
+static int __init rcu_set_runtime_mode(void)
+{
+ rcu_test_sync_prims();
+ rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
+ rcu_test_sync_prims();
+ return 0;
+}
+core_initcall(rcu_set_runtime_mode);
+
+#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+static struct lock_class_key rcu_lock_key;
+struct lockdep_map rcu_lock_map =
+ STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
+EXPORT_SYMBOL_GPL(rcu_lock_map);
+
+static struct lock_class_key rcu_bh_lock_key;
+struct lockdep_map rcu_bh_lock_map =
+ STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
+EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
+
+static struct lock_class_key rcu_sched_lock_key;
+struct lockdep_map rcu_sched_lock_map =
+ STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
+EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
+
+static struct lock_class_key rcu_callback_key;
+struct lockdep_map rcu_callback_map =
+ STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
+EXPORT_SYMBOL_GPL(rcu_callback_map);
+
+int notrace debug_lockdep_rcu_enabled(void)
+{
+ return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
+ current->lockdep_recursion == 0;
+}
+EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
+NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
+
+/**
+ * rcu_read_lock_held() - might we be in RCU read-side critical section?
+ *
+ * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
+ * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
+ * this assumes we are in an RCU read-side critical section unless it can
+ * prove otherwise. This is useful for debug checks in functions that
+ * require that they be called within an RCU read-side critical section.
+ *
+ * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
+ * and while lockdep is disabled.
+ *
+ * Note that rcu_read_lock() and the matching rcu_read_unlock() must
+ * occur in the same context, for example, it is illegal to invoke
+ * rcu_read_unlock() in process context if the matching rcu_read_lock()
+ * was invoked from within an irq handler.
+ *
+ * Note that rcu_read_lock() is disallowed if the CPU is either idle or
+ * offline from an RCU perspective, so check for those as well.
+ */
+int rcu_read_lock_held(void)
+{
+ if (!debug_lockdep_rcu_enabled())
+ return 1;
+ if (!rcu_is_watching())
+ return 0;
+ if (!rcu_lockdep_current_cpu_online())
+ return 0;
+ return lock_is_held(&rcu_lock_map);
+}
+EXPORT_SYMBOL_GPL(rcu_read_lock_held);
+
+/**
+ * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
+ *
+ * Check for bottom half being disabled, which covers both the
+ * CONFIG_PROVE_RCU and not cases. Note that if someone uses
+ * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
+ * will show the situation. This is useful for debug checks in functions
+ * that require that they be called within an RCU read-side critical
+ * section.
+ *
+ * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
+ *
+ * Note that rcu_read_lock() is disallowed if the CPU is either idle or
+ * offline from an RCU perspective, so check for those as well.
+ */
+int rcu_read_lock_bh_held(void)
+{
+ if (!debug_lockdep_rcu_enabled())
+ return 1;
+ if (!rcu_is_watching())
+ return 0;
+ if (!rcu_lockdep_current_cpu_online())
+ return 0;
+ return in_softirq() || irqs_disabled();
+}
+EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
+
+#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
+
+/**
+ * wakeme_after_rcu() - Callback function to awaken a task after grace period
+ * @head: Pointer to rcu_head member within rcu_synchronize structure
+ *
+ * Awaken the corresponding task now that a grace period has elapsed.
+ */
+void wakeme_after_rcu(struct rcu_head *head)
+{
+ struct rcu_synchronize *rcu;
+
+ rcu = container_of(head, struct rcu_synchronize, head);
+ complete(&rcu->completion);
+}
+EXPORT_SYMBOL_GPL(wakeme_after_rcu);
+
+void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
+ struct rcu_synchronize *rs_array)
+{
+ int i;
+ int j;
+
+ /* Initialize and register callbacks for each flavor specified. */
+ for (i = 0; i < n; i++) {
+ if (checktiny &&
+ (crcu_array[i] == call_rcu ||
+ crcu_array[i] == call_rcu_bh)) {
+ might_sleep();
+ continue;
+ }
+ init_rcu_head_on_stack(&rs_array[i].head);
+ init_completion(&rs_array[i].completion);
+ for (j = 0; j < i; j++)
+ if (crcu_array[j] == crcu_array[i])
+ break;
+ if (j == i)
+ (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
+ }
+
+ /* Wait for all callbacks to be invoked. */
+ for (i = 0; i < n; i++) {
+ if (checktiny &&
+ (crcu_array[i] == call_rcu ||
+ crcu_array[i] == call_rcu_bh))
+ continue;
+ for (j = 0; j < i; j++)
+ if (crcu_array[j] == crcu_array[i])
+ break;
+ if (j == i)
+ wait_for_completion(&rs_array[i].completion);
+ destroy_rcu_head_on_stack(&rs_array[i].head);
+ }
+}
+EXPORT_SYMBOL_GPL(__wait_rcu_gp);
+
+#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
+void init_rcu_head(struct rcu_head *head)
+{
+ debug_object_init(head, &rcuhead_debug_descr);
+}
+EXPORT_SYMBOL_GPL(init_rcu_head);
+
+void destroy_rcu_head(struct rcu_head *head)
+{
+ debug_object_free(head, &rcuhead_debug_descr);
+}
+EXPORT_SYMBOL_GPL(destroy_rcu_head);
+
+static bool rcuhead_is_static_object(void *addr)
+{
+ return true;
+}
+
+/**
+ * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
+ * @head: pointer to rcu_head structure to be initialized
+ *
+ * This function informs debugobjects of a new rcu_head structure that
+ * has been allocated as an auto variable on the stack. This function
+ * is not required for rcu_head structures that are statically defined or
+ * that are dynamically allocated on the heap. This function has no
+ * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
+ */
+void init_rcu_head_on_stack(struct rcu_head *head)
+{
+ debug_object_init_on_stack(head, &rcuhead_debug_descr);
+}
+EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
+
+/**
+ * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
+ * @head: pointer to rcu_head structure to be initialized
+ *
+ * This function informs debugobjects that an on-stack rcu_head structure
+ * is about to go out of scope. As with init_rcu_head_on_stack(), this
+ * function is not required for rcu_head structures that are statically
+ * defined or that are dynamically allocated on the heap. Also as with
+ * init_rcu_head_on_stack(), this function has no effect for
+ * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
+ */
+void destroy_rcu_head_on_stack(struct rcu_head *head)
+{
+ debug_object_free(head, &rcuhead_debug_descr);
+}
+EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
+
+struct debug_obj_descr rcuhead_debug_descr = {
+ .name = "rcu_head",
+ .is_static_object = rcuhead_is_static_object,
+};
+EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
+#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
+
+#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
+void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
+ unsigned long secs,
+ unsigned long c_old, unsigned long c)
+{
+ trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
+}
+EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
+#else
+#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
+ do { } while (0)
+#endif
+
+#ifdef CONFIG_RCU_STALL_COMMON
+
+#ifdef CONFIG_PROVE_RCU
+#define RCU_STALL_DELAY_DELTA (5 * HZ)
+#else
+#define RCU_STALL_DELAY_DELTA 0
+#endif
+
+int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
+EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
+static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
+
+module_param(rcu_cpu_stall_suppress, int, 0644);
+module_param(rcu_cpu_stall_timeout, int, 0644);
+
+int rcu_jiffies_till_stall_check(void)
+{
+ int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
+
+ /*
+ * Limit check must be consistent with the Kconfig limits
+ * for CONFIG_RCU_CPU_STALL_TIMEOUT.
+ */
+ if (till_stall_check < 3) {
+ WRITE_ONCE(rcu_cpu_stall_timeout, 3);
+ till_stall_check = 3;
+ } else if (till_stall_check > 300) {
+ WRITE_ONCE(rcu_cpu_stall_timeout, 300);
+ till_stall_check = 300;
+ }
+ return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
+}
+
+void rcu_sysrq_start(void)
+{
+ if (!rcu_cpu_stall_suppress)
+ rcu_cpu_stall_suppress = 2;
+}
+
+void rcu_sysrq_end(void)
+{
+ if (rcu_cpu_stall_suppress == 2)
+ rcu_cpu_stall_suppress = 0;
+}
+
+static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
+{
+ rcu_cpu_stall_suppress = 1;
+ return NOTIFY_DONE;
+}
+
+static struct notifier_block rcu_panic_block = {
+ .notifier_call = rcu_panic,
+};
+
+static int __init check_cpu_stall_init(void)
+{
+ atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
+ return 0;
+}
+early_initcall(check_cpu_stall_init);
+
+#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
+
+#ifdef CONFIG_TASKS_RCU
+
+/*
+ * Simple variant of RCU whose quiescent states are voluntary context
+ * switch, cond_resched_rcu_qs(), user-space execution, and idle.
+ * As such, grace periods can take one good long time. There are no
+ * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
+ * because this implementation is intended to get the system into a safe
+ * state for some of the manipulations involved in tracing and the like.
+ * Finally, this implementation does not support high call_rcu_tasks()
+ * rates from multiple CPUs. If this is required, per-CPU callback lists
+ * will be needed.
+ */
+
+/* Global list of callbacks and associated lock. */
+static struct rcu_head *rcu_tasks_cbs_head;
+static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
+static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
+static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
+
+/* Track exiting tasks in order to allow them to be waited for. */
+DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
+
+/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
+#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
+static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
+module_param(rcu_task_stall_timeout, int, 0644);
+
+static struct task_struct *rcu_tasks_kthread_ptr;
+
+/**
+ * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
+ * @rhp: structure to be used for queueing the RCU updates.
+ * @func: actual callback function to be invoked after the grace period
+ *
+ * The callback function will be invoked some time after a full grace
+ * period elapses, in other words after all currently executing RCU
+ * read-side critical sections have completed. call_rcu_tasks() assumes
+ * that the read-side critical sections end at a voluntary context
+ * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
+ * or transition to usermode execution. As such, there are no read-side
+ * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
+ * this primitive is intended to determine that all tasks have passed
+ * through a safe state, not so much for data-strcuture synchronization.
+ *
+ * See the description of call_rcu() for more detailed information on
+ * memory ordering guarantees.
+ */
+void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
+{
+ unsigned long flags;
+ bool needwake;
+
+ rhp->next = NULL;
+ rhp->func = func;
+ raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
+ needwake = !rcu_tasks_cbs_head;
+ *rcu_tasks_cbs_tail = rhp;
+ rcu_tasks_cbs_tail = &rhp->next;
+ raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
+ /* We can't create the thread unless interrupts are enabled. */
+ if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
+ wake_up(&rcu_tasks_cbs_wq);
+}
+EXPORT_SYMBOL_GPL(call_rcu_tasks);
+
+/**
+ * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
+ *
+ * Control will return to the caller some time after a full rcu-tasks
+ * grace period has elapsed, in other words after all currently
+ * executing rcu-tasks read-side critical sections have elapsed. These
+ * read-side critical sections are delimited by calls to schedule(),
+ * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
+ * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
+ *
+ * This is a very specialized primitive, intended only for a few uses in
+ * tracing and other situations requiring manipulation of function
+ * preambles and profiling hooks. The synchronize_rcu_tasks() function
+ * is not (yet) intended for heavy use from multiple CPUs.
+ *
+ * Note that this guarantee implies further memory-ordering guarantees.
+ * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
+ * each CPU is guaranteed to have executed a full memory barrier since the
+ * end of its last RCU-tasks read-side critical section whose beginning
+ * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
+ * having an RCU-tasks read-side critical section that extends beyond
+ * the return from synchronize_rcu_tasks() is guaranteed to have executed
+ * a full memory barrier after the beginning of synchronize_rcu_tasks()
+ * and before the beginning of that RCU-tasks read-side critical section.
+ * Note that these guarantees include CPUs that are offline, idle, or
+ * executing in user mode, as well as CPUs that are executing in the kernel.
+ *
+ * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
+ * to its caller on CPU B, then both CPU A and CPU B are guaranteed
+ * to have executed a full memory barrier during the execution of
+ * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
+ * (but again only if the system has more than one CPU).
+ */
+void synchronize_rcu_tasks(void)
+{
+ /* Complain if the scheduler has not started. */
+ RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
+ "synchronize_rcu_tasks called too soon");
+
+ /* Wait for the grace period. */
+ wait_rcu_gp(call_rcu_tasks);
+}
+EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
+
+/**
+ * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
+ *
+ * Although the current implementation is guaranteed to wait, it is not
+ * obligated to, for example, if there are no pending callbacks.
+ */
+void rcu_barrier_tasks(void)
+{
+ /* There is only one callback queue, so this is easy. ;-) */
+ synchronize_rcu_tasks();
+}
+EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
+
+/* See if tasks are still holding out, complain if so. */
+static void check_holdout_task(struct task_struct *t,
+ bool needreport, bool *firstreport)
+{
+ int cpu;
+
+ if (!READ_ONCE(t->rcu_tasks_holdout) ||
+ t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
+ !READ_ONCE(t->on_rq) ||
+ (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
+ !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
+ WRITE_ONCE(t->rcu_tasks_holdout, false);
+ list_del_init(&t->rcu_tasks_holdout_list);
+ put_task_struct(t);
+ return;
+ }
+ rcu_request_urgent_qs_task(t);
+ if (!needreport)
+ return;
+ if (*firstreport) {
+ pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
+ *firstreport = false;
+ }
+ cpu = task_cpu(t);
+ pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
+ t, ".I"[is_idle_task(t)],
+ "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
+ t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
+ t->rcu_tasks_idle_cpu, cpu);
+ sched_show_task(t);
+}
+
+/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
+static int __noreturn rcu_tasks_kthread(void *arg)
+{
+ unsigned long flags;
+ struct task_struct *g, *t;
+ unsigned long lastreport;
+ struct rcu_head *list;
+ struct rcu_head *next;
+ LIST_HEAD(rcu_tasks_holdouts);
+ int fract;
+
+ /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
+ housekeeping_affine(current, HK_FLAG_RCU);
+
+ /*
+ * Each pass through the following loop makes one check for
+ * newly arrived callbacks, and, if there are some, waits for
+ * one RCU-tasks grace period and then invokes the callbacks.
+ * This loop is terminated by the system going down. ;-)
+ */
+ for (;;) {
+
+ /* Pick up any new callbacks. */
+ raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
+ list = rcu_tasks_cbs_head;
+ rcu_tasks_cbs_head = NULL;
+ rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
+ raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
+
+ /* If there were none, wait a bit and start over. */
+ if (!list) {
+ wait_event_interruptible(rcu_tasks_cbs_wq,
+ rcu_tasks_cbs_head);
+ if (!rcu_tasks_cbs_head) {
+ WARN_ON(signal_pending(current));
+ schedule_timeout_interruptible(HZ/10);
+ }
+ continue;
+ }
+
+ /*
+ * Wait for all pre-existing t->on_rq and t->nvcsw
+ * transitions to complete. Invoking synchronize_sched()
+ * suffices because all these transitions occur with
+ * interrupts disabled. Without this synchronize_sched(),
+ * a read-side critical section that started before the
+ * grace period might be incorrectly seen as having started
+ * after the grace period.
+ *
+ * This synchronize_sched() also dispenses with the
+ * need for a memory barrier on the first store to
+ * ->rcu_tasks_holdout, as it forces the store to happen
+ * after the beginning of the grace period.
+ */
+ synchronize_sched();
+
+ /*
+ * There were callbacks, so we need to wait for an
+ * RCU-tasks grace period. Start off by scanning
+ * the task list for tasks that are not already
+ * voluntarily blocked. Mark these tasks and make
+ * a list of them in rcu_tasks_holdouts.
+ */
+ rcu_read_lock();
+ for_each_process_thread(g, t) {
+ if (t != current && READ_ONCE(t->on_rq) &&
+ !is_idle_task(t)) {
+ get_task_struct(t);
+ t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
+ WRITE_ONCE(t->rcu_tasks_holdout, true);
+ list_add(&t->rcu_tasks_holdout_list,
+ &rcu_tasks_holdouts);
+ }
+ }
+ rcu_read_unlock();
+
+ /*
+ * Wait for tasks that are in the process of exiting.
+ * This does only part of the job, ensuring that all
+ * tasks that were previously exiting reach the point
+ * where they have disabled preemption, allowing the
+ * later synchronize_sched() to finish the job.
+ */
+ synchronize_srcu(&tasks_rcu_exit_srcu);
+
+ /*
+ * Each pass through the following loop scans the list
+ * of holdout tasks, removing any that are no longer
+ * holdouts. When the list is empty, we are done.
+ */
+ lastreport = jiffies;
+
+ /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
+ fract = 10;
+
+ for (;;) {
+ bool firstreport;
+ bool needreport;
+ int rtst;
+ struct task_struct *t1;
+
+ if (list_empty(&rcu_tasks_holdouts))
+ break;
+
+ /* Slowly back off waiting for holdouts */
+ schedule_timeout_interruptible(HZ/fract);
+
+ if (fract > 1)
+ fract--;
+
+ rtst = READ_ONCE(rcu_task_stall_timeout);
+ needreport = rtst > 0 &&
+ time_after(jiffies, lastreport + rtst);
+ if (needreport)
+ lastreport = jiffies;
+ firstreport = true;
+ WARN_ON(signal_pending(current));
+ list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
+ rcu_tasks_holdout_list) {
+ check_holdout_task(t, needreport, &firstreport);
+ cond_resched();
+ }
+ }
+
+ /*
+ * Because ->on_rq and ->nvcsw are not guaranteed
+ * to have a full memory barriers prior to them in the
+ * schedule() path, memory reordering on other CPUs could
+ * cause their RCU-tasks read-side critical sections to
+ * extend past the end of the grace period. However,
+ * because these ->nvcsw updates are carried out with
+ * interrupts disabled, we can use synchronize_sched()
+ * to force the needed ordering on all such CPUs.
+ *
+ * This synchronize_sched() also confines all
+ * ->rcu_tasks_holdout accesses to be within the grace
+ * period, avoiding the need for memory barriers for
+ * ->rcu_tasks_holdout accesses.
+ *
+ * In addition, this synchronize_sched() waits for exiting
+ * tasks to complete their final preempt_disable() region
+ * of execution, cleaning up after the synchronize_srcu()
+ * above.
+ */
+ synchronize_sched();
+
+ /* Invoke the callbacks. */
+ while (list) {
+ next = list->next;
+ local_bh_disable();
+ list->func(list);
+ local_bh_enable();
+ list = next;
+ cond_resched();
+ }
+ /* Paranoid sleep to keep this from entering a tight loop */
+ schedule_timeout_uninterruptible(HZ/10);
+ }
+}
+
+/* Spawn rcu_tasks_kthread() at core_initcall() time. */
+static int __init rcu_spawn_tasks_kthread(void)
+{
+ struct task_struct *t;
+
+ t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
+ BUG_ON(IS_ERR(t));
+ smp_mb(); /* Ensure others see full kthread. */
+ WRITE_ONCE(rcu_tasks_kthread_ptr, t);
+ return 0;
+}
+core_initcall(rcu_spawn_tasks_kthread);
+
+/* Do the srcu_read_lock() for the above synchronize_srcu(). */
+void exit_tasks_rcu_start(void)
+{
+ preempt_disable();
+ current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
+ preempt_enable();
+}
+
+/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
+void exit_tasks_rcu_finish(void)
+{
+ preempt_disable();
+ __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
+ preempt_enable();
+}
+
+#endif /* #ifdef CONFIG_TASKS_RCU */
+
+#ifndef CONFIG_TINY_RCU
+
+/*
+ * Print any non-default Tasks RCU settings.
+ */
+static void __init rcu_tasks_bootup_oddness(void)
+{
+#ifdef CONFIG_TASKS_RCU
+ if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
+ pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
+ else
+ pr_info("\tTasks RCU enabled.\n");
+#endif /* #ifdef CONFIG_TASKS_RCU */
+}
+
+#endif /* #ifndef CONFIG_TINY_RCU */
+
+#ifdef CONFIG_PROVE_RCU
+
+/*
+ * Early boot self test parameters, one for each flavor
+ */
+static bool rcu_self_test;
+static bool rcu_self_test_bh;
+static bool rcu_self_test_sched;
+
+module_param(rcu_self_test, bool, 0444);
+module_param(rcu_self_test_bh, bool, 0444);
+module_param(rcu_self_test_sched, bool, 0444);
+
+static int rcu_self_test_counter;
+
+static void test_callback(struct rcu_head *r)
+{
+ rcu_self_test_counter++;
+ pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
+}
+
+static void early_boot_test_call_rcu(void)
+{
+ static struct rcu_head head;
+
+ call_rcu(&head, test_callback);
+}
+
+static void early_boot_test_call_rcu_bh(void)
+{
+ static struct rcu_head head;
+
+ call_rcu_bh(&head, test_callback);
+}
+
+static void early_boot_test_call_rcu_sched(void)
+{
+ static struct rcu_head head;
+
+ call_rcu_sched(&head, test_callback);
+}
+
+void rcu_early_boot_tests(void)
+{
+ pr_info("Running RCU self tests\n");
+
+ if (rcu_self_test)
+ early_boot_test_call_rcu();
+ if (rcu_self_test_bh)
+ early_boot_test_call_rcu_bh();
+ if (rcu_self_test_sched)
+ early_boot_test_call_rcu_sched();
+ rcu_test_sync_prims();
+}
+
+static int rcu_verify_early_boot_tests(void)
+{
+ int ret = 0;
+ int early_boot_test_counter = 0;
+
+ if (rcu_self_test) {
+ early_boot_test_counter++;
+ rcu_barrier();
+ }
+ if (rcu_self_test_bh) {
+ early_boot_test_counter++;
+ rcu_barrier_bh();
+ }
+ if (rcu_self_test_sched) {
+ early_boot_test_counter++;
+ rcu_barrier_sched();
+ }
+
+ if (rcu_self_test_counter != early_boot_test_counter) {
+ WARN_ON(1);
+ ret = -1;
+ }
+
+ return ret;
+}
+late_initcall(rcu_verify_early_boot_tests);
+#else
+void rcu_early_boot_tests(void) {}
+#endif /* CONFIG_PROVE_RCU */
+
+#ifndef CONFIG_TINY_RCU
+
+/*
+ * Print any significant non-default boot-time settings.
+ */
+void __init rcupdate_announce_bootup_oddness(void)
+{
+ if (rcu_normal)
+ pr_info("\tNo expedited grace period (rcu_normal).\n");
+ else if (rcu_normal_after_boot)
+ pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
+ else if (rcu_expedited)
+ pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
+ if (rcu_cpu_stall_suppress)
+ pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
+ if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
+ pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
+ rcu_tasks_bootup_oddness();
+}
+
+#endif /* #ifndef CONFIG_TINY_RCU */