diff options
Diffstat (limited to '')
-rw-r--r-- | kernel/sched/rt.c | 2749 |
1 files changed, 2749 insertions, 0 deletions
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c new file mode 100644 index 000000000..70e8cd395 --- /dev/null +++ b/kernel/sched/rt.c @@ -0,0 +1,2749 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR + * policies) + */ +#include "sched.h" + +#include "pelt.h" + +int sched_rr_timeslice = RR_TIMESLICE; +int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; + +static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); + +struct rt_bandwidth def_rt_bandwidth; + +static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) +{ + struct rt_bandwidth *rt_b = + container_of(timer, struct rt_bandwidth, rt_period_timer); + int idle = 0; + int overrun; + + raw_spin_lock(&rt_b->rt_runtime_lock); + for (;;) { + overrun = hrtimer_forward_now(timer, rt_b->rt_period); + if (!overrun) + break; + + raw_spin_unlock(&rt_b->rt_runtime_lock); + idle = do_sched_rt_period_timer(rt_b, overrun); + raw_spin_lock(&rt_b->rt_runtime_lock); + } + if (idle) + rt_b->rt_period_active = 0; + raw_spin_unlock(&rt_b->rt_runtime_lock); + + return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; +} + +void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) +{ + rt_b->rt_period = ns_to_ktime(period); + rt_b->rt_runtime = runtime; + + raw_spin_lock_init(&rt_b->rt_runtime_lock); + + hrtimer_init(&rt_b->rt_period_timer, + CLOCK_MONOTONIC, HRTIMER_MODE_REL); + rt_b->rt_period_timer.function = sched_rt_period_timer; +} + +static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) +{ + raw_spin_lock(&rt_b->rt_runtime_lock); + if (!rt_b->rt_period_active) { + rt_b->rt_period_active = 1; + /* + * SCHED_DEADLINE updates the bandwidth, as a run away + * RT task with a DL task could hog a CPU. But DL does + * not reset the period. If a deadline task was running + * without an RT task running, it can cause RT tasks to + * throttle when they start up. Kick the timer right away + * to update the period. + */ + hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); + hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); + } + raw_spin_unlock(&rt_b->rt_runtime_lock); +} + +static void start_rt_bandwidth(struct rt_bandwidth *rt_b) +{ + if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) + return; + + do_start_rt_bandwidth(rt_b); +} + +void init_rt_rq(struct rt_rq *rt_rq) +{ + struct rt_prio_array *array; + int i; + + array = &rt_rq->active; + for (i = 0; i < MAX_RT_PRIO; i++) { + INIT_LIST_HEAD(array->queue + i); + __clear_bit(i, array->bitmap); + } + /* delimiter for bitsearch: */ + __set_bit(MAX_RT_PRIO, array->bitmap); + +#if defined CONFIG_SMP + rt_rq->highest_prio.curr = MAX_RT_PRIO; + rt_rq->highest_prio.next = MAX_RT_PRIO; + rt_rq->rt_nr_migratory = 0; + rt_rq->overloaded = 0; + plist_head_init(&rt_rq->pushable_tasks); +#endif /* CONFIG_SMP */ + /* We start is dequeued state, because no RT tasks are queued */ + rt_rq->rt_queued = 0; + + rt_rq->rt_time = 0; + rt_rq->rt_throttled = 0; + rt_rq->rt_runtime = 0; + raw_spin_lock_init(&rt_rq->rt_runtime_lock); +} + +#ifdef CONFIG_RT_GROUP_SCHED +static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) +{ + hrtimer_cancel(&rt_b->rt_period_timer); +} + +#define rt_entity_is_task(rt_se) (!(rt_se)->my_q) + +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ +#ifdef CONFIG_SCHED_DEBUG + WARN_ON_ONCE(!rt_entity_is_task(rt_se)); +#endif + return container_of(rt_se, struct task_struct, rt); +} + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return rt_rq->rq; +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + return rt_se->rt_rq; +} + +static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) +{ + struct rt_rq *rt_rq = rt_se->rt_rq; + + return rt_rq->rq; +} + +void free_rt_sched_group(struct task_group *tg) +{ + int i; + + if (tg->rt_se) + destroy_rt_bandwidth(&tg->rt_bandwidth); + + for_each_possible_cpu(i) { + if (tg->rt_rq) + kfree(tg->rt_rq[i]); + if (tg->rt_se) + kfree(tg->rt_se[i]); + } + + kfree(tg->rt_rq); + kfree(tg->rt_se); +} + +void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, + struct sched_rt_entity *rt_se, int cpu, + struct sched_rt_entity *parent) +{ + struct rq *rq = cpu_rq(cpu); + + rt_rq->highest_prio.curr = MAX_RT_PRIO; + rt_rq->rt_nr_boosted = 0; + rt_rq->rq = rq; + rt_rq->tg = tg; + + tg->rt_rq[cpu] = rt_rq; + tg->rt_se[cpu] = rt_se; + + if (!rt_se) + return; + + if (!parent) + rt_se->rt_rq = &rq->rt; + else + rt_se->rt_rq = parent->my_q; + + rt_se->my_q = rt_rq; + rt_se->parent = parent; + INIT_LIST_HEAD(&rt_se->run_list); +} + +int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) +{ + struct rt_rq *rt_rq; + struct sched_rt_entity *rt_se; + int i; + + tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); + if (!tg->rt_rq) + goto err; + tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); + if (!tg->rt_se) + goto err; + + init_rt_bandwidth(&tg->rt_bandwidth, + ktime_to_ns(def_rt_bandwidth.rt_period), 0); + + for_each_possible_cpu(i) { + rt_rq = kzalloc_node(sizeof(struct rt_rq), + GFP_KERNEL, cpu_to_node(i)); + if (!rt_rq) + goto err; + + rt_se = kzalloc_node(sizeof(struct sched_rt_entity), + GFP_KERNEL, cpu_to_node(i)); + if (!rt_se) + goto err_free_rq; + + init_rt_rq(rt_rq); + rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; + init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); + } + + return 1; + +err_free_rq: + kfree(rt_rq); +err: + return 0; +} + +#else /* CONFIG_RT_GROUP_SCHED */ + +#define rt_entity_is_task(rt_se) (1) + +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ + return container_of(rt_se, struct task_struct, rt); +} + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return container_of(rt_rq, struct rq, rt); +} + +static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) +{ + struct task_struct *p = rt_task_of(rt_se); + + return task_rq(p); +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + struct rq *rq = rq_of_rt_se(rt_se); + + return &rq->rt; +} + +void free_rt_sched_group(struct task_group *tg) { } + +int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) +{ + return 1; +} +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_SMP + +static void pull_rt_task(struct rq *this_rq); + +static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) +{ + /* Try to pull RT tasks here if we lower this rq's prio */ + return rq->rt.highest_prio.curr > prev->prio; +} + +static inline int rt_overloaded(struct rq *rq) +{ + return atomic_read(&rq->rd->rto_count); +} + +static inline void rt_set_overload(struct rq *rq) +{ + if (!rq->online) + return; + + cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); + /* + * Make sure the mask is visible before we set + * the overload count. That is checked to determine + * if we should look at the mask. It would be a shame + * if we looked at the mask, but the mask was not + * updated yet. + * + * Matched by the barrier in pull_rt_task(). + */ + smp_wmb(); + atomic_inc(&rq->rd->rto_count); +} + +static inline void rt_clear_overload(struct rq *rq) +{ + if (!rq->online) + return; + + /* the order here really doesn't matter */ + atomic_dec(&rq->rd->rto_count); + cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); +} + +static void update_rt_migration(struct rt_rq *rt_rq) +{ + if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { + if (!rt_rq->overloaded) { + rt_set_overload(rq_of_rt_rq(rt_rq)); + rt_rq->overloaded = 1; + } + } else if (rt_rq->overloaded) { + rt_clear_overload(rq_of_rt_rq(rt_rq)); + rt_rq->overloaded = 0; + } +} + +static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + struct task_struct *p; + + if (!rt_entity_is_task(rt_se)) + return; + + p = rt_task_of(rt_se); + rt_rq = &rq_of_rt_rq(rt_rq)->rt; + + rt_rq->rt_nr_total++; + if (p->nr_cpus_allowed > 1) + rt_rq->rt_nr_migratory++; + + update_rt_migration(rt_rq); +} + +static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + struct task_struct *p; + + if (!rt_entity_is_task(rt_se)) + return; + + p = rt_task_of(rt_se); + rt_rq = &rq_of_rt_rq(rt_rq)->rt; + + rt_rq->rt_nr_total--; + if (p->nr_cpus_allowed > 1) + rt_rq->rt_nr_migratory--; + + update_rt_migration(rt_rq); +} + +static inline int has_pushable_tasks(struct rq *rq) +{ + return !plist_head_empty(&rq->rt.pushable_tasks); +} + +static DEFINE_PER_CPU(struct callback_head, rt_push_head); +static DEFINE_PER_CPU(struct callback_head, rt_pull_head); + +static void push_rt_tasks(struct rq *); +static void pull_rt_task(struct rq *); + +static inline void rt_queue_push_tasks(struct rq *rq) +{ + if (!has_pushable_tasks(rq)) + return; + + queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); +} + +static inline void rt_queue_pull_task(struct rq *rq) +{ + queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); +} + +static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) +{ + plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); + plist_node_init(&p->pushable_tasks, p->prio); + plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); + + /* Update the highest prio pushable task */ + if (p->prio < rq->rt.highest_prio.next) + rq->rt.highest_prio.next = p->prio; +} + +static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) +{ + plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); + + /* Update the new highest prio pushable task */ + if (has_pushable_tasks(rq)) { + p = plist_first_entry(&rq->rt.pushable_tasks, + struct task_struct, pushable_tasks); + rq->rt.highest_prio.next = p->prio; + } else + rq->rt.highest_prio.next = MAX_RT_PRIO; +} + +#else + +static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) +{ +} + +static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) +{ +} + +static inline +void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +} + +static inline +void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +} + +static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) +{ + return false; +} + +static inline void pull_rt_task(struct rq *this_rq) +{ +} + +static inline void rt_queue_push_tasks(struct rq *rq) +{ +} +#endif /* CONFIG_SMP */ + +static void enqueue_top_rt_rq(struct rt_rq *rt_rq); +static void dequeue_top_rt_rq(struct rt_rq *rt_rq); + +static inline int on_rt_rq(struct sched_rt_entity *rt_se) +{ + return rt_se->on_rq; +} + +#ifdef CONFIG_RT_GROUP_SCHED + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ + if (!rt_rq->tg) + return RUNTIME_INF; + + return rt_rq->rt_runtime; +} + +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ + return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); +} + +typedef struct task_group *rt_rq_iter_t; + +static inline struct task_group *next_task_group(struct task_group *tg) +{ + do { + tg = list_entry_rcu(tg->list.next, + typeof(struct task_group), list); + } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); + + if (&tg->list == &task_groups) + tg = NULL; + + return tg; +} + +#define for_each_rt_rq(rt_rq, iter, rq) \ + for (iter = container_of(&task_groups, typeof(*iter), list); \ + (iter = next_task_group(iter)) && \ + (rt_rq = iter->rt_rq[cpu_of(rq)]);) + +#define for_each_sched_rt_entity(rt_se) \ + for (; rt_se; rt_se = rt_se->parent) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ + return rt_se->my_q; +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); +static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); + +static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ + struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; + struct rq *rq = rq_of_rt_rq(rt_rq); + struct sched_rt_entity *rt_se; + + int cpu = cpu_of(rq); + + rt_se = rt_rq->tg->rt_se[cpu]; + + if (rt_rq->rt_nr_running) { + if (!rt_se) + enqueue_top_rt_rq(rt_rq); + else if (!on_rt_rq(rt_se)) + enqueue_rt_entity(rt_se, 0); + + if (rt_rq->highest_prio.curr < curr->prio) + resched_curr(rq); + } +} + +static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ + struct sched_rt_entity *rt_se; + int cpu = cpu_of(rq_of_rt_rq(rt_rq)); + + rt_se = rt_rq->tg->rt_se[cpu]; + + if (!rt_se) { + dequeue_top_rt_rq(rt_rq); + /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ + cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); + } + else if (on_rt_rq(rt_se)) + dequeue_rt_entity(rt_se, 0); +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; +} + +static int rt_se_boosted(struct sched_rt_entity *rt_se) +{ + struct rt_rq *rt_rq = group_rt_rq(rt_se); + struct task_struct *p; + + if (rt_rq) + return !!rt_rq->rt_nr_boosted; + + p = rt_task_of(rt_se); + return p->prio != p->normal_prio; +} + +#ifdef CONFIG_SMP +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return this_rq()->rd->span; +} +#else +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_online_mask; +} +#endif + +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ + return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; +} + +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ + return &rt_rq->tg->rt_bandwidth; +} + +#else /* !CONFIG_RT_GROUP_SCHED */ + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ + return rt_rq->rt_runtime; +} + +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ + return ktime_to_ns(def_rt_bandwidth.rt_period); +} + +typedef struct rt_rq *rt_rq_iter_t; + +#define for_each_rt_rq(rt_rq, iter, rq) \ + for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) + +#define for_each_sched_rt_entity(rt_se) \ + for (; rt_se; rt_se = NULL) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ + return NULL; +} + +static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ + struct rq *rq = rq_of_rt_rq(rt_rq); + + if (!rt_rq->rt_nr_running) + return; + + enqueue_top_rt_rq(rt_rq); + resched_curr(rq); +} + +static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ + dequeue_top_rt_rq(rt_rq); +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled; +} + +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_online_mask; +} + +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ + return &cpu_rq(cpu)->rt; +} + +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ + return &def_rt_bandwidth; +} + +#endif /* CONFIG_RT_GROUP_SCHED */ + +bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) +{ + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + + return (hrtimer_active(&rt_b->rt_period_timer) || + rt_rq->rt_time < rt_b->rt_runtime); +} + +#ifdef CONFIG_SMP +/* + * We ran out of runtime, see if we can borrow some from our neighbours. + */ +static void do_balance_runtime(struct rt_rq *rt_rq) +{ + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; + int i, weight; + u64 rt_period; + + weight = cpumask_weight(rd->span); + + raw_spin_lock(&rt_b->rt_runtime_lock); + rt_period = ktime_to_ns(rt_b->rt_period); + for_each_cpu(i, rd->span) { + struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); + s64 diff; + + if (iter == rt_rq) + continue; + + raw_spin_lock(&iter->rt_runtime_lock); + /* + * Either all rqs have inf runtime and there's nothing to steal + * or __disable_runtime() below sets a specific rq to inf to + * indicate its been disabled and disalow stealing. + */ + if (iter->rt_runtime == RUNTIME_INF) + goto next; + + /* + * From runqueues with spare time, take 1/n part of their + * spare time, but no more than our period. + */ + diff = iter->rt_runtime - iter->rt_time; + if (diff > 0) { + diff = div_u64((u64)diff, weight); + if (rt_rq->rt_runtime + diff > rt_period) + diff = rt_period - rt_rq->rt_runtime; + iter->rt_runtime -= diff; + rt_rq->rt_runtime += diff; + if (rt_rq->rt_runtime == rt_period) { + raw_spin_unlock(&iter->rt_runtime_lock); + break; + } + } +next: + raw_spin_unlock(&iter->rt_runtime_lock); + } + raw_spin_unlock(&rt_b->rt_runtime_lock); +} + +/* + * Ensure this RQ takes back all the runtime it lend to its neighbours. + */ +static void __disable_runtime(struct rq *rq) +{ + struct root_domain *rd = rq->rd; + rt_rq_iter_t iter; + struct rt_rq *rt_rq; + + if (unlikely(!scheduler_running)) + return; + + for_each_rt_rq(rt_rq, iter, rq) { + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + s64 want; + int i; + + raw_spin_lock(&rt_b->rt_runtime_lock); + raw_spin_lock(&rt_rq->rt_runtime_lock); + /* + * Either we're all inf and nobody needs to borrow, or we're + * already disabled and thus have nothing to do, or we have + * exactly the right amount of runtime to take out. + */ + if (rt_rq->rt_runtime == RUNTIME_INF || + rt_rq->rt_runtime == rt_b->rt_runtime) + goto balanced; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + + /* + * Calculate the difference between what we started out with + * and what we current have, that's the amount of runtime + * we lend and now have to reclaim. + */ + want = rt_b->rt_runtime - rt_rq->rt_runtime; + + /* + * Greedy reclaim, take back as much as we can. + */ + for_each_cpu(i, rd->span) { + struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); + s64 diff; + + /* + * Can't reclaim from ourselves or disabled runqueues. + */ + if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) + continue; + + raw_spin_lock(&iter->rt_runtime_lock); + if (want > 0) { + diff = min_t(s64, iter->rt_runtime, want); + iter->rt_runtime -= diff; + want -= diff; + } else { + iter->rt_runtime -= want; + want -= want; + } + raw_spin_unlock(&iter->rt_runtime_lock); + + if (!want) + break; + } + + raw_spin_lock(&rt_rq->rt_runtime_lock); + /* + * We cannot be left wanting - that would mean some runtime + * leaked out of the system. + */ + BUG_ON(want); +balanced: + /* + * Disable all the borrow logic by pretending we have inf + * runtime - in which case borrowing doesn't make sense. + */ + rt_rq->rt_runtime = RUNTIME_INF; + rt_rq->rt_throttled = 0; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + raw_spin_unlock(&rt_b->rt_runtime_lock); + + /* Make rt_rq available for pick_next_task() */ + sched_rt_rq_enqueue(rt_rq); + } +} + +static void __enable_runtime(struct rq *rq) +{ + rt_rq_iter_t iter; + struct rt_rq *rt_rq; + + if (unlikely(!scheduler_running)) + return; + + /* + * Reset each runqueue's bandwidth settings + */ + for_each_rt_rq(rt_rq, iter, rq) { + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + + raw_spin_lock(&rt_b->rt_runtime_lock); + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = rt_b->rt_runtime; + rt_rq->rt_time = 0; + rt_rq->rt_throttled = 0; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + raw_spin_unlock(&rt_b->rt_runtime_lock); + } +} + +static void balance_runtime(struct rt_rq *rt_rq) +{ + if (!sched_feat(RT_RUNTIME_SHARE)) + return; + + if (rt_rq->rt_time > rt_rq->rt_runtime) { + raw_spin_unlock(&rt_rq->rt_runtime_lock); + do_balance_runtime(rt_rq); + raw_spin_lock(&rt_rq->rt_runtime_lock); + } +} +#else /* !CONFIG_SMP */ +static inline void balance_runtime(struct rt_rq *rt_rq) {} +#endif /* CONFIG_SMP */ + +static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) +{ + int i, idle = 1, throttled = 0; + const struct cpumask *span; + + span = sched_rt_period_mask(); +#ifdef CONFIG_RT_GROUP_SCHED + /* + * FIXME: isolated CPUs should really leave the root task group, + * whether they are isolcpus or were isolated via cpusets, lest + * the timer run on a CPU which does not service all runqueues, + * potentially leaving other CPUs indefinitely throttled. If + * isolation is really required, the user will turn the throttle + * off to kill the perturbations it causes anyway. Meanwhile, + * this maintains functionality for boot and/or troubleshooting. + */ + if (rt_b == &root_task_group.rt_bandwidth) + span = cpu_online_mask; +#endif + for_each_cpu(i, span) { + int enqueue = 0; + struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); + struct rq *rq = rq_of_rt_rq(rt_rq); + int skip; + + /* + * When span == cpu_online_mask, taking each rq->lock + * can be time-consuming. Try to avoid it when possible. + */ + raw_spin_lock(&rt_rq->rt_runtime_lock); + if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) + rt_rq->rt_runtime = rt_b->rt_runtime; + skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + if (skip) + continue; + + raw_spin_lock(&rq->lock); + update_rq_clock(rq); + + if (rt_rq->rt_time) { + u64 runtime; + + raw_spin_lock(&rt_rq->rt_runtime_lock); + if (rt_rq->rt_throttled) + balance_runtime(rt_rq); + runtime = rt_rq->rt_runtime; + rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); + if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { + rt_rq->rt_throttled = 0; + enqueue = 1; + + /* + * When we're idle and a woken (rt) task is + * throttled check_preempt_curr() will set + * skip_update and the time between the wakeup + * and this unthrottle will get accounted as + * 'runtime'. + */ + if (rt_rq->rt_nr_running && rq->curr == rq->idle) + rq_clock_cancel_skipupdate(rq); + } + if (rt_rq->rt_time || rt_rq->rt_nr_running) + idle = 0; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } else if (rt_rq->rt_nr_running) { + idle = 0; + if (!rt_rq_throttled(rt_rq)) + enqueue = 1; + } + if (rt_rq->rt_throttled) + throttled = 1; + + if (enqueue) + sched_rt_rq_enqueue(rt_rq); + raw_spin_unlock(&rq->lock); + } + + if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) + return 1; + + return idle; +} + +static inline int rt_se_prio(struct sched_rt_entity *rt_se) +{ +#ifdef CONFIG_RT_GROUP_SCHED + struct rt_rq *rt_rq = group_rt_rq(rt_se); + + if (rt_rq) + return rt_rq->highest_prio.curr; +#endif + + return rt_task_of(rt_se)->prio; +} + +static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) +{ + u64 runtime = sched_rt_runtime(rt_rq); + + if (rt_rq->rt_throttled) + return rt_rq_throttled(rt_rq); + + if (runtime >= sched_rt_period(rt_rq)) + return 0; + + balance_runtime(rt_rq); + runtime = sched_rt_runtime(rt_rq); + if (runtime == RUNTIME_INF) + return 0; + + if (rt_rq->rt_time > runtime) { + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + + /* + * Don't actually throttle groups that have no runtime assigned + * but accrue some time due to boosting. + */ + if (likely(rt_b->rt_runtime)) { + rt_rq->rt_throttled = 1; + printk_deferred_once("sched: RT throttling activated\n"); + } else { + /* + * In case we did anyway, make it go away, + * replenishment is a joke, since it will replenish us + * with exactly 0 ns. + */ + rt_rq->rt_time = 0; + } + + if (rt_rq_throttled(rt_rq)) { + sched_rt_rq_dequeue(rt_rq); + return 1; + } + } + + return 0; +} + +/* + * Update the current task's runtime statistics. Skip current tasks that + * are not in our scheduling class. + */ +static void update_curr_rt(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + struct sched_rt_entity *rt_se = &curr->rt; + u64 delta_exec; + u64 now; + + if (curr->sched_class != &rt_sched_class) + return; + + now = rq_clock_task(rq); + delta_exec = now - curr->se.exec_start; + if (unlikely((s64)delta_exec <= 0)) + return; + + schedstat_set(curr->se.statistics.exec_max, + max(curr->se.statistics.exec_max, delta_exec)); + + curr->se.sum_exec_runtime += delta_exec; + account_group_exec_runtime(curr, delta_exec); + + curr->se.exec_start = now; + cgroup_account_cputime(curr, delta_exec); + + if (!rt_bandwidth_enabled()) + return; + + for_each_sched_rt_entity(rt_se) { + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + int exceeded; + + if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_time += delta_exec; + exceeded = sched_rt_runtime_exceeded(rt_rq); + if (exceeded) + resched_curr(rq); + raw_spin_unlock(&rt_rq->rt_runtime_lock); + if (exceeded) + do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); + } + } +} + +static void +dequeue_top_rt_rq(struct rt_rq *rt_rq) +{ + struct rq *rq = rq_of_rt_rq(rt_rq); + + BUG_ON(&rq->rt != rt_rq); + + if (!rt_rq->rt_queued) + return; + + BUG_ON(!rq->nr_running); + + sub_nr_running(rq, rt_rq->rt_nr_running); + rt_rq->rt_queued = 0; + +} + +static void +enqueue_top_rt_rq(struct rt_rq *rt_rq) +{ + struct rq *rq = rq_of_rt_rq(rt_rq); + + BUG_ON(&rq->rt != rt_rq); + + if (rt_rq->rt_queued) + return; + + if (rt_rq_throttled(rt_rq)) + return; + + if (rt_rq->rt_nr_running) { + add_nr_running(rq, rt_rq->rt_nr_running); + rt_rq->rt_queued = 1; + } + + /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ + cpufreq_update_util(rq, 0); +} + +#if defined CONFIG_SMP + +static void +inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) +{ + struct rq *rq = rq_of_rt_rq(rt_rq); + +#ifdef CONFIG_RT_GROUP_SCHED + /* + * Change rq's cpupri only if rt_rq is the top queue. + */ + if (&rq->rt != rt_rq) + return; +#endif + if (rq->online && prio < prev_prio) + cpupri_set(&rq->rd->cpupri, rq->cpu, prio); +} + +static void +dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) +{ + struct rq *rq = rq_of_rt_rq(rt_rq); + +#ifdef CONFIG_RT_GROUP_SCHED + /* + * Change rq's cpupri only if rt_rq is the top queue. + */ + if (&rq->rt != rt_rq) + return; +#endif + if (rq->online && rt_rq->highest_prio.curr != prev_prio) + cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); +} + +#else /* CONFIG_SMP */ + +static inline +void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} +static inline +void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} + +#endif /* CONFIG_SMP */ + +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED +static void +inc_rt_prio(struct rt_rq *rt_rq, int prio) +{ + int prev_prio = rt_rq->highest_prio.curr; + + if (prio < prev_prio) + rt_rq->highest_prio.curr = prio; + + inc_rt_prio_smp(rt_rq, prio, prev_prio); +} + +static void +dec_rt_prio(struct rt_rq *rt_rq, int prio) +{ + int prev_prio = rt_rq->highest_prio.curr; + + if (rt_rq->rt_nr_running) { + + WARN_ON(prio < prev_prio); + + /* + * This may have been our highest task, and therefore + * we may have some recomputation to do + */ + if (prio == prev_prio) { + struct rt_prio_array *array = &rt_rq->active; + + rt_rq->highest_prio.curr = + sched_find_first_bit(array->bitmap); + } + + } else + rt_rq->highest_prio.curr = MAX_RT_PRIO; + + dec_rt_prio_smp(rt_rq, prio, prev_prio); +} + +#else + +static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} +static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} + +#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_RT_GROUP_SCHED + +static void +inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted++; + + if (rt_rq->tg) + start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); +} + +static void +dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted--; + + WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); +} + +#else /* CONFIG_RT_GROUP_SCHED */ + +static void +inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + start_rt_bandwidth(&def_rt_bandwidth); +} + +static inline +void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} + +#endif /* CONFIG_RT_GROUP_SCHED */ + +static inline +unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) +{ + struct rt_rq *group_rq = group_rt_rq(rt_se); + + if (group_rq) + return group_rq->rt_nr_running; + else + return 1; +} + +static inline +unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) +{ + struct rt_rq *group_rq = group_rt_rq(rt_se); + struct task_struct *tsk; + + if (group_rq) + return group_rq->rr_nr_running; + + tsk = rt_task_of(rt_se); + + return (tsk->policy == SCHED_RR) ? 1 : 0; +} + +static inline +void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + int prio = rt_se_prio(rt_se); + + WARN_ON(!rt_prio(prio)); + rt_rq->rt_nr_running += rt_se_nr_running(rt_se); + rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); + + inc_rt_prio(rt_rq, prio); + inc_rt_migration(rt_se, rt_rq); + inc_rt_group(rt_se, rt_rq); +} + +static inline +void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + WARN_ON(!rt_prio(rt_se_prio(rt_se))); + WARN_ON(!rt_rq->rt_nr_running); + rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); + rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); + + dec_rt_prio(rt_rq, rt_se_prio(rt_se)); + dec_rt_migration(rt_se, rt_rq); + dec_rt_group(rt_se, rt_rq); +} + +/* + * Change rt_se->run_list location unless SAVE && !MOVE + * + * assumes ENQUEUE/DEQUEUE flags match + */ +static inline bool move_entity(unsigned int flags) +{ + if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) + return false; + + return true; +} + +static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) +{ + list_del_init(&rt_se->run_list); + + if (list_empty(array->queue + rt_se_prio(rt_se))) + __clear_bit(rt_se_prio(rt_se), array->bitmap); + + rt_se->on_list = 0; +} + +static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) +{ + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + struct rt_prio_array *array = &rt_rq->active; + struct rt_rq *group_rq = group_rt_rq(rt_se); + struct list_head *queue = array->queue + rt_se_prio(rt_se); + + /* + * Don't enqueue the group if its throttled, or when empty. + * The latter is a consequence of the former when a child group + * get throttled and the current group doesn't have any other + * active members. + */ + if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { + if (rt_se->on_list) + __delist_rt_entity(rt_se, array); + return; + } + + if (move_entity(flags)) { + WARN_ON_ONCE(rt_se->on_list); + if (flags & ENQUEUE_HEAD) + list_add(&rt_se->run_list, queue); + else + list_add_tail(&rt_se->run_list, queue); + + __set_bit(rt_se_prio(rt_se), array->bitmap); + rt_se->on_list = 1; + } + rt_se->on_rq = 1; + + inc_rt_tasks(rt_se, rt_rq); +} + +static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) +{ + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + struct rt_prio_array *array = &rt_rq->active; + + if (move_entity(flags)) { + WARN_ON_ONCE(!rt_se->on_list); + __delist_rt_entity(rt_se, array); + } + rt_se->on_rq = 0; + + dec_rt_tasks(rt_se, rt_rq); +} + +/* + * Because the prio of an upper entry depends on the lower + * entries, we must remove entries top - down. + */ +static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) +{ + struct sched_rt_entity *back = NULL; + + for_each_sched_rt_entity(rt_se) { + rt_se->back = back; + back = rt_se; + } + + dequeue_top_rt_rq(rt_rq_of_se(back)); + + for (rt_se = back; rt_se; rt_se = rt_se->back) { + if (on_rt_rq(rt_se)) + __dequeue_rt_entity(rt_se, flags); + } +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) +{ + struct rq *rq = rq_of_rt_se(rt_se); + + dequeue_rt_stack(rt_se, flags); + for_each_sched_rt_entity(rt_se) + __enqueue_rt_entity(rt_se, flags); + enqueue_top_rt_rq(&rq->rt); +} + +static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) +{ + struct rq *rq = rq_of_rt_se(rt_se); + + dequeue_rt_stack(rt_se, flags); + + for_each_sched_rt_entity(rt_se) { + struct rt_rq *rt_rq = group_rt_rq(rt_se); + + if (rt_rq && rt_rq->rt_nr_running) + __enqueue_rt_entity(rt_se, flags); + } + enqueue_top_rt_rq(&rq->rt); +} + +/* + * Adding/removing a task to/from a priority array: + */ +static void +enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) +{ + struct sched_rt_entity *rt_se = &p->rt; + + if (flags & ENQUEUE_WAKEUP) + rt_se->timeout = 0; + + enqueue_rt_entity(rt_se, flags); + + if (!task_current(rq, p) && p->nr_cpus_allowed > 1) + enqueue_pushable_task(rq, p); +} + +static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) +{ + struct sched_rt_entity *rt_se = &p->rt; + + update_curr_rt(rq); + dequeue_rt_entity(rt_se, flags); + + dequeue_pushable_task(rq, p); +} + +/* + * Put task to the head or the end of the run list without the overhead of + * dequeue followed by enqueue. + */ +static void +requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) +{ + if (on_rt_rq(rt_se)) { + struct rt_prio_array *array = &rt_rq->active; + struct list_head *queue = array->queue + rt_se_prio(rt_se); + + if (head) + list_move(&rt_se->run_list, queue); + else + list_move_tail(&rt_se->run_list, queue); + } +} + +static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) +{ + struct sched_rt_entity *rt_se = &p->rt; + struct rt_rq *rt_rq; + + for_each_sched_rt_entity(rt_se) { + rt_rq = rt_rq_of_se(rt_se); + requeue_rt_entity(rt_rq, rt_se, head); + } +} + +static void yield_task_rt(struct rq *rq) +{ + requeue_task_rt(rq, rq->curr, 0); +} + +#ifdef CONFIG_SMP +static int find_lowest_rq(struct task_struct *task); + +static int +select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) +{ + struct task_struct *curr; + struct rq *rq; + + /* For anything but wake ups, just return the task_cpu */ + if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) + goto out; + + rq = cpu_rq(cpu); + + rcu_read_lock(); + curr = READ_ONCE(rq->curr); /* unlocked access */ + + /* + * If the current task on @p's runqueue is an RT task, then + * try to see if we can wake this RT task up on another + * runqueue. Otherwise simply start this RT task + * on its current runqueue. + * + * We want to avoid overloading runqueues. If the woken + * task is a higher priority, then it will stay on this CPU + * and the lower prio task should be moved to another CPU. + * Even though this will probably make the lower prio task + * lose its cache, we do not want to bounce a higher task + * around just because it gave up its CPU, perhaps for a + * lock? + * + * For equal prio tasks, we just let the scheduler sort it out. + * + * Otherwise, just let it ride on the affined RQ and the + * post-schedule router will push the preempted task away + * + * This test is optimistic, if we get it wrong the load-balancer + * will have to sort it out. + */ + if (curr && unlikely(rt_task(curr)) && + (curr->nr_cpus_allowed < 2 || + curr->prio <= p->prio)) { + int target = find_lowest_rq(p); + + /* + * Don't bother moving it if the destination CPU is + * not running a lower priority task. + */ + if (target != -1 && + p->prio < cpu_rq(target)->rt.highest_prio.curr) + cpu = target; + } + rcu_read_unlock(); + +out: + return cpu; +} + +static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) +{ + /* + * Current can't be migrated, useless to reschedule, + * let's hope p can move out. + */ + if (rq->curr->nr_cpus_allowed == 1 || + !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) + return; + + /* + * p is migratable, so let's not schedule it and + * see if it is pushed or pulled somewhere else. + */ + if (p->nr_cpus_allowed != 1 + && cpupri_find(&rq->rd->cpupri, p, NULL)) + return; + + /* + * There appear to be other CPUs that can accept + * the current task but none can run 'p', so lets reschedule + * to try and push the current task away: + */ + requeue_task_rt(rq, p, 1); + resched_curr(rq); +} + +#endif /* CONFIG_SMP */ + +/* + * Preempt the current task with a newly woken task if needed: + */ +static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) +{ + if (p->prio < rq->curr->prio) { + resched_curr(rq); + return; + } + +#ifdef CONFIG_SMP + /* + * If: + * + * - the newly woken task is of equal priority to the current task + * - the newly woken task is non-migratable while current is migratable + * - current will be preempted on the next reschedule + * + * we should check to see if current can readily move to a different + * cpu. If so, we will reschedule to allow the push logic to try + * to move current somewhere else, making room for our non-migratable + * task. + */ + if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) + check_preempt_equal_prio(rq, p); +#endif +} + +static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, + struct rt_rq *rt_rq) +{ + struct rt_prio_array *array = &rt_rq->active; + struct sched_rt_entity *next = NULL; + struct list_head *queue; + int idx; + + idx = sched_find_first_bit(array->bitmap); + BUG_ON(idx >= MAX_RT_PRIO); + + queue = array->queue + idx; + next = list_entry(queue->next, struct sched_rt_entity, run_list); + + return next; +} + +static struct task_struct *_pick_next_task_rt(struct rq *rq) +{ + struct sched_rt_entity *rt_se; + struct task_struct *p; + struct rt_rq *rt_rq = &rq->rt; + + do { + rt_se = pick_next_rt_entity(rq, rt_rq); + BUG_ON(!rt_se); + rt_rq = group_rt_rq(rt_se); + } while (rt_rq); + + p = rt_task_of(rt_se); + p->se.exec_start = rq_clock_task(rq); + + return p; +} + +static struct task_struct * +pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) +{ + struct task_struct *p; + struct rt_rq *rt_rq = &rq->rt; + + if (need_pull_rt_task(rq, prev)) { + /* + * This is OK, because current is on_cpu, which avoids it being + * picked for load-balance and preemption/IRQs are still + * disabled avoiding further scheduler activity on it and we're + * being very careful to re-start the picking loop. + */ + rq_unpin_lock(rq, rf); + pull_rt_task(rq); + rq_repin_lock(rq, rf); + /* + * pull_rt_task() can drop (and re-acquire) rq->lock; this + * means a dl or stop task can slip in, in which case we need + * to re-start task selection. + */ + if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || + rq->dl.dl_nr_running)) + return RETRY_TASK; + } + + /* + * We may dequeue prev's rt_rq in put_prev_task(). + * So, we update time before rt_nr_running check. + */ + if (prev->sched_class == &rt_sched_class) + update_curr_rt(rq); + + if (!rt_rq->rt_queued) + return NULL; + + put_prev_task(rq, prev); + + p = _pick_next_task_rt(rq); + + /* The running task is never eligible for pushing */ + dequeue_pushable_task(rq, p); + + rt_queue_push_tasks(rq); + + /* + * If prev task was rt, put_prev_task() has already updated the + * utilization. We only care of the case where we start to schedule a + * rt task + */ + if (rq->curr->sched_class != &rt_sched_class) + update_rt_rq_load_avg(rq_clock_task(rq), rq, 0); + + return p; +} + +static void put_prev_task_rt(struct rq *rq, struct task_struct *p) +{ + update_curr_rt(rq); + + update_rt_rq_load_avg(rq_clock_task(rq), rq, 1); + + /* + * The previous task needs to be made eligible for pushing + * if it is still active + */ + if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) + enqueue_pushable_task(rq, p); +} + +#ifdef CONFIG_SMP + +/* Only try algorithms three times */ +#define RT_MAX_TRIES 3 + +static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) +{ + if (!task_running(rq, p) && + cpumask_test_cpu(cpu, &p->cpus_allowed)) + return 1; + + return 0; +} + +/* + * Return the highest pushable rq's task, which is suitable to be executed + * on the CPU, NULL otherwise + */ +static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) +{ + struct plist_head *head = &rq->rt.pushable_tasks; + struct task_struct *p; + + if (!has_pushable_tasks(rq)) + return NULL; + + plist_for_each_entry(p, head, pushable_tasks) { + if (pick_rt_task(rq, p, cpu)) + return p; + } + + return NULL; +} + +static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); + +static int find_lowest_rq(struct task_struct *task) +{ + struct sched_domain *sd; + struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); + int this_cpu = smp_processor_id(); + int cpu = task_cpu(task); + + /* Make sure the mask is initialized first */ + if (unlikely(!lowest_mask)) + return -1; + + if (task->nr_cpus_allowed == 1) + return -1; /* No other targets possible */ + + if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) + return -1; /* No targets found */ + + /* + * At this point we have built a mask of CPUs representing the + * lowest priority tasks in the system. Now we want to elect + * the best one based on our affinity and topology. + * + * We prioritize the last CPU that the task executed on since + * it is most likely cache-hot in that location. + */ + if (cpumask_test_cpu(cpu, lowest_mask)) + return cpu; + + /* + * Otherwise, we consult the sched_domains span maps to figure + * out which CPU is logically closest to our hot cache data. + */ + if (!cpumask_test_cpu(this_cpu, lowest_mask)) + this_cpu = -1; /* Skip this_cpu opt if not among lowest */ + + rcu_read_lock(); + for_each_domain(cpu, sd) { + if (sd->flags & SD_WAKE_AFFINE) { + int best_cpu; + + /* + * "this_cpu" is cheaper to preempt than a + * remote processor. + */ + if (this_cpu != -1 && + cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { + rcu_read_unlock(); + return this_cpu; + } + + best_cpu = cpumask_first_and(lowest_mask, + sched_domain_span(sd)); + if (best_cpu < nr_cpu_ids) { + rcu_read_unlock(); + return best_cpu; + } + } + } + rcu_read_unlock(); + + /* + * And finally, if there were no matches within the domains + * just give the caller *something* to work with from the compatible + * locations. + */ + if (this_cpu != -1) + return this_cpu; + + cpu = cpumask_any(lowest_mask); + if (cpu < nr_cpu_ids) + return cpu; + + return -1; +} + +/* Will lock the rq it finds */ +static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) +{ + struct rq *lowest_rq = NULL; + int tries; + int cpu; + + for (tries = 0; tries < RT_MAX_TRIES; tries++) { + cpu = find_lowest_rq(task); + + if ((cpu == -1) || (cpu == rq->cpu)) + break; + + lowest_rq = cpu_rq(cpu); + + if (lowest_rq->rt.highest_prio.curr <= task->prio) { + /* + * Target rq has tasks of equal or higher priority, + * retrying does not release any lock and is unlikely + * to yield a different result. + */ + lowest_rq = NULL; + break; + } + + /* if the prio of this runqueue changed, try again */ + if (double_lock_balance(rq, lowest_rq)) { + /* + * We had to unlock the run queue. In + * the mean time, task could have + * migrated already or had its affinity changed. + * Also make sure that it wasn't scheduled on its rq. + */ + if (unlikely(task_rq(task) != rq || + !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || + task_running(rq, task) || + !rt_task(task) || + !task_on_rq_queued(task))) { + + double_unlock_balance(rq, lowest_rq); + lowest_rq = NULL; + break; + } + } + + /* If this rq is still suitable use it. */ + if (lowest_rq->rt.highest_prio.curr > task->prio) + break; + + /* try again */ + double_unlock_balance(rq, lowest_rq); + lowest_rq = NULL; + } + + return lowest_rq; +} + +static struct task_struct *pick_next_pushable_task(struct rq *rq) +{ + struct task_struct *p; + + if (!has_pushable_tasks(rq)) + return NULL; + + p = plist_first_entry(&rq->rt.pushable_tasks, + struct task_struct, pushable_tasks); + + BUG_ON(rq->cpu != task_cpu(p)); + BUG_ON(task_current(rq, p)); + BUG_ON(p->nr_cpus_allowed <= 1); + + BUG_ON(!task_on_rq_queued(p)); + BUG_ON(!rt_task(p)); + + return p; +} + +/* + * If the current CPU has more than one RT task, see if the non + * running task can migrate over to a CPU that is running a task + * of lesser priority. + */ +static int push_rt_task(struct rq *rq) +{ + struct task_struct *next_task; + struct rq *lowest_rq; + int ret = 0; + + if (!rq->rt.overloaded) + return 0; + + next_task = pick_next_pushable_task(rq); + if (!next_task) + return 0; + +retry: + if (unlikely(next_task == rq->curr)) { + WARN_ON(1); + return 0; + } + + /* + * It's possible that the next_task slipped in of + * higher priority than current. If that's the case + * just reschedule current. + */ + if (unlikely(next_task->prio < rq->curr->prio)) { + resched_curr(rq); + return 0; + } + + /* We might release rq lock */ + get_task_struct(next_task); + + /* find_lock_lowest_rq locks the rq if found */ + lowest_rq = find_lock_lowest_rq(next_task, rq); + if (!lowest_rq) { + struct task_struct *task; + /* + * find_lock_lowest_rq releases rq->lock + * so it is possible that next_task has migrated. + * + * We need to make sure that the task is still on the same + * run-queue and is also still the next task eligible for + * pushing. + */ + task = pick_next_pushable_task(rq); + if (task == next_task) { + /* + * The task hasn't migrated, and is still the next + * eligible task, but we failed to find a run-queue + * to push it to. Do not retry in this case, since + * other CPUs will pull from us when ready. + */ + goto out; + } + + if (!task) + /* No more tasks, just exit */ + goto out; + + /* + * Something has shifted, try again. + */ + put_task_struct(next_task); + next_task = task; + goto retry; + } + + deactivate_task(rq, next_task, 0); + set_task_cpu(next_task, lowest_rq->cpu); + activate_task(lowest_rq, next_task, 0); + ret = 1; + + resched_curr(lowest_rq); + + double_unlock_balance(rq, lowest_rq); + +out: + put_task_struct(next_task); + + return ret; +} + +static void push_rt_tasks(struct rq *rq) +{ + /* push_rt_task will return true if it moved an RT */ + while (push_rt_task(rq)) + ; +} + +#ifdef HAVE_RT_PUSH_IPI + +/* + * When a high priority task schedules out from a CPU and a lower priority + * task is scheduled in, a check is made to see if there's any RT tasks + * on other CPUs that are waiting to run because a higher priority RT task + * is currently running on its CPU. In this case, the CPU with multiple RT + * tasks queued on it (overloaded) needs to be notified that a CPU has opened + * up that may be able to run one of its non-running queued RT tasks. + * + * All CPUs with overloaded RT tasks need to be notified as there is currently + * no way to know which of these CPUs have the highest priority task waiting + * to run. Instead of trying to take a spinlock on each of these CPUs, + * which has shown to cause large latency when done on machines with many + * CPUs, sending an IPI to the CPUs to have them push off the overloaded + * RT tasks waiting to run. + * + * Just sending an IPI to each of the CPUs is also an issue, as on large + * count CPU machines, this can cause an IPI storm on a CPU, especially + * if its the only CPU with multiple RT tasks queued, and a large number + * of CPUs scheduling a lower priority task at the same time. + * + * Each root domain has its own irq work function that can iterate over + * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT + * tassk must be checked if there's one or many CPUs that are lowering + * their priority, there's a single irq work iterator that will try to + * push off RT tasks that are waiting to run. + * + * When a CPU schedules a lower priority task, it will kick off the + * irq work iterator that will jump to each CPU with overloaded RT tasks. + * As it only takes the first CPU that schedules a lower priority task + * to start the process, the rto_start variable is incremented and if + * the atomic result is one, then that CPU will try to take the rto_lock. + * This prevents high contention on the lock as the process handles all + * CPUs scheduling lower priority tasks. + * + * All CPUs that are scheduling a lower priority task will increment the + * rt_loop_next variable. This will make sure that the irq work iterator + * checks all RT overloaded CPUs whenever a CPU schedules a new lower + * priority task, even if the iterator is in the middle of a scan. Incrementing + * the rt_loop_next will cause the iterator to perform another scan. + * + */ +static int rto_next_cpu(struct root_domain *rd) +{ + int next; + int cpu; + + /* + * When starting the IPI RT pushing, the rto_cpu is set to -1, + * rt_next_cpu() will simply return the first CPU found in + * the rto_mask. + * + * If rto_next_cpu() is called with rto_cpu is a valid CPU, it + * will return the next CPU found in the rto_mask. + * + * If there are no more CPUs left in the rto_mask, then a check is made + * against rto_loop and rto_loop_next. rto_loop is only updated with + * the rto_lock held, but any CPU may increment the rto_loop_next + * without any locking. + */ + for (;;) { + + /* When rto_cpu is -1 this acts like cpumask_first() */ + cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); + + rd->rto_cpu = cpu; + + if (cpu < nr_cpu_ids) + return cpu; + + rd->rto_cpu = -1; + + /* + * ACQUIRE ensures we see the @rto_mask changes + * made prior to the @next value observed. + * + * Matches WMB in rt_set_overload(). + */ + next = atomic_read_acquire(&rd->rto_loop_next); + + if (rd->rto_loop == next) + break; + + rd->rto_loop = next; + } + + return -1; +} + +static inline bool rto_start_trylock(atomic_t *v) +{ + return !atomic_cmpxchg_acquire(v, 0, 1); +} + +static inline void rto_start_unlock(atomic_t *v) +{ + atomic_set_release(v, 0); +} + +static void tell_cpu_to_push(struct rq *rq) +{ + int cpu = -1; + + /* Keep the loop going if the IPI is currently active */ + atomic_inc(&rq->rd->rto_loop_next); + + /* Only one CPU can initiate a loop at a time */ + if (!rto_start_trylock(&rq->rd->rto_loop_start)) + return; + + raw_spin_lock(&rq->rd->rto_lock); + + /* + * The rto_cpu is updated under the lock, if it has a valid CPU + * then the IPI is still running and will continue due to the + * update to loop_next, and nothing needs to be done here. + * Otherwise it is finishing up and an ipi needs to be sent. + */ + if (rq->rd->rto_cpu < 0) + cpu = rto_next_cpu(rq->rd); + + raw_spin_unlock(&rq->rd->rto_lock); + + rto_start_unlock(&rq->rd->rto_loop_start); + + if (cpu >= 0) { + /* Make sure the rd does not get freed while pushing */ + sched_get_rd(rq->rd); + irq_work_queue_on(&rq->rd->rto_push_work, cpu); + } +} + +/* Called from hardirq context */ +void rto_push_irq_work_func(struct irq_work *work) +{ + struct root_domain *rd = + container_of(work, struct root_domain, rto_push_work); + struct rq *rq; + int cpu; + + rq = this_rq(); + + /* + * We do not need to grab the lock to check for has_pushable_tasks. + * When it gets updated, a check is made if a push is possible. + */ + if (has_pushable_tasks(rq)) { + raw_spin_lock(&rq->lock); + push_rt_tasks(rq); + raw_spin_unlock(&rq->lock); + } + + raw_spin_lock(&rd->rto_lock); + + /* Pass the IPI to the next rt overloaded queue */ + cpu = rto_next_cpu(rd); + + raw_spin_unlock(&rd->rto_lock); + + if (cpu < 0) { + sched_put_rd(rd); + return; + } + + /* Try the next RT overloaded CPU */ + irq_work_queue_on(&rd->rto_push_work, cpu); +} +#endif /* HAVE_RT_PUSH_IPI */ + +static void pull_rt_task(struct rq *this_rq) +{ + int this_cpu = this_rq->cpu, cpu; + bool resched = false; + struct task_struct *p; + struct rq *src_rq; + int rt_overload_count = rt_overloaded(this_rq); + + if (likely(!rt_overload_count)) + return; + + /* + * Match the barrier from rt_set_overloaded; this guarantees that if we + * see overloaded we must also see the rto_mask bit. + */ + smp_rmb(); + + /* If we are the only overloaded CPU do nothing */ + if (rt_overload_count == 1 && + cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) + return; + +#ifdef HAVE_RT_PUSH_IPI + if (sched_feat(RT_PUSH_IPI)) { + tell_cpu_to_push(this_rq); + return; + } +#endif + + for_each_cpu(cpu, this_rq->rd->rto_mask) { + if (this_cpu == cpu) + continue; + + src_rq = cpu_rq(cpu); + + /* + * Don't bother taking the src_rq->lock if the next highest + * task is known to be lower-priority than our current task. + * This may look racy, but if this value is about to go + * logically higher, the src_rq will push this task away. + * And if its going logically lower, we do not care + */ + if (src_rq->rt.highest_prio.next >= + this_rq->rt.highest_prio.curr) + continue; + + /* + * We can potentially drop this_rq's lock in + * double_lock_balance, and another CPU could + * alter this_rq + */ + double_lock_balance(this_rq, src_rq); + + /* + * We can pull only a task, which is pushable + * on its rq, and no others. + */ + p = pick_highest_pushable_task(src_rq, this_cpu); + + /* + * Do we have an RT task that preempts + * the to-be-scheduled task? + */ + if (p && (p->prio < this_rq->rt.highest_prio.curr)) { + WARN_ON(p == src_rq->curr); + WARN_ON(!task_on_rq_queued(p)); + + /* + * There's a chance that p is higher in priority + * than what's currently running on its CPU. + * This is just that p is wakeing up and hasn't + * had a chance to schedule. We only pull + * p if it is lower in priority than the + * current task on the run queue + */ + if (p->prio < src_rq->curr->prio) + goto skip; + + resched = true; + + deactivate_task(src_rq, p, 0); + set_task_cpu(p, this_cpu); + activate_task(this_rq, p, 0); + /* + * We continue with the search, just in + * case there's an even higher prio task + * in another runqueue. (low likelihood + * but possible) + */ + } +skip: + double_unlock_balance(this_rq, src_rq); + } + + if (resched) + resched_curr(this_rq); +} + +/* + * If we are not running and we are not going to reschedule soon, we should + * try to push tasks away now + */ +static void task_woken_rt(struct rq *rq, struct task_struct *p) +{ + if (!task_running(rq, p) && + !test_tsk_need_resched(rq->curr) && + p->nr_cpus_allowed > 1 && + (dl_task(rq->curr) || rt_task(rq->curr)) && + (rq->curr->nr_cpus_allowed < 2 || + rq->curr->prio <= p->prio)) + push_rt_tasks(rq); +} + +/* Assumes rq->lock is held */ +static void rq_online_rt(struct rq *rq) +{ + if (rq->rt.overloaded) + rt_set_overload(rq); + + __enable_runtime(rq); + + cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); +} + +/* Assumes rq->lock is held */ +static void rq_offline_rt(struct rq *rq) +{ + if (rq->rt.overloaded) + rt_clear_overload(rq); + + __disable_runtime(rq); + + cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); +} + +/* + * When switch from the rt queue, we bring ourselves to a position + * that we might want to pull RT tasks from other runqueues. + */ +static void switched_from_rt(struct rq *rq, struct task_struct *p) +{ + /* + * If there are other RT tasks then we will reschedule + * and the scheduling of the other RT tasks will handle + * the balancing. But if we are the last RT task + * we may need to handle the pulling of RT tasks + * now. + */ + if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) + return; + + rt_queue_pull_task(rq); +} + +void __init init_sched_rt_class(void) +{ + unsigned int i; + + for_each_possible_cpu(i) { + zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), + GFP_KERNEL, cpu_to_node(i)); + } +} +#endif /* CONFIG_SMP */ + +/* + * When switching a task to RT, we may overload the runqueue + * with RT tasks. In this case we try to push them off to + * other runqueues. + */ +static void switched_to_rt(struct rq *rq, struct task_struct *p) +{ + /* + * If we are already running, then there's nothing + * that needs to be done. But if we are not running + * we may need to preempt the current running task. + * If that current running task is also an RT task + * then see if we can move to another run queue. + */ + if (task_on_rq_queued(p) && rq->curr != p) { +#ifdef CONFIG_SMP + if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) + rt_queue_push_tasks(rq); +#endif /* CONFIG_SMP */ + if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) + resched_curr(rq); + } +} + +/* + * Priority of the task has changed. This may cause + * us to initiate a push or pull. + */ +static void +prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) +{ + if (!task_on_rq_queued(p)) + return; + + if (rq->curr == p) { +#ifdef CONFIG_SMP + /* + * If our priority decreases while running, we + * may need to pull tasks to this runqueue. + */ + if (oldprio < p->prio) + rt_queue_pull_task(rq); + + /* + * If there's a higher priority task waiting to run + * then reschedule. + */ + if (p->prio > rq->rt.highest_prio.curr) + resched_curr(rq); +#else + /* For UP simply resched on drop of prio */ + if (oldprio < p->prio) + resched_curr(rq); +#endif /* CONFIG_SMP */ + } else { + /* + * This task is not running, but if it is + * greater than the current running task + * then reschedule. + */ + if (p->prio < rq->curr->prio) + resched_curr(rq); + } +} + +#ifdef CONFIG_POSIX_TIMERS +static void watchdog(struct rq *rq, struct task_struct *p) +{ + unsigned long soft, hard; + + /* max may change after cur was read, this will be fixed next tick */ + soft = task_rlimit(p, RLIMIT_RTTIME); + hard = task_rlimit_max(p, RLIMIT_RTTIME); + + if (soft != RLIM_INFINITY) { + unsigned long next; + + if (p->rt.watchdog_stamp != jiffies) { + p->rt.timeout++; + p->rt.watchdog_stamp = jiffies; + } + + next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); + if (p->rt.timeout > next) + p->cputime_expires.sched_exp = p->se.sum_exec_runtime; + } +} +#else +static inline void watchdog(struct rq *rq, struct task_struct *p) { } +#endif + +/* + * scheduler tick hitting a task of our scheduling class. + * + * NOTE: This function can be called remotely by the tick offload that + * goes along full dynticks. Therefore no local assumption can be made + * and everything must be accessed through the @rq and @curr passed in + * parameters. + */ +static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) +{ + struct sched_rt_entity *rt_se = &p->rt; + + update_curr_rt(rq); + update_rt_rq_load_avg(rq_clock_task(rq), rq, 1); + + watchdog(rq, p); + + /* + * RR tasks need a special form of timeslice management. + * FIFO tasks have no timeslices. + */ + if (p->policy != SCHED_RR) + return; + + if (--p->rt.time_slice) + return; + + p->rt.time_slice = sched_rr_timeslice; + + /* + * Requeue to the end of queue if we (and all of our ancestors) are not + * the only element on the queue + */ + for_each_sched_rt_entity(rt_se) { + if (rt_se->run_list.prev != rt_se->run_list.next) { + requeue_task_rt(rq, p, 0); + resched_curr(rq); + return; + } + } +} + +static void set_curr_task_rt(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + p->se.exec_start = rq_clock_task(rq); + + /* The running task is never eligible for pushing */ + dequeue_pushable_task(rq, p); +} + +static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) +{ + /* + * Time slice is 0 for SCHED_FIFO tasks + */ + if (task->policy == SCHED_RR) + return sched_rr_timeslice; + else + return 0; +} + +const struct sched_class rt_sched_class = { + .next = &fair_sched_class, + .enqueue_task = enqueue_task_rt, + .dequeue_task = dequeue_task_rt, + .yield_task = yield_task_rt, + + .check_preempt_curr = check_preempt_curr_rt, + + .pick_next_task = pick_next_task_rt, + .put_prev_task = put_prev_task_rt, + +#ifdef CONFIG_SMP + .select_task_rq = select_task_rq_rt, + + .set_cpus_allowed = set_cpus_allowed_common, + .rq_online = rq_online_rt, + .rq_offline = rq_offline_rt, + .task_woken = task_woken_rt, + .switched_from = switched_from_rt, +#endif + + .set_curr_task = set_curr_task_rt, + .task_tick = task_tick_rt, + + .get_rr_interval = get_rr_interval_rt, + + .prio_changed = prio_changed_rt, + .switched_to = switched_to_rt, + + .update_curr = update_curr_rt, +}; + +#ifdef CONFIG_RT_GROUP_SCHED +/* + * Ensure that the real time constraints are schedulable. + */ +static DEFINE_MUTEX(rt_constraints_mutex); + +/* Must be called with tasklist_lock held */ +static inline int tg_has_rt_tasks(struct task_group *tg) +{ + struct task_struct *g, *p; + + /* + * Autogroups do not have RT tasks; see autogroup_create(). + */ + if (task_group_is_autogroup(tg)) + return 0; + + for_each_process_thread(g, p) { + if (rt_task(p) && task_group(p) == tg) + return 1; + } + + return 0; +} + +struct rt_schedulable_data { + struct task_group *tg; + u64 rt_period; + u64 rt_runtime; +}; + +static int tg_rt_schedulable(struct task_group *tg, void *data) +{ + struct rt_schedulable_data *d = data; + struct task_group *child; + unsigned long total, sum = 0; + u64 period, runtime; + + period = ktime_to_ns(tg->rt_bandwidth.rt_period); + runtime = tg->rt_bandwidth.rt_runtime; + + if (tg == d->tg) { + period = d->rt_period; + runtime = d->rt_runtime; + } + + /* + * Cannot have more runtime than the period. + */ + if (runtime > period && runtime != RUNTIME_INF) + return -EINVAL; + + /* + * Ensure we don't starve existing RT tasks. + */ + if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) + return -EBUSY; + + total = to_ratio(period, runtime); + + /* + * Nobody can have more than the global setting allows. + */ + if (total > to_ratio(global_rt_period(), global_rt_runtime())) + return -EINVAL; + + /* + * The sum of our children's runtime should not exceed our own. + */ + list_for_each_entry_rcu(child, &tg->children, siblings) { + period = ktime_to_ns(child->rt_bandwidth.rt_period); + runtime = child->rt_bandwidth.rt_runtime; + + if (child == d->tg) { + period = d->rt_period; + runtime = d->rt_runtime; + } + + sum += to_ratio(period, runtime); + } + + if (sum > total) + return -EINVAL; + + return 0; +} + +static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) +{ + int ret; + + struct rt_schedulable_data data = { + .tg = tg, + .rt_period = period, + .rt_runtime = runtime, + }; + + rcu_read_lock(); + ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); + rcu_read_unlock(); + + return ret; +} + +static int tg_set_rt_bandwidth(struct task_group *tg, + u64 rt_period, u64 rt_runtime) +{ + int i, err = 0; + + /* + * Disallowing the root group RT runtime is BAD, it would disallow the + * kernel creating (and or operating) RT threads. + */ + if (tg == &root_task_group && rt_runtime == 0) + return -EINVAL; + + /* No period doesn't make any sense. */ + if (rt_period == 0) + return -EINVAL; + + mutex_lock(&rt_constraints_mutex); + read_lock(&tasklist_lock); + err = __rt_schedulable(tg, rt_period, rt_runtime); + if (err) + goto unlock; + + raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); + tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); + tg->rt_bandwidth.rt_runtime = rt_runtime; + + for_each_possible_cpu(i) { + struct rt_rq *rt_rq = tg->rt_rq[i]; + + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = rt_runtime; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } + raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); +unlock: + read_unlock(&tasklist_lock); + mutex_unlock(&rt_constraints_mutex); + + return err; +} + +int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) +{ + u64 rt_runtime, rt_period; + + rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); + rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; + if (rt_runtime_us < 0) + rt_runtime = RUNTIME_INF; + else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) + return -EINVAL; + + return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); +} + +long sched_group_rt_runtime(struct task_group *tg) +{ + u64 rt_runtime_us; + + if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) + return -1; + + rt_runtime_us = tg->rt_bandwidth.rt_runtime; + do_div(rt_runtime_us, NSEC_PER_USEC); + return rt_runtime_us; +} + +int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) +{ + u64 rt_runtime, rt_period; + + if (rt_period_us > U64_MAX / NSEC_PER_USEC) + return -EINVAL; + + rt_period = rt_period_us * NSEC_PER_USEC; + rt_runtime = tg->rt_bandwidth.rt_runtime; + + return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); +} + +long sched_group_rt_period(struct task_group *tg) +{ + u64 rt_period_us; + + rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); + do_div(rt_period_us, NSEC_PER_USEC); + return rt_period_us; +} + +static int sched_rt_global_constraints(void) +{ + int ret = 0; + + mutex_lock(&rt_constraints_mutex); + read_lock(&tasklist_lock); + ret = __rt_schedulable(NULL, 0, 0); + read_unlock(&tasklist_lock); + mutex_unlock(&rt_constraints_mutex); + + return ret; +} + +int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) +{ + /* Don't accept realtime tasks when there is no way for them to run */ + if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) + return 0; + + return 1; +} + +#else /* !CONFIG_RT_GROUP_SCHED */ +static int sched_rt_global_constraints(void) +{ + unsigned long flags; + int i; + + raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); + for_each_possible_cpu(i) { + struct rt_rq *rt_rq = &cpu_rq(i)->rt; + + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = global_rt_runtime(); + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } + raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); + + return 0; +} +#endif /* CONFIG_RT_GROUP_SCHED */ + +static int sched_rt_global_validate(void) +{ + if (sysctl_sched_rt_period <= 0) + return -EINVAL; + + if ((sysctl_sched_rt_runtime != RUNTIME_INF) && + (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) + return -EINVAL; + + return 0; +} + +static void sched_rt_do_global(void) +{ + unsigned long flags; + + raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); + def_rt_bandwidth.rt_runtime = global_rt_runtime(); + def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); + raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); +} + +int sched_rt_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int old_period, old_runtime; + static DEFINE_MUTEX(mutex); + int ret; + + mutex_lock(&mutex); + old_period = sysctl_sched_rt_period; + old_runtime = sysctl_sched_rt_runtime; + + ret = proc_dointvec(table, write, buffer, lenp, ppos); + + if (!ret && write) { + ret = sched_rt_global_validate(); + if (ret) + goto undo; + + ret = sched_dl_global_validate(); + if (ret) + goto undo; + + ret = sched_rt_global_constraints(); + if (ret) + goto undo; + + sched_rt_do_global(); + sched_dl_do_global(); + } + if (0) { +undo: + sysctl_sched_rt_period = old_period; + sysctl_sched_rt_runtime = old_runtime; + } + mutex_unlock(&mutex); + + return ret; +} + +int sched_rr_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int ret; + static DEFINE_MUTEX(mutex); + + mutex_lock(&mutex); + ret = proc_dointvec(table, write, buffer, lenp, ppos); + /* + * Make sure that internally we keep jiffies. + * Also, writing zero resets the timeslice to default: + */ + if (!ret && write) { + sched_rr_timeslice = + sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : + msecs_to_jiffies(sysctl_sched_rr_timeslice); + } + mutex_unlock(&mutex); + + return ret; +} + +#ifdef CONFIG_SCHED_DEBUG +void print_rt_stats(struct seq_file *m, int cpu) +{ + rt_rq_iter_t iter; + struct rt_rq *rt_rq; + + rcu_read_lock(); + for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) + print_rt_rq(m, cpu, rt_rq); + rcu_read_unlock(); +} +#endif /* CONFIG_SCHED_DEBUG */ |