diff options
Diffstat (limited to '')
-rw-r--r-- | mm/vmscan.c | 4224 |
1 files changed, 4224 insertions, 0 deletions
diff --git a/mm/vmscan.c b/mm/vmscan.c new file mode 100644 index 000000000..b7d7f6d65 --- /dev/null +++ b/mm/vmscan.c @@ -0,0 +1,4224 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * linux/mm/vmscan.c + * + * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds + * + * Swap reorganised 29.12.95, Stephen Tweedie. + * kswapd added: 7.1.96 sct + * Removed kswapd_ctl limits, and swap out as many pages as needed + * to bring the system back to freepages.high: 2.4.97, Rik van Riel. + * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). + * Multiqueue VM started 5.8.00, Rik van Riel. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/mm.h> +#include <linux/sched/mm.h> +#include <linux/module.h> +#include <linux/gfp.h> +#include <linux/kernel_stat.h> +#include <linux/swap.h> +#include <linux/pagemap.h> +#include <linux/init.h> +#include <linux/highmem.h> +#include <linux/vmpressure.h> +#include <linux/vmstat.h> +#include <linux/file.h> +#include <linux/writeback.h> +#include <linux/blkdev.h> +#include <linux/buffer_head.h> /* for try_to_release_page(), + buffer_heads_over_limit */ +#include <linux/mm_inline.h> +#include <linux/backing-dev.h> +#include <linux/rmap.h> +#include <linux/topology.h> +#include <linux/cpu.h> +#include <linux/cpuset.h> +#include <linux/compaction.h> +#include <linux/notifier.h> +#include <linux/rwsem.h> +#include <linux/delay.h> +#include <linux/kthread.h> +#include <linux/freezer.h> +#include <linux/memcontrol.h> +#include <linux/delayacct.h> +#include <linux/sysctl.h> +#include <linux/oom.h> +#include <linux/prefetch.h> +#include <linux/printk.h> +#include <linux/dax.h> + +#include <asm/tlbflush.h> +#include <asm/div64.h> + +#include <linux/swapops.h> +#include <linux/balloon_compaction.h> + +#include "internal.h" + +#define CREATE_TRACE_POINTS +#include <trace/events/vmscan.h> + +struct scan_control { + /* How many pages shrink_list() should reclaim */ + unsigned long nr_to_reclaim; + + /* + * Nodemask of nodes allowed by the caller. If NULL, all nodes + * are scanned. + */ + nodemask_t *nodemask; + + /* + * The memory cgroup that hit its limit and as a result is the + * primary target of this reclaim invocation. + */ + struct mem_cgroup *target_mem_cgroup; + + /* Writepage batching in laptop mode; RECLAIM_WRITE */ + unsigned int may_writepage:1; + + /* Can mapped pages be reclaimed? */ + unsigned int may_unmap:1; + + /* Can pages be swapped as part of reclaim? */ + unsigned int may_swap:1; + + /* + * Cgroups are not reclaimed below their configured memory.low, + * unless we threaten to OOM. If any cgroups are skipped due to + * memory.low and nothing was reclaimed, go back for memory.low. + */ + unsigned int memcg_low_reclaim:1; + unsigned int memcg_low_skipped:1; + + unsigned int hibernation_mode:1; + + /* One of the zones is ready for compaction */ + unsigned int compaction_ready:1; + + /* Allocation order */ + s8 order; + + /* Scan (total_size >> priority) pages at once */ + s8 priority; + + /* The highest zone to isolate pages for reclaim from */ + s8 reclaim_idx; + + /* This context's GFP mask */ + gfp_t gfp_mask; + + /* Incremented by the number of inactive pages that were scanned */ + unsigned long nr_scanned; + + /* Number of pages freed so far during a call to shrink_zones() */ + unsigned long nr_reclaimed; + + struct { + unsigned int dirty; + unsigned int unqueued_dirty; + unsigned int congested; + unsigned int writeback; + unsigned int immediate; + unsigned int file_taken; + unsigned int taken; + } nr; +}; + +#ifdef ARCH_HAS_PREFETCH +#define prefetch_prev_lru_page(_page, _base, _field) \ + do { \ + if ((_page)->lru.prev != _base) { \ + struct page *prev; \ + \ + prev = lru_to_page(&(_page->lru)); \ + prefetch(&prev->_field); \ + } \ + } while (0) +#else +#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) +#endif + +#ifdef ARCH_HAS_PREFETCHW +#define prefetchw_prev_lru_page(_page, _base, _field) \ + do { \ + if ((_page)->lru.prev != _base) { \ + struct page *prev; \ + \ + prev = lru_to_page(&(_page->lru)); \ + prefetchw(&prev->_field); \ + } \ + } while (0) +#else +#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) +#endif + +/* + * From 0 .. 100. Higher means more swappy. + */ +int vm_swappiness = 60; +/* + * The total number of pages which are beyond the high watermark within all + * zones. + */ +unsigned long vm_total_pages; + +static LIST_HEAD(shrinker_list); +static DECLARE_RWSEM(shrinker_rwsem); + +#ifdef CONFIG_MEMCG_KMEM + +/* + * We allow subsystems to populate their shrinker-related + * LRU lists before register_shrinker_prepared() is called + * for the shrinker, since we don't want to impose + * restrictions on their internal registration order. + * In this case shrink_slab_memcg() may find corresponding + * bit is set in the shrinkers map. + * + * This value is used by the function to detect registering + * shrinkers and to skip do_shrink_slab() calls for them. + */ +#define SHRINKER_REGISTERING ((struct shrinker *)~0UL) + +static DEFINE_IDR(shrinker_idr); +static int shrinker_nr_max; + +static int prealloc_memcg_shrinker(struct shrinker *shrinker) +{ + int id, ret = -ENOMEM; + + down_write(&shrinker_rwsem); + /* This may call shrinker, so it must use down_read_trylock() */ + id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); + if (id < 0) + goto unlock; + + if (id >= shrinker_nr_max) { + if (memcg_expand_shrinker_maps(id)) { + idr_remove(&shrinker_idr, id); + goto unlock; + } + + shrinker_nr_max = id + 1; + } + shrinker->id = id; + ret = 0; +unlock: + up_write(&shrinker_rwsem); + return ret; +} + +static void unregister_memcg_shrinker(struct shrinker *shrinker) +{ + int id = shrinker->id; + + BUG_ON(id < 0); + + down_write(&shrinker_rwsem); + idr_remove(&shrinker_idr, id); + up_write(&shrinker_rwsem); +} +#else /* CONFIG_MEMCG_KMEM */ +static int prealloc_memcg_shrinker(struct shrinker *shrinker) +{ + return 0; +} + +static void unregister_memcg_shrinker(struct shrinker *shrinker) +{ +} +#endif /* CONFIG_MEMCG_KMEM */ + +#ifdef CONFIG_MEMCG +static bool global_reclaim(struct scan_control *sc) +{ + return !sc->target_mem_cgroup; +} + +/** + * sane_reclaim - is the usual dirty throttling mechanism operational? + * @sc: scan_control in question + * + * The normal page dirty throttling mechanism in balance_dirty_pages() is + * completely broken with the legacy memcg and direct stalling in + * shrink_page_list() is used for throttling instead, which lacks all the + * niceties such as fairness, adaptive pausing, bandwidth proportional + * allocation and configurability. + * + * This function tests whether the vmscan currently in progress can assume + * that the normal dirty throttling mechanism is operational. + */ +static bool sane_reclaim(struct scan_control *sc) +{ + struct mem_cgroup *memcg = sc->target_mem_cgroup; + + if (!memcg) + return true; +#ifdef CONFIG_CGROUP_WRITEBACK + if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) + return true; +#endif + return false; +} + +static void set_memcg_congestion(pg_data_t *pgdat, + struct mem_cgroup *memcg, + bool congested) +{ + struct mem_cgroup_per_node *mn; + + if (!memcg) + return; + + mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); + WRITE_ONCE(mn->congested, congested); +} + +static bool memcg_congested(pg_data_t *pgdat, + struct mem_cgroup *memcg) +{ + struct mem_cgroup_per_node *mn; + + mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); + return READ_ONCE(mn->congested); + +} +#else +static bool global_reclaim(struct scan_control *sc) +{ + return true; +} + +static bool sane_reclaim(struct scan_control *sc) +{ + return true; +} + +static inline void set_memcg_congestion(struct pglist_data *pgdat, + struct mem_cgroup *memcg, bool congested) +{ +} + +static inline bool memcg_congested(struct pglist_data *pgdat, + struct mem_cgroup *memcg) +{ + return false; + +} +#endif + +/* + * This misses isolated pages which are not accounted for to save counters. + * As the data only determines if reclaim or compaction continues, it is + * not expected that isolated pages will be a dominating factor. + */ +unsigned long zone_reclaimable_pages(struct zone *zone) +{ + unsigned long nr; + + nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + + zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); + if (get_nr_swap_pages() > 0) + nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + + zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); + + return nr; +} + +/** + * lruvec_lru_size - Returns the number of pages on the given LRU list. + * @lruvec: lru vector + * @lru: lru to use + * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) + */ +unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) +{ + unsigned long lru_size; + int zid; + + if (!mem_cgroup_disabled()) + lru_size = mem_cgroup_get_lru_size(lruvec, lru); + else + lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); + + for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { + struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; + unsigned long size; + + if (!managed_zone(zone)) + continue; + + if (!mem_cgroup_disabled()) + size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); + else + size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], + NR_ZONE_LRU_BASE + lru); + lru_size -= min(size, lru_size); + } + + return lru_size; + +} + +/* + * Add a shrinker callback to be called from the vm. + */ +int prealloc_shrinker(struct shrinker *shrinker) +{ + size_t size = sizeof(*shrinker->nr_deferred); + + if (shrinker->flags & SHRINKER_NUMA_AWARE) + size *= nr_node_ids; + + shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); + if (!shrinker->nr_deferred) + return -ENOMEM; + + if (shrinker->flags & SHRINKER_MEMCG_AWARE) { + if (prealloc_memcg_shrinker(shrinker)) + goto free_deferred; + } + + return 0; + +free_deferred: + kfree(shrinker->nr_deferred); + shrinker->nr_deferred = NULL; + return -ENOMEM; +} + +void free_prealloced_shrinker(struct shrinker *shrinker) +{ + if (!shrinker->nr_deferred) + return; + + if (shrinker->flags & SHRINKER_MEMCG_AWARE) + unregister_memcg_shrinker(shrinker); + + kfree(shrinker->nr_deferred); + shrinker->nr_deferred = NULL; +} + +void register_shrinker_prepared(struct shrinker *shrinker) +{ + down_write(&shrinker_rwsem); + list_add_tail(&shrinker->list, &shrinker_list); +#ifdef CONFIG_MEMCG_KMEM + if (shrinker->flags & SHRINKER_MEMCG_AWARE) + idr_replace(&shrinker_idr, shrinker, shrinker->id); +#endif + up_write(&shrinker_rwsem); +} + +int register_shrinker(struct shrinker *shrinker) +{ + int err = prealloc_shrinker(shrinker); + + if (err) + return err; + register_shrinker_prepared(shrinker); + return 0; +} +EXPORT_SYMBOL(register_shrinker); + +/* + * Remove one + */ +void unregister_shrinker(struct shrinker *shrinker) +{ + if (!shrinker->nr_deferred) + return; + if (shrinker->flags & SHRINKER_MEMCG_AWARE) + unregister_memcg_shrinker(shrinker); + down_write(&shrinker_rwsem); + list_del(&shrinker->list); + up_write(&shrinker_rwsem); + kfree(shrinker->nr_deferred); + shrinker->nr_deferred = NULL; +} +EXPORT_SYMBOL(unregister_shrinker); + +#define SHRINK_BATCH 128 + +static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, + struct shrinker *shrinker, int priority) +{ + unsigned long freed = 0; + unsigned long long delta; + long total_scan; + long freeable; + long nr; + long new_nr; + int nid = shrinkctl->nid; + long batch_size = shrinker->batch ? shrinker->batch + : SHRINK_BATCH; + long scanned = 0, next_deferred; + + if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) + nid = 0; + + freeable = shrinker->count_objects(shrinker, shrinkctl); + if (freeable == 0 || freeable == SHRINK_EMPTY) + return freeable; + + /* + * copy the current shrinker scan count into a local variable + * and zero it so that other concurrent shrinker invocations + * don't also do this scanning work. + */ + nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); + + total_scan = nr; + delta = freeable >> priority; + delta *= 4; + do_div(delta, shrinker->seeks); + + total_scan += delta; + if (total_scan < 0) { + pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", + shrinker->scan_objects, total_scan); + total_scan = freeable; + next_deferred = nr; + } else + next_deferred = total_scan; + + /* + * We need to avoid excessive windup on filesystem shrinkers + * due to large numbers of GFP_NOFS allocations causing the + * shrinkers to return -1 all the time. This results in a large + * nr being built up so when a shrink that can do some work + * comes along it empties the entire cache due to nr >>> + * freeable. This is bad for sustaining a working set in + * memory. + * + * Hence only allow the shrinker to scan the entire cache when + * a large delta change is calculated directly. + */ + if (delta < freeable / 4) + total_scan = min(total_scan, freeable / 2); + + /* + * Avoid risking looping forever due to too large nr value: + * never try to free more than twice the estimate number of + * freeable entries. + */ + if (total_scan > freeable * 2) + total_scan = freeable * 2; + + trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, + freeable, delta, total_scan, priority); + + /* + * Normally, we should not scan less than batch_size objects in one + * pass to avoid too frequent shrinker calls, but if the slab has less + * than batch_size objects in total and we are really tight on memory, + * we will try to reclaim all available objects, otherwise we can end + * up failing allocations although there are plenty of reclaimable + * objects spread over several slabs with usage less than the + * batch_size. + * + * We detect the "tight on memory" situations by looking at the total + * number of objects we want to scan (total_scan). If it is greater + * than the total number of objects on slab (freeable), we must be + * scanning at high prio and therefore should try to reclaim as much as + * possible. + */ + while (total_scan >= batch_size || + total_scan >= freeable) { + unsigned long ret; + unsigned long nr_to_scan = min(batch_size, total_scan); + + shrinkctl->nr_to_scan = nr_to_scan; + shrinkctl->nr_scanned = nr_to_scan; + ret = shrinker->scan_objects(shrinker, shrinkctl); + if (ret == SHRINK_STOP) + break; + freed += ret; + + count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); + total_scan -= shrinkctl->nr_scanned; + scanned += shrinkctl->nr_scanned; + + cond_resched(); + } + + if (next_deferred >= scanned) + next_deferred -= scanned; + else + next_deferred = 0; + /* + * move the unused scan count back into the shrinker in a + * manner that handles concurrent updates. If we exhausted the + * scan, there is no need to do an update. + */ + if (next_deferred > 0) + new_nr = atomic_long_add_return(next_deferred, + &shrinker->nr_deferred[nid]); + else + new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); + + trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); + return freed; +} + +#ifdef CONFIG_MEMCG_KMEM +static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, + struct mem_cgroup *memcg, int priority) +{ + struct memcg_shrinker_map *map; + unsigned long ret, freed = 0; + int i; + + if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) + return 0; + + if (!down_read_trylock(&shrinker_rwsem)) + return 0; + + map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, + true); + if (unlikely(!map)) + goto unlock; + + for_each_set_bit(i, map->map, shrinker_nr_max) { + struct shrink_control sc = { + .gfp_mask = gfp_mask, + .nid = nid, + .memcg = memcg, + }; + struct shrinker *shrinker; + + shrinker = idr_find(&shrinker_idr, i); + if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { + if (!shrinker) + clear_bit(i, map->map); + continue; + } + + ret = do_shrink_slab(&sc, shrinker, priority); + if (ret == SHRINK_EMPTY) { + clear_bit(i, map->map); + /* + * After the shrinker reported that it had no objects to + * free, but before we cleared the corresponding bit in + * the memcg shrinker map, a new object might have been + * added. To make sure, we have the bit set in this + * case, we invoke the shrinker one more time and reset + * the bit if it reports that it is not empty anymore. + * The memory barrier here pairs with the barrier in + * memcg_set_shrinker_bit(): + * + * list_lru_add() shrink_slab_memcg() + * list_add_tail() clear_bit() + * <MB> <MB> + * set_bit() do_shrink_slab() + */ + smp_mb__after_atomic(); + ret = do_shrink_slab(&sc, shrinker, priority); + if (ret == SHRINK_EMPTY) + ret = 0; + else + memcg_set_shrinker_bit(memcg, nid, i); + } + freed += ret; + + if (rwsem_is_contended(&shrinker_rwsem)) { + freed = freed ? : 1; + break; + } + } +unlock: + up_read(&shrinker_rwsem); + return freed; +} +#else /* CONFIG_MEMCG_KMEM */ +static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, + struct mem_cgroup *memcg, int priority) +{ + return 0; +} +#endif /* CONFIG_MEMCG_KMEM */ + +/** + * shrink_slab - shrink slab caches + * @gfp_mask: allocation context + * @nid: node whose slab caches to target + * @memcg: memory cgroup whose slab caches to target + * @priority: the reclaim priority + * + * Call the shrink functions to age shrinkable caches. + * + * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, + * unaware shrinkers will receive a node id of 0 instead. + * + * @memcg specifies the memory cgroup to target. Unaware shrinkers + * are called only if it is the root cgroup. + * + * @priority is sc->priority, we take the number of objects and >> by priority + * in order to get the scan target. + * + * Returns the number of reclaimed slab objects. + */ +static unsigned long shrink_slab(gfp_t gfp_mask, int nid, + struct mem_cgroup *memcg, + int priority) +{ + unsigned long ret, freed = 0; + struct shrinker *shrinker; + + /* + * The root memcg might be allocated even though memcg is disabled + * via "cgroup_disable=memory" boot parameter. This could make + * mem_cgroup_is_root() return false, then just run memcg slab + * shrink, but skip global shrink. This may result in premature + * oom. + */ + if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) + return shrink_slab_memcg(gfp_mask, nid, memcg, priority); + + if (!down_read_trylock(&shrinker_rwsem)) + goto out; + + list_for_each_entry(shrinker, &shrinker_list, list) { + struct shrink_control sc = { + .gfp_mask = gfp_mask, + .nid = nid, + .memcg = memcg, + }; + + ret = do_shrink_slab(&sc, shrinker, priority); + if (ret == SHRINK_EMPTY) + ret = 0; + freed += ret; + /* + * Bail out if someone want to register a new shrinker to + * prevent the regsitration from being stalled for long periods + * by parallel ongoing shrinking. + */ + if (rwsem_is_contended(&shrinker_rwsem)) { + freed = freed ? : 1; + break; + } + } + + up_read(&shrinker_rwsem); +out: + cond_resched(); + return freed; +} + +void drop_slab_node(int nid) +{ + unsigned long freed; + + do { + struct mem_cgroup *memcg = NULL; + + freed = 0; + memcg = mem_cgroup_iter(NULL, NULL, NULL); + do { + freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); + } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); + } while (freed > 10); +} + +void drop_slab(void) +{ + int nid; + + for_each_online_node(nid) + drop_slab_node(nid); +} + +static inline int is_page_cache_freeable(struct page *page) +{ + /* + * A freeable page cache page is referenced only by the caller + * that isolated the page, the page cache radix tree and + * optional buffer heads at page->private. + */ + int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? + HPAGE_PMD_NR : 1; + return page_count(page) - page_has_private(page) == 1 + radix_pins; +} + +static int may_write_to_inode(struct inode *inode, struct scan_control *sc) +{ + if (current->flags & PF_SWAPWRITE) + return 1; + if (!inode_write_congested(inode)) + return 1; + if (inode_to_bdi(inode) == current->backing_dev_info) + return 1; + return 0; +} + +/* + * We detected a synchronous write error writing a page out. Probably + * -ENOSPC. We need to propagate that into the address_space for a subsequent + * fsync(), msync() or close(). + * + * The tricky part is that after writepage we cannot touch the mapping: nothing + * prevents it from being freed up. But we have a ref on the page and once + * that page is locked, the mapping is pinned. + * + * We're allowed to run sleeping lock_page() here because we know the caller has + * __GFP_FS. + */ +static void handle_write_error(struct address_space *mapping, + struct page *page, int error) +{ + lock_page(page); + if (page_mapping(page) == mapping) + mapping_set_error(mapping, error); + unlock_page(page); +} + +/* possible outcome of pageout() */ +typedef enum { + /* failed to write page out, page is locked */ + PAGE_KEEP, + /* move page to the active list, page is locked */ + PAGE_ACTIVATE, + /* page has been sent to the disk successfully, page is unlocked */ + PAGE_SUCCESS, + /* page is clean and locked */ + PAGE_CLEAN, +} pageout_t; + +/* + * pageout is called by shrink_page_list() for each dirty page. + * Calls ->writepage(). + */ +static pageout_t pageout(struct page *page, struct address_space *mapping, + struct scan_control *sc) +{ + /* + * If the page is dirty, only perform writeback if that write + * will be non-blocking. To prevent this allocation from being + * stalled by pagecache activity. But note that there may be + * stalls if we need to run get_block(). We could test + * PagePrivate for that. + * + * If this process is currently in __generic_file_write_iter() against + * this page's queue, we can perform writeback even if that + * will block. + * + * If the page is swapcache, write it back even if that would + * block, for some throttling. This happens by accident, because + * swap_backing_dev_info is bust: it doesn't reflect the + * congestion state of the swapdevs. Easy to fix, if needed. + */ + if (!is_page_cache_freeable(page)) + return PAGE_KEEP; + if (!mapping) { + /* + * Some data journaling orphaned pages can have + * page->mapping == NULL while being dirty with clean buffers. + */ + if (page_has_private(page)) { + if (try_to_free_buffers(page)) { + ClearPageDirty(page); + pr_info("%s: orphaned page\n", __func__); + return PAGE_CLEAN; + } + } + return PAGE_KEEP; + } + if (mapping->a_ops->writepage == NULL) + return PAGE_ACTIVATE; + if (!may_write_to_inode(mapping->host, sc)) + return PAGE_KEEP; + + if (clear_page_dirty_for_io(page)) { + int res; + struct writeback_control wbc = { + .sync_mode = WB_SYNC_NONE, + .nr_to_write = SWAP_CLUSTER_MAX, + .range_start = 0, + .range_end = LLONG_MAX, + .for_reclaim = 1, + }; + + SetPageReclaim(page); + res = mapping->a_ops->writepage(page, &wbc); + if (res < 0) + handle_write_error(mapping, page, res); + if (res == AOP_WRITEPAGE_ACTIVATE) { + ClearPageReclaim(page); + return PAGE_ACTIVATE; + } + + if (!PageWriteback(page)) { + /* synchronous write or broken a_ops? */ + ClearPageReclaim(page); + } + trace_mm_vmscan_writepage(page); + inc_node_page_state(page, NR_VMSCAN_WRITE); + return PAGE_SUCCESS; + } + + return PAGE_CLEAN; +} + +/* + * Same as remove_mapping, but if the page is removed from the mapping, it + * gets returned with a refcount of 0. + */ +static int __remove_mapping(struct address_space *mapping, struct page *page, + bool reclaimed) +{ + unsigned long flags; + int refcount; + + BUG_ON(!PageLocked(page)); + BUG_ON(mapping != page_mapping(page)); + + xa_lock_irqsave(&mapping->i_pages, flags); + /* + * The non racy check for a busy page. + * + * Must be careful with the order of the tests. When someone has + * a ref to the page, it may be possible that they dirty it then + * drop the reference. So if PageDirty is tested before page_count + * here, then the following race may occur: + * + * get_user_pages(&page); + * [user mapping goes away] + * write_to(page); + * !PageDirty(page) [good] + * SetPageDirty(page); + * put_page(page); + * !page_count(page) [good, discard it] + * + * [oops, our write_to data is lost] + * + * Reversing the order of the tests ensures such a situation cannot + * escape unnoticed. The smp_rmb is needed to ensure the page->flags + * load is not satisfied before that of page->_refcount. + * + * Note that if SetPageDirty is always performed via set_page_dirty, + * and thus under the i_pages lock, then this ordering is not required. + */ + if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) + refcount = 1 + HPAGE_PMD_NR; + else + refcount = 2; + if (!page_ref_freeze(page, refcount)) + goto cannot_free; + /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ + if (unlikely(PageDirty(page))) { + page_ref_unfreeze(page, refcount); + goto cannot_free; + } + + if (PageSwapCache(page)) { + swp_entry_t swap = { .val = page_private(page) }; + mem_cgroup_swapout(page, swap); + __delete_from_swap_cache(page); + xa_unlock_irqrestore(&mapping->i_pages, flags); + put_swap_page(page, swap); + } else { + void (*freepage)(struct page *); + void *shadow = NULL; + + freepage = mapping->a_ops->freepage; + /* + * Remember a shadow entry for reclaimed file cache in + * order to detect refaults, thus thrashing, later on. + * + * But don't store shadows in an address space that is + * already exiting. This is not just an optizimation, + * inode reclaim needs to empty out the radix tree or + * the nodes are lost. Don't plant shadows behind its + * back. + * + * We also don't store shadows for DAX mappings because the + * only page cache pages found in these are zero pages + * covering holes, and because we don't want to mix DAX + * exceptional entries and shadow exceptional entries in the + * same address_space. + */ + if (reclaimed && page_is_file_cache(page) && + !mapping_exiting(mapping) && !dax_mapping(mapping)) + shadow = workingset_eviction(mapping, page); + __delete_from_page_cache(page, shadow); + xa_unlock_irqrestore(&mapping->i_pages, flags); + + if (freepage != NULL) + freepage(page); + } + + return 1; + +cannot_free: + xa_unlock_irqrestore(&mapping->i_pages, flags); + return 0; +} + +/* + * Attempt to detach a locked page from its ->mapping. If it is dirty or if + * someone else has a ref on the page, abort and return 0. If it was + * successfully detached, return 1. Assumes the caller has a single ref on + * this page. + */ +int remove_mapping(struct address_space *mapping, struct page *page) +{ + if (__remove_mapping(mapping, page, false)) { + /* + * Unfreezing the refcount with 1 rather than 2 effectively + * drops the pagecache ref for us without requiring another + * atomic operation. + */ + page_ref_unfreeze(page, 1); + return 1; + } + return 0; +} + +/** + * putback_lru_page - put previously isolated page onto appropriate LRU list + * @page: page to be put back to appropriate lru list + * + * Add previously isolated @page to appropriate LRU list. + * Page may still be unevictable for other reasons. + * + * lru_lock must not be held, interrupts must be enabled. + */ +void putback_lru_page(struct page *page) +{ + lru_cache_add(page); + put_page(page); /* drop ref from isolate */ +} + +enum page_references { + PAGEREF_RECLAIM, + PAGEREF_RECLAIM_CLEAN, + PAGEREF_KEEP, + PAGEREF_ACTIVATE, +}; + +static enum page_references page_check_references(struct page *page, + struct scan_control *sc) +{ + int referenced_ptes, referenced_page; + unsigned long vm_flags; + + referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, + &vm_flags); + referenced_page = TestClearPageReferenced(page); + + /* + * Mlock lost the isolation race with us. Let try_to_unmap() + * move the page to the unevictable list. + */ + if (vm_flags & VM_LOCKED) + return PAGEREF_RECLAIM; + + if (referenced_ptes) { + if (PageSwapBacked(page)) + return PAGEREF_ACTIVATE; + /* + * All mapped pages start out with page table + * references from the instantiating fault, so we need + * to look twice if a mapped file page is used more + * than once. + * + * Mark it and spare it for another trip around the + * inactive list. Another page table reference will + * lead to its activation. + * + * Note: the mark is set for activated pages as well + * so that recently deactivated but used pages are + * quickly recovered. + */ + SetPageReferenced(page); + + if (referenced_page || referenced_ptes > 1) + return PAGEREF_ACTIVATE; + + /* + * Activate file-backed executable pages after first usage. + */ + if (vm_flags & VM_EXEC) + return PAGEREF_ACTIVATE; + + return PAGEREF_KEEP; + } + + /* Reclaim if clean, defer dirty pages to writeback */ + if (referenced_page && !PageSwapBacked(page)) + return PAGEREF_RECLAIM_CLEAN; + + return PAGEREF_RECLAIM; +} + +/* Check if a page is dirty or under writeback */ +static void page_check_dirty_writeback(struct page *page, + bool *dirty, bool *writeback) +{ + struct address_space *mapping; + + /* + * Anonymous pages are not handled by flushers and must be written + * from reclaim context. Do not stall reclaim based on them + */ + if (!page_is_file_cache(page) || + (PageAnon(page) && !PageSwapBacked(page))) { + *dirty = false; + *writeback = false; + return; + } + + /* By default assume that the page flags are accurate */ + *dirty = PageDirty(page); + *writeback = PageWriteback(page); + + /* Verify dirty/writeback state if the filesystem supports it */ + if (!page_has_private(page)) + return; + + mapping = page_mapping(page); + if (mapping && mapping->a_ops->is_dirty_writeback) + mapping->a_ops->is_dirty_writeback(page, dirty, writeback); +} + +/* + * shrink_page_list() returns the number of reclaimed pages + */ +static unsigned long shrink_page_list(struct list_head *page_list, + struct pglist_data *pgdat, + struct scan_control *sc, + enum ttu_flags ttu_flags, + struct reclaim_stat *stat, + bool force_reclaim) +{ + LIST_HEAD(ret_pages); + LIST_HEAD(free_pages); + int pgactivate = 0; + unsigned nr_unqueued_dirty = 0; + unsigned nr_dirty = 0; + unsigned nr_congested = 0; + unsigned nr_reclaimed = 0; + unsigned nr_writeback = 0; + unsigned nr_immediate = 0; + unsigned nr_ref_keep = 0; + unsigned nr_unmap_fail = 0; + + cond_resched(); + + while (!list_empty(page_list)) { + struct address_space *mapping; + struct page *page; + int may_enter_fs; + enum page_references references = PAGEREF_RECLAIM_CLEAN; + bool dirty, writeback; + + cond_resched(); + + page = lru_to_page(page_list); + list_del(&page->lru); + + if (!trylock_page(page)) + goto keep; + + VM_BUG_ON_PAGE(PageActive(page), page); + + sc->nr_scanned++; + + if (unlikely(!page_evictable(page))) + goto activate_locked; + + if (!sc->may_unmap && page_mapped(page)) + goto keep_locked; + + /* Double the slab pressure for mapped and swapcache pages */ + if ((page_mapped(page) || PageSwapCache(page)) && + !(PageAnon(page) && !PageSwapBacked(page))) + sc->nr_scanned++; + + may_enter_fs = (sc->gfp_mask & __GFP_FS) || + (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); + + /* + * The number of dirty pages determines if a node is marked + * reclaim_congested which affects wait_iff_congested. kswapd + * will stall and start writing pages if the tail of the LRU + * is all dirty unqueued pages. + */ + page_check_dirty_writeback(page, &dirty, &writeback); + if (dirty || writeback) + nr_dirty++; + + if (dirty && !writeback) + nr_unqueued_dirty++; + + /* + * Treat this page as congested if the underlying BDI is or if + * pages are cycling through the LRU so quickly that the + * pages marked for immediate reclaim are making it to the + * end of the LRU a second time. + */ + mapping = page_mapping(page); + if (((dirty || writeback) && mapping && + inode_write_congested(mapping->host)) || + (writeback && PageReclaim(page))) + nr_congested++; + + /* + * If a page at the tail of the LRU is under writeback, there + * are three cases to consider. + * + * 1) If reclaim is encountering an excessive number of pages + * under writeback and this page is both under writeback and + * PageReclaim then it indicates that pages are being queued + * for IO but are being recycled through the LRU before the + * IO can complete. Waiting on the page itself risks an + * indefinite stall if it is impossible to writeback the + * page due to IO error or disconnected storage so instead + * note that the LRU is being scanned too quickly and the + * caller can stall after page list has been processed. + * + * 2) Global or new memcg reclaim encounters a page that is + * not marked for immediate reclaim, or the caller does not + * have __GFP_FS (or __GFP_IO if it's simply going to swap, + * not to fs). In this case mark the page for immediate + * reclaim and continue scanning. + * + * Require may_enter_fs because we would wait on fs, which + * may not have submitted IO yet. And the loop driver might + * enter reclaim, and deadlock if it waits on a page for + * which it is needed to do the write (loop masks off + * __GFP_IO|__GFP_FS for this reason); but more thought + * would probably show more reasons. + * + * 3) Legacy memcg encounters a page that is already marked + * PageReclaim. memcg does not have any dirty pages + * throttling so we could easily OOM just because too many + * pages are in writeback and there is nothing else to + * reclaim. Wait for the writeback to complete. + * + * In cases 1) and 2) we activate the pages to get them out of + * the way while we continue scanning for clean pages on the + * inactive list and refilling from the active list. The + * observation here is that waiting for disk writes is more + * expensive than potentially causing reloads down the line. + * Since they're marked for immediate reclaim, they won't put + * memory pressure on the cache working set any longer than it + * takes to write them to disk. + */ + if (PageWriteback(page)) { + /* Case 1 above */ + if (current_is_kswapd() && + PageReclaim(page) && + test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { + nr_immediate++; + goto activate_locked; + + /* Case 2 above */ + } else if (sane_reclaim(sc) || + !PageReclaim(page) || !may_enter_fs) { + /* + * This is slightly racy - end_page_writeback() + * might have just cleared PageReclaim, then + * setting PageReclaim here end up interpreted + * as PageReadahead - but that does not matter + * enough to care. What we do want is for this + * page to have PageReclaim set next time memcg + * reclaim reaches the tests above, so it will + * then wait_on_page_writeback() to avoid OOM; + * and it's also appropriate in global reclaim. + */ + SetPageReclaim(page); + nr_writeback++; + goto activate_locked; + + /* Case 3 above */ + } else { + unlock_page(page); + wait_on_page_writeback(page); + /* then go back and try same page again */ + list_add_tail(&page->lru, page_list); + continue; + } + } + + if (!force_reclaim) + references = page_check_references(page, sc); + + switch (references) { + case PAGEREF_ACTIVATE: + goto activate_locked; + case PAGEREF_KEEP: + nr_ref_keep++; + goto keep_locked; + case PAGEREF_RECLAIM: + case PAGEREF_RECLAIM_CLEAN: + ; /* try to reclaim the page below */ + } + + /* + * Anonymous process memory has backing store? + * Try to allocate it some swap space here. + * Lazyfree page could be freed directly + */ + if (PageAnon(page) && PageSwapBacked(page)) { + if (!PageSwapCache(page)) { + if (!(sc->gfp_mask & __GFP_IO)) + goto keep_locked; + if (PageTransHuge(page)) { + /* cannot split THP, skip it */ + if (!can_split_huge_page(page, NULL)) + goto activate_locked; + /* + * Split pages without a PMD map right + * away. Chances are some or all of the + * tail pages can be freed without IO. + */ + if (!compound_mapcount(page) && + split_huge_page_to_list(page, + page_list)) + goto activate_locked; + } + if (!add_to_swap(page)) { + if (!PageTransHuge(page)) + goto activate_locked; + /* Fallback to swap normal pages */ + if (split_huge_page_to_list(page, + page_list)) + goto activate_locked; +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + count_vm_event(THP_SWPOUT_FALLBACK); +#endif + if (!add_to_swap(page)) + goto activate_locked; + } + + may_enter_fs = 1; + + /* Adding to swap updated mapping */ + mapping = page_mapping(page); + } + } else if (unlikely(PageTransHuge(page))) { + /* Split file THP */ + if (split_huge_page_to_list(page, page_list)) + goto keep_locked; + } + + /* + * The page is mapped into the page tables of one or more + * processes. Try to unmap it here. + */ + if (page_mapped(page)) { + enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; + + if (unlikely(PageTransHuge(page))) + flags |= TTU_SPLIT_HUGE_PMD; + if (!try_to_unmap(page, flags)) { + nr_unmap_fail++; + goto activate_locked; + } + } + + if (PageDirty(page)) { + /* + * Only kswapd can writeback filesystem pages + * to avoid risk of stack overflow. But avoid + * injecting inefficient single-page IO into + * flusher writeback as much as possible: only + * write pages when we've encountered many + * dirty pages, and when we've already scanned + * the rest of the LRU for clean pages and see + * the same dirty pages again (PageReclaim). + */ + if (page_is_file_cache(page) && + (!current_is_kswapd() || !PageReclaim(page) || + !test_bit(PGDAT_DIRTY, &pgdat->flags))) { + /* + * Immediately reclaim when written back. + * Similar in principal to deactivate_page() + * except we already have the page isolated + * and know it's dirty + */ + inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); + SetPageReclaim(page); + + goto activate_locked; + } + + if (references == PAGEREF_RECLAIM_CLEAN) + goto keep_locked; + if (!may_enter_fs) + goto keep_locked; + if (!sc->may_writepage) + goto keep_locked; + + /* + * Page is dirty. Flush the TLB if a writable entry + * potentially exists to avoid CPU writes after IO + * starts and then write it out here. + */ + try_to_unmap_flush_dirty(); + switch (pageout(page, mapping, sc)) { + case PAGE_KEEP: + goto keep_locked; + case PAGE_ACTIVATE: + goto activate_locked; + case PAGE_SUCCESS: + if (PageWriteback(page)) + goto keep; + if (PageDirty(page)) + goto keep; + + /* + * A synchronous write - probably a ramdisk. Go + * ahead and try to reclaim the page. + */ + if (!trylock_page(page)) + goto keep; + if (PageDirty(page) || PageWriteback(page)) + goto keep_locked; + mapping = page_mapping(page); + case PAGE_CLEAN: + ; /* try to free the page below */ + } + } + + /* + * If the page has buffers, try to free the buffer mappings + * associated with this page. If we succeed we try to free + * the page as well. + * + * We do this even if the page is PageDirty(). + * try_to_release_page() does not perform I/O, but it is + * possible for a page to have PageDirty set, but it is actually + * clean (all its buffers are clean). This happens if the + * buffers were written out directly, with submit_bh(). ext3 + * will do this, as well as the blockdev mapping. + * try_to_release_page() will discover that cleanness and will + * drop the buffers and mark the page clean - it can be freed. + * + * Rarely, pages can have buffers and no ->mapping. These are + * the pages which were not successfully invalidated in + * truncate_complete_page(). We try to drop those buffers here + * and if that worked, and the page is no longer mapped into + * process address space (page_count == 1) it can be freed. + * Otherwise, leave the page on the LRU so it is swappable. + */ + if (page_has_private(page)) { + if (!try_to_release_page(page, sc->gfp_mask)) + goto activate_locked; + if (!mapping && page_count(page) == 1) { + unlock_page(page); + if (put_page_testzero(page)) + goto free_it; + else { + /* + * rare race with speculative reference. + * the speculative reference will free + * this page shortly, so we may + * increment nr_reclaimed here (and + * leave it off the LRU). + */ + nr_reclaimed++; + continue; + } + } + } + + if (PageAnon(page) && !PageSwapBacked(page)) { + /* follow __remove_mapping for reference */ + if (!page_ref_freeze(page, 1)) + goto keep_locked; + if (PageDirty(page)) { + page_ref_unfreeze(page, 1); + goto keep_locked; + } + + count_vm_event(PGLAZYFREED); + count_memcg_page_event(page, PGLAZYFREED); + } else if (!mapping || !__remove_mapping(mapping, page, true)) + goto keep_locked; + /* + * At this point, we have no other references and there is + * no way to pick any more up (removed from LRU, removed + * from pagecache). Can use non-atomic bitops now (and + * we obviously don't have to worry about waking up a process + * waiting on the page lock, because there are no references. + */ + __ClearPageLocked(page); +free_it: + nr_reclaimed++; + + /* + * Is there need to periodically free_page_list? It would + * appear not as the counts should be low + */ + if (unlikely(PageTransHuge(page))) { + mem_cgroup_uncharge(page); + (*get_compound_page_dtor(page))(page); + } else + list_add(&page->lru, &free_pages); + continue; + +activate_locked: + /* Not a candidate for swapping, so reclaim swap space. */ + if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || + PageMlocked(page))) + try_to_free_swap(page); + VM_BUG_ON_PAGE(PageActive(page), page); + if (!PageMlocked(page)) { + SetPageActive(page); + pgactivate++; + count_memcg_page_event(page, PGACTIVATE); + } +keep_locked: + unlock_page(page); +keep: + list_add(&page->lru, &ret_pages); + VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); + } + + mem_cgroup_uncharge_list(&free_pages); + try_to_unmap_flush(); + free_unref_page_list(&free_pages); + + list_splice(&ret_pages, page_list); + count_vm_events(PGACTIVATE, pgactivate); + + if (stat) { + stat->nr_dirty = nr_dirty; + stat->nr_congested = nr_congested; + stat->nr_unqueued_dirty = nr_unqueued_dirty; + stat->nr_writeback = nr_writeback; + stat->nr_immediate = nr_immediate; + stat->nr_activate = pgactivate; + stat->nr_ref_keep = nr_ref_keep; + stat->nr_unmap_fail = nr_unmap_fail; + } + return nr_reclaimed; +} + +unsigned long reclaim_clean_pages_from_list(struct zone *zone, + struct list_head *page_list) +{ + struct scan_control sc = { + .gfp_mask = GFP_KERNEL, + .priority = DEF_PRIORITY, + .may_unmap = 1, + }; + unsigned long ret; + struct page *page, *next; + LIST_HEAD(clean_pages); + + list_for_each_entry_safe(page, next, page_list, lru) { + if (page_is_file_cache(page) && !PageDirty(page) && + !__PageMovable(page) && !PageUnevictable(page)) { + ClearPageActive(page); + list_move(&page->lru, &clean_pages); + } + } + + ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, + TTU_IGNORE_ACCESS, NULL, true); + list_splice(&clean_pages, page_list); + mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); + return ret; +} + +/* + * Attempt to remove the specified page from its LRU. Only take this page + * if it is of the appropriate PageActive status. Pages which are being + * freed elsewhere are also ignored. + * + * page: page to consider + * mode: one of the LRU isolation modes defined above + * + * returns 0 on success, -ve errno on failure. + */ +int __isolate_lru_page(struct page *page, isolate_mode_t mode) +{ + int ret = -EINVAL; + + /* Only take pages on the LRU. */ + if (!PageLRU(page)) + return ret; + + /* Compaction should not handle unevictable pages but CMA can do so */ + if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) + return ret; + + ret = -EBUSY; + + /* + * To minimise LRU disruption, the caller can indicate that it only + * wants to isolate pages it will be able to operate on without + * blocking - clean pages for the most part. + * + * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages + * that it is possible to migrate without blocking + */ + if (mode & ISOLATE_ASYNC_MIGRATE) { + /* All the caller can do on PageWriteback is block */ + if (PageWriteback(page)) + return ret; + + if (PageDirty(page)) { + struct address_space *mapping; + bool migrate_dirty; + + /* + * Only pages without mappings or that have a + * ->migratepage callback are possible to migrate + * without blocking. However, we can be racing with + * truncation so it's necessary to lock the page + * to stabilise the mapping as truncation holds + * the page lock until after the page is removed + * from the page cache. + */ + if (!trylock_page(page)) + return ret; + + mapping = page_mapping(page); + migrate_dirty = !mapping || mapping->a_ops->migratepage; + unlock_page(page); + if (!migrate_dirty) + return ret; + } + } + + if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) + return ret; + + if (likely(get_page_unless_zero(page))) { + /* + * Be careful not to clear PageLRU until after we're + * sure the page is not being freed elsewhere -- the + * page release code relies on it. + */ + ClearPageLRU(page); + ret = 0; + } + + return ret; +} + + +/* + * Update LRU sizes after isolating pages. The LRU size updates must + * be complete before mem_cgroup_update_lru_size due to a santity check. + */ +static __always_inline void update_lru_sizes(struct lruvec *lruvec, + enum lru_list lru, unsigned long *nr_zone_taken) +{ + int zid; + + for (zid = 0; zid < MAX_NR_ZONES; zid++) { + if (!nr_zone_taken[zid]) + continue; + + __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); +#ifdef CONFIG_MEMCG + mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); +#endif + } + +} + +/* + * zone_lru_lock is heavily contended. Some of the functions that + * shrink the lists perform better by taking out a batch of pages + * and working on them outside the LRU lock. + * + * For pagecache intensive workloads, this function is the hottest + * spot in the kernel (apart from copy_*_user functions). + * + * Appropriate locks must be held before calling this function. + * + * @nr_to_scan: The number of eligible pages to look through on the list. + * @lruvec: The LRU vector to pull pages from. + * @dst: The temp list to put pages on to. + * @nr_scanned: The number of pages that were scanned. + * @sc: The scan_control struct for this reclaim session + * @mode: One of the LRU isolation modes + * @lru: LRU list id for isolating + * + * returns how many pages were moved onto *@dst. + */ +static unsigned long isolate_lru_pages(unsigned long nr_to_scan, + struct lruvec *lruvec, struct list_head *dst, + unsigned long *nr_scanned, struct scan_control *sc, + isolate_mode_t mode, enum lru_list lru) +{ + struct list_head *src = &lruvec->lists[lru]; + unsigned long nr_taken = 0; + unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; + unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; + unsigned long skipped = 0; + unsigned long scan, total_scan, nr_pages; + LIST_HEAD(pages_skipped); + + scan = 0; + for (total_scan = 0; + scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); + total_scan++) { + struct page *page; + + page = lru_to_page(src); + prefetchw_prev_lru_page(page, src, flags); + + VM_BUG_ON_PAGE(!PageLRU(page), page); + + if (page_zonenum(page) > sc->reclaim_idx) { + list_move(&page->lru, &pages_skipped); + nr_skipped[page_zonenum(page)]++; + continue; + } + + /* + * Do not count skipped pages because that makes the function + * return with no isolated pages if the LRU mostly contains + * ineligible pages. This causes the VM to not reclaim any + * pages, triggering a premature OOM. + */ + scan++; + switch (__isolate_lru_page(page, mode)) { + case 0: + nr_pages = hpage_nr_pages(page); + nr_taken += nr_pages; + nr_zone_taken[page_zonenum(page)] += nr_pages; + list_move(&page->lru, dst); + break; + + case -EBUSY: + /* else it is being freed elsewhere */ + list_move(&page->lru, src); + continue; + + default: + BUG(); + } + } + + /* + * Splice any skipped pages to the start of the LRU list. Note that + * this disrupts the LRU order when reclaiming for lower zones but + * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX + * scanning would soon rescan the same pages to skip and put the + * system at risk of premature OOM. + */ + if (!list_empty(&pages_skipped)) { + int zid; + + list_splice(&pages_skipped, src); + for (zid = 0; zid < MAX_NR_ZONES; zid++) { + if (!nr_skipped[zid]) + continue; + + __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); + skipped += nr_skipped[zid]; + } + } + *nr_scanned = total_scan; + trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, + total_scan, skipped, nr_taken, mode, lru); + update_lru_sizes(lruvec, lru, nr_zone_taken); + return nr_taken; +} + +/** + * isolate_lru_page - tries to isolate a page from its LRU list + * @page: page to isolate from its LRU list + * + * Isolates a @page from an LRU list, clears PageLRU and adjusts the + * vmstat statistic corresponding to whatever LRU list the page was on. + * + * Returns 0 if the page was removed from an LRU list. + * Returns -EBUSY if the page was not on an LRU list. + * + * The returned page will have PageLRU() cleared. If it was found on + * the active list, it will have PageActive set. If it was found on + * the unevictable list, it will have the PageUnevictable bit set. That flag + * may need to be cleared by the caller before letting the page go. + * + * The vmstat statistic corresponding to the list on which the page was + * found will be decremented. + * + * Restrictions: + * + * (1) Must be called with an elevated refcount on the page. This is a + * fundamentnal difference from isolate_lru_pages (which is called + * without a stable reference). + * (2) the lru_lock must not be held. + * (3) interrupts must be enabled. + */ +int isolate_lru_page(struct page *page) +{ + int ret = -EBUSY; + + VM_BUG_ON_PAGE(!page_count(page), page); + WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); + + if (PageLRU(page)) { + struct zone *zone = page_zone(page); + struct lruvec *lruvec; + + spin_lock_irq(zone_lru_lock(zone)); + lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); + if (PageLRU(page)) { + int lru = page_lru(page); + get_page(page); + ClearPageLRU(page); + del_page_from_lru_list(page, lruvec, lru); + ret = 0; + } + spin_unlock_irq(zone_lru_lock(zone)); + } + return ret; +} + +/* + * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and + * then get resheduled. When there are massive number of tasks doing page + * allocation, such sleeping direct reclaimers may keep piling up on each CPU, + * the LRU list will go small and be scanned faster than necessary, leading to + * unnecessary swapping, thrashing and OOM. + */ +static int too_many_isolated(struct pglist_data *pgdat, int file, + struct scan_control *sc) +{ + unsigned long inactive, isolated; + + if (current_is_kswapd()) + return 0; + + if (!sane_reclaim(sc)) + return 0; + + if (file) { + inactive = node_page_state(pgdat, NR_INACTIVE_FILE); + isolated = node_page_state(pgdat, NR_ISOLATED_FILE); + } else { + inactive = node_page_state(pgdat, NR_INACTIVE_ANON); + isolated = node_page_state(pgdat, NR_ISOLATED_ANON); + } + + /* + * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they + * won't get blocked by normal direct-reclaimers, forming a circular + * deadlock. + */ + if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) + inactive >>= 3; + + return isolated > inactive; +} + +static noinline_for_stack void +putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) +{ + struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; + struct pglist_data *pgdat = lruvec_pgdat(lruvec); + LIST_HEAD(pages_to_free); + + /* + * Put back any unfreeable pages. + */ + while (!list_empty(page_list)) { + struct page *page = lru_to_page(page_list); + int lru; + + VM_BUG_ON_PAGE(PageLRU(page), page); + list_del(&page->lru); + if (unlikely(!page_evictable(page))) { + spin_unlock_irq(&pgdat->lru_lock); + putback_lru_page(page); + spin_lock_irq(&pgdat->lru_lock); + continue; + } + + lruvec = mem_cgroup_page_lruvec(page, pgdat); + + SetPageLRU(page); + lru = page_lru(page); + add_page_to_lru_list(page, lruvec, lru); + + if (is_active_lru(lru)) { + int file = is_file_lru(lru); + int numpages = hpage_nr_pages(page); + reclaim_stat->recent_rotated[file] += numpages; + } + if (put_page_testzero(page)) { + __ClearPageLRU(page); + __ClearPageActive(page); + del_page_from_lru_list(page, lruvec, lru); + + if (unlikely(PageCompound(page))) { + spin_unlock_irq(&pgdat->lru_lock); + mem_cgroup_uncharge(page); + (*get_compound_page_dtor(page))(page); + spin_lock_irq(&pgdat->lru_lock); + } else + list_add(&page->lru, &pages_to_free); + } + } + + /* + * To save our caller's stack, now use input list for pages to free. + */ + list_splice(&pages_to_free, page_list); +} + +/* + * If a kernel thread (such as nfsd for loop-back mounts) services + * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. + * In that case we should only throttle if the backing device it is + * writing to is congested. In other cases it is safe to throttle. + */ +static int current_may_throttle(void) +{ + return !(current->flags & PF_LESS_THROTTLE) || + current->backing_dev_info == NULL || + bdi_write_congested(current->backing_dev_info); +} + +/* + * shrink_inactive_list() is a helper for shrink_node(). It returns the number + * of reclaimed pages + */ +static noinline_for_stack unsigned long +shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, + struct scan_control *sc, enum lru_list lru) +{ + LIST_HEAD(page_list); + unsigned long nr_scanned; + unsigned long nr_reclaimed = 0; + unsigned long nr_taken; + struct reclaim_stat stat = {}; + isolate_mode_t isolate_mode = 0; + int file = is_file_lru(lru); + struct pglist_data *pgdat = lruvec_pgdat(lruvec); + struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; + bool stalled = false; + + while (unlikely(too_many_isolated(pgdat, file, sc))) { + if (stalled) + return 0; + + /* wait a bit for the reclaimer. */ + msleep(100); + stalled = true; + + /* We are about to die and free our memory. Return now. */ + if (fatal_signal_pending(current)) + return SWAP_CLUSTER_MAX; + } + + lru_add_drain(); + + if (!sc->may_unmap) + isolate_mode |= ISOLATE_UNMAPPED; + + spin_lock_irq(&pgdat->lru_lock); + + nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, + &nr_scanned, sc, isolate_mode, lru); + + __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); + reclaim_stat->recent_scanned[file] += nr_taken; + + if (current_is_kswapd()) { + if (global_reclaim(sc)) + __count_vm_events(PGSCAN_KSWAPD, nr_scanned); + count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, + nr_scanned); + } else { + if (global_reclaim(sc)) + __count_vm_events(PGSCAN_DIRECT, nr_scanned); + count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, + nr_scanned); + } + spin_unlock_irq(&pgdat->lru_lock); + + if (nr_taken == 0) + return 0; + + nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, + &stat, false); + + spin_lock_irq(&pgdat->lru_lock); + + if (current_is_kswapd()) { + if (global_reclaim(sc)) + __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); + count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, + nr_reclaimed); + } else { + if (global_reclaim(sc)) + __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); + count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, + nr_reclaimed); + } + + putback_inactive_pages(lruvec, &page_list); + + __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); + + spin_unlock_irq(&pgdat->lru_lock); + + mem_cgroup_uncharge_list(&page_list); + free_unref_page_list(&page_list); + + /* + * If dirty pages are scanned that are not queued for IO, it + * implies that flushers are not doing their job. This can + * happen when memory pressure pushes dirty pages to the end of + * the LRU before the dirty limits are breached and the dirty + * data has expired. It can also happen when the proportion of + * dirty pages grows not through writes but through memory + * pressure reclaiming all the clean cache. And in some cases, + * the flushers simply cannot keep up with the allocation + * rate. Nudge the flusher threads in case they are asleep. + */ + if (stat.nr_unqueued_dirty == nr_taken) + wakeup_flusher_threads(WB_REASON_VMSCAN); + + sc->nr.dirty += stat.nr_dirty; + sc->nr.congested += stat.nr_congested; + sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; + sc->nr.writeback += stat.nr_writeback; + sc->nr.immediate += stat.nr_immediate; + sc->nr.taken += nr_taken; + if (file) + sc->nr.file_taken += nr_taken; + + trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, + nr_scanned, nr_reclaimed, &stat, sc->priority, file); + return nr_reclaimed; +} + +/* + * This moves pages from the active list to the inactive list. + * + * We move them the other way if the page is referenced by one or more + * processes, from rmap. + * + * If the pages are mostly unmapped, the processing is fast and it is + * appropriate to hold zone_lru_lock across the whole operation. But if + * the pages are mapped, the processing is slow (page_referenced()) so we + * should drop zone_lru_lock around each page. It's impossible to balance + * this, so instead we remove the pages from the LRU while processing them. + * It is safe to rely on PG_active against the non-LRU pages in here because + * nobody will play with that bit on a non-LRU page. + * + * The downside is that we have to touch page->_refcount against each page. + * But we had to alter page->flags anyway. + * + * Returns the number of pages moved to the given lru. + */ + +static unsigned move_active_pages_to_lru(struct lruvec *lruvec, + struct list_head *list, + struct list_head *pages_to_free, + enum lru_list lru) +{ + struct pglist_data *pgdat = lruvec_pgdat(lruvec); + struct page *page; + int nr_pages; + int nr_moved = 0; + + while (!list_empty(list)) { + page = lru_to_page(list); + lruvec = mem_cgroup_page_lruvec(page, pgdat); + + VM_BUG_ON_PAGE(PageLRU(page), page); + SetPageLRU(page); + + nr_pages = hpage_nr_pages(page); + update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); + list_move(&page->lru, &lruvec->lists[lru]); + + if (put_page_testzero(page)) { + __ClearPageLRU(page); + __ClearPageActive(page); + del_page_from_lru_list(page, lruvec, lru); + + if (unlikely(PageCompound(page))) { + spin_unlock_irq(&pgdat->lru_lock); + mem_cgroup_uncharge(page); + (*get_compound_page_dtor(page))(page); + spin_lock_irq(&pgdat->lru_lock); + } else + list_add(&page->lru, pages_to_free); + } else { + nr_moved += nr_pages; + } + } + + if (!is_active_lru(lru)) { + __count_vm_events(PGDEACTIVATE, nr_moved); + count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, + nr_moved); + } + + return nr_moved; +} + +static void shrink_active_list(unsigned long nr_to_scan, + struct lruvec *lruvec, + struct scan_control *sc, + enum lru_list lru) +{ + unsigned long nr_taken; + unsigned long nr_scanned; + unsigned long vm_flags; + LIST_HEAD(l_hold); /* The pages which were snipped off */ + LIST_HEAD(l_active); + LIST_HEAD(l_inactive); + struct page *page; + struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; + unsigned nr_deactivate, nr_activate; + unsigned nr_rotated = 0; + isolate_mode_t isolate_mode = 0; + int file = is_file_lru(lru); + struct pglist_data *pgdat = lruvec_pgdat(lruvec); + + lru_add_drain(); + + if (!sc->may_unmap) + isolate_mode |= ISOLATE_UNMAPPED; + + spin_lock_irq(&pgdat->lru_lock); + + nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, + &nr_scanned, sc, isolate_mode, lru); + + __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); + reclaim_stat->recent_scanned[file] += nr_taken; + + __count_vm_events(PGREFILL, nr_scanned); + count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); + + spin_unlock_irq(&pgdat->lru_lock); + + while (!list_empty(&l_hold)) { + cond_resched(); + page = lru_to_page(&l_hold); + list_del(&page->lru); + + if (unlikely(!page_evictable(page))) { + putback_lru_page(page); + continue; + } + + if (unlikely(buffer_heads_over_limit)) { + if (page_has_private(page) && trylock_page(page)) { + if (page_has_private(page)) + try_to_release_page(page, 0); + unlock_page(page); + } + } + + if (page_referenced(page, 0, sc->target_mem_cgroup, + &vm_flags)) { + nr_rotated += hpage_nr_pages(page); + /* + * Identify referenced, file-backed active pages and + * give them one more trip around the active list. So + * that executable code get better chances to stay in + * memory under moderate memory pressure. Anon pages + * are not likely to be evicted by use-once streaming + * IO, plus JVM can create lots of anon VM_EXEC pages, + * so we ignore them here. + */ + if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { + list_add(&page->lru, &l_active); + continue; + } + } + + ClearPageActive(page); /* we are de-activating */ + list_add(&page->lru, &l_inactive); + } + + /* + * Move pages back to the lru list. + */ + spin_lock_irq(&pgdat->lru_lock); + /* + * Count referenced pages from currently used mappings as rotated, + * even though only some of them are actually re-activated. This + * helps balance scan pressure between file and anonymous pages in + * get_scan_count. + */ + reclaim_stat->recent_rotated[file] += nr_rotated; + + nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); + nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); + __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); + spin_unlock_irq(&pgdat->lru_lock); + + mem_cgroup_uncharge_list(&l_hold); + free_unref_page_list(&l_hold); + trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, + nr_deactivate, nr_rotated, sc->priority, file); +} + +/* + * The inactive anon list should be small enough that the VM never has + * to do too much work. + * + * The inactive file list should be small enough to leave most memory + * to the established workingset on the scan-resistant active list, + * but large enough to avoid thrashing the aggregate readahead window. + * + * Both inactive lists should also be large enough that each inactive + * page has a chance to be referenced again before it is reclaimed. + * + * If that fails and refaulting is observed, the inactive list grows. + * + * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages + * on this LRU, maintained by the pageout code. An inactive_ratio + * of 3 means 3:1 or 25% of the pages are kept on the inactive list. + * + * total target max + * memory ratio inactive + * ------------------------------------- + * 10MB 1 5MB + * 100MB 1 50MB + * 1GB 3 250MB + * 10GB 10 0.9GB + * 100GB 31 3GB + * 1TB 101 10GB + * 10TB 320 32GB + */ +static bool inactive_list_is_low(struct lruvec *lruvec, bool file, + struct scan_control *sc, bool trace) +{ + enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; + struct pglist_data *pgdat = lruvec_pgdat(lruvec); + enum lru_list inactive_lru = file * LRU_FILE; + unsigned long inactive, active; + unsigned long inactive_ratio; + unsigned long refaults; + unsigned long gb; + + /* + * If we don't have swap space, anonymous page deactivation + * is pointless. + */ + if (!file && !total_swap_pages) + return false; + + inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); + active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); + + /* + * When refaults are being observed, it means a new workingset + * is being established. Disable active list protection to get + * rid of the stale workingset quickly. + */ + refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE); + if (file && lruvec->refaults != refaults) { + inactive_ratio = 0; + } else { + gb = (inactive + active) >> (30 - PAGE_SHIFT); + if (gb) + inactive_ratio = int_sqrt(10 * gb); + else + inactive_ratio = 1; + } + + if (trace) + trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, + lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, + lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, + inactive_ratio, file); + + return inactive * inactive_ratio < active; +} + +static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, + struct lruvec *lruvec, struct scan_control *sc) +{ + if (is_active_lru(lru)) { + if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) + shrink_active_list(nr_to_scan, lruvec, sc, lru); + return 0; + } + + return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); +} + +enum scan_balance { + SCAN_EQUAL, + SCAN_FRACT, + SCAN_ANON, + SCAN_FILE, +}; + +/* + * Determine how aggressively the anon and file LRU lists should be + * scanned. The relative value of each set of LRU lists is determined + * by looking at the fraction of the pages scanned we did rotate back + * onto the active list instead of evict. + * + * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan + * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan + */ +static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, + struct scan_control *sc, unsigned long *nr, + unsigned long *lru_pages) +{ + int swappiness = mem_cgroup_swappiness(memcg); + struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; + u64 fraction[2]; + u64 denominator = 0; /* gcc */ + struct pglist_data *pgdat = lruvec_pgdat(lruvec); + unsigned long anon_prio, file_prio; + enum scan_balance scan_balance; + unsigned long anon, file; + unsigned long ap, fp; + enum lru_list lru; + + /* If we have no swap space, do not bother scanning anon pages. */ + if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { + scan_balance = SCAN_FILE; + goto out; + } + + /* + * Global reclaim will swap to prevent OOM even with no + * swappiness, but memcg users want to use this knob to + * disable swapping for individual groups completely when + * using the memory controller's swap limit feature would be + * too expensive. + */ + if (!global_reclaim(sc) && !swappiness) { + scan_balance = SCAN_FILE; + goto out; + } + + /* + * Do not apply any pressure balancing cleverness when the + * system is close to OOM, scan both anon and file equally + * (unless the swappiness setting disagrees with swapping). + */ + if (!sc->priority && swappiness) { + scan_balance = SCAN_EQUAL; + goto out; + } + + /* + * Prevent the reclaimer from falling into the cache trap: as + * cache pages start out inactive, every cache fault will tip + * the scan balance towards the file LRU. And as the file LRU + * shrinks, so does the window for rotation from references. + * This means we have a runaway feedback loop where a tiny + * thrashing file LRU becomes infinitely more attractive than + * anon pages. Try to detect this based on file LRU size. + */ + if (global_reclaim(sc)) { + unsigned long pgdatfile; + unsigned long pgdatfree; + int z; + unsigned long total_high_wmark = 0; + + pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); + pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + + node_page_state(pgdat, NR_INACTIVE_FILE); + + for (z = 0; z < MAX_NR_ZONES; z++) { + struct zone *zone = &pgdat->node_zones[z]; + if (!managed_zone(zone)) + continue; + + total_high_wmark += high_wmark_pages(zone); + } + + if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { + /* + * Force SCAN_ANON if there are enough inactive + * anonymous pages on the LRU in eligible zones. + * Otherwise, the small LRU gets thrashed. + */ + if (!inactive_list_is_low(lruvec, false, sc, false) && + lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) + >> sc->priority) { + scan_balance = SCAN_ANON; + goto out; + } + } + } + + /* + * If there is enough inactive page cache, i.e. if the size of the + * inactive list is greater than that of the active list *and* the + * inactive list actually has some pages to scan on this priority, we + * do not reclaim anything from the anonymous working set right now. + * Without the second condition we could end up never scanning an + * lruvec even if it has plenty of old anonymous pages unless the + * system is under heavy pressure. + */ + if (!inactive_list_is_low(lruvec, true, sc, false) && + lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { + scan_balance = SCAN_FILE; + goto out; + } + + scan_balance = SCAN_FRACT; + + /* + * With swappiness at 100, anonymous and file have the same priority. + * This scanning priority is essentially the inverse of IO cost. + */ + anon_prio = swappiness; + file_prio = 200 - anon_prio; + + /* + * OK, so we have swap space and a fair amount of page cache + * pages. We use the recently rotated / recently scanned + * ratios to determine how valuable each cache is. + * + * Because workloads change over time (and to avoid overflow) + * we keep these statistics as a floating average, which ends + * up weighing recent references more than old ones. + * + * anon in [0], file in [1] + */ + + anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + + lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); + file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + + lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); + + spin_lock_irq(&pgdat->lru_lock); + if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { + reclaim_stat->recent_scanned[0] /= 2; + reclaim_stat->recent_rotated[0] /= 2; + } + + if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { + reclaim_stat->recent_scanned[1] /= 2; + reclaim_stat->recent_rotated[1] /= 2; + } + + /* + * The amount of pressure on anon vs file pages is inversely + * proportional to the fraction of recently scanned pages on + * each list that were recently referenced and in active use. + */ + ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); + ap /= reclaim_stat->recent_rotated[0] + 1; + + fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); + fp /= reclaim_stat->recent_rotated[1] + 1; + spin_unlock_irq(&pgdat->lru_lock); + + fraction[0] = ap; + fraction[1] = fp; + denominator = ap + fp + 1; +out: + *lru_pages = 0; + for_each_evictable_lru(lru) { + int file = is_file_lru(lru); + unsigned long size; + unsigned long scan; + + size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); + scan = size >> sc->priority; + /* + * If the cgroup's already been deleted, make sure to + * scrape out the remaining cache. + */ + if (!scan && !mem_cgroup_online(memcg)) + scan = min(size, SWAP_CLUSTER_MAX); + + switch (scan_balance) { + case SCAN_EQUAL: + /* Scan lists relative to size */ + break; + case SCAN_FRACT: + /* + * Scan types proportional to swappiness and + * their relative recent reclaim efficiency. + * Make sure we don't miss the last page on + * the offlined memory cgroups because of a + * round-off error. + */ + scan = mem_cgroup_online(memcg) ? + div64_u64(scan * fraction[file], denominator) : + DIV64_U64_ROUND_UP(scan * fraction[file], + denominator); + break; + case SCAN_FILE: + case SCAN_ANON: + /* Scan one type exclusively */ + if ((scan_balance == SCAN_FILE) != file) { + size = 0; + scan = 0; + } + break; + default: + /* Look ma, no brain */ + BUG(); + } + + *lru_pages += size; + nr[lru] = scan; + } +} + +/* + * This is a basic per-node page freer. Used by both kswapd and direct reclaim. + */ +static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, + struct scan_control *sc, unsigned long *lru_pages) +{ + struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); + unsigned long nr[NR_LRU_LISTS]; + unsigned long targets[NR_LRU_LISTS]; + unsigned long nr_to_scan; + enum lru_list lru; + unsigned long nr_reclaimed = 0; + unsigned long nr_to_reclaim = sc->nr_to_reclaim; + struct blk_plug plug; + bool scan_adjusted; + + get_scan_count(lruvec, memcg, sc, nr, lru_pages); + + /* Record the original scan target for proportional adjustments later */ + memcpy(targets, nr, sizeof(nr)); + + /* + * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal + * event that can occur when there is little memory pressure e.g. + * multiple streaming readers/writers. Hence, we do not abort scanning + * when the requested number of pages are reclaimed when scanning at + * DEF_PRIORITY on the assumption that the fact we are direct + * reclaiming implies that kswapd is not keeping up and it is best to + * do a batch of work at once. For memcg reclaim one check is made to + * abort proportional reclaim if either the file or anon lru has already + * dropped to zero at the first pass. + */ + scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && + sc->priority == DEF_PRIORITY); + + blk_start_plug(&plug); + while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || + nr[LRU_INACTIVE_FILE]) { + unsigned long nr_anon, nr_file, percentage; + unsigned long nr_scanned; + + for_each_evictable_lru(lru) { + if (nr[lru]) { + nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); + nr[lru] -= nr_to_scan; + + nr_reclaimed += shrink_list(lru, nr_to_scan, + lruvec, sc); + } + } + + cond_resched(); + + if (nr_reclaimed < nr_to_reclaim || scan_adjusted) + continue; + + /* + * For kswapd and memcg, reclaim at least the number of pages + * requested. Ensure that the anon and file LRUs are scanned + * proportionally what was requested by get_scan_count(). We + * stop reclaiming one LRU and reduce the amount scanning + * proportional to the original scan target. + */ + nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; + nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; + + /* + * It's just vindictive to attack the larger once the smaller + * has gone to zero. And given the way we stop scanning the + * smaller below, this makes sure that we only make one nudge + * towards proportionality once we've got nr_to_reclaim. + */ + if (!nr_file || !nr_anon) + break; + + if (nr_file > nr_anon) { + unsigned long scan_target = targets[LRU_INACTIVE_ANON] + + targets[LRU_ACTIVE_ANON] + 1; + lru = LRU_BASE; + percentage = nr_anon * 100 / scan_target; + } else { + unsigned long scan_target = targets[LRU_INACTIVE_FILE] + + targets[LRU_ACTIVE_FILE] + 1; + lru = LRU_FILE; + percentage = nr_file * 100 / scan_target; + } + + /* Stop scanning the smaller of the LRU */ + nr[lru] = 0; + nr[lru + LRU_ACTIVE] = 0; + + /* + * Recalculate the other LRU scan count based on its original + * scan target and the percentage scanning already complete + */ + lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; + nr_scanned = targets[lru] - nr[lru]; + nr[lru] = targets[lru] * (100 - percentage) / 100; + nr[lru] -= min(nr[lru], nr_scanned); + + lru += LRU_ACTIVE; + nr_scanned = targets[lru] - nr[lru]; + nr[lru] = targets[lru] * (100 - percentage) / 100; + nr[lru] -= min(nr[lru], nr_scanned); + + scan_adjusted = true; + } + blk_finish_plug(&plug); + sc->nr_reclaimed += nr_reclaimed; + + /* + * Even if we did not try to evict anon pages at all, we want to + * rebalance the anon lru active/inactive ratio. + */ + if (inactive_list_is_low(lruvec, false, sc, true)) + shrink_active_list(SWAP_CLUSTER_MAX, lruvec, + sc, LRU_ACTIVE_ANON); +} + +/* Use reclaim/compaction for costly allocs or under memory pressure */ +static bool in_reclaim_compaction(struct scan_control *sc) +{ + if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && + (sc->order > PAGE_ALLOC_COSTLY_ORDER || + sc->priority < DEF_PRIORITY - 2)) + return true; + + return false; +} + +/* + * Reclaim/compaction is used for high-order allocation requests. It reclaims + * order-0 pages before compacting the zone. should_continue_reclaim() returns + * true if more pages should be reclaimed such that when the page allocator + * calls try_to_compact_zone() that it will have enough free pages to succeed. + * It will give up earlier than that if there is difficulty reclaiming pages. + */ +static inline bool should_continue_reclaim(struct pglist_data *pgdat, + unsigned long nr_reclaimed, + unsigned long nr_scanned, + struct scan_control *sc) +{ + unsigned long pages_for_compaction; + unsigned long inactive_lru_pages; + int z; + + /* If not in reclaim/compaction mode, stop */ + if (!in_reclaim_compaction(sc)) + return false; + + /* Consider stopping depending on scan and reclaim activity */ + if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { + /* + * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the + * full LRU list has been scanned and we are still failing + * to reclaim pages. This full LRU scan is potentially + * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed + */ + if (!nr_reclaimed && !nr_scanned) + return false; + } else { + /* + * For non-__GFP_RETRY_MAYFAIL allocations which can presumably + * fail without consequence, stop if we failed to reclaim + * any pages from the last SWAP_CLUSTER_MAX number of + * pages that were scanned. This will return to the + * caller faster at the risk reclaim/compaction and + * the resulting allocation attempt fails + */ + if (!nr_reclaimed) + return false; + } + + /* + * If we have not reclaimed enough pages for compaction and the + * inactive lists are large enough, continue reclaiming + */ + pages_for_compaction = compact_gap(sc->order); + inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); + if (get_nr_swap_pages() > 0) + inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); + if (sc->nr_reclaimed < pages_for_compaction && + inactive_lru_pages > pages_for_compaction) + return true; + + /* If compaction would go ahead or the allocation would succeed, stop */ + for (z = 0; z <= sc->reclaim_idx; z++) { + struct zone *zone = &pgdat->node_zones[z]; + if (!managed_zone(zone)) + continue; + + switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { + case COMPACT_SUCCESS: + case COMPACT_CONTINUE: + return false; + default: + /* check next zone */ + ; + } + } + return true; +} + +static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) +{ + return test_bit(PGDAT_CONGESTED, &pgdat->flags) || + (memcg && memcg_congested(pgdat, memcg)); +} + +static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) +{ + struct reclaim_state *reclaim_state = current->reclaim_state; + unsigned long nr_reclaimed, nr_scanned; + bool reclaimable = false; + + do { + struct mem_cgroup *root = sc->target_mem_cgroup; + struct mem_cgroup_reclaim_cookie reclaim = { + .pgdat = pgdat, + .priority = sc->priority, + }; + unsigned long node_lru_pages = 0; + struct mem_cgroup *memcg; + + memset(&sc->nr, 0, sizeof(sc->nr)); + + nr_reclaimed = sc->nr_reclaimed; + nr_scanned = sc->nr_scanned; + + memcg = mem_cgroup_iter(root, NULL, &reclaim); + do { + unsigned long lru_pages; + unsigned long reclaimed; + unsigned long scanned; + + /* + * This loop can become CPU-bound when target memcgs + * aren't eligible for reclaim - either because they + * don't have any reclaimable pages, or because their + * memory is explicitly protected. Avoid soft lockups. + */ + cond_resched(); + + switch (mem_cgroup_protected(root, memcg)) { + case MEMCG_PROT_MIN: + /* + * Hard protection. + * If there is no reclaimable memory, OOM. + */ + continue; + case MEMCG_PROT_LOW: + /* + * Soft protection. + * Respect the protection only as long as + * there is an unprotected supply + * of reclaimable memory from other cgroups. + */ + if (!sc->memcg_low_reclaim) { + sc->memcg_low_skipped = 1; + continue; + } + memcg_memory_event(memcg, MEMCG_LOW); + break; + case MEMCG_PROT_NONE: + break; + } + + reclaimed = sc->nr_reclaimed; + scanned = sc->nr_scanned; + shrink_node_memcg(pgdat, memcg, sc, &lru_pages); + node_lru_pages += lru_pages; + + shrink_slab(sc->gfp_mask, pgdat->node_id, + memcg, sc->priority); + + /* Record the group's reclaim efficiency */ + vmpressure(sc->gfp_mask, memcg, false, + sc->nr_scanned - scanned, + sc->nr_reclaimed - reclaimed); + + /* + * Direct reclaim and kswapd have to scan all memory + * cgroups to fulfill the overall scan target for the + * node. + * + * Limit reclaim, on the other hand, only cares about + * nr_to_reclaim pages to be reclaimed and it will + * retry with decreasing priority if one round over the + * whole hierarchy is not sufficient. + */ + if (!global_reclaim(sc) && + sc->nr_reclaimed >= sc->nr_to_reclaim) { + mem_cgroup_iter_break(root, memcg); + break; + } + } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); + + if (reclaim_state) { + sc->nr_reclaimed += reclaim_state->reclaimed_slab; + reclaim_state->reclaimed_slab = 0; + } + + /* Record the subtree's reclaim efficiency */ + vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, + sc->nr_scanned - nr_scanned, + sc->nr_reclaimed - nr_reclaimed); + + if (sc->nr_reclaimed - nr_reclaimed) + reclaimable = true; + + if (current_is_kswapd()) { + /* + * If reclaim is isolating dirty pages under writeback, + * it implies that the long-lived page allocation rate + * is exceeding the page laundering rate. Either the + * global limits are not being effective at throttling + * processes due to the page distribution throughout + * zones or there is heavy usage of a slow backing + * device. The only option is to throttle from reclaim + * context which is not ideal as there is no guarantee + * the dirtying process is throttled in the same way + * balance_dirty_pages() manages. + * + * Once a node is flagged PGDAT_WRITEBACK, kswapd will + * count the number of pages under pages flagged for + * immediate reclaim and stall if any are encountered + * in the nr_immediate check below. + */ + if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) + set_bit(PGDAT_WRITEBACK, &pgdat->flags); + + /* + * Tag a node as congested if all the dirty pages + * scanned were backed by a congested BDI and + * wait_iff_congested will stall. + */ + if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) + set_bit(PGDAT_CONGESTED, &pgdat->flags); + + /* Allow kswapd to start writing pages during reclaim.*/ + if (sc->nr.unqueued_dirty == sc->nr.file_taken) + set_bit(PGDAT_DIRTY, &pgdat->flags); + + /* + * If kswapd scans pages marked marked for immediate + * reclaim and under writeback (nr_immediate), it + * implies that pages are cycling through the LRU + * faster than they are written so also forcibly stall. + */ + if (sc->nr.immediate) + congestion_wait(BLK_RW_ASYNC, HZ/10); + } + + /* + * Legacy memcg will stall in page writeback so avoid forcibly + * stalling in wait_iff_congested(). + */ + if (!global_reclaim(sc) && sane_reclaim(sc) && + sc->nr.dirty && sc->nr.dirty == sc->nr.congested) + set_memcg_congestion(pgdat, root, true); + + /* + * Stall direct reclaim for IO completions if underlying BDIs + * and node is congested. Allow kswapd to continue until it + * starts encountering unqueued dirty pages or cycling through + * the LRU too quickly. + */ + if (!sc->hibernation_mode && !current_is_kswapd() && + current_may_throttle() && pgdat_memcg_congested(pgdat, root)) + wait_iff_congested(BLK_RW_ASYNC, HZ/10); + + } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, + sc->nr_scanned - nr_scanned, sc)); + + /* + * Kswapd gives up on balancing particular nodes after too + * many failures to reclaim anything from them and goes to + * sleep. On reclaim progress, reset the failure counter. A + * successful direct reclaim run will revive a dormant kswapd. + */ + if (reclaimable) + pgdat->kswapd_failures = 0; + + return reclaimable; +} + +/* + * Returns true if compaction should go ahead for a costly-order request, or + * the allocation would already succeed without compaction. Return false if we + * should reclaim first. + */ +static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) +{ + unsigned long watermark; + enum compact_result suitable; + + suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); + if (suitable == COMPACT_SUCCESS) + /* Allocation should succeed already. Don't reclaim. */ + return true; + if (suitable == COMPACT_SKIPPED) + /* Compaction cannot yet proceed. Do reclaim. */ + return false; + + /* + * Compaction is already possible, but it takes time to run and there + * are potentially other callers using the pages just freed. So proceed + * with reclaim to make a buffer of free pages available to give + * compaction a reasonable chance of completing and allocating the page. + * Note that we won't actually reclaim the whole buffer in one attempt + * as the target watermark in should_continue_reclaim() is lower. But if + * we are already above the high+gap watermark, don't reclaim at all. + */ + watermark = high_wmark_pages(zone) + compact_gap(sc->order); + + return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); +} + +/* + * This is the direct reclaim path, for page-allocating processes. We only + * try to reclaim pages from zones which will satisfy the caller's allocation + * request. + * + * If a zone is deemed to be full of pinned pages then just give it a light + * scan then give up on it. + */ +static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) +{ + struct zoneref *z; + struct zone *zone; + unsigned long nr_soft_reclaimed; + unsigned long nr_soft_scanned; + gfp_t orig_mask; + pg_data_t *last_pgdat = NULL; + + /* + * If the number of buffer_heads in the machine exceeds the maximum + * allowed level, force direct reclaim to scan the highmem zone as + * highmem pages could be pinning lowmem pages storing buffer_heads + */ + orig_mask = sc->gfp_mask; + if (buffer_heads_over_limit) { + sc->gfp_mask |= __GFP_HIGHMEM; + sc->reclaim_idx = gfp_zone(sc->gfp_mask); + } + + for_each_zone_zonelist_nodemask(zone, z, zonelist, + sc->reclaim_idx, sc->nodemask) { + /* + * Take care memory controller reclaiming has small influence + * to global LRU. + */ + if (global_reclaim(sc)) { + if (!cpuset_zone_allowed(zone, + GFP_KERNEL | __GFP_HARDWALL)) + continue; + + /* + * If we already have plenty of memory free for + * compaction in this zone, don't free any more. + * Even though compaction is invoked for any + * non-zero order, only frequent costly order + * reclamation is disruptive enough to become a + * noticeable problem, like transparent huge + * page allocations. + */ + if (IS_ENABLED(CONFIG_COMPACTION) && + sc->order > PAGE_ALLOC_COSTLY_ORDER && + compaction_ready(zone, sc)) { + sc->compaction_ready = true; + continue; + } + + /* + * Shrink each node in the zonelist once. If the + * zonelist is ordered by zone (not the default) then a + * node may be shrunk multiple times but in that case + * the user prefers lower zones being preserved. + */ + if (zone->zone_pgdat == last_pgdat) + continue; + + /* + * This steals pages from memory cgroups over softlimit + * and returns the number of reclaimed pages and + * scanned pages. This works for global memory pressure + * and balancing, not for a memcg's limit. + */ + nr_soft_scanned = 0; + nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, + sc->order, sc->gfp_mask, + &nr_soft_scanned); + sc->nr_reclaimed += nr_soft_reclaimed; + sc->nr_scanned += nr_soft_scanned; + /* need some check for avoid more shrink_zone() */ + } + + /* See comment about same check for global reclaim above */ + if (zone->zone_pgdat == last_pgdat) + continue; + last_pgdat = zone->zone_pgdat; + shrink_node(zone->zone_pgdat, sc); + } + + /* + * Restore to original mask to avoid the impact on the caller if we + * promoted it to __GFP_HIGHMEM. + */ + sc->gfp_mask = orig_mask; +} + +static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) +{ + struct mem_cgroup *memcg; + + memcg = mem_cgroup_iter(root_memcg, NULL, NULL); + do { + unsigned long refaults; + struct lruvec *lruvec; + + lruvec = mem_cgroup_lruvec(pgdat, memcg); + refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE); + lruvec->refaults = refaults; + } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); +} + +/* + * This is the main entry point to direct page reclaim. + * + * If a full scan of the inactive list fails to free enough memory then we + * are "out of memory" and something needs to be killed. + * + * If the caller is !__GFP_FS then the probability of a failure is reasonably + * high - the zone may be full of dirty or under-writeback pages, which this + * caller can't do much about. We kick the writeback threads and take explicit + * naps in the hope that some of these pages can be written. But if the + * allocating task holds filesystem locks which prevent writeout this might not + * work, and the allocation attempt will fail. + * + * returns: 0, if no pages reclaimed + * else, the number of pages reclaimed + */ +static unsigned long do_try_to_free_pages(struct zonelist *zonelist, + struct scan_control *sc) +{ + int initial_priority = sc->priority; + pg_data_t *last_pgdat; + struct zoneref *z; + struct zone *zone; +retry: + delayacct_freepages_start(); + + if (global_reclaim(sc)) + __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); + + do { + vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, + sc->priority); + sc->nr_scanned = 0; + shrink_zones(zonelist, sc); + + if (sc->nr_reclaimed >= sc->nr_to_reclaim) + break; + + if (sc->compaction_ready) + break; + + /* + * If we're getting trouble reclaiming, start doing + * writepage even in laptop mode. + */ + if (sc->priority < DEF_PRIORITY - 2) + sc->may_writepage = 1; + } while (--sc->priority >= 0); + + last_pgdat = NULL; + for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, + sc->nodemask) { + if (zone->zone_pgdat == last_pgdat) + continue; + last_pgdat = zone->zone_pgdat; + snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); + set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); + } + + delayacct_freepages_end(); + + if (sc->nr_reclaimed) + return sc->nr_reclaimed; + + /* Aborted reclaim to try compaction? don't OOM, then */ + if (sc->compaction_ready) + return 1; + + /* Untapped cgroup reserves? Don't OOM, retry. */ + if (sc->memcg_low_skipped) { + sc->priority = initial_priority; + sc->memcg_low_reclaim = 1; + sc->memcg_low_skipped = 0; + goto retry; + } + + return 0; +} + +static bool allow_direct_reclaim(pg_data_t *pgdat) +{ + struct zone *zone; + unsigned long pfmemalloc_reserve = 0; + unsigned long free_pages = 0; + int i; + bool wmark_ok; + + if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) + return true; + + for (i = 0; i <= ZONE_NORMAL; i++) { + zone = &pgdat->node_zones[i]; + if (!managed_zone(zone)) + continue; + + if (!zone_reclaimable_pages(zone)) + continue; + + pfmemalloc_reserve += min_wmark_pages(zone); + free_pages += zone_page_state(zone, NR_FREE_PAGES); + } + + /* If there are no reserves (unexpected config) then do not throttle */ + if (!pfmemalloc_reserve) + return true; + + wmark_ok = free_pages > pfmemalloc_reserve / 2; + + /* kswapd must be awake if processes are being throttled */ + if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { + if (READ_ONCE(pgdat->kswapd_classzone_idx) > ZONE_NORMAL) + WRITE_ONCE(pgdat->kswapd_classzone_idx, ZONE_NORMAL); + + wake_up_interruptible(&pgdat->kswapd_wait); + } + + return wmark_ok; +} + +/* + * Throttle direct reclaimers if backing storage is backed by the network + * and the PFMEMALLOC reserve for the preferred node is getting dangerously + * depleted. kswapd will continue to make progress and wake the processes + * when the low watermark is reached. + * + * Returns true if a fatal signal was delivered during throttling. If this + * happens, the page allocator should not consider triggering the OOM killer. + */ +static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, + nodemask_t *nodemask) +{ + struct zoneref *z; + struct zone *zone; + pg_data_t *pgdat = NULL; + + /* + * Kernel threads should not be throttled as they may be indirectly + * responsible for cleaning pages necessary for reclaim to make forward + * progress. kjournald for example may enter direct reclaim while + * committing a transaction where throttling it could forcing other + * processes to block on log_wait_commit(). + */ + if (current->flags & PF_KTHREAD) + goto out; + + /* + * If a fatal signal is pending, this process should not throttle. + * It should return quickly so it can exit and free its memory + */ + if (fatal_signal_pending(current)) + goto out; + + /* + * Check if the pfmemalloc reserves are ok by finding the first node + * with a usable ZONE_NORMAL or lower zone. The expectation is that + * GFP_KERNEL will be required for allocating network buffers when + * swapping over the network so ZONE_HIGHMEM is unusable. + * + * Throttling is based on the first usable node and throttled processes + * wait on a queue until kswapd makes progress and wakes them. There + * is an affinity then between processes waking up and where reclaim + * progress has been made assuming the process wakes on the same node. + * More importantly, processes running on remote nodes will not compete + * for remote pfmemalloc reserves and processes on different nodes + * should make reasonable progress. + */ + for_each_zone_zonelist_nodemask(zone, z, zonelist, + gfp_zone(gfp_mask), nodemask) { + if (zone_idx(zone) > ZONE_NORMAL) + continue; + + /* Throttle based on the first usable node */ + pgdat = zone->zone_pgdat; + if (allow_direct_reclaim(pgdat)) + goto out; + break; + } + + /* If no zone was usable by the allocation flags then do not throttle */ + if (!pgdat) + goto out; + + /* Account for the throttling */ + count_vm_event(PGSCAN_DIRECT_THROTTLE); + + /* + * If the caller cannot enter the filesystem, it's possible that it + * is due to the caller holding an FS lock or performing a journal + * transaction in the case of a filesystem like ext[3|4]. In this case, + * it is not safe to block on pfmemalloc_wait as kswapd could be + * blocked waiting on the same lock. Instead, throttle for up to a + * second before continuing. + */ + if (!(gfp_mask & __GFP_FS)) { + wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, + allow_direct_reclaim(pgdat), HZ); + + goto check_pending; + } + + /* Throttle until kswapd wakes the process */ + wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, + allow_direct_reclaim(pgdat)); + +check_pending: + if (fatal_signal_pending(current)) + return true; + +out: + return false; +} + +unsigned long try_to_free_pages(struct zonelist *zonelist, int order, + gfp_t gfp_mask, nodemask_t *nodemask) +{ + unsigned long nr_reclaimed; + struct scan_control sc = { + .nr_to_reclaim = SWAP_CLUSTER_MAX, + .gfp_mask = current_gfp_context(gfp_mask), + .reclaim_idx = gfp_zone(gfp_mask), + .order = order, + .nodemask = nodemask, + .priority = DEF_PRIORITY, + .may_writepage = !laptop_mode, + .may_unmap = 1, + .may_swap = 1, + }; + + /* + * scan_control uses s8 fields for order, priority, and reclaim_idx. + * Confirm they are large enough for max values. + */ + BUILD_BUG_ON(MAX_ORDER > S8_MAX); + BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); + BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); + + /* + * Do not enter reclaim if fatal signal was delivered while throttled. + * 1 is returned so that the page allocator does not OOM kill at this + * point. + */ + if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) + return 1; + + trace_mm_vmscan_direct_reclaim_begin(order, + sc.may_writepage, + sc.gfp_mask, + sc.reclaim_idx); + + nr_reclaimed = do_try_to_free_pages(zonelist, &sc); + + trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); + + return nr_reclaimed; +} + +#ifdef CONFIG_MEMCG + +unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, + gfp_t gfp_mask, bool noswap, + pg_data_t *pgdat, + unsigned long *nr_scanned) +{ + struct scan_control sc = { + .nr_to_reclaim = SWAP_CLUSTER_MAX, + .target_mem_cgroup = memcg, + .may_writepage = !laptop_mode, + .may_unmap = 1, + .reclaim_idx = MAX_NR_ZONES - 1, + .may_swap = !noswap, + }; + unsigned long lru_pages; + + sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | + (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); + + trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, + sc.may_writepage, + sc.gfp_mask, + sc.reclaim_idx); + + /* + * NOTE: Although we can get the priority field, using it + * here is not a good idea, since it limits the pages we can scan. + * if we don't reclaim here, the shrink_node from balance_pgdat + * will pick up pages from other mem cgroup's as well. We hack + * the priority and make it zero. + */ + shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); + + trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); + + *nr_scanned = sc.nr_scanned; + return sc.nr_reclaimed; +} + +unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, + unsigned long nr_pages, + gfp_t gfp_mask, + bool may_swap) +{ + struct zonelist *zonelist; + unsigned long nr_reclaimed; + int nid; + unsigned int noreclaim_flag; + struct scan_control sc = { + .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), + .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | + (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), + .reclaim_idx = MAX_NR_ZONES - 1, + .target_mem_cgroup = memcg, + .priority = DEF_PRIORITY, + .may_writepage = !laptop_mode, + .may_unmap = 1, + .may_swap = may_swap, + }; + + /* + * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't + * take care of from where we get pages. So the node where we start the + * scan does not need to be the current node. + */ + nid = mem_cgroup_select_victim_node(memcg); + + zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; + + trace_mm_vmscan_memcg_reclaim_begin(0, + sc.may_writepage, + sc.gfp_mask, + sc.reclaim_idx); + + noreclaim_flag = memalloc_noreclaim_save(); + nr_reclaimed = do_try_to_free_pages(zonelist, &sc); + memalloc_noreclaim_restore(noreclaim_flag); + + trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); + + return nr_reclaimed; +} +#endif + +static void age_active_anon(struct pglist_data *pgdat, + struct scan_control *sc) +{ + struct mem_cgroup *memcg; + + if (!total_swap_pages) + return; + + memcg = mem_cgroup_iter(NULL, NULL, NULL); + do { + struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); + + if (inactive_list_is_low(lruvec, false, sc, true)) + shrink_active_list(SWAP_CLUSTER_MAX, lruvec, + sc, LRU_ACTIVE_ANON); + + memcg = mem_cgroup_iter(NULL, memcg, NULL); + } while (memcg); +} + +/* + * Returns true if there is an eligible zone balanced for the request order + * and classzone_idx + */ +static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) +{ + int i; + unsigned long mark = -1; + struct zone *zone; + + for (i = 0; i <= classzone_idx; i++) { + zone = pgdat->node_zones + i; + + if (!managed_zone(zone)) + continue; + + mark = high_wmark_pages(zone); + if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) + return true; + } + + /* + * If a node has no populated zone within classzone_idx, it does not + * need balancing by definition. This can happen if a zone-restricted + * allocation tries to wake a remote kswapd. + */ + if (mark == -1) + return true; + + return false; +} + +/* Clear pgdat state for congested, dirty or under writeback. */ +static void clear_pgdat_congested(pg_data_t *pgdat) +{ + clear_bit(PGDAT_CONGESTED, &pgdat->flags); + clear_bit(PGDAT_DIRTY, &pgdat->flags); + clear_bit(PGDAT_WRITEBACK, &pgdat->flags); +} + +/* + * Prepare kswapd for sleeping. This verifies that there are no processes + * waiting in throttle_direct_reclaim() and that watermarks have been met. + * + * Returns true if kswapd is ready to sleep + */ +static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) +{ + /* + * The throttled processes are normally woken up in balance_pgdat() as + * soon as allow_direct_reclaim() is true. But there is a potential + * race between when kswapd checks the watermarks and a process gets + * throttled. There is also a potential race if processes get + * throttled, kswapd wakes, a large process exits thereby balancing the + * zones, which causes kswapd to exit balance_pgdat() before reaching + * the wake up checks. If kswapd is going to sleep, no process should + * be sleeping on pfmemalloc_wait, so wake them now if necessary. If + * the wake up is premature, processes will wake kswapd and get + * throttled again. The difference from wake ups in balance_pgdat() is + * that here we are under prepare_to_wait(). + */ + if (waitqueue_active(&pgdat->pfmemalloc_wait)) + wake_up_all(&pgdat->pfmemalloc_wait); + + /* Hopeless node, leave it to direct reclaim */ + if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) + return true; + + if (pgdat_balanced(pgdat, order, classzone_idx)) { + clear_pgdat_congested(pgdat); + return true; + } + + return false; +} + +/* + * kswapd shrinks a node of pages that are at or below the highest usable + * zone that is currently unbalanced. + * + * Returns true if kswapd scanned at least the requested number of pages to + * reclaim or if the lack of progress was due to pages under writeback. + * This is used to determine if the scanning priority needs to be raised. + */ +static bool kswapd_shrink_node(pg_data_t *pgdat, + struct scan_control *sc) +{ + struct zone *zone; + int z; + + /* Reclaim a number of pages proportional to the number of zones */ + sc->nr_to_reclaim = 0; + for (z = 0; z <= sc->reclaim_idx; z++) { + zone = pgdat->node_zones + z; + if (!managed_zone(zone)) + continue; + + sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); + } + + /* + * Historically care was taken to put equal pressure on all zones but + * now pressure is applied based on node LRU order. + */ + shrink_node(pgdat, sc); + + /* + * Fragmentation may mean that the system cannot be rebalanced for + * high-order allocations. If twice the allocation size has been + * reclaimed then recheck watermarks only at order-0 to prevent + * excessive reclaim. Assume that a process requested a high-order + * can direct reclaim/compact. + */ + if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) + sc->order = 0; + + return sc->nr_scanned >= sc->nr_to_reclaim; +} + +/* + * For kswapd, balance_pgdat() will reclaim pages across a node from zones + * that are eligible for use by the caller until at least one zone is + * balanced. + * + * Returns the order kswapd finished reclaiming at. + * + * kswapd scans the zones in the highmem->normal->dma direction. It skips + * zones which have free_pages > high_wmark_pages(zone), but once a zone is + * found to have free_pages <= high_wmark_pages(zone), any page is that zone + * or lower is eligible for reclaim until at least one usable zone is + * balanced. + */ +static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) +{ + int i; + unsigned long nr_soft_reclaimed; + unsigned long nr_soft_scanned; + struct zone *zone; + struct scan_control sc = { + .gfp_mask = GFP_KERNEL, + .order = order, + .priority = DEF_PRIORITY, + .may_writepage = !laptop_mode, + .may_unmap = 1, + .may_swap = 1, + }; + + __fs_reclaim_acquire(); + + count_vm_event(PAGEOUTRUN); + + do { + unsigned long nr_reclaimed = sc.nr_reclaimed; + bool raise_priority = true; + bool ret; + + sc.reclaim_idx = classzone_idx; + + /* + * If the number of buffer_heads exceeds the maximum allowed + * then consider reclaiming from all zones. This has a dual + * purpose -- on 64-bit systems it is expected that + * buffer_heads are stripped during active rotation. On 32-bit + * systems, highmem pages can pin lowmem memory and shrinking + * buffers can relieve lowmem pressure. Reclaim may still not + * go ahead if all eligible zones for the original allocation + * request are balanced to avoid excessive reclaim from kswapd. + */ + if (buffer_heads_over_limit) { + for (i = MAX_NR_ZONES - 1; i >= 0; i--) { + zone = pgdat->node_zones + i; + if (!managed_zone(zone)) + continue; + + sc.reclaim_idx = i; + break; + } + } + + /* + * Only reclaim if there are no eligible zones. Note that + * sc.reclaim_idx is not used as buffer_heads_over_limit may + * have adjusted it. + */ + if (pgdat_balanced(pgdat, sc.order, classzone_idx)) + goto out; + + /* + * Do some background aging of the anon list, to give + * pages a chance to be referenced before reclaiming. All + * pages are rotated regardless of classzone as this is + * about consistent aging. + */ + age_active_anon(pgdat, &sc); + + /* + * If we're getting trouble reclaiming, start doing writepage + * even in laptop mode. + */ + if (sc.priority < DEF_PRIORITY - 2) + sc.may_writepage = 1; + + /* Call soft limit reclaim before calling shrink_node. */ + sc.nr_scanned = 0; + nr_soft_scanned = 0; + nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, + sc.gfp_mask, &nr_soft_scanned); + sc.nr_reclaimed += nr_soft_reclaimed; + + /* + * There should be no need to raise the scanning priority if + * enough pages are already being scanned that that high + * watermark would be met at 100% efficiency. + */ + if (kswapd_shrink_node(pgdat, &sc)) + raise_priority = false; + + /* + * If the low watermark is met there is no need for processes + * to be throttled on pfmemalloc_wait as they should not be + * able to safely make forward progress. Wake them + */ + if (waitqueue_active(&pgdat->pfmemalloc_wait) && + allow_direct_reclaim(pgdat)) + wake_up_all(&pgdat->pfmemalloc_wait); + + /* Check if kswapd should be suspending */ + __fs_reclaim_release(); + ret = try_to_freeze(); + __fs_reclaim_acquire(); + if (ret || kthread_should_stop()) + break; + + /* + * Raise priority if scanning rate is too low or there was no + * progress in reclaiming pages + */ + nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; + if (raise_priority || !nr_reclaimed) + sc.priority--; + } while (sc.priority >= 1); + + if (!sc.nr_reclaimed) + pgdat->kswapd_failures++; + +out: + snapshot_refaults(NULL, pgdat); + __fs_reclaim_release(); + /* + * Return the order kswapd stopped reclaiming at as + * prepare_kswapd_sleep() takes it into account. If another caller + * entered the allocator slow path while kswapd was awake, order will + * remain at the higher level. + */ + return sc.order; +} + +/* + * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be + * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not + * a valid index then either kswapd runs for first time or kswapd couldn't sleep + * after previous reclaim attempt (node is still unbalanced). In that case + * return the zone index of the previous kswapd reclaim cycle. + */ +static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, + enum zone_type prev_classzone_idx) +{ + enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx); + + return curr_idx == MAX_NR_ZONES ? prev_classzone_idx : curr_idx; +} + +static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, + unsigned int classzone_idx) +{ + long remaining = 0; + DEFINE_WAIT(wait); + + if (freezing(current) || kthread_should_stop()) + return; + + prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); + + /* + * Try to sleep for a short interval. Note that kcompactd will only be + * woken if it is possible to sleep for a short interval. This is + * deliberate on the assumption that if reclaim cannot keep an + * eligible zone balanced that it's also unlikely that compaction will + * succeed. + */ + if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { + /* + * Compaction records what page blocks it recently failed to + * isolate pages from and skips them in the future scanning. + * When kswapd is going to sleep, it is reasonable to assume + * that pages and compaction may succeed so reset the cache. + */ + reset_isolation_suitable(pgdat); + + /* + * We have freed the memory, now we should compact it to make + * allocation of the requested order possible. + */ + wakeup_kcompactd(pgdat, alloc_order, classzone_idx); + + remaining = schedule_timeout(HZ/10); + + /* + * If woken prematurely then reset kswapd_classzone_idx and + * order. The values will either be from a wakeup request or + * the previous request that slept prematurely. + */ + if (remaining) { + WRITE_ONCE(pgdat->kswapd_classzone_idx, + kswapd_classzone_idx(pgdat, classzone_idx)); + + if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) + WRITE_ONCE(pgdat->kswapd_order, reclaim_order); + } + + finish_wait(&pgdat->kswapd_wait, &wait); + prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); + } + + /* + * After a short sleep, check if it was a premature sleep. If not, then + * go fully to sleep until explicitly woken up. + */ + if (!remaining && + prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { + trace_mm_vmscan_kswapd_sleep(pgdat->node_id); + + /* + * vmstat counters are not perfectly accurate and the estimated + * value for counters such as NR_FREE_PAGES can deviate from the + * true value by nr_online_cpus * threshold. To avoid the zone + * watermarks being breached while under pressure, we reduce the + * per-cpu vmstat threshold while kswapd is awake and restore + * them before going back to sleep. + */ + set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); + + if (!kthread_should_stop()) + schedule(); + + set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); + } else { + if (remaining) + count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); + else + count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); + } + finish_wait(&pgdat->kswapd_wait, &wait); +} + +/* + * The background pageout daemon, started as a kernel thread + * from the init process. + * + * This basically trickles out pages so that we have _some_ + * free memory available even if there is no other activity + * that frees anything up. This is needed for things like routing + * etc, where we otherwise might have all activity going on in + * asynchronous contexts that cannot page things out. + * + * If there are applications that are active memory-allocators + * (most normal use), this basically shouldn't matter. + */ +static int kswapd(void *p) +{ + unsigned int alloc_order, reclaim_order; + unsigned int classzone_idx = MAX_NR_ZONES - 1; + pg_data_t *pgdat = (pg_data_t*)p; + struct task_struct *tsk = current; + + struct reclaim_state reclaim_state = { + .reclaimed_slab = 0, + }; + const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); + + if (!cpumask_empty(cpumask)) + set_cpus_allowed_ptr(tsk, cpumask); + current->reclaim_state = &reclaim_state; + + /* + * Tell the memory management that we're a "memory allocator", + * and that if we need more memory we should get access to it + * regardless (see "__alloc_pages()"). "kswapd" should + * never get caught in the normal page freeing logic. + * + * (Kswapd normally doesn't need memory anyway, but sometimes + * you need a small amount of memory in order to be able to + * page out something else, and this flag essentially protects + * us from recursively trying to free more memory as we're + * trying to free the first piece of memory in the first place). + */ + tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; + set_freezable(); + + WRITE_ONCE(pgdat->kswapd_order, 0); + WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES); + for ( ; ; ) { + bool ret; + + alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); + classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); + +kswapd_try_sleep: + kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, + classzone_idx); + + /* Read the new order and classzone_idx */ + alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); + classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); + WRITE_ONCE(pgdat->kswapd_order, 0); + WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES); + + ret = try_to_freeze(); + if (kthread_should_stop()) + break; + + /* + * We can speed up thawing tasks if we don't call balance_pgdat + * after returning from the refrigerator + */ + if (ret) + continue; + + /* + * Reclaim begins at the requested order but if a high-order + * reclaim fails then kswapd falls back to reclaiming for + * order-0. If that happens, kswapd will consider sleeping + * for the order it finished reclaiming at (reclaim_order) + * but kcompactd is woken to compact for the original + * request (alloc_order). + */ + trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, + alloc_order); + reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); + if (reclaim_order < alloc_order) + goto kswapd_try_sleep; + } + + tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); + current->reclaim_state = NULL; + + return 0; +} + +/* + * A zone is low on free memory or too fragmented for high-order memory. If + * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's + * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim + * has failed or is not needed, still wake up kcompactd if only compaction is + * needed. + */ +void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, + enum zone_type classzone_idx) +{ + pg_data_t *pgdat; + enum zone_type curr_idx; + + if (!managed_zone(zone)) + return; + + if (!cpuset_zone_allowed(zone, gfp_flags)) + return; + + pgdat = zone->zone_pgdat; + curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx); + + if (curr_idx == MAX_NR_ZONES || curr_idx < classzone_idx) + WRITE_ONCE(pgdat->kswapd_classzone_idx, classzone_idx); + + if (READ_ONCE(pgdat->kswapd_order) < order) + WRITE_ONCE(pgdat->kswapd_order, order); + + if (!waitqueue_active(&pgdat->kswapd_wait)) + return; + + /* Hopeless node, leave it to direct reclaim if possible */ + if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || + pgdat_balanced(pgdat, order, classzone_idx)) { + /* + * There may be plenty of free memory available, but it's too + * fragmented for high-order allocations. Wake up kcompactd + * and rely on compaction_suitable() to determine if it's + * needed. If it fails, it will defer subsequent attempts to + * ratelimit its work. + */ + if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) + wakeup_kcompactd(pgdat, order, classzone_idx); + return; + } + + trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, + gfp_flags); + wake_up_interruptible(&pgdat->kswapd_wait); +} + +#ifdef CONFIG_HIBERNATION +/* + * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of + * freed pages. + * + * Rather than trying to age LRUs the aim is to preserve the overall + * LRU order by reclaiming preferentially + * inactive > active > active referenced > active mapped + */ +unsigned long shrink_all_memory(unsigned long nr_to_reclaim) +{ + struct reclaim_state reclaim_state; + struct scan_control sc = { + .nr_to_reclaim = nr_to_reclaim, + .gfp_mask = GFP_HIGHUSER_MOVABLE, + .reclaim_idx = MAX_NR_ZONES - 1, + .priority = DEF_PRIORITY, + .may_writepage = 1, + .may_unmap = 1, + .may_swap = 1, + .hibernation_mode = 1, + }; + struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); + struct task_struct *p = current; + unsigned long nr_reclaimed; + unsigned int noreclaim_flag; + + fs_reclaim_acquire(sc.gfp_mask); + noreclaim_flag = memalloc_noreclaim_save(); + reclaim_state.reclaimed_slab = 0; + p->reclaim_state = &reclaim_state; + + nr_reclaimed = do_try_to_free_pages(zonelist, &sc); + + p->reclaim_state = NULL; + memalloc_noreclaim_restore(noreclaim_flag); + fs_reclaim_release(sc.gfp_mask); + + return nr_reclaimed; +} +#endif /* CONFIG_HIBERNATION */ + +/* It's optimal to keep kswapds on the same CPUs as their memory, but + not required for correctness. So if the last cpu in a node goes + away, we get changed to run anywhere: as the first one comes back, + restore their cpu bindings. */ +static int kswapd_cpu_online(unsigned int cpu) +{ + int nid; + + for_each_node_state(nid, N_MEMORY) { + pg_data_t *pgdat = NODE_DATA(nid); + const struct cpumask *mask; + + mask = cpumask_of_node(pgdat->node_id); + + if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) + /* One of our CPUs online: restore mask */ + set_cpus_allowed_ptr(pgdat->kswapd, mask); + } + return 0; +} + +/* + * This kswapd start function will be called by init and node-hot-add. + * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. + */ +int kswapd_run(int nid) +{ + pg_data_t *pgdat = NODE_DATA(nid); + int ret = 0; + + if (pgdat->kswapd) + return 0; + + pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); + if (IS_ERR(pgdat->kswapd)) { + /* failure at boot is fatal */ + BUG_ON(system_state < SYSTEM_RUNNING); + pr_err("Failed to start kswapd on node %d\n", nid); + ret = PTR_ERR(pgdat->kswapd); + pgdat->kswapd = NULL; + } + return ret; +} + +/* + * Called by memory hotplug when all memory in a node is offlined. Caller must + * hold mem_hotplug_begin/end(). + */ +void kswapd_stop(int nid) +{ + struct task_struct *kswapd = NODE_DATA(nid)->kswapd; + + if (kswapd) { + kthread_stop(kswapd); + NODE_DATA(nid)->kswapd = NULL; + } +} + +static int __init kswapd_init(void) +{ + int nid, ret; + + swap_setup(); + for_each_node_state(nid, N_MEMORY) + kswapd_run(nid); + ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, + "mm/vmscan:online", kswapd_cpu_online, + NULL); + WARN_ON(ret < 0); + return 0; +} + +module_init(kswapd_init) + +#ifdef CONFIG_NUMA +/* + * Node reclaim mode + * + * If non-zero call node_reclaim when the number of free pages falls below + * the watermarks. + */ +int node_reclaim_mode __read_mostly; + +#define RECLAIM_OFF 0 +#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ +#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ +#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ + +/* + * Priority for NODE_RECLAIM. This determines the fraction of pages + * of a node considered for each zone_reclaim. 4 scans 1/16th of + * a zone. + */ +#define NODE_RECLAIM_PRIORITY 4 + +/* + * Percentage of pages in a zone that must be unmapped for node_reclaim to + * occur. + */ +int sysctl_min_unmapped_ratio = 1; + +/* + * If the number of slab pages in a zone grows beyond this percentage then + * slab reclaim needs to occur. + */ +int sysctl_min_slab_ratio = 5; + +static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) +{ + unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); + unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + + node_page_state(pgdat, NR_ACTIVE_FILE); + + /* + * It's possible for there to be more file mapped pages than + * accounted for by the pages on the file LRU lists because + * tmpfs pages accounted for as ANON can also be FILE_MAPPED + */ + return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; +} + +/* Work out how many page cache pages we can reclaim in this reclaim_mode */ +static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) +{ + unsigned long nr_pagecache_reclaimable; + unsigned long delta = 0; + + /* + * If RECLAIM_UNMAP is set, then all file pages are considered + * potentially reclaimable. Otherwise, we have to worry about + * pages like swapcache and node_unmapped_file_pages() provides + * a better estimate + */ + if (node_reclaim_mode & RECLAIM_UNMAP) + nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); + else + nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); + + /* If we can't clean pages, remove dirty pages from consideration */ + if (!(node_reclaim_mode & RECLAIM_WRITE)) + delta += node_page_state(pgdat, NR_FILE_DIRTY); + + /* Watch for any possible underflows due to delta */ + if (unlikely(delta > nr_pagecache_reclaimable)) + delta = nr_pagecache_reclaimable; + + return nr_pagecache_reclaimable - delta; +} + +/* + * Try to free up some pages from this node through reclaim. + */ +static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) +{ + /* Minimum pages needed in order to stay on node */ + const unsigned long nr_pages = 1 << order; + struct task_struct *p = current; + struct reclaim_state reclaim_state; + unsigned int noreclaim_flag; + struct scan_control sc = { + .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), + .gfp_mask = current_gfp_context(gfp_mask), + .order = order, + .priority = NODE_RECLAIM_PRIORITY, + .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), + .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), + .may_swap = 1, + .reclaim_idx = gfp_zone(gfp_mask), + }; + + cond_resched(); + fs_reclaim_acquire(sc.gfp_mask); + /* + * We need to be able to allocate from the reserves for RECLAIM_UNMAP + * and we also need to be able to write out pages for RECLAIM_WRITE + * and RECLAIM_UNMAP. + */ + noreclaim_flag = memalloc_noreclaim_save(); + p->flags |= PF_SWAPWRITE; + reclaim_state.reclaimed_slab = 0; + p->reclaim_state = &reclaim_state; + + if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { + /* + * Free memory by calling shrink node with increasing + * priorities until we have enough memory freed. + */ + do { + shrink_node(pgdat, &sc); + } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); + } + + p->reclaim_state = NULL; + current->flags &= ~PF_SWAPWRITE; + memalloc_noreclaim_restore(noreclaim_flag); + fs_reclaim_release(sc.gfp_mask); + return sc.nr_reclaimed >= nr_pages; +} + +int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) +{ + int ret; + + /* + * Node reclaim reclaims unmapped file backed pages and + * slab pages if we are over the defined limits. + * + * A small portion of unmapped file backed pages is needed for + * file I/O otherwise pages read by file I/O will be immediately + * thrown out if the node is overallocated. So we do not reclaim + * if less than a specified percentage of the node is used by + * unmapped file backed pages. + */ + if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && + node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) + return NODE_RECLAIM_FULL; + + /* + * Do not scan if the allocation should not be delayed. + */ + if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) + return NODE_RECLAIM_NOSCAN; + + /* + * Only run node reclaim on the local node or on nodes that do not + * have associated processors. This will favor the local processor + * over remote processors and spread off node memory allocations + * as wide as possible. + */ + if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) + return NODE_RECLAIM_NOSCAN; + + if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) + return NODE_RECLAIM_NOSCAN; + + ret = __node_reclaim(pgdat, gfp_mask, order); + clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); + + if (!ret) + count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); + + return ret; +} +#endif + +/* + * page_evictable - test whether a page is evictable + * @page: the page to test + * + * Test whether page is evictable--i.e., should be placed on active/inactive + * lists vs unevictable list. + * + * Reasons page might not be evictable: + * (1) page's mapping marked unevictable + * (2) page is part of an mlocked VMA + * + */ +int page_evictable(struct page *page) +{ + int ret; + + /* Prevent address_space of inode and swap cache from being freed */ + rcu_read_lock(); + ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); + rcu_read_unlock(); + return ret; +} + +#ifdef CONFIG_SHMEM +/** + * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list + * @pages: array of pages to check + * @nr_pages: number of pages to check + * + * Checks pages for evictability and moves them to the appropriate lru list. + * + * This function is only used for SysV IPC SHM_UNLOCK. + */ +void check_move_unevictable_pages(struct page **pages, int nr_pages) +{ + struct lruvec *lruvec; + struct pglist_data *pgdat = NULL; + int pgscanned = 0; + int pgrescued = 0; + int i; + + for (i = 0; i < nr_pages; i++) { + struct page *page = pages[i]; + struct pglist_data *pagepgdat = page_pgdat(page); + + pgscanned++; + if (pagepgdat != pgdat) { + if (pgdat) + spin_unlock_irq(&pgdat->lru_lock); + pgdat = pagepgdat; + spin_lock_irq(&pgdat->lru_lock); + } + lruvec = mem_cgroup_page_lruvec(page, pgdat); + + if (!PageLRU(page) || !PageUnevictable(page)) + continue; + + if (page_evictable(page)) { + enum lru_list lru = page_lru_base_type(page); + + VM_BUG_ON_PAGE(PageActive(page), page); + ClearPageUnevictable(page); + del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); + add_page_to_lru_list(page, lruvec, lru); + pgrescued++; + } + } + + if (pgdat) { + __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); + __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); + spin_unlock_irq(&pgdat->lru_lock); + } +} +#endif /* CONFIG_SHMEM */ |