From 76cb841cb886eef6b3bee341a2266c76578724ad Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Mon, 6 May 2024 03:02:30 +0200 Subject: Adding upstream version 4.19.249. Signed-off-by: Daniel Baumann --- drivers/crypto/sunxi-ss/Makefile | 3 + drivers/crypto/sunxi-ss/sun4i-ss-cipher.c | 573 ++++++++++++++++++++++++++++++ drivers/crypto/sunxi-ss/sun4i-ss-core.c | 447 +++++++++++++++++++++++ drivers/crypto/sunxi-ss/sun4i-ss-hash.c | 527 +++++++++++++++++++++++++++ drivers/crypto/sunxi-ss/sun4i-ss-prng.c | 56 +++ drivers/crypto/sunxi-ss/sun4i-ss.h | 214 +++++++++++ 6 files changed, 1820 insertions(+) create mode 100644 drivers/crypto/sunxi-ss/Makefile create mode 100644 drivers/crypto/sunxi-ss/sun4i-ss-cipher.c create mode 100644 drivers/crypto/sunxi-ss/sun4i-ss-core.c create mode 100644 drivers/crypto/sunxi-ss/sun4i-ss-hash.c create mode 100644 drivers/crypto/sunxi-ss/sun4i-ss-prng.c create mode 100644 drivers/crypto/sunxi-ss/sun4i-ss.h (limited to 'drivers/crypto/sunxi-ss') diff --git a/drivers/crypto/sunxi-ss/Makefile b/drivers/crypto/sunxi-ss/Makefile new file mode 100644 index 000000000..ccb893219 --- /dev/null +++ b/drivers/crypto/sunxi-ss/Makefile @@ -0,0 +1,3 @@ +obj-$(CONFIG_CRYPTO_DEV_SUN4I_SS) += sun4i-ss.o +sun4i-ss-y += sun4i-ss-core.o sun4i-ss-hash.o sun4i-ss-cipher.o +sun4i-ss-$(CONFIG_CRYPTO_DEV_SUN4I_SS_PRNG) += sun4i-ss-prng.o diff --git a/drivers/crypto/sunxi-ss/sun4i-ss-cipher.c b/drivers/crypto/sunxi-ss/sun4i-ss-cipher.c new file mode 100644 index 000000000..aa3d2f439 --- /dev/null +++ b/drivers/crypto/sunxi-ss/sun4i-ss-cipher.c @@ -0,0 +1,573 @@ +/* + * sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC + * + * Copyright (C) 2013-2015 Corentin LABBE + * + * This file add support for AES cipher with 128,192,256 bits + * keysize in CBC and ECB mode. + * Add support also for DES and 3DES in CBC and ECB mode. + * + * You could find the datasheet in Documentation/arm/sunxi/README + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ +#include "sun4i-ss.h" + +static int sun4i_ss_opti_poll(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_ss_ctx *ss = op->ss; + unsigned int ivsize = crypto_skcipher_ivsize(tfm); + struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq); + u32 mode = ctx->mode; + /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ + u32 rx_cnt = SS_RX_DEFAULT; + u32 tx_cnt = 0; + u32 spaces; + u32 v; + int err = 0; + unsigned int i; + unsigned int ileft = areq->cryptlen; + unsigned int oleft = areq->cryptlen; + unsigned int todo; + unsigned long pi = 0, po = 0; /* progress for in and out */ + bool miter_err; + struct sg_mapping_iter mi, mo; + unsigned int oi, oo; /* offset for in and out */ + unsigned long flags; + + if (!areq->cryptlen) + return 0; + + if (!areq->iv) { + dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); + return -EINVAL; + } + + if (!areq->src || !areq->dst) { + dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); + return -EINVAL; + } + + spin_lock_irqsave(&ss->slock, flags); + + for (i = 0; i < op->keylen / 4; i++) + writesl(ss->base + SS_KEY0 + i * 4, &op->key[i], 1); + + if (areq->iv) { + for (i = 0; i < 4 && i < ivsize / 4; i++) { + v = *(u32 *)(areq->iv + i * 4); + writesl(ss->base + SS_IV0 + i * 4, &v, 1); + } + } + writel(mode, ss->base + SS_CTL); + + + ileft = areq->cryptlen / 4; + oleft = areq->cryptlen / 4; + oi = 0; + oo = 0; + do { + if (ileft) { + sg_miter_start(&mi, areq->src, sg_nents(areq->src), + SG_MITER_FROM_SG | SG_MITER_ATOMIC); + if (pi) + sg_miter_skip(&mi, pi); + miter_err = sg_miter_next(&mi); + if (!miter_err || !mi.addr) { + dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); + err = -EINVAL; + goto release_ss; + } + todo = min(rx_cnt, ileft); + todo = min_t(size_t, todo, (mi.length - oi) / 4); + if (todo) { + ileft -= todo; + writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo); + oi += todo * 4; + } + if (oi == mi.length) { + pi += mi.length; + oi = 0; + } + sg_miter_stop(&mi); + } + + spaces = readl(ss->base + SS_FCSR); + rx_cnt = SS_RXFIFO_SPACES(spaces); + tx_cnt = SS_TXFIFO_SPACES(spaces); + + sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), + SG_MITER_TO_SG | SG_MITER_ATOMIC); + if (po) + sg_miter_skip(&mo, po); + miter_err = sg_miter_next(&mo); + if (!miter_err || !mo.addr) { + dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); + err = -EINVAL; + goto release_ss; + } + todo = min(tx_cnt, oleft); + todo = min_t(size_t, todo, (mo.length - oo) / 4); + if (todo) { + oleft -= todo; + readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); + oo += todo * 4; + } + if (oo == mo.length) { + oo = 0; + po += mo.length; + } + sg_miter_stop(&mo); + } while (oleft); + + if (areq->iv) { + for (i = 0; i < 4 && i < ivsize / 4; i++) { + v = readl(ss->base + SS_IV0 + i * 4); + *(u32 *)(areq->iv + i * 4) = v; + } + } + +release_ss: + writel(0, ss->base + SS_CTL); + spin_unlock_irqrestore(&ss->slock, flags); + return err; +} + +/* Generic function that support SG with size not multiple of 4 */ +static int sun4i_ss_cipher_poll(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_ss_ctx *ss = op->ss; + int no_chunk = 1; + struct scatterlist *in_sg = areq->src; + struct scatterlist *out_sg = areq->dst; + unsigned int ivsize = crypto_skcipher_ivsize(tfm); + struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq); + u32 mode = ctx->mode; + /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ + u32 rx_cnt = SS_RX_DEFAULT; + u32 tx_cnt = 0; + u32 v; + u32 spaces; + int err = 0; + unsigned int i; + unsigned int ileft = areq->cryptlen; + unsigned int oleft = areq->cryptlen; + unsigned int todo; + struct sg_mapping_iter mi, mo; + unsigned long pi = 0, po = 0; /* progress for in and out */ + bool miter_err; + unsigned int oi, oo; /* offset for in and out */ + char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */ + char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */ + unsigned int ob = 0; /* offset in buf */ + unsigned int obo = 0; /* offset in bufo*/ + unsigned int obl = 0; /* length of data in bufo */ + unsigned long flags; + + if (!areq->cryptlen) + return 0; + + if (!areq->iv) { + dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); + return -EINVAL; + } + + if (!areq->src || !areq->dst) { + dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); + return -EINVAL; + } + + /* + * if we have only SGs with size multiple of 4, + * we can use the SS optimized function + */ + while (in_sg && no_chunk == 1) { + if ((in_sg->length | in_sg->offset) & 3u) + no_chunk = 0; + in_sg = sg_next(in_sg); + } + while (out_sg && no_chunk == 1) { + if ((out_sg->length | out_sg->offset) & 3u) + no_chunk = 0; + out_sg = sg_next(out_sg); + } + + if (no_chunk == 1) + return sun4i_ss_opti_poll(areq); + + spin_lock_irqsave(&ss->slock, flags); + + for (i = 0; i < op->keylen / 4; i++) + writesl(ss->base + SS_KEY0 + i * 4, &op->key[i], 1); + + if (areq->iv) { + for (i = 0; i < 4 && i < ivsize / 4; i++) { + v = *(u32 *)(areq->iv + i * 4); + writesl(ss->base + SS_IV0 + i * 4, &v, 1); + } + } + writel(mode, ss->base + SS_CTL); + + ileft = areq->cryptlen; + oleft = areq->cryptlen; + oi = 0; + oo = 0; + + while (oleft) { + if (ileft) { + sg_miter_start(&mi, areq->src, sg_nents(areq->src), + SG_MITER_FROM_SG | SG_MITER_ATOMIC); + if (pi) + sg_miter_skip(&mi, pi); + miter_err = sg_miter_next(&mi); + if (!miter_err || !mi.addr) { + dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); + err = -EINVAL; + goto release_ss; + } + /* + * todo is the number of consecutive 4byte word that we + * can read from current SG + */ + todo = min(rx_cnt, ileft / 4); + todo = min_t(size_t, todo, (mi.length - oi) / 4); + if (todo && !ob) { + writesl(ss->base + SS_RXFIFO, mi.addr + oi, + todo); + ileft -= todo * 4; + oi += todo * 4; + } else { + /* + * not enough consecutive bytes, so we need to + * linearize in buf. todo is in bytes + * After that copy, if we have a multiple of 4 + * we need to be able to write all buf in one + * pass, so it is why we min() with rx_cnt + */ + todo = min(rx_cnt * 4 - ob, ileft); + todo = min_t(size_t, todo, mi.length - oi); + memcpy(buf + ob, mi.addr + oi, todo); + ileft -= todo; + oi += todo; + ob += todo; + if (!(ob % 4)) { + writesl(ss->base + SS_RXFIFO, buf, + ob / 4); + ob = 0; + } + } + if (oi == mi.length) { + pi += mi.length; + oi = 0; + } + sg_miter_stop(&mi); + } + + spaces = readl(ss->base + SS_FCSR); + rx_cnt = SS_RXFIFO_SPACES(spaces); + tx_cnt = SS_TXFIFO_SPACES(spaces); + + if (!tx_cnt) + continue; + sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), + SG_MITER_TO_SG | SG_MITER_ATOMIC); + if (po) + sg_miter_skip(&mo, po); + miter_err = sg_miter_next(&mo); + if (!miter_err || !mo.addr) { + dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); + err = -EINVAL; + goto release_ss; + } + /* todo in 4bytes word */ + todo = min(tx_cnt, oleft / 4); + todo = min_t(size_t, todo, (mo.length - oo) / 4); + + if (todo) { + readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); + oleft -= todo * 4; + oo += todo * 4; + if (oo == mo.length) { + po += mo.length; + oo = 0; + } + } else { + /* + * read obl bytes in bufo, we read at maximum for + * emptying the device + */ + readsl(ss->base + SS_TXFIFO, bufo, tx_cnt); + obl = tx_cnt * 4; + obo = 0; + do { + /* + * how many bytes we can copy ? + * no more than remaining SG size + * no more than remaining buffer + * no need to test against oleft + */ + todo = min_t(size_t, + mo.length - oo, obl - obo); + memcpy(mo.addr + oo, bufo + obo, todo); + oleft -= todo; + obo += todo; + oo += todo; + if (oo == mo.length) { + po += mo.length; + sg_miter_next(&mo); + oo = 0; + } + } while (obo < obl); + /* bufo must be fully used here */ + } + sg_miter_stop(&mo); + } + if (areq->iv) { + for (i = 0; i < 4 && i < ivsize / 4; i++) { + v = readl(ss->base + SS_IV0 + i * 4); + *(u32 *)(areq->iv + i * 4) = v; + } + } + +release_ss: + writel(0, ss->base + SS_CTL); + spin_unlock_irqrestore(&ss->slock, flags); + + return err; +} + +/* CBC AES */ +int sun4i_ss_cbc_aes_encrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +int sun4i_ss_cbc_aes_decrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +/* ECB AES */ +int sun4i_ss_ecb_aes_encrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +int sun4i_ss_ecb_aes_decrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +/* CBC DES */ +int sun4i_ss_cbc_des_encrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +int sun4i_ss_cbc_des_decrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +/* ECB DES */ +int sun4i_ss_ecb_des_encrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +int sun4i_ss_ecb_des_decrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +/* CBC 3DES */ +int sun4i_ss_cbc_des3_encrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +int sun4i_ss_cbc_des3_decrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +/* ECB 3DES */ +int sun4i_ss_ecb_des3_encrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +int sun4i_ss_ecb_des3_decrypt(struct skcipher_request *areq) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); + + rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | + op->keymode; + return sun4i_ss_cipher_poll(areq); +} + +int sun4i_ss_cipher_init(struct crypto_tfm *tfm) +{ + struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); + struct sun4i_ss_alg_template *algt; + + memset(op, 0, sizeof(struct sun4i_tfm_ctx)); + + algt = container_of(tfm->__crt_alg, struct sun4i_ss_alg_template, + alg.crypto.base); + op->ss = algt->ss; + + crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), + sizeof(struct sun4i_cipher_req_ctx)); + + return 0; +} + +/* check and set the AES key, prepare the mode to be used */ +int sun4i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, + unsigned int keylen) +{ + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_ss_ctx *ss = op->ss; + + switch (keylen) { + case 128 / 8: + op->keymode = SS_AES_128BITS; + break; + case 192 / 8: + op->keymode = SS_AES_192BITS; + break; + case 256 / 8: + op->keymode = SS_AES_256BITS; + break; + default: + dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen); + crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + op->keylen = keylen; + memcpy(op->key, key, keylen); + return 0; +} + +/* check and set the DES key, prepare the mode to be used */ +int sun4i_ss_des_setkey(struct crypto_skcipher *tfm, const u8 *key, + unsigned int keylen) +{ + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_ss_ctx *ss = op->ss; + u32 flags; + u32 tmp[DES_EXPKEY_WORDS]; + int ret; + + if (unlikely(keylen != DES_KEY_SIZE)) { + dev_err(ss->dev, "Invalid keylen %u\n", keylen); + crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + + flags = crypto_skcipher_get_flags(tfm); + + ret = des_ekey(tmp, key); + if (unlikely(!ret) && (flags & CRYPTO_TFM_REQ_WEAK_KEY)) { + crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY); + dev_dbg(ss->dev, "Weak key %u\n", keylen); + return -EINVAL; + } + + op->keylen = keylen; + memcpy(op->key, key, keylen); + return 0; +} + +/* check and set the 3DES key, prepare the mode to be used */ +int sun4i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, + unsigned int keylen) +{ + struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); + struct sun4i_ss_ctx *ss = op->ss; + + if (unlikely(keylen != 3 * DES_KEY_SIZE)) { + dev_err(ss->dev, "Invalid keylen %u\n", keylen); + crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + op->keylen = keylen; + memcpy(op->key, key, keylen); + return 0; +} diff --git a/drivers/crypto/sunxi-ss/sun4i-ss-core.c b/drivers/crypto/sunxi-ss/sun4i-ss-core.c new file mode 100644 index 000000000..89adf9e0f --- /dev/null +++ b/drivers/crypto/sunxi-ss/sun4i-ss-core.c @@ -0,0 +1,447 @@ +/* + * sun4i-ss-core.c - hardware cryptographic accelerator for Allwinner A20 SoC + * + * Copyright (C) 2013-2015 Corentin LABBE + * + * Core file which registers crypto algorithms supported by the SS. + * + * You could find a link for the datasheet in Documentation/arm/sunxi/README + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "sun4i-ss.h" + +static struct sun4i_ss_alg_template ss_algs[] = { +{ .type = CRYPTO_ALG_TYPE_AHASH, + .mode = SS_OP_MD5, + .alg.hash = { + .init = sun4i_hash_init, + .update = sun4i_hash_update, + .final = sun4i_hash_final, + .finup = sun4i_hash_finup, + .digest = sun4i_hash_digest, + .export = sun4i_hash_export_md5, + .import = sun4i_hash_import_md5, + .halg = { + .digestsize = MD5_DIGEST_SIZE, + .statesize = sizeof(struct md5_state), + .base = { + .cra_name = "md5", + .cra_driver_name = "md5-sun4i-ss", + .cra_priority = 300, + .cra_alignmask = 3, + .cra_blocksize = MD5_HMAC_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct sun4i_req_ctx), + .cra_module = THIS_MODULE, + .cra_init = sun4i_hash_crainit + } + } + } +}, +{ .type = CRYPTO_ALG_TYPE_AHASH, + .mode = SS_OP_SHA1, + .alg.hash = { + .init = sun4i_hash_init, + .update = sun4i_hash_update, + .final = sun4i_hash_final, + .finup = sun4i_hash_finup, + .digest = sun4i_hash_digest, + .export = sun4i_hash_export_sha1, + .import = sun4i_hash_import_sha1, + .halg = { + .digestsize = SHA1_DIGEST_SIZE, + .statesize = sizeof(struct sha1_state), + .base = { + .cra_name = "sha1", + .cra_driver_name = "sha1-sun4i-ss", + .cra_priority = 300, + .cra_alignmask = 3, + .cra_blocksize = SHA1_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct sun4i_req_ctx), + .cra_module = THIS_MODULE, + .cra_init = sun4i_hash_crainit + } + } + } +}, +{ .type = CRYPTO_ALG_TYPE_SKCIPHER, + .alg.crypto = { + .setkey = sun4i_ss_aes_setkey, + .encrypt = sun4i_ss_cbc_aes_encrypt, + .decrypt = sun4i_ss_cbc_aes_decrypt, + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .ivsize = AES_BLOCK_SIZE, + .base = { + .cra_name = "cbc(aes)", + .cra_driver_name = "cbc-aes-sun4i-ss", + .cra_priority = 300, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY, + .cra_ctxsize = sizeof(struct sun4i_tfm_ctx), + .cra_module = THIS_MODULE, + .cra_alignmask = 3, + .cra_init = sun4i_ss_cipher_init, + } + } +}, +{ .type = CRYPTO_ALG_TYPE_SKCIPHER, + .alg.crypto = { + .setkey = sun4i_ss_aes_setkey, + .encrypt = sun4i_ss_ecb_aes_encrypt, + .decrypt = sun4i_ss_ecb_aes_decrypt, + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .ivsize = AES_BLOCK_SIZE, + .base = { + .cra_name = "ecb(aes)", + .cra_driver_name = "ecb-aes-sun4i-ss", + .cra_priority = 300, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY, + .cra_ctxsize = sizeof(struct sun4i_tfm_ctx), + .cra_module = THIS_MODULE, + .cra_alignmask = 3, + .cra_init = sun4i_ss_cipher_init, + } + } +}, +{ .type = CRYPTO_ALG_TYPE_SKCIPHER, + .alg.crypto = { + .setkey = sun4i_ss_des_setkey, + .encrypt = sun4i_ss_cbc_des_encrypt, + .decrypt = sun4i_ss_cbc_des_decrypt, + .min_keysize = DES_KEY_SIZE, + .max_keysize = DES_KEY_SIZE, + .ivsize = DES_BLOCK_SIZE, + .base = { + .cra_name = "cbc(des)", + .cra_driver_name = "cbc-des-sun4i-ss", + .cra_priority = 300, + .cra_blocksize = DES_BLOCK_SIZE, + .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY, + .cra_ctxsize = sizeof(struct sun4i_req_ctx), + .cra_module = THIS_MODULE, + .cra_alignmask = 3, + .cra_init = sun4i_ss_cipher_init, + } + } +}, +{ .type = CRYPTO_ALG_TYPE_SKCIPHER, + .alg.crypto = { + .setkey = sun4i_ss_des_setkey, + .encrypt = sun4i_ss_ecb_des_encrypt, + .decrypt = sun4i_ss_ecb_des_decrypt, + .min_keysize = DES_KEY_SIZE, + .max_keysize = DES_KEY_SIZE, + .base = { + .cra_name = "ecb(des)", + .cra_driver_name = "ecb-des-sun4i-ss", + .cra_priority = 300, + .cra_blocksize = DES_BLOCK_SIZE, + .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY, + .cra_ctxsize = sizeof(struct sun4i_req_ctx), + .cra_module = THIS_MODULE, + .cra_alignmask = 3, + .cra_init = sun4i_ss_cipher_init, + } + } +}, +{ .type = CRYPTO_ALG_TYPE_SKCIPHER, + .alg.crypto = { + .setkey = sun4i_ss_des3_setkey, + .encrypt = sun4i_ss_cbc_des3_encrypt, + .decrypt = sun4i_ss_cbc_des3_decrypt, + .min_keysize = DES3_EDE_KEY_SIZE, + .max_keysize = DES3_EDE_KEY_SIZE, + .ivsize = DES3_EDE_BLOCK_SIZE, + .base = { + .cra_name = "cbc(des3_ede)", + .cra_driver_name = "cbc-des3-sun4i-ss", + .cra_priority = 300, + .cra_blocksize = DES3_EDE_BLOCK_SIZE, + .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY, + .cra_ctxsize = sizeof(struct sun4i_req_ctx), + .cra_module = THIS_MODULE, + .cra_alignmask = 3, + .cra_init = sun4i_ss_cipher_init, + } + } +}, +{ .type = CRYPTO_ALG_TYPE_SKCIPHER, + .alg.crypto = { + .setkey = sun4i_ss_des3_setkey, + .encrypt = sun4i_ss_ecb_des3_encrypt, + .decrypt = sun4i_ss_ecb_des3_decrypt, + .min_keysize = DES3_EDE_KEY_SIZE, + .max_keysize = DES3_EDE_KEY_SIZE, + .ivsize = DES3_EDE_BLOCK_SIZE, + .base = { + .cra_name = "ecb(des3_ede)", + .cra_driver_name = "ecb-des3-sun4i-ss", + .cra_priority = 300, + .cra_blocksize = DES3_EDE_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct sun4i_req_ctx), + .cra_module = THIS_MODULE, + .cra_alignmask = 3, + .cra_init = sun4i_ss_cipher_init, + } + } +}, +#ifdef CONFIG_CRYPTO_DEV_SUN4I_SS_PRNG +{ + .type = CRYPTO_ALG_TYPE_RNG, + .alg.rng = { + .base = { + .cra_name = "stdrng", + .cra_driver_name = "sun4i_ss_rng", + .cra_priority = 300, + .cra_ctxsize = 0, + .cra_module = THIS_MODULE, + }, + .generate = sun4i_ss_prng_generate, + .seed = sun4i_ss_prng_seed, + .seedsize = SS_SEED_LEN / BITS_PER_BYTE, + } +}, +#endif +}; + +static int sun4i_ss_probe(struct platform_device *pdev) +{ + struct resource *res; + u32 v; + int err, i; + unsigned long cr; + const unsigned long cr_ahb = 24 * 1000 * 1000; + const unsigned long cr_mod = 150 * 1000 * 1000; + struct sun4i_ss_ctx *ss; + + if (!pdev->dev.of_node) + return -ENODEV; + + ss = devm_kzalloc(&pdev->dev, sizeof(*ss), GFP_KERNEL); + if (!ss) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + ss->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(ss->base)) { + dev_err(&pdev->dev, "Cannot request MMIO\n"); + return PTR_ERR(ss->base); + } + + ss->ssclk = devm_clk_get(&pdev->dev, "mod"); + if (IS_ERR(ss->ssclk)) { + err = PTR_ERR(ss->ssclk); + dev_err(&pdev->dev, "Cannot get SS clock err=%d\n", err); + return err; + } + dev_dbg(&pdev->dev, "clock ss acquired\n"); + + ss->busclk = devm_clk_get(&pdev->dev, "ahb"); + if (IS_ERR(ss->busclk)) { + err = PTR_ERR(ss->busclk); + dev_err(&pdev->dev, "Cannot get AHB SS clock err=%d\n", err); + return err; + } + dev_dbg(&pdev->dev, "clock ahb_ss acquired\n"); + + ss->reset = devm_reset_control_get_optional(&pdev->dev, "ahb"); + if (IS_ERR(ss->reset)) { + if (PTR_ERR(ss->reset) == -EPROBE_DEFER) + return PTR_ERR(ss->reset); + dev_info(&pdev->dev, "no reset control found\n"); + ss->reset = NULL; + } + + /* Enable both clocks */ + err = clk_prepare_enable(ss->busclk); + if (err) { + dev_err(&pdev->dev, "Cannot prepare_enable busclk\n"); + return err; + } + err = clk_prepare_enable(ss->ssclk); + if (err) { + dev_err(&pdev->dev, "Cannot prepare_enable ssclk\n"); + goto error_ssclk; + } + + /* + * Check that clock have the correct rates given in the datasheet + * Try to set the clock to the maximum allowed + */ + err = clk_set_rate(ss->ssclk, cr_mod); + if (err) { + dev_err(&pdev->dev, "Cannot set clock rate to ssclk\n"); + goto error_clk; + } + + /* Deassert reset if we have a reset control */ + if (ss->reset) { + err = reset_control_deassert(ss->reset); + if (err) { + dev_err(&pdev->dev, "Cannot deassert reset control\n"); + goto error_clk; + } + } + + /* + * The only impact on clocks below requirement are bad performance, + * so do not print "errors" + * warn on Overclocked clocks + */ + cr = clk_get_rate(ss->busclk); + if (cr >= cr_ahb) + dev_dbg(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n", + cr, cr / 1000000, cr_ahb); + else + dev_warn(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n", + cr, cr / 1000000, cr_ahb); + + cr = clk_get_rate(ss->ssclk); + if (cr <= cr_mod) + if (cr < cr_mod) + dev_warn(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n", + cr, cr / 1000000, cr_mod); + else + dev_dbg(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n", + cr, cr / 1000000, cr_mod); + else + dev_warn(&pdev->dev, "Clock ss is at %lu (%lu MHz) (must be <= %lu)\n", + cr, cr / 1000000, cr_mod); + + /* + * Datasheet named it "Die Bonding ID" + * I expect to be a sort of Security System Revision number. + * Since the A80 seems to have an other version of SS + * this info could be useful + */ + writel(SS_ENABLED, ss->base + SS_CTL); + v = readl(ss->base + SS_CTL); + v >>= 16; + v &= 0x07; + dev_info(&pdev->dev, "Die ID %d\n", v); + writel(0, ss->base + SS_CTL); + + ss->dev = &pdev->dev; + + spin_lock_init(&ss->slock); + + for (i = 0; i < ARRAY_SIZE(ss_algs); i++) { + ss_algs[i].ss = ss; + switch (ss_algs[i].type) { + case CRYPTO_ALG_TYPE_SKCIPHER: + err = crypto_register_skcipher(&ss_algs[i].alg.crypto); + if (err) { + dev_err(ss->dev, "Fail to register %s\n", + ss_algs[i].alg.crypto.base.cra_name); + goto error_alg; + } + break; + case CRYPTO_ALG_TYPE_AHASH: + err = crypto_register_ahash(&ss_algs[i].alg.hash); + if (err) { + dev_err(ss->dev, "Fail to register %s\n", + ss_algs[i].alg.hash.halg.base.cra_name); + goto error_alg; + } + break; + case CRYPTO_ALG_TYPE_RNG: + err = crypto_register_rng(&ss_algs[i].alg.rng); + if (err) { + dev_err(ss->dev, "Fail to register %s\n", + ss_algs[i].alg.rng.base.cra_name); + } + break; + } + } + platform_set_drvdata(pdev, ss); + return 0; +error_alg: + i--; + for (; i >= 0; i--) { + switch (ss_algs[i].type) { + case CRYPTO_ALG_TYPE_SKCIPHER: + crypto_unregister_skcipher(&ss_algs[i].alg.crypto); + break; + case CRYPTO_ALG_TYPE_AHASH: + crypto_unregister_ahash(&ss_algs[i].alg.hash); + break; + case CRYPTO_ALG_TYPE_RNG: + crypto_unregister_rng(&ss_algs[i].alg.rng); + break; + } + } + if (ss->reset) + reset_control_assert(ss->reset); +error_clk: + clk_disable_unprepare(ss->ssclk); +error_ssclk: + clk_disable_unprepare(ss->busclk); + return err; +} + +static int sun4i_ss_remove(struct platform_device *pdev) +{ + int i; + struct sun4i_ss_ctx *ss = platform_get_drvdata(pdev); + + for (i = 0; i < ARRAY_SIZE(ss_algs); i++) { + switch (ss_algs[i].type) { + case CRYPTO_ALG_TYPE_SKCIPHER: + crypto_unregister_skcipher(&ss_algs[i].alg.crypto); + break; + case CRYPTO_ALG_TYPE_AHASH: + crypto_unregister_ahash(&ss_algs[i].alg.hash); + break; + case CRYPTO_ALG_TYPE_RNG: + crypto_unregister_rng(&ss_algs[i].alg.rng); + break; + } + } + + writel(0, ss->base + SS_CTL); + if (ss->reset) + reset_control_assert(ss->reset); + clk_disable_unprepare(ss->busclk); + clk_disable_unprepare(ss->ssclk); + return 0; +} + +static const struct of_device_id a20ss_crypto_of_match_table[] = { + { .compatible = "allwinner,sun4i-a10-crypto" }, + {} +}; +MODULE_DEVICE_TABLE(of, a20ss_crypto_of_match_table); + +static struct platform_driver sun4i_ss_driver = { + .probe = sun4i_ss_probe, + .remove = sun4i_ss_remove, + .driver = { + .name = "sun4i-ss", + .of_match_table = a20ss_crypto_of_match_table, + }, +}; + +module_platform_driver(sun4i_ss_driver); + +MODULE_ALIAS("platform:sun4i-ss"); +MODULE_DESCRIPTION("Allwinner Security System cryptographic accelerator"); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Corentin LABBE "); diff --git a/drivers/crypto/sunxi-ss/sun4i-ss-hash.c b/drivers/crypto/sunxi-ss/sun4i-ss-hash.c new file mode 100644 index 000000000..2d178e013 --- /dev/null +++ b/drivers/crypto/sunxi-ss/sun4i-ss-hash.c @@ -0,0 +1,527 @@ +/* + * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC + * + * Copyright (C) 2013-2015 Corentin LABBE + * + * This file add support for MD5 and SHA1. + * + * You could find the datasheet in Documentation/arm/sunxi/README + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ +#include "sun4i-ss.h" +#include + +/* This is a totally arbitrary value */ +#define SS_TIMEOUT 100 + +int sun4i_hash_crainit(struct crypto_tfm *tfm) +{ + struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); + struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg); + struct sun4i_ss_alg_template *algt; + + memset(op, 0, sizeof(struct sun4i_tfm_ctx)); + + algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); + op->ss = algt->ss; + + crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), + sizeof(struct sun4i_req_ctx)); + return 0; +} + +/* sun4i_hash_init: initialize request context */ +int sun4i_hash_init(struct ahash_request *areq) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); + struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg); + struct sun4i_ss_alg_template *algt; + + memset(op, 0, sizeof(struct sun4i_req_ctx)); + + algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); + op->mode = algt->mode; + + return 0; +} + +int sun4i_hash_export_md5(struct ahash_request *areq, void *out) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + struct md5_state *octx = out; + int i; + + octx->byte_count = op->byte_count + op->len; + + memcpy(octx->block, op->buf, op->len); + + if (op->byte_count) { + for (i = 0; i < 4; i++) + octx->hash[i] = op->hash[i]; + } else { + octx->hash[0] = SHA1_H0; + octx->hash[1] = SHA1_H1; + octx->hash[2] = SHA1_H2; + octx->hash[3] = SHA1_H3; + } + + return 0; +} + +int sun4i_hash_import_md5(struct ahash_request *areq, const void *in) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + const struct md5_state *ictx = in; + int i; + + sun4i_hash_init(areq); + + op->byte_count = ictx->byte_count & ~0x3F; + op->len = ictx->byte_count & 0x3F; + + memcpy(op->buf, ictx->block, op->len); + + for (i = 0; i < 4; i++) + op->hash[i] = ictx->hash[i]; + + return 0; +} + +int sun4i_hash_export_sha1(struct ahash_request *areq, void *out) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + struct sha1_state *octx = out; + int i; + + octx->count = op->byte_count + op->len; + + memcpy(octx->buffer, op->buf, op->len); + + if (op->byte_count) { + for (i = 0; i < 5; i++) + octx->state[i] = op->hash[i]; + } else { + octx->state[0] = SHA1_H0; + octx->state[1] = SHA1_H1; + octx->state[2] = SHA1_H2; + octx->state[3] = SHA1_H3; + octx->state[4] = SHA1_H4; + } + + return 0; +} + +int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + const struct sha1_state *ictx = in; + int i; + + sun4i_hash_init(areq); + + op->byte_count = ictx->count & ~0x3F; + op->len = ictx->count & 0x3F; + + memcpy(op->buf, ictx->buffer, op->len); + + for (i = 0; i < 5; i++) + op->hash[i] = ictx->state[i]; + + return 0; +} + +#define SS_HASH_UPDATE 1 +#define SS_HASH_FINAL 2 + +/* + * sun4i_hash_update: update hash engine + * + * Could be used for both SHA1 and MD5 + * Write data by step of 32bits and put then in the SS. + * + * Since we cannot leave partial data and hash state in the engine, + * we need to get the hash state at the end of this function. + * We can get the hash state every 64 bytes + * + * So the first work is to get the number of bytes to write to SS modulo 64 + * The extra bytes will go to a temporary buffer op->buf storing op->len bytes + * + * So at the begin of update() + * if op->len + areq->nbytes < 64 + * => all data will be written to wait buffer (op->buf) and end=0 + * if not, write all data from op->buf to the device and position end to + * complete to 64bytes + * + * example 1: + * update1 60o => op->len=60 + * update2 60o => need one more word to have 64 bytes + * end=4 + * so write all data from op->buf and one word of SGs + * write remaining data in op->buf + * final state op->len=56 + */ +static int sun4i_hash(struct ahash_request *areq) +{ + /* + * i is the total bytes read from SGs, to be compared to areq->nbytes + * i is important because we cannot rely on SG length since the sum of + * SG->length could be greater than areq->nbytes + * + * end is the position when we need to stop writing to the device, + * to be compared to i + * + * in_i: advancement in the current SG + */ + unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo; + unsigned int in_i = 0; + u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0; + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); + struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm); + struct sun4i_ss_ctx *ss = tfmctx->ss; + struct scatterlist *in_sg = areq->src; + struct sg_mapping_iter mi; + int in_r, err = 0; + size_t copied = 0; + __le32 wb = 0; + + dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x", + __func__, crypto_tfm_alg_name(areq->base.tfm), + op->byte_count, areq->nbytes, op->mode, + op->len, op->hash[0]); + + if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL)) + return 0; + + /* protect against overflow */ + if (unlikely(areq->nbytes > UINT_MAX - op->len)) { + dev_err(ss->dev, "Cannot process too large request\n"); + return -EINVAL; + } + + if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) { + /* linearize data to op->buf */ + copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), + op->buf + op->len, areq->nbytes, 0); + op->len += copied; + return 0; + } + + spin_lock_bh(&ss->slock); + + /* + * if some data have been processed before, + * we need to restore the partial hash state + */ + if (op->byte_count) { + ivmode = SS_IV_ARBITRARY; + for (i = 0; i < 5; i++) + writel(op->hash[i], ss->base + SS_IV0 + i * 4); + } + /* Enable the device */ + writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL); + + if (!(op->flags & SS_HASH_UPDATE)) + goto hash_final; + + /* start of handling data */ + if (!(op->flags & SS_HASH_FINAL)) { + end = ((areq->nbytes + op->len) / 64) * 64 - op->len; + + if (end > areq->nbytes || areq->nbytes - end > 63) { + dev_err(ss->dev, "ERROR: Bound error %u %u\n", + end, areq->nbytes); + err = -EINVAL; + goto release_ss; + } + } else { + /* Since we have the flag final, we can go up to modulo 4 */ + if (areq->nbytes < 4) + end = 0; + else + end = ((areq->nbytes + op->len) / 4) * 4 - op->len; + } + + /* TODO if SGlen % 4 and !op->len then DMA */ + i = 1; + while (in_sg && i == 1) { + if (in_sg->length % 4) + i = 0; + in_sg = sg_next(in_sg); + } + if (i == 1 && !op->len && areq->nbytes) + dev_dbg(ss->dev, "We can DMA\n"); + + i = 0; + sg_miter_start(&mi, areq->src, sg_nents(areq->src), + SG_MITER_FROM_SG | SG_MITER_ATOMIC); + sg_miter_next(&mi); + in_i = 0; + + do { + /* + * we need to linearize in two case: + * - the buffer is already used + * - the SG does not have enough byte remaining ( < 4) + */ + if (op->len || (mi.length - in_i) < 4) { + /* + * if we have entered here we have two reason to stop + * - the buffer is full + * - reach the end + */ + while (op->len < 64 && i < end) { + /* how many bytes we can read from current SG */ + in_r = min(end - i, 64 - op->len); + in_r = min_t(size_t, mi.length - in_i, in_r); + memcpy(op->buf + op->len, mi.addr + in_i, in_r); + op->len += in_r; + i += in_r; + in_i += in_r; + if (in_i == mi.length) { + sg_miter_next(&mi); + in_i = 0; + } + } + if (op->len > 3 && !(op->len % 4)) { + /* write buf to the device */ + writesl(ss->base + SS_RXFIFO, op->buf, + op->len / 4); + op->byte_count += op->len; + op->len = 0; + } + } + if (mi.length - in_i > 3 && i < end) { + /* how many bytes we can read from current SG */ + in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i); + in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r); + /* how many bytes we can write in the device*/ + todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4); + writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo); + op->byte_count += todo * 4; + i += todo * 4; + in_i += todo * 4; + rx_cnt -= todo; + if (!rx_cnt) { + spaces = readl(ss->base + SS_FCSR); + rx_cnt = SS_RXFIFO_SPACES(spaces); + } + if (in_i == mi.length) { + sg_miter_next(&mi); + in_i = 0; + } + } + } while (i < end); + + /* + * Now we have written to the device all that we can, + * store the remaining bytes in op->buf + */ + if ((areq->nbytes - i) < 64) { + while (i < areq->nbytes && in_i < mi.length && op->len < 64) { + /* how many bytes we can read from current SG */ + in_r = min(areq->nbytes - i, 64 - op->len); + in_r = min_t(size_t, mi.length - in_i, in_r); + memcpy(op->buf + op->len, mi.addr + in_i, in_r); + op->len += in_r; + i += in_r; + in_i += in_r; + if (in_i == mi.length) { + sg_miter_next(&mi); + in_i = 0; + } + } + } + + sg_miter_stop(&mi); + + /* + * End of data process + * Now if we have the flag final go to finalize part + * If not, store the partial hash + */ + if (op->flags & SS_HASH_FINAL) + goto hash_final; + + writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); + i = 0; + do { + v = readl(ss->base + SS_CTL); + i++; + } while (i < SS_TIMEOUT && (v & SS_DATA_END)); + if (unlikely(i >= SS_TIMEOUT)) { + dev_err_ratelimited(ss->dev, + "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", + i, SS_TIMEOUT, v, areq->nbytes); + err = -EIO; + goto release_ss; + } + + /* + * The datasheet isn't very clear about when to retrieve the digest. The + * bit SS_DATA_END is cleared when the engine has processed the data and + * when the digest is computed *but* it doesn't mean the digest is + * available in the digest registers. Hence the delay to be sure we can + * read it. + */ + ndelay(1); + + for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) + op->hash[i] = readl(ss->base + SS_MD0 + i * 4); + + goto release_ss; + +/* + * hash_final: finalize hashing operation + * + * If we have some remaining bytes, we write them. + * Then ask the SS for finalizing the hashing operation + * + * I do not check RX FIFO size in this function since the size is 32 + * after each enabling and this function neither write more than 32 words. + * If we come from the update part, we cannot have more than + * 3 remaining bytes to write and SS is fast enough to not care about it. + */ + +hash_final: + + /* write the remaining words of the wait buffer */ + if (op->len) { + nwait = op->len / 4; + if (nwait) { + writesl(ss->base + SS_RXFIFO, op->buf, nwait); + op->byte_count += 4 * nwait; + } + + nbw = op->len - 4 * nwait; + if (nbw) { + wb = cpu_to_le32(*(u32 *)(op->buf + nwait * 4)); + wb &= GENMASK((nbw * 8) - 1, 0); + + op->byte_count += nbw; + } + } + + /* write the remaining bytes of the nbw buffer */ + wb |= ((1 << 7) << (nbw * 8)); + bf[j++] = le32_to_cpu(wb); + + /* + * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1) + * I take the operations from other MD5/SHA1 implementations + */ + + /* last block size */ + fill = 64 - (op->byte_count % 64); + min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32)); + + /* if we can't fill all data, jump to the next 64 block */ + if (fill < min_fill) + fill += 64; + + j += (fill - min_fill) / sizeof(u32); + + /* write the length of data */ + if (op->mode == SS_OP_SHA1) { + __be64 *bits = (__be64 *)&bf[j]; + *bits = cpu_to_be64(op->byte_count << 3); + j += 2; + } else { + __le64 *bits = (__le64 *)&bf[j]; + *bits = cpu_to_le64(op->byte_count << 3); + j += 2; + } + writesl(ss->base + SS_RXFIFO, bf, j); + + /* Tell the SS to stop the hashing */ + writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); + + /* + * Wait for SS to finish the hash. + * The timeout could happen only in case of bad overclocking + * or driver bug. + */ + i = 0; + do { + v = readl(ss->base + SS_CTL); + i++; + } while (i < SS_TIMEOUT && (v & SS_DATA_END)); + if (unlikely(i >= SS_TIMEOUT)) { + dev_err_ratelimited(ss->dev, + "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", + i, SS_TIMEOUT, v, areq->nbytes); + err = -EIO; + goto release_ss; + } + + /* + * The datasheet isn't very clear about when to retrieve the digest. The + * bit SS_DATA_END is cleared when the engine has processed the data and + * when the digest is computed *but* it doesn't mean the digest is + * available in the digest registers. Hence the delay to be sure we can + * read it. + */ + ndelay(1); + + /* Get the hash from the device */ + if (op->mode == SS_OP_SHA1) { + for (i = 0; i < 5; i++) { + v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4)); + memcpy(areq->result + i * 4, &v, 4); + } + } else { + for (i = 0; i < 4; i++) { + v = cpu_to_le32(readl(ss->base + SS_MD0 + i * 4)); + memcpy(areq->result + i * 4, &v, 4); + } + } + +release_ss: + writel(0, ss->base + SS_CTL); + spin_unlock_bh(&ss->slock); + return err; +} + +int sun4i_hash_final(struct ahash_request *areq) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + + op->flags = SS_HASH_FINAL; + return sun4i_hash(areq); +} + +int sun4i_hash_update(struct ahash_request *areq) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + + op->flags = SS_HASH_UPDATE; + return sun4i_hash(areq); +} + +/* sun4i_hash_finup: finalize hashing operation after an update */ +int sun4i_hash_finup(struct ahash_request *areq) +{ + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + + op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; + return sun4i_hash(areq); +} + +/* combo of init/update/final functions */ +int sun4i_hash_digest(struct ahash_request *areq) +{ + int err; + struct sun4i_req_ctx *op = ahash_request_ctx(areq); + + err = sun4i_hash_init(areq); + if (err) + return err; + + op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; + return sun4i_hash(areq); +} diff --git a/drivers/crypto/sunxi-ss/sun4i-ss-prng.c b/drivers/crypto/sunxi-ss/sun4i-ss-prng.c new file mode 100644 index 000000000..63d636424 --- /dev/null +++ b/drivers/crypto/sunxi-ss/sun4i-ss-prng.c @@ -0,0 +1,56 @@ +#include "sun4i-ss.h" + +int sun4i_ss_prng_seed(struct crypto_rng *tfm, const u8 *seed, + unsigned int slen) +{ + struct sun4i_ss_alg_template *algt; + struct rng_alg *alg = crypto_rng_alg(tfm); + + algt = container_of(alg, struct sun4i_ss_alg_template, alg.rng); + memcpy(algt->ss->seed, seed, slen); + + return 0; +} + +int sun4i_ss_prng_generate(struct crypto_rng *tfm, const u8 *src, + unsigned int slen, u8 *dst, unsigned int dlen) +{ + struct sun4i_ss_alg_template *algt; + struct rng_alg *alg = crypto_rng_alg(tfm); + int i; + u32 v; + u32 *data = (u32 *)dst; + const u32 mode = SS_OP_PRNG | SS_PRNG_CONTINUE | SS_ENABLED; + size_t len; + struct sun4i_ss_ctx *ss; + unsigned int todo = (dlen / 4) * 4; + + algt = container_of(alg, struct sun4i_ss_alg_template, alg.rng); + ss = algt->ss; + + spin_lock_bh(&ss->slock); + + writel(mode, ss->base + SS_CTL); + + while (todo > 0) { + /* write the seed */ + for (i = 0; i < SS_SEED_LEN / BITS_PER_LONG; i++) + writel(ss->seed[i], ss->base + SS_KEY0 + i * 4); + + /* Read the random data */ + len = min_t(size_t, SS_DATA_LEN / BITS_PER_BYTE, todo); + readsl(ss->base + SS_TXFIFO, data, len / 4); + data += len / 4; + todo -= len; + + /* Update the seed */ + for (i = 0; i < SS_SEED_LEN / BITS_PER_LONG; i++) { + v = readl(ss->base + SS_KEY0 + i * 4); + ss->seed[i] = v; + } + } + + writel(0, ss->base + SS_CTL); + spin_unlock_bh(&ss->slock); + return 0; +} diff --git a/drivers/crypto/sunxi-ss/sun4i-ss.h b/drivers/crypto/sunxi-ss/sun4i-ss.h new file mode 100644 index 000000000..f3ac90692 --- /dev/null +++ b/drivers/crypto/sunxi-ss/sun4i-ss.h @@ -0,0 +1,214 @@ +/* + * sun4i-ss.h - hardware cryptographic accelerator for Allwinner A20 SoC + * + * Copyright (C) 2013-2015 Corentin LABBE + * + * Support AES cipher with 128,192,256 bits keysize. + * Support MD5 and SHA1 hash algorithms. + * Support DES and 3DES + * + * You could find the datasheet in Documentation/arm/sunxi/README + * + * Licensed under the GPL-2. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define SS_CTL 0x00 +#define SS_KEY0 0x04 +#define SS_KEY1 0x08 +#define SS_KEY2 0x0C +#define SS_KEY3 0x10 +#define SS_KEY4 0x14 +#define SS_KEY5 0x18 +#define SS_KEY6 0x1C +#define SS_KEY7 0x20 + +#define SS_IV0 0x24 +#define SS_IV1 0x28 +#define SS_IV2 0x2C +#define SS_IV3 0x30 + +#define SS_FCSR 0x44 + +#define SS_MD0 0x4C +#define SS_MD1 0x50 +#define SS_MD2 0x54 +#define SS_MD3 0x58 +#define SS_MD4 0x5C + +#define SS_RXFIFO 0x200 +#define SS_TXFIFO 0x204 + +/* SS_CTL configuration values */ + +/* PRNG generator mode - bit 15 */ +#define SS_PRNG_ONESHOT (0 << 15) +#define SS_PRNG_CONTINUE (1 << 15) + +/* IV mode for hash */ +#define SS_IV_ARBITRARY (1 << 14) + +/* SS operation mode - bits 12-13 */ +#define SS_ECB (0 << 12) +#define SS_CBC (1 << 12) +#define SS_CTS (3 << 12) + +/* Counter width for CNT mode - bits 10-11 */ +#define SS_CNT_16BITS (0 << 10) +#define SS_CNT_32BITS (1 << 10) +#define SS_CNT_64BITS (2 << 10) + +/* Key size for AES - bits 8-9 */ +#define SS_AES_128BITS (0 << 8) +#define SS_AES_192BITS (1 << 8) +#define SS_AES_256BITS (2 << 8) + +/* Operation direction - bit 7 */ +#define SS_ENCRYPTION (0 << 7) +#define SS_DECRYPTION (1 << 7) + +/* SS Method - bits 4-6 */ +#define SS_OP_AES (0 << 4) +#define SS_OP_DES (1 << 4) +#define SS_OP_3DES (2 << 4) +#define SS_OP_SHA1 (3 << 4) +#define SS_OP_MD5 (4 << 4) +#define SS_OP_PRNG (5 << 4) + +/* Data end bit - bit 2 */ +#define SS_DATA_END (1 << 2) + +/* PRNG start bit - bit 1 */ +#define SS_PRNG_START (1 << 1) + +/* SS Enable bit - bit 0 */ +#define SS_DISABLED (0 << 0) +#define SS_ENABLED (1 << 0) + +/* SS_FCSR configuration values */ +/* RX FIFO status - bit 30 */ +#define SS_RXFIFO_FREE (1 << 30) + +/* RX FIFO empty spaces - bits 24-29 */ +#define SS_RXFIFO_SPACES(val) (((val) >> 24) & 0x3f) + +/* TX FIFO status - bit 22 */ +#define SS_TXFIFO_AVAILABLE (1 << 22) + +/* TX FIFO available spaces - bits 16-21 */ +#define SS_TXFIFO_SPACES(val) (((val) >> 16) & 0x3f) + +#define SS_RX_MAX 32 +#define SS_RX_DEFAULT SS_RX_MAX +#define SS_TX_MAX 33 + +#define SS_RXFIFO_EMP_INT_PENDING (1 << 10) +#define SS_TXFIFO_AVA_INT_PENDING (1 << 8) +#define SS_RXFIFO_EMP_INT_ENABLE (1 << 2) +#define SS_TXFIFO_AVA_INT_ENABLE (1 << 0) + +#define SS_SEED_LEN 192 +#define SS_DATA_LEN 160 + +struct sun4i_ss_ctx { + void __iomem *base; + int irq; + struct clk *busclk; + struct clk *ssclk; + struct reset_control *reset; + struct device *dev; + struct resource *res; + spinlock_t slock; /* control the use of the device */ +#ifdef CONFIG_CRYPTO_DEV_SUN4I_SS_PRNG + u32 seed[SS_SEED_LEN / BITS_PER_LONG]; +#endif +}; + +struct sun4i_ss_alg_template { + u32 type; + u32 mode; + union { + struct skcipher_alg crypto; + struct ahash_alg hash; + struct rng_alg rng; + } alg; + struct sun4i_ss_ctx *ss; +}; + +struct sun4i_tfm_ctx { + u32 key[AES_MAX_KEY_SIZE / 4];/* divided by sizeof(u32) */ + u32 keylen; + u32 keymode; + struct sun4i_ss_ctx *ss; +}; + +struct sun4i_cipher_req_ctx { + u32 mode; +}; + +struct sun4i_req_ctx { + u32 mode; + u64 byte_count; /* number of bytes "uploaded" to the device */ + u32 hash[5]; /* for storing SS_IVx register */ + char buf[64]; + unsigned int len; + int flags; +}; + +int sun4i_hash_crainit(struct crypto_tfm *tfm); +int sun4i_hash_init(struct ahash_request *areq); +int sun4i_hash_update(struct ahash_request *areq); +int sun4i_hash_final(struct ahash_request *areq); +int sun4i_hash_finup(struct ahash_request *areq); +int sun4i_hash_digest(struct ahash_request *areq); +int sun4i_hash_export_md5(struct ahash_request *areq, void *out); +int sun4i_hash_import_md5(struct ahash_request *areq, const void *in); +int sun4i_hash_export_sha1(struct ahash_request *areq, void *out); +int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in); + +int sun4i_ss_cbc_aes_encrypt(struct skcipher_request *areq); +int sun4i_ss_cbc_aes_decrypt(struct skcipher_request *areq); +int sun4i_ss_ecb_aes_encrypt(struct skcipher_request *areq); +int sun4i_ss_ecb_aes_decrypt(struct skcipher_request *areq); + +int sun4i_ss_cbc_des_encrypt(struct skcipher_request *areq); +int sun4i_ss_cbc_des_decrypt(struct skcipher_request *areq); +int sun4i_ss_ecb_des_encrypt(struct skcipher_request *areq); +int sun4i_ss_ecb_des_decrypt(struct skcipher_request *areq); + +int sun4i_ss_cbc_des3_encrypt(struct skcipher_request *areq); +int sun4i_ss_cbc_des3_decrypt(struct skcipher_request *areq); +int sun4i_ss_ecb_des3_encrypt(struct skcipher_request *areq); +int sun4i_ss_ecb_des3_decrypt(struct skcipher_request *areq); + +int sun4i_ss_cipher_init(struct crypto_tfm *tfm); +int sun4i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, + unsigned int keylen); +int sun4i_ss_des_setkey(struct crypto_skcipher *tfm, const u8 *key, + unsigned int keylen); +int sun4i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, + unsigned int keylen); +int sun4i_ss_prng_generate(struct crypto_rng *tfm, const u8 *src, + unsigned int slen, u8 *dst, unsigned int dlen); +int sun4i_ss_prng_seed(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); -- cgit v1.2.3