/* * linux/arch/arm/mach-omap2/timer.c * * OMAP2 GP timer support. * * Copyright (C) 2009 Nokia Corporation * * Update to use new clocksource/clockevent layers * Author: Kevin Hilman, MontaVista Software, Inc. * Copyright (C) 2007 MontaVista Software, Inc. * * Original driver: * Copyright (C) 2005 Nokia Corporation * Author: Paul Mundt * Juha Yrjölä * OMAP Dual-mode timer framework support by Timo Teras * * Some parts based off of TI's 24xx code: * * Copyright (C) 2004-2009 Texas Instruments, Inc. * * Roughly modelled after the OMAP1 MPU timer code. * Added OMAP4 support - Santosh Shilimkar * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "omap_hwmod.h" #include "omap_device.h" #include #include #include "soc.h" #include "common.h" #include "control.h" #include "powerdomain.h" #include "omap-secure.h" #define REALTIME_COUNTER_BASE 0x48243200 #define INCREMENTER_NUMERATOR_OFFSET 0x10 #define INCREMENTER_DENUMERATOR_RELOAD_OFFSET 0x14 #define NUMERATOR_DENUMERATOR_MASK 0xfffff000 /* Clockevent code */ /* Clockevent hwmod for am335x and am437x suspend */ static struct omap_hwmod *clockevent_gpt_hwmod; /* Clockesource hwmod for am437x suspend */ static struct omap_hwmod *clocksource_gpt_hwmod; struct dmtimer_clockevent { struct clock_event_device dev; struct omap_dm_timer timer; }; static struct dmtimer_clockevent clockevent; static struct omap_dm_timer *to_dmtimer(struct clock_event_device *clockevent) { struct dmtimer_clockevent *clkevt = container_of(clockevent, struct dmtimer_clockevent, dev); struct omap_dm_timer *timer = &clkevt->timer; return timer; } #ifdef CONFIG_SOC_HAS_REALTIME_COUNTER static unsigned long arch_timer_freq; void set_cntfreq(void) { omap_smc1(OMAP5_DRA7_MON_SET_CNTFRQ_INDEX, arch_timer_freq); } #endif static irqreturn_t omap2_gp_timer_interrupt(int irq, void *dev_id) { struct dmtimer_clockevent *clkevt = dev_id; struct clock_event_device *evt = &clkevt->dev; struct omap_dm_timer *timer = &clkevt->timer; __omap_dm_timer_write_status(timer, OMAP_TIMER_INT_OVERFLOW); evt->event_handler(evt); return IRQ_HANDLED; } static int omap2_gp_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct omap_dm_timer *timer = to_dmtimer(evt); __omap_dm_timer_load_start(timer, OMAP_TIMER_CTRL_ST, 0xffffffff - cycles, OMAP_TIMER_POSTED); return 0; } static int omap2_gp_timer_shutdown(struct clock_event_device *evt) { struct omap_dm_timer *timer = to_dmtimer(evt); __omap_dm_timer_stop(timer, OMAP_TIMER_POSTED, timer->rate); return 0; } static int omap2_gp_timer_set_periodic(struct clock_event_device *evt) { struct omap_dm_timer *timer = to_dmtimer(evt); u32 period; __omap_dm_timer_stop(timer, OMAP_TIMER_POSTED, timer->rate); period = timer->rate / HZ; period -= 1; /* Looks like we need to first set the load value separately */ __omap_dm_timer_write(timer, OMAP_TIMER_LOAD_REG, 0xffffffff - period, OMAP_TIMER_POSTED); __omap_dm_timer_load_start(timer, OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST, 0xffffffff - period, OMAP_TIMER_POSTED); return 0; } static void omap_clkevt_idle(struct clock_event_device *unused) { if (!clockevent_gpt_hwmod) return; omap_hwmod_idle(clockevent_gpt_hwmod); } static void omap_clkevt_unidle(struct clock_event_device *evt) { struct omap_dm_timer *timer = to_dmtimer(evt); if (!clockevent_gpt_hwmod) return; omap_hwmod_enable(clockevent_gpt_hwmod); __omap_dm_timer_int_enable(timer, OMAP_TIMER_INT_OVERFLOW); } static const struct of_device_id omap_timer_match[] __initconst = { { .compatible = "ti,omap2420-timer", }, { .compatible = "ti,omap3430-timer", }, { .compatible = "ti,omap4430-timer", }, { .compatible = "ti,omap5430-timer", }, { .compatible = "ti,dm814-timer", }, { .compatible = "ti,dm816-timer", }, { .compatible = "ti,am335x-timer", }, { .compatible = "ti,am335x-timer-1ms", }, { } }; static int omap_timer_add_disabled_property(struct device_node *np) { struct property *prop; prop = kzalloc(sizeof(*prop), GFP_KERNEL); if (!prop) return -ENOMEM; prop->name = "status"; prop->value = "disabled"; prop->length = strlen(prop->value); return of_add_property(np, prop); } static int omap_timer_update_dt(struct device_node *np) { int error = 0; if (!of_device_is_compatible(np, "ti,omap-counter32k")) { error = omap_timer_add_disabled_property(np); if (error) return error; } /* No parent interconnect target module configured? */ if (of_get_property(np, "ti,hwmods", NULL)) return error; /* Tag parent interconnect target module disabled */ error = omap_timer_add_disabled_property(np->parent); if (error) return error; return 0; } /** * omap_get_timer_dt - get a timer using device-tree * @match - device-tree match structure for matching a device type * @property - optional timer property to match * * Helper function to get a timer during early boot using device-tree for use * as kernel system timer. Optionally, the property argument can be used to * select a timer with a specific property. Once a timer is found then mark * the timer node in device-tree as disabled, to prevent the kernel from * registering this timer as a platform device and so no one else can use it. */ static struct device_node * __init omap_get_timer_dt(const struct of_device_id *match, const char *property) { struct device_node *np; int error; for_each_matching_node(np, match) { if (!of_device_is_available(np)) continue; if (property && !of_get_property(np, property, NULL)) continue; if (!property && (of_get_property(np, "ti,timer-alwon", NULL) || of_get_property(np, "ti,timer-dsp", NULL) || of_get_property(np, "ti,timer-pwm", NULL) || of_get_property(np, "ti,timer-secure", NULL))) continue; error = omap_timer_update_dt(np); WARN(error, "%s: Could not update dt: %i\n", __func__, error); return np; } return NULL; } /** * omap_dmtimer_init - initialisation function when device tree is used * * For secure OMAP3/DRA7xx devices, timers with device type "timer-secure" * cannot be used by the kernel as they are reserved. Therefore, to prevent the * kernel registering these devices remove them dynamically from the device * tree on boot. */ static void __init omap_dmtimer_init(void) { struct device_node *np; if (!cpu_is_omap34xx() && !soc_is_dra7xx()) return; /* If we are a secure device, remove any secure timer nodes */ if ((omap_type() != OMAP2_DEVICE_TYPE_GP)) { np = omap_get_timer_dt(omap_timer_match, "ti,timer-secure"); of_node_put(np); } } /** * omap_dm_timer_get_errata - get errata flags for a timer * * Get the timer errata flags that are specific to the OMAP device being used. */ static u32 __init omap_dm_timer_get_errata(void) { if (cpu_is_omap24xx()) return 0; return OMAP_TIMER_ERRATA_I103_I767; } static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer, const char *fck_source, const char *property, const char **timer_name, int posted) { const char *oh_name = NULL; struct device_node *np; struct omap_hwmod *oh; struct clk *src; int r = 0; np = omap_get_timer_dt(omap_timer_match, property); if (!np) return -ENODEV; of_property_read_string_index(np, "ti,hwmods", 0, &oh_name); if (!oh_name) { of_property_read_string_index(np->parent, "ti,hwmods", 0, &oh_name); if (!oh_name) return -ENODEV; } timer->irq = irq_of_parse_and_map(np, 0); if (!timer->irq) return -ENXIO; timer->io_base = of_iomap(np, 0); timer->fclk = of_clk_get_by_name(np, "fck"); of_node_put(np); oh = omap_hwmod_lookup(oh_name); if (!oh) return -ENODEV; *timer_name = oh->name; if (!timer->io_base) return -ENXIO; omap_hwmod_setup_one(oh_name); /* After the dmtimer is using hwmod these clocks won't be needed */ if (IS_ERR_OR_NULL(timer->fclk)) timer->fclk = clk_get(NULL, omap_hwmod_get_main_clk(oh)); if (IS_ERR(timer->fclk)) return PTR_ERR(timer->fclk); src = clk_get(NULL, fck_source); if (IS_ERR(src)) return PTR_ERR(src); WARN(clk_set_parent(timer->fclk, src) < 0, "Cannot set timer parent clock, no PLL clock driver?"); clk_put(src); omap_hwmod_enable(oh); __omap_dm_timer_init_regs(timer); if (posted) __omap_dm_timer_enable_posted(timer); /* Check that the intended posted configuration matches the actual */ if (posted != timer->posted) return -EINVAL; timer->rate = clk_get_rate(timer->fclk); timer->reserved = 1; return r; } #if !defined(CONFIG_SMP) && defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) void tick_broadcast(const struct cpumask *mask) { } #endif static void __init dmtimer_clkevt_init_common(struct dmtimer_clockevent *clkevt, int gptimer_id, const char *fck_source, unsigned int features, const struct cpumask *cpumask, const char *property, int rating, const char *name) { struct omap_dm_timer *timer = &clkevt->timer; int res; timer->id = gptimer_id; timer->errata = omap_dm_timer_get_errata(); clkevt->dev.features = features; clkevt->dev.rating = rating; clkevt->dev.set_next_event = omap2_gp_timer_set_next_event; clkevt->dev.set_state_shutdown = omap2_gp_timer_shutdown; clkevt->dev.set_state_periodic = omap2_gp_timer_set_periodic; clkevt->dev.set_state_oneshot = omap2_gp_timer_shutdown; clkevt->dev.tick_resume = omap2_gp_timer_shutdown; /* * For clock-event timers we never read the timer counter and * so we are not impacted by errata i103 and i767. Therefore, * we can safely ignore this errata for clock-event timers. */ __omap_dm_timer_override_errata(timer, OMAP_TIMER_ERRATA_I103_I767); res = omap_dm_timer_init_one(timer, fck_source, property, &clkevt->dev.name, OMAP_TIMER_POSTED); BUG_ON(res); clkevt->dev.cpumask = cpumask; clkevt->dev.irq = omap_dm_timer_get_irq(timer); if (request_irq(clkevt->dev.irq, omap2_gp_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, name, clkevt)) pr_err("Failed to request irq %d (gp_timer)\n", clkevt->dev.irq); __omap_dm_timer_int_enable(timer, OMAP_TIMER_INT_OVERFLOW); if (soc_is_am33xx() || soc_is_am43xx()) { clkevt->dev.suspend = omap_clkevt_idle; clkevt->dev.resume = omap_clkevt_unidle; clockevent_gpt_hwmod = omap_hwmod_lookup(clkevt->dev.name); } pr_info("OMAP clockevent source: %s at %lu Hz\n", clkevt->dev.name, timer->rate); } static DEFINE_PER_CPU(struct dmtimer_clockevent, dmtimer_percpu_timer); static int omap_gptimer_starting_cpu(unsigned int cpu) { struct dmtimer_clockevent *clkevt = per_cpu_ptr(&dmtimer_percpu_timer, cpu); struct clock_event_device *dev = &clkevt->dev; struct omap_dm_timer *timer = &clkevt->timer; clockevents_config_and_register(dev, timer->rate, 3, ULONG_MAX); irq_force_affinity(dev->irq, cpumask_of(cpu)); return 0; } static int __init dmtimer_percpu_quirk_init(void) { struct dmtimer_clockevent *clkevt; struct clock_event_device *dev; struct device_node *arm_timer; struct omap_dm_timer *timer; int cpu = 0; arm_timer = of_find_compatible_node(NULL, NULL, "arm,armv7-timer"); if (of_device_is_available(arm_timer)) { pr_warn_once("ARM architected timer wrap issue i940 detected\n"); return 0; } for_each_possible_cpu(cpu) { clkevt = per_cpu_ptr(&dmtimer_percpu_timer, cpu); dev = &clkevt->dev; timer = &clkevt->timer; dmtimer_clkevt_init_common(clkevt, 0, "timer_sys_ck", CLOCK_EVT_FEAT_ONESHOT, cpumask_of(cpu), "assigned-clock-parents", 500, "percpu timer"); } cpuhp_setup_state(CPUHP_AP_OMAP_DM_TIMER_STARTING, "clockevents/omap/gptimer:starting", omap_gptimer_starting_cpu, NULL); return 0; } /* Clocksource code */ static struct omap_dm_timer clksrc; static bool use_gptimer_clksrc __initdata; /* * clocksource */ static u64 clocksource_read_cycles(struct clocksource *cs) { return (u64)__omap_dm_timer_read_counter(&clksrc, OMAP_TIMER_NONPOSTED); } static struct clocksource clocksource_gpt = { .rating = 300, .read = clocksource_read_cycles, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u64 notrace dmtimer_read_sched_clock(void) { if (clksrc.reserved) return __omap_dm_timer_read_counter(&clksrc, OMAP_TIMER_NONPOSTED); return 0; } static const struct of_device_id omap_counter_match[] __initconst = { { .compatible = "ti,omap-counter32k", }, { } }; /* Setup free-running counter for clocksource */ static int __init __maybe_unused omap2_sync32k_clocksource_init(void) { int ret; struct device_node *np = NULL; struct omap_hwmod *oh; const char *oh_name = "counter_32k"; /* * See if the 32kHz counter is supported. */ np = omap_get_timer_dt(omap_counter_match, NULL); if (!np) return -ENODEV; of_property_read_string_index(np->parent, "ti,hwmods", 0, &oh_name); if (!oh_name) { of_property_read_string_index(np, "ti,hwmods", 0, &oh_name); if (!oh_name) return -ENODEV; } /* * First check hwmod data is available for sync32k counter */ oh = omap_hwmod_lookup(oh_name); if (!oh || oh->slaves_cnt == 0) return -ENODEV; omap_hwmod_setup_one(oh_name); ret = omap_hwmod_enable(oh); if (ret) { pr_warn("%s: failed to enable counter_32k module (%d)\n", __func__, ret); return ret; } return ret; } static unsigned int omap2_gptimer_clksrc_load; static void omap2_gptimer_clksrc_suspend(struct clocksource *unused) { omap2_gptimer_clksrc_load = __omap_dm_timer_read_counter(&clksrc, OMAP_TIMER_NONPOSTED); omap_hwmod_idle(clocksource_gpt_hwmod); } static void omap2_gptimer_clksrc_resume(struct clocksource *unused) { omap_hwmod_enable(clocksource_gpt_hwmod); __omap_dm_timer_load_start(&clksrc, OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, omap2_gptimer_clksrc_load, OMAP_TIMER_NONPOSTED); } static void __init omap2_gptimer_clocksource_init(int gptimer_id, const char *fck_source, const char *property) { int res; clksrc.id = gptimer_id; clksrc.errata = omap_dm_timer_get_errata(); res = omap_dm_timer_init_one(&clksrc, fck_source, property, &clocksource_gpt.name, OMAP_TIMER_NONPOSTED); if (soc_is_am43xx()) { clocksource_gpt.suspend = omap2_gptimer_clksrc_suspend; clocksource_gpt.resume = omap2_gptimer_clksrc_resume; clocksource_gpt_hwmod = omap_hwmod_lookup(clocksource_gpt.name); } BUG_ON(res); __omap_dm_timer_load_start(&clksrc, OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0, OMAP_TIMER_NONPOSTED); sched_clock_register(dmtimer_read_sched_clock, 32, clksrc.rate); if (clocksource_register_hz(&clocksource_gpt, clksrc.rate)) pr_err("Could not register clocksource %s\n", clocksource_gpt.name); else pr_info("OMAP clocksource: %s at %lu Hz\n", clocksource_gpt.name, clksrc.rate); } static void __init __omap_sync32k_timer_init(int clkev_nr, const char *clkev_src, const char *clkev_prop, int clksrc_nr, const char *clksrc_src, const char *clksrc_prop, bool gptimer) { omap_clk_init(); omap_dmtimer_init(); dmtimer_clkevt_init_common(&clockevent, clkev_nr, clkev_src, CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, cpu_possible_mask, clkev_prop, 300, "clockevent"); clockevents_config_and_register(&clockevent.dev, clockevent.timer.rate, 3, /* Timer internal resynch latency */ 0xffffffff); if (soc_is_dra7xx()) dmtimer_percpu_quirk_init(); /* Enable the use of clocksource="gp_timer" kernel parameter */ if (use_gptimer_clksrc || gptimer) omap2_gptimer_clocksource_init(clksrc_nr, clksrc_src, clksrc_prop); else omap2_sync32k_clocksource_init(); } void __init omap_init_time(void) { __omap_sync32k_timer_init(1, "timer_32k_ck", "ti,timer-alwon", 2, "timer_sys_ck", NULL, false); timer_probe(); } #if defined(CONFIG_ARCH_OMAP3) || defined(CONFIG_SOC_AM43XX) void __init omap3_secure_sync32k_timer_init(void) { __omap_sync32k_timer_init(12, "secure_32k_fck", "ti,timer-secure", 2, "timer_sys_ck", NULL, false); timer_probe(); } #endif /* CONFIG_ARCH_OMAP3 */ #if defined(CONFIG_ARCH_OMAP3) || defined(CONFIG_SOC_AM33XX) || \ defined(CONFIG_SOC_AM43XX) || defined(CONFIG_SOC_DRA7XX) void __init omap3_gptimer_timer_init(void) { __omap_sync32k_timer_init(2, "timer_sys_ck", NULL, 1, "timer_sys_ck", "ti,timer-alwon", true); if (of_have_populated_dt()) timer_probe(); } #endif #if defined(CONFIG_ARCH_OMAP4) || defined(CONFIG_SOC_OMAP5) || \ defined(CONFIG_SOC_DRA7XX) static void __init omap4_sync32k_timer_init(void) { __omap_sync32k_timer_init(1, "timer_32k_ck", "ti,timer-alwon", 2, "sys_clkin_ck", NULL, false); } void __init omap4_local_timer_init(void) { omap4_sync32k_timer_init(); timer_probe(); } #endif #if defined(CONFIG_SOC_OMAP5) || defined(CONFIG_SOC_DRA7XX) /* * The realtime counter also called master counter, is a free-running * counter, which is related to real time. It produces the count used * by the CPU local timer peripherals in the MPU cluster. The timer counts * at a rate of 6.144 MHz. Because the device operates on different clocks * in different power modes, the master counter shifts operation between * clocks, adjusting the increment per clock in hardware accordingly to * maintain a constant count rate. */ static void __init realtime_counter_init(void) { #ifdef CONFIG_SOC_HAS_REALTIME_COUNTER void __iomem *base; static struct clk *sys_clk; unsigned long rate; unsigned int reg; unsigned long long num, den; base = ioremap(REALTIME_COUNTER_BASE, SZ_32); if (!base) { pr_err("%s: ioremap failed\n", __func__); return; } sys_clk = clk_get(NULL, "sys_clkin"); if (IS_ERR(sys_clk)) { pr_err("%s: failed to get system clock handle\n", __func__); iounmap(base); return; } rate = clk_get_rate(sys_clk); if (soc_is_dra7xx()) { /* * Errata i856 says the 32.768KHz crystal does not start at * power on, so the CPU falls back to an emulated 32KHz clock * based on sysclk / 610 instead. This causes the master counter * frequency to not be 6.144MHz but at sysclk / 610 * 375 / 2 * (OR sysclk * 75 / 244) * * This affects at least the DRA7/AM572x 1.0, 1.1 revisions. * Of course any board built without a populated 32.768KHz * crystal would also need this fix even if the CPU is fixed * later. * * Either case can be detected by using the two speedselect bits * If they are not 0, then the 32.768KHz clock driving the * coarse counter that corrects the fine counter every time it * ticks is actually rate/610 rather than 32.768KHz and we * should compensate to avoid the 570ppm (at 20MHz, much worse * at other rates) too fast system time. */ reg = omap_ctrl_readl(DRA7_CTRL_CORE_BOOTSTRAP); if (reg & DRA7_SPEEDSELECT_MASK) { num = 75; den = 244; goto sysclk1_based; } } /* Numerator/denumerator values refer TRM Realtime Counter section */ switch (rate) { case 12000000: num = 64; den = 125; break; case 13000000: num = 768; den = 1625; break; case 19200000: num = 8; den = 25; break; case 20000000: num = 192; den = 625; break; case 26000000: num = 384; den = 1625; break; case 27000000: num = 256; den = 1125; break; case 38400000: default: /* Program it for 38.4 MHz */ num = 4; den = 25; break; } sysclk1_based: /* Program numerator and denumerator registers */ reg = readl_relaxed(base + INCREMENTER_NUMERATOR_OFFSET) & NUMERATOR_DENUMERATOR_MASK; reg |= num; writel_relaxed(reg, base + INCREMENTER_NUMERATOR_OFFSET); reg = readl_relaxed(base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET) & NUMERATOR_DENUMERATOR_MASK; reg |= den; writel_relaxed(reg, base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET); arch_timer_freq = DIV_ROUND_UP_ULL(rate * num, den); set_cntfreq(); iounmap(base); #endif } void __init omap5_realtime_timer_init(void) { omap4_sync32k_timer_init(); realtime_counter_init(); timer_probe(); } #endif /* CONFIG_SOC_OMAP5 || CONFIG_SOC_DRA7XX */ /** * omap2_override_clocksource - clocksource override with user configuration * * Allows user to override default clocksource, using kernel parameter * clocksource="gp_timer" (For all OMAP2PLUS architectures) * * Note that, here we are using same standard kernel parameter "clocksource=", * and not introducing any OMAP specific interface. */ static int __init omap2_override_clocksource(char *str) { if (!str) return 0; /* * For OMAP architecture, we only have two options * - sync_32k (default) * - gp_timer (sys_clk based) */ if (!strcmp(str, "gp_timer")) use_gptimer_clksrc = true; return 0; } early_param("clocksource", omap2_override_clocksource);