/* * Copyright (C) 2014, Samsung Electronics Co. Ltd. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include "ssp.h" #define SSP_DEV (&data->spi->dev) #define SSP_GET_MESSAGE_TYPE(data) (data & (3 << SSP_RW)) /* * SSP -> AP Instruction * They tell what packet type can be expected. In the future there will * be less of them. BYPASS means common sensor packets with accel, gyro, * hrm etc. data. LIBRARY and META are mock-up's for now. */ #define SSP_MSG2AP_INST_BYPASS_DATA 0x37 #define SSP_MSG2AP_INST_LIBRARY_DATA 0x01 #define SSP_MSG2AP_INST_DEBUG_DATA 0x03 #define SSP_MSG2AP_INST_BIG_DATA 0x04 #define SSP_MSG2AP_INST_META_DATA 0x05 #define SSP_MSG2AP_INST_TIME_SYNC 0x06 #define SSP_MSG2AP_INST_RESET 0x07 #define SSP_UNIMPLEMENTED -1 struct ssp_msg_header { u8 cmd; __le16 length; __le16 options; __le32 data; } __attribute__((__packed__)); struct ssp_msg { u16 length; u16 options; struct list_head list; struct completion *done; struct ssp_msg_header *h; char *buffer; }; static const int ssp_offset_map[SSP_SENSOR_MAX] = { [SSP_ACCELEROMETER_SENSOR] = SSP_ACCELEROMETER_SIZE + SSP_TIME_SIZE, [SSP_GYROSCOPE_SENSOR] = SSP_GYROSCOPE_SIZE + SSP_TIME_SIZE, [SSP_GEOMAGNETIC_UNCALIB_SENSOR] = SSP_UNIMPLEMENTED, [SSP_GEOMAGNETIC_RAW] = SSP_UNIMPLEMENTED, [SSP_GEOMAGNETIC_SENSOR] = SSP_UNIMPLEMENTED, [SSP_PRESSURE_SENSOR] = SSP_UNIMPLEMENTED, [SSP_GESTURE_SENSOR] = SSP_UNIMPLEMENTED, [SSP_PROXIMITY_SENSOR] = SSP_UNIMPLEMENTED, [SSP_TEMPERATURE_HUMIDITY_SENSOR] = SSP_UNIMPLEMENTED, [SSP_LIGHT_SENSOR] = SSP_UNIMPLEMENTED, [SSP_PROXIMITY_RAW] = SSP_UNIMPLEMENTED, [SSP_ORIENTATION_SENSOR] = SSP_UNIMPLEMENTED, [SSP_STEP_DETECTOR] = SSP_UNIMPLEMENTED, [SSP_SIG_MOTION_SENSOR] = SSP_UNIMPLEMENTED, [SSP_GYRO_UNCALIB_SENSOR] = SSP_UNIMPLEMENTED, [SSP_GAME_ROTATION_VECTOR] = SSP_UNIMPLEMENTED, [SSP_ROTATION_VECTOR] = SSP_UNIMPLEMENTED, [SSP_STEP_COUNTER] = SSP_UNIMPLEMENTED, [SSP_BIO_HRM_RAW] = SSP_BIO_HRM_RAW_SIZE + SSP_TIME_SIZE, [SSP_BIO_HRM_RAW_FAC] = SSP_BIO_HRM_RAW_FAC_SIZE + SSP_TIME_SIZE, [SSP_BIO_HRM_LIB] = SSP_BIO_HRM_LIB_SIZE + SSP_TIME_SIZE, }; #define SSP_HEADER_SIZE (sizeof(struct ssp_msg_header)) #define SSP_HEADER_SIZE_ALIGNED (ALIGN(SSP_HEADER_SIZE, 4)) static struct ssp_msg *ssp_create_msg(u8 cmd, u16 len, u16 opt, u32 data) { struct ssp_msg_header h; struct ssp_msg *msg; msg = kzalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return NULL; h.cmd = cmd; h.length = cpu_to_le16(len); h.options = cpu_to_le16(opt); h.data = cpu_to_le32(data); msg->buffer = kzalloc(SSP_HEADER_SIZE_ALIGNED + len, GFP_KERNEL | GFP_DMA); if (!msg->buffer) { kfree(msg); return NULL; } msg->length = len; msg->options = opt; memcpy(msg->buffer, &h, SSP_HEADER_SIZE); return msg; } /* * It is a bit heavy to do it this way but often the function is used to compose * the message from smaller chunks which are placed on the stack. Often the * chunks are small so memcpy should be optimalized. */ static inline void ssp_fill_buffer(struct ssp_msg *m, unsigned int offset, const void *src, unsigned int len) { memcpy(&m->buffer[SSP_HEADER_SIZE_ALIGNED + offset], src, len); } static inline void ssp_get_buffer(struct ssp_msg *m, unsigned int offset, void *dest, unsigned int len) { memcpy(dest, &m->buffer[SSP_HEADER_SIZE_ALIGNED + offset], len); } #define SSP_GET_BUFFER_AT_INDEX(m, index) \ (m->buffer[SSP_HEADER_SIZE_ALIGNED + index]) #define SSP_SET_BUFFER_AT_INDEX(m, index, val) \ (m->buffer[SSP_HEADER_SIZE_ALIGNED + index] = val) static void ssp_clean_msg(struct ssp_msg *m) { kfree(m->buffer); kfree(m); } static int ssp_print_mcu_debug(char *data_frame, int *data_index, int received_len) { int length = data_frame[(*data_index)++]; if (length > received_len - *data_index || length <= 0) { ssp_dbg("[SSP]: MSG From MCU-invalid debug length(%d/%d)\n", length, received_len); return -EPROTO; } ssp_dbg("[SSP]: MSG From MCU - %s\n", &data_frame[*data_index]); *data_index += length; return 0; } /* * It was designed that way - additional lines to some kind of handshake, * please do not ask why - only the firmware guy can know it. */ static int ssp_check_lines(struct ssp_data *data, bool state) { int delay_cnt = 0; gpio_set_value_cansleep(data->ap_mcu_gpio, state); while (gpio_get_value_cansleep(data->mcu_ap_gpio) != state) { usleep_range(3000, 3500); if (data->shut_down || delay_cnt++ > 500) { dev_err(SSP_DEV, "%s:timeout, hw ack wait fail %d\n", __func__, state); if (!state) gpio_set_value_cansleep(data->ap_mcu_gpio, 1); return -ETIMEDOUT; } } return 0; } static int ssp_do_transfer(struct ssp_data *data, struct ssp_msg *msg, struct completion *done, int timeout) { int status; /* * check if this is a short one way message or the whole transfer has * second part after an interrupt */ const bool use_no_irq = msg->length == 0; if (data->shut_down) return -EPERM; msg->done = done; mutex_lock(&data->comm_lock); status = ssp_check_lines(data, false); if (status < 0) goto _error_locked; status = spi_write(data->spi, msg->buffer, SSP_HEADER_SIZE); if (status < 0) { gpio_set_value_cansleep(data->ap_mcu_gpio, 1); dev_err(SSP_DEV, "%s spi_write fail\n", __func__); goto _error_locked; } if (!use_no_irq) { mutex_lock(&data->pending_lock); list_add_tail(&msg->list, &data->pending_list); mutex_unlock(&data->pending_lock); } status = ssp_check_lines(data, true); if (status < 0) { if (!use_no_irq) { mutex_lock(&data->pending_lock); list_del(&msg->list); mutex_unlock(&data->pending_lock); } goto _error_locked; } mutex_unlock(&data->comm_lock); if (!use_no_irq && done) if (wait_for_completion_timeout(done, msecs_to_jiffies(timeout)) == 0) { mutex_lock(&data->pending_lock); list_del(&msg->list); mutex_unlock(&data->pending_lock); data->timeout_cnt++; return -ETIMEDOUT; } return 0; _error_locked: mutex_unlock(&data->comm_lock); data->timeout_cnt++; return status; } static inline int ssp_spi_sync_command(struct ssp_data *data, struct ssp_msg *msg) { return ssp_do_transfer(data, msg, NULL, 0); } static int ssp_spi_sync(struct ssp_data *data, struct ssp_msg *msg, int timeout) { DECLARE_COMPLETION_ONSTACK(done); if (WARN_ON(!msg->length)) return -EPERM; return ssp_do_transfer(data, msg, &done, timeout); } static int ssp_handle_big_data(struct ssp_data *data, char *dataframe, int *idx) { /* mock-up, it will be changed with adding another sensor types */ *idx += 8; return 0; } static int ssp_parse_dataframe(struct ssp_data *data, char *dataframe, int len) { int idx, sd; struct ssp_sensor_data *spd; struct iio_dev **indio_devs = data->sensor_devs; for (idx = 0; idx < len;) { switch (dataframe[idx++]) { case SSP_MSG2AP_INST_BYPASS_DATA: if (idx >= len) return -EPROTO; sd = dataframe[idx++]; if (sd < 0 || sd >= SSP_SENSOR_MAX) { dev_err(SSP_DEV, "Mcu data frame1 error %d\n", sd); return -EPROTO; } if (indio_devs[sd]) { spd = iio_priv(indio_devs[sd]); if (spd->process_data) { if (idx >= len) return -EPROTO; spd->process_data(indio_devs[sd], &dataframe[idx], data->timestamp); } } else { dev_err(SSP_DEV, "no client for frame\n"); } idx += ssp_offset_map[sd]; break; case SSP_MSG2AP_INST_DEBUG_DATA: if (idx >= len) return -EPROTO; sd = ssp_print_mcu_debug(dataframe, &idx, len); if (sd) { dev_err(SSP_DEV, "Mcu data frame3 error %d\n", sd); return sd; } break; case SSP_MSG2AP_INST_LIBRARY_DATA: idx += len; break; case SSP_MSG2AP_INST_BIG_DATA: ssp_handle_big_data(data, dataframe, &idx); break; case SSP_MSG2AP_INST_TIME_SYNC: data->time_syncing = true; break; case SSP_MSG2AP_INST_RESET: ssp_queue_ssp_refresh_task(data, 0); break; } } if (data->time_syncing) data->timestamp = ktime_get_real_ns(); return 0; } /* threaded irq */ int ssp_irq_msg(struct ssp_data *data) { bool found = false; char *buffer; u8 msg_type; int ret; u16 length, msg_options; struct ssp_msg *msg, *n; ret = spi_read(data->spi, data->header_buffer, SSP_HEADER_BUFFER_SIZE); if (ret < 0) { dev_err(SSP_DEV, "header read fail\n"); return ret; } length = le16_to_cpu(data->header_buffer[1]); msg_options = le16_to_cpu(data->header_buffer[0]); if (length == 0) { dev_err(SSP_DEV, "length received from mcu is 0\n"); return -EINVAL; } msg_type = SSP_GET_MESSAGE_TYPE(msg_options); switch (msg_type) { case SSP_AP2HUB_READ: case SSP_AP2HUB_WRITE: /* * this is a small list, a few elements - the packets can be * received with no order */ mutex_lock(&data->pending_lock); list_for_each_entry_safe(msg, n, &data->pending_list, list) { if (msg->options == msg_options) { list_del(&msg->list); found = true; break; } } if (!found) { /* * here can be implemented dead messages handling * but the slave should not send such ones - it is to * check but let's handle this */ buffer = kmalloc(length, GFP_KERNEL | GFP_DMA); if (!buffer) { ret = -ENOMEM; goto _unlock; } /* got dead packet so it is always an error */ ret = spi_read(data->spi, buffer, length); if (ret >= 0) ret = -EPROTO; kfree(buffer); dev_err(SSP_DEV, "No match error %x\n", msg_options); goto _unlock; } if (msg_type == SSP_AP2HUB_READ) ret = spi_read(data->spi, &msg->buffer[SSP_HEADER_SIZE_ALIGNED], msg->length); if (msg_type == SSP_AP2HUB_WRITE) { ret = spi_write(data->spi, &msg->buffer[SSP_HEADER_SIZE_ALIGNED], msg->length); if (msg_options & SSP_AP2HUB_RETURN) { msg->options = SSP_AP2HUB_READ | SSP_AP2HUB_RETURN; msg->length = 1; list_add_tail(&msg->list, &data->pending_list); goto _unlock; } } if (msg->done) if (!completion_done(msg->done)) complete(msg->done); _unlock: mutex_unlock(&data->pending_lock); break; case SSP_HUB2AP_WRITE: buffer = kzalloc(length, GFP_KERNEL | GFP_DMA); if (!buffer) return -ENOMEM; ret = spi_read(data->spi, buffer, length); if (ret < 0) { dev_err(SSP_DEV, "spi read fail\n"); kfree(buffer); break; } ret = ssp_parse_dataframe(data, buffer, length); kfree(buffer); break; default: dev_err(SSP_DEV, "unknown msg type\n"); return -EPROTO; } return ret; } void ssp_clean_pending_list(struct ssp_data *data) { struct ssp_msg *msg, *n; mutex_lock(&data->pending_lock); list_for_each_entry_safe(msg, n, &data->pending_list, list) { list_del(&msg->list); if (msg->done) if (!completion_done(msg->done)) complete(msg->done); } mutex_unlock(&data->pending_lock); } int ssp_command(struct ssp_data *data, char command, int arg) { int ret; struct ssp_msg *msg; msg = ssp_create_msg(command, 0, SSP_AP2HUB_WRITE, arg); if (!msg) return -ENOMEM; ssp_dbg("%s - command 0x%x %d\n", __func__, command, arg); ret = ssp_spi_sync_command(data, msg); ssp_clean_msg(msg); return ret; } int ssp_send_instruction(struct ssp_data *data, u8 inst, u8 sensor_type, u8 *send_buf, u8 length) { int ret; struct ssp_msg *msg; if (data->fw_dl_state == SSP_FW_DL_STATE_DOWNLOADING) { dev_err(SSP_DEV, "%s - Skip Inst! DL state = %d\n", __func__, data->fw_dl_state); return -EBUSY; } else if (!(data->available_sensors & BIT(sensor_type)) && (inst <= SSP_MSG2SSP_INST_CHANGE_DELAY)) { dev_err(SSP_DEV, "%s - Bypass Inst Skip! - %u\n", __func__, sensor_type); return -EIO; /* just fail */ } msg = ssp_create_msg(inst, length + 2, SSP_AP2HUB_WRITE, 0); if (!msg) return -ENOMEM; ssp_fill_buffer(msg, 0, &sensor_type, 1); ssp_fill_buffer(msg, 1, send_buf, length); ssp_dbg("%s - Inst = 0x%x, Sensor Type = 0x%x, data = %u\n", __func__, inst, sensor_type, send_buf[1]); ret = ssp_spi_sync(data, msg, 1000); ssp_clean_msg(msg); return ret; } int ssp_get_chipid(struct ssp_data *data) { int ret; char buffer; struct ssp_msg *msg; msg = ssp_create_msg(SSP_MSG2SSP_AP_WHOAMI, 1, SSP_AP2HUB_READ, 0); if (!msg) return -ENOMEM; ret = ssp_spi_sync(data, msg, 1000); buffer = SSP_GET_BUFFER_AT_INDEX(msg, 0); ssp_clean_msg(msg); return ret < 0 ? ret : buffer; } int ssp_set_magnetic_matrix(struct ssp_data *data) { int ret; struct ssp_msg *msg; msg = ssp_create_msg(SSP_MSG2SSP_AP_SET_MAGNETIC_STATIC_MATRIX, data->sensorhub_info->mag_length, SSP_AP2HUB_WRITE, 0); if (!msg) return -ENOMEM; ssp_fill_buffer(msg, 0, data->sensorhub_info->mag_table, data->sensorhub_info->mag_length); ret = ssp_spi_sync(data, msg, 1000); ssp_clean_msg(msg); return ret; } unsigned int ssp_get_sensor_scanning_info(struct ssp_data *data) { int ret; __le32 result; u32 cpu_result = 0; struct ssp_msg *msg = ssp_create_msg(SSP_MSG2SSP_AP_SENSOR_SCANNING, 4, SSP_AP2HUB_READ, 0); if (!msg) return 0; ret = ssp_spi_sync(data, msg, 1000); if (ret < 0) { dev_err(SSP_DEV, "%s - spi read fail %d\n", __func__, ret); goto _exit; } ssp_get_buffer(msg, 0, &result, 4); cpu_result = le32_to_cpu(result); dev_info(SSP_DEV, "%s state: 0x%08x\n", __func__, cpu_result); _exit: ssp_clean_msg(msg); return cpu_result; } unsigned int ssp_get_firmware_rev(struct ssp_data *data) { int ret; __le32 result; struct ssp_msg *msg = ssp_create_msg(SSP_MSG2SSP_AP_FIRMWARE_REV, 4, SSP_AP2HUB_READ, 0); if (!msg) return SSP_INVALID_REVISION; ret = ssp_spi_sync(data, msg, 1000); if (ret < 0) { dev_err(SSP_DEV, "%s - transfer fail %d\n", __func__, ret); ret = SSP_INVALID_REVISION; goto _exit; } ssp_get_buffer(msg, 0, &result, 4); ret = le32_to_cpu(result); _exit: ssp_clean_msg(msg); return ret; }