// SPDX-License-Identifier: GPL-2.0 /* * Greybus "AP" USB driver for "ES2" controller chips * * Copyright 2014-2015 Google Inc. * Copyright 2014-2015 Linaro Ltd. */ #include <linux/kthread.h> #include <linux/sizes.h> #include <linux/usb.h> #include <linux/kfifo.h> #include <linux/debugfs.h> #include <linux/list.h> #include <asm/unaligned.h> #include "arpc.h" #include "greybus.h" #include "greybus_trace.h" #include "connection.h" /* Default timeout for USB vendor requests. */ #define ES2_USB_CTRL_TIMEOUT 500 /* Default timeout for ARPC CPort requests */ #define ES2_ARPC_CPORT_TIMEOUT 500 /* Fixed CPort numbers */ #define ES2_CPORT_CDSI0 16 #define ES2_CPORT_CDSI1 17 /* Memory sizes for the buffers sent to/from the ES2 controller */ #define ES2_GBUF_MSG_SIZE_MAX 2048 /* Memory sizes for the ARPC buffers */ #define ARPC_OUT_SIZE_MAX U16_MAX #define ARPC_IN_SIZE_MAX 128 static const struct usb_device_id id_table[] = { { USB_DEVICE(0x18d1, 0x1eaf) }, { }, }; MODULE_DEVICE_TABLE(usb, id_table); #define APB1_LOG_SIZE SZ_16K /* * Number of CPort IN urbs in flight at any point in time. * Adjust if we are having stalls in the USB buffer due to not enough urbs in * flight. */ #define NUM_CPORT_IN_URB 4 /* Number of CPort OUT urbs in flight at any point in time. * Adjust if we get messages saying we are out of urbs in the system log. */ #define NUM_CPORT_OUT_URB 8 /* * Number of ARPC in urbs in flight at any point in time. */ #define NUM_ARPC_IN_URB 2 /* * @endpoint: bulk in endpoint for CPort data * @urb: array of urbs for the CPort in messages * @buffer: array of buffers for the @cport_in_urb urbs */ struct es2_cport_in { __u8 endpoint; struct urb *urb[NUM_CPORT_IN_URB]; u8 *buffer[NUM_CPORT_IN_URB]; }; /** * es2_ap_dev - ES2 USB Bridge to AP structure * @usb_dev: pointer to the USB device we are. * @usb_intf: pointer to the USB interface we are bound to. * @hd: pointer to our gb_host_device structure * @cport_in: endpoint, urbs and buffer for cport in messages * @cport_out_endpoint: endpoint for for cport out messages * @cport_out_urb: array of urbs for the CPort out messages * @cport_out_urb_busy: array of flags to see if the @cport_out_urb is busy or * not. * @cport_out_urb_cancelled: array of flags indicating whether the * corresponding @cport_out_urb is being cancelled * @cport_out_urb_lock: locks the @cport_out_urb_busy "list" * * @apb_log_task: task pointer for logging thread * @apb_log_dentry: file system entry for the log file interface * @apb_log_enable_dentry: file system entry for enabling logging * @apb_log_fifo: kernel FIFO to carry logged data * @arpc_urb: array of urbs for the ARPC in messages * @arpc_buffer: array of buffers for the @arpc_urb urbs * @arpc_endpoint_in: bulk in endpoint for APBridgeA RPC * @arpc_id_cycle: gives an unique id to ARPC * @arpc_lock: locks ARPC list * @arpcs: list of in progress ARPCs */ struct es2_ap_dev { struct usb_device *usb_dev; struct usb_interface *usb_intf; struct gb_host_device *hd; struct es2_cport_in cport_in; __u8 cport_out_endpoint; struct urb *cport_out_urb[NUM_CPORT_OUT_URB]; bool cport_out_urb_busy[NUM_CPORT_OUT_URB]; bool cport_out_urb_cancelled[NUM_CPORT_OUT_URB]; spinlock_t cport_out_urb_lock; bool cdsi1_in_use; struct task_struct *apb_log_task; struct dentry *apb_log_dentry; struct dentry *apb_log_enable_dentry; DECLARE_KFIFO(apb_log_fifo, char, APB1_LOG_SIZE); __u8 arpc_endpoint_in; struct urb *arpc_urb[NUM_ARPC_IN_URB]; u8 *arpc_buffer[NUM_ARPC_IN_URB]; int arpc_id_cycle; spinlock_t arpc_lock; struct list_head arpcs; }; struct arpc { struct list_head list; struct arpc_request_message *req; struct arpc_response_message *resp; struct completion response_received; bool active; }; static inline struct es2_ap_dev *hd_to_es2(struct gb_host_device *hd) { return (struct es2_ap_dev *)&hd->hd_priv; } static void cport_out_callback(struct urb *urb); static void usb_log_enable(struct es2_ap_dev *es2); static void usb_log_disable(struct es2_ap_dev *es2); static int arpc_sync(struct es2_ap_dev *es2, u8 type, void *payload, size_t size, int *result, unsigned int timeout); static int output_sync(struct es2_ap_dev *es2, void *req, u16 size, u8 cmd) { struct usb_device *udev = es2->usb_dev; u8 *data; int retval; data = kmemdup(req, size, GFP_KERNEL); if (!data) return -ENOMEM; retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 0, 0, data, size, ES2_USB_CTRL_TIMEOUT); if (retval < 0) dev_err(&udev->dev, "%s: return error %d\n", __func__, retval); else retval = 0; kfree(data); return retval; } static void ap_urb_complete(struct urb *urb) { struct usb_ctrlrequest *dr = urb->context; kfree(dr); usb_free_urb(urb); } static int output_async(struct es2_ap_dev *es2, void *req, u16 size, u8 cmd) { struct usb_device *udev = es2->usb_dev; struct urb *urb; struct usb_ctrlrequest *dr; u8 *buf; int retval; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) return -ENOMEM; dr = kmalloc(sizeof(*dr) + size, GFP_ATOMIC); if (!dr) { usb_free_urb(urb); return -ENOMEM; } buf = (u8 *)dr + sizeof(*dr); memcpy(buf, req, size); dr->bRequest = cmd; dr->bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE; dr->wValue = 0; dr->wIndex = 0; dr->wLength = cpu_to_le16(size); usb_fill_control_urb(urb, udev, usb_sndctrlpipe(udev, 0), (unsigned char *)dr, buf, size, ap_urb_complete, dr); retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval) { usb_free_urb(urb); kfree(dr); } return retval; } static int output(struct gb_host_device *hd, void *req, u16 size, u8 cmd, bool async) { struct es2_ap_dev *es2 = hd_to_es2(hd); if (async) return output_async(es2, req, size, cmd); return output_sync(es2, req, size, cmd); } static int es2_cport_in_enable(struct es2_ap_dev *es2, struct es2_cport_in *cport_in) { struct urb *urb; int ret; int i; for (i = 0; i < NUM_CPORT_IN_URB; ++i) { urb = cport_in->urb[i]; ret = usb_submit_urb(urb, GFP_KERNEL); if (ret) { dev_err(&es2->usb_dev->dev, "failed to submit in-urb: %d\n", ret); goto err_kill_urbs; } } return 0; err_kill_urbs: for (--i; i >= 0; --i) { urb = cport_in->urb[i]; usb_kill_urb(urb); } return ret; } static void es2_cport_in_disable(struct es2_ap_dev *es2, struct es2_cport_in *cport_in) { struct urb *urb; int i; for (i = 0; i < NUM_CPORT_IN_URB; ++i) { urb = cport_in->urb[i]; usb_kill_urb(urb); } } static int es2_arpc_in_enable(struct es2_ap_dev *es2) { struct urb *urb; int ret; int i; for (i = 0; i < NUM_ARPC_IN_URB; ++i) { urb = es2->arpc_urb[i]; ret = usb_submit_urb(urb, GFP_KERNEL); if (ret) { dev_err(&es2->usb_dev->dev, "failed to submit arpc in-urb: %d\n", ret); goto err_kill_urbs; } } return 0; err_kill_urbs: for (--i; i >= 0; --i) { urb = es2->arpc_urb[i]; usb_kill_urb(urb); } return ret; } static void es2_arpc_in_disable(struct es2_ap_dev *es2) { struct urb *urb; int i; for (i = 0; i < NUM_ARPC_IN_URB; ++i) { urb = es2->arpc_urb[i]; usb_kill_urb(urb); } } static struct urb *next_free_urb(struct es2_ap_dev *es2, gfp_t gfp_mask) { struct urb *urb = NULL; unsigned long flags; int i; spin_lock_irqsave(&es2->cport_out_urb_lock, flags); /* Look in our pool of allocated urbs first, as that's the "fastest" */ for (i = 0; i < NUM_CPORT_OUT_URB; ++i) { if (es2->cport_out_urb_busy[i] == false && es2->cport_out_urb_cancelled[i] == false) { es2->cport_out_urb_busy[i] = true; urb = es2->cport_out_urb[i]; break; } } spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags); if (urb) return urb; /* * Crap, pool is empty, complain to the syslog and go allocate one * dynamically as we have to succeed. */ dev_dbg(&es2->usb_dev->dev, "No free CPort OUT urbs, having to dynamically allocate one!\n"); return usb_alloc_urb(0, gfp_mask); } static void free_urb(struct es2_ap_dev *es2, struct urb *urb) { unsigned long flags; int i; /* * See if this was an urb in our pool, if so mark it "free", otherwise * we need to free it ourselves. */ spin_lock_irqsave(&es2->cport_out_urb_lock, flags); for (i = 0; i < NUM_CPORT_OUT_URB; ++i) { if (urb == es2->cport_out_urb[i]) { es2->cport_out_urb_busy[i] = false; urb = NULL; break; } } spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags); /* If urb is not NULL, then we need to free this urb */ usb_free_urb(urb); } /* * We (ab)use the operation-message header pad bytes to transfer the * cport id in order to minimise overhead. */ static void gb_message_cport_pack(struct gb_operation_msg_hdr *header, u16 cport_id) { header->pad[0] = cport_id; } /* Clear the pad bytes used for the CPort id */ static void gb_message_cport_clear(struct gb_operation_msg_hdr *header) { header->pad[0] = 0; } /* Extract the CPort id packed into the header, and clear it */ static u16 gb_message_cport_unpack(struct gb_operation_msg_hdr *header) { u16 cport_id = header->pad[0]; gb_message_cport_clear(header); return cport_id; } /* * Returns zero if the message was successfully queued, or a negative errno * otherwise. */ static int message_send(struct gb_host_device *hd, u16 cport_id, struct gb_message *message, gfp_t gfp_mask) { struct es2_ap_dev *es2 = hd_to_es2(hd); struct usb_device *udev = es2->usb_dev; size_t buffer_size; int retval; struct urb *urb; unsigned long flags; /* * The data actually transferred will include an indication * of where the data should be sent. Do one last check of * the target CPort id before filling it in. */ if (!cport_id_valid(hd, cport_id)) { dev_err(&udev->dev, "invalid cport %u\n", cport_id); return -EINVAL; } /* Find a free urb */ urb = next_free_urb(es2, gfp_mask); if (!urb) return -ENOMEM; spin_lock_irqsave(&es2->cport_out_urb_lock, flags); message->hcpriv = urb; spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags); /* Pack the cport id into the message header */ gb_message_cport_pack(message->header, cport_id); buffer_size = sizeof(*message->header) + message->payload_size; usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, es2->cport_out_endpoint), message->buffer, buffer_size, cport_out_callback, message); urb->transfer_flags |= URB_ZERO_PACKET; trace_gb_message_submit(message); retval = usb_submit_urb(urb, gfp_mask); if (retval) { dev_err(&udev->dev, "failed to submit out-urb: %d\n", retval); spin_lock_irqsave(&es2->cport_out_urb_lock, flags); message->hcpriv = NULL; spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags); free_urb(es2, urb); gb_message_cport_clear(message->header); return retval; } return 0; } /* * Can not be called in atomic context. */ static void message_cancel(struct gb_message *message) { struct gb_host_device *hd = message->operation->connection->hd; struct es2_ap_dev *es2 = hd_to_es2(hd); struct urb *urb; int i; might_sleep(); spin_lock_irq(&es2->cport_out_urb_lock); urb = message->hcpriv; /* Prevent dynamically allocated urb from being deallocated. */ usb_get_urb(urb); /* Prevent pre-allocated urb from being reused. */ for (i = 0; i < NUM_CPORT_OUT_URB; ++i) { if (urb == es2->cport_out_urb[i]) { es2->cport_out_urb_cancelled[i] = true; break; } } spin_unlock_irq(&es2->cport_out_urb_lock); usb_kill_urb(urb); if (i < NUM_CPORT_OUT_URB) { spin_lock_irq(&es2->cport_out_urb_lock); es2->cport_out_urb_cancelled[i] = false; spin_unlock_irq(&es2->cport_out_urb_lock); } usb_free_urb(urb); } static int es2_cport_allocate(struct gb_host_device *hd, int cport_id, unsigned long flags) { struct es2_ap_dev *es2 = hd_to_es2(hd); struct ida *id_map = &hd->cport_id_map; int ida_start, ida_end; switch (cport_id) { case ES2_CPORT_CDSI0: case ES2_CPORT_CDSI1: dev_err(&hd->dev, "cport %d not available\n", cport_id); return -EBUSY; } if (flags & GB_CONNECTION_FLAG_OFFLOADED && flags & GB_CONNECTION_FLAG_CDSI1) { if (es2->cdsi1_in_use) { dev_err(&hd->dev, "CDSI1 already in use\n"); return -EBUSY; } es2->cdsi1_in_use = true; return ES2_CPORT_CDSI1; } if (cport_id < 0) { ida_start = 0; ida_end = hd->num_cports; } else if (cport_id < hd->num_cports) { ida_start = cport_id; ida_end = cport_id + 1; } else { dev_err(&hd->dev, "cport %d not available\n", cport_id); return -EINVAL; } return ida_simple_get(id_map, ida_start, ida_end, GFP_KERNEL); } static void es2_cport_release(struct gb_host_device *hd, u16 cport_id) { struct es2_ap_dev *es2 = hd_to_es2(hd); switch (cport_id) { case ES2_CPORT_CDSI1: es2->cdsi1_in_use = false; return; } ida_simple_remove(&hd->cport_id_map, cport_id); } static int cport_enable(struct gb_host_device *hd, u16 cport_id, unsigned long flags) { struct es2_ap_dev *es2 = hd_to_es2(hd); struct usb_device *udev = es2->usb_dev; struct gb_apb_request_cport_flags *req; u32 connection_flags; int ret; req = kzalloc(sizeof(*req), GFP_KERNEL); if (!req) return -ENOMEM; connection_flags = 0; if (flags & GB_CONNECTION_FLAG_CONTROL) connection_flags |= GB_APB_CPORT_FLAG_CONTROL; if (flags & GB_CONNECTION_FLAG_HIGH_PRIO) connection_flags |= GB_APB_CPORT_FLAG_HIGH_PRIO; req->flags = cpu_to_le32(connection_flags); dev_dbg(&hd->dev, "%s - cport = %u, flags = %02x\n", __func__, cport_id, connection_flags); ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), GB_APB_REQUEST_CPORT_FLAGS, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, cport_id, 0, req, sizeof(*req), ES2_USB_CTRL_TIMEOUT); if (ret != sizeof(*req)) { dev_err(&udev->dev, "failed to set cport flags for port %d\n", cport_id); if (ret >= 0) ret = -EIO; goto out; } ret = 0; out: kfree(req); return ret; } static int es2_cport_connected(struct gb_host_device *hd, u16 cport_id) { struct es2_ap_dev *es2 = hd_to_es2(hd); struct device *dev = &es2->usb_dev->dev; struct arpc_cport_connected_req req; int ret; req.cport_id = cpu_to_le16(cport_id); ret = arpc_sync(es2, ARPC_TYPE_CPORT_CONNECTED, &req, sizeof(req), NULL, ES2_ARPC_CPORT_TIMEOUT); if (ret) { dev_err(dev, "failed to set connected state for cport %u: %d\n", cport_id, ret); return ret; } return 0; } static int es2_cport_flush(struct gb_host_device *hd, u16 cport_id) { struct es2_ap_dev *es2 = hd_to_es2(hd); struct device *dev = &es2->usb_dev->dev; struct arpc_cport_flush_req req; int ret; req.cport_id = cpu_to_le16(cport_id); ret = arpc_sync(es2, ARPC_TYPE_CPORT_FLUSH, &req, sizeof(req), NULL, ES2_ARPC_CPORT_TIMEOUT); if (ret) { dev_err(dev, "failed to flush cport %u: %d\n", cport_id, ret); return ret; } return 0; } static int es2_cport_shutdown(struct gb_host_device *hd, u16 cport_id, u8 phase, unsigned int timeout) { struct es2_ap_dev *es2 = hd_to_es2(hd); struct device *dev = &es2->usb_dev->dev; struct arpc_cport_shutdown_req req; int result; int ret; if (timeout > U16_MAX) return -EINVAL; req.cport_id = cpu_to_le16(cport_id); req.timeout = cpu_to_le16(timeout); req.phase = phase; ret = arpc_sync(es2, ARPC_TYPE_CPORT_SHUTDOWN, &req, sizeof(req), &result, ES2_ARPC_CPORT_TIMEOUT + timeout); if (ret) { dev_err(dev, "failed to send shutdown over cport %u: %d (%d)\n", cport_id, ret, result); return ret; } return 0; } static int es2_cport_quiesce(struct gb_host_device *hd, u16 cport_id, size_t peer_space, unsigned int timeout) { struct es2_ap_dev *es2 = hd_to_es2(hd); struct device *dev = &es2->usb_dev->dev; struct arpc_cport_quiesce_req req; int result; int ret; if (peer_space > U16_MAX) return -EINVAL; if (timeout > U16_MAX) return -EINVAL; req.cport_id = cpu_to_le16(cport_id); req.peer_space = cpu_to_le16(peer_space); req.timeout = cpu_to_le16(timeout); ret = arpc_sync(es2, ARPC_TYPE_CPORT_QUIESCE, &req, sizeof(req), &result, ES2_ARPC_CPORT_TIMEOUT + timeout); if (ret) { dev_err(dev, "failed to quiesce cport %u: %d (%d)\n", cport_id, ret, result); return ret; } return 0; } static int es2_cport_clear(struct gb_host_device *hd, u16 cport_id) { struct es2_ap_dev *es2 = hd_to_es2(hd); struct device *dev = &es2->usb_dev->dev; struct arpc_cport_clear_req req; int ret; req.cport_id = cpu_to_le16(cport_id); ret = arpc_sync(es2, ARPC_TYPE_CPORT_CLEAR, &req, sizeof(req), NULL, ES2_ARPC_CPORT_TIMEOUT); if (ret) { dev_err(dev, "failed to clear cport %u: %d\n", cport_id, ret); return ret; } return 0; } static int latency_tag_enable(struct gb_host_device *hd, u16 cport_id) { int retval; struct es2_ap_dev *es2 = hd_to_es2(hd); struct usb_device *udev = es2->usb_dev; retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), GB_APB_REQUEST_LATENCY_TAG_EN, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, cport_id, 0, NULL, 0, ES2_USB_CTRL_TIMEOUT); if (retval < 0) dev_err(&udev->dev, "Cannot enable latency tag for cport %d\n", cport_id); return retval; } static int latency_tag_disable(struct gb_host_device *hd, u16 cport_id) { int retval; struct es2_ap_dev *es2 = hd_to_es2(hd); struct usb_device *udev = es2->usb_dev; retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), GB_APB_REQUEST_LATENCY_TAG_DIS, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, cport_id, 0, NULL, 0, ES2_USB_CTRL_TIMEOUT); if (retval < 0) dev_err(&udev->dev, "Cannot disable latency tag for cport %d\n", cport_id); return retval; } static struct gb_hd_driver es2_driver = { .hd_priv_size = sizeof(struct es2_ap_dev), .message_send = message_send, .message_cancel = message_cancel, .cport_allocate = es2_cport_allocate, .cport_release = es2_cport_release, .cport_enable = cport_enable, .cport_connected = es2_cport_connected, .cport_flush = es2_cport_flush, .cport_shutdown = es2_cport_shutdown, .cport_quiesce = es2_cport_quiesce, .cport_clear = es2_cport_clear, .latency_tag_enable = latency_tag_enable, .latency_tag_disable = latency_tag_disable, .output = output, }; /* Common function to report consistent warnings based on URB status */ static int check_urb_status(struct urb *urb) { struct device *dev = &urb->dev->dev; int status = urb->status; switch (status) { case 0: return 0; case -EOVERFLOW: dev_err(dev, "%s: overflow actual length is %d\n", __func__, urb->actual_length); /* fall through */ case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: case -EILSEQ: case -EPROTO: /* device is gone, stop sending */ return status; } dev_err(dev, "%s: unknown status %d\n", __func__, status); return -EAGAIN; } static void es2_destroy(struct es2_ap_dev *es2) { struct usb_device *udev; struct urb *urb; int i; debugfs_remove(es2->apb_log_enable_dentry); usb_log_disable(es2); /* Tear down everything! */ for (i = 0; i < NUM_CPORT_OUT_URB; ++i) { urb = es2->cport_out_urb[i]; usb_kill_urb(urb); usb_free_urb(urb); es2->cport_out_urb[i] = NULL; es2->cport_out_urb_busy[i] = false; /* just to be anal */ } for (i = 0; i < NUM_ARPC_IN_URB; ++i) { usb_free_urb(es2->arpc_urb[i]); kfree(es2->arpc_buffer[i]); es2->arpc_buffer[i] = NULL; } for (i = 0; i < NUM_CPORT_IN_URB; ++i) { usb_free_urb(es2->cport_in.urb[i]); kfree(es2->cport_in.buffer[i]); es2->cport_in.buffer[i] = NULL; } /* release reserved CDSI0 and CDSI1 cports */ gb_hd_cport_release_reserved(es2->hd, ES2_CPORT_CDSI1); gb_hd_cport_release_reserved(es2->hd, ES2_CPORT_CDSI0); udev = es2->usb_dev; gb_hd_put(es2->hd); usb_put_dev(udev); } static void cport_in_callback(struct urb *urb) { struct gb_host_device *hd = urb->context; struct device *dev = &urb->dev->dev; struct gb_operation_msg_hdr *header; int status = check_urb_status(urb); int retval; u16 cport_id; if (status) { if ((status == -EAGAIN) || (status == -EPROTO)) goto exit; /* The urb is being unlinked */ if (status == -ENOENT || status == -ESHUTDOWN) return; dev_err(dev, "urb cport in error %d (dropped)\n", status); return; } if (urb->actual_length < sizeof(*header)) { dev_err(dev, "short message received\n"); goto exit; } /* Extract the CPort id, which is packed in the message header */ header = urb->transfer_buffer; cport_id = gb_message_cport_unpack(header); if (cport_id_valid(hd, cport_id)) { greybus_data_rcvd(hd, cport_id, urb->transfer_buffer, urb->actual_length); } else { dev_err(dev, "invalid cport id %u received\n", cport_id); } exit: /* put our urb back in the request pool */ retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval) dev_err(dev, "failed to resubmit in-urb: %d\n", retval); } static void cport_out_callback(struct urb *urb) { struct gb_message *message = urb->context; struct gb_host_device *hd = message->operation->connection->hd; struct es2_ap_dev *es2 = hd_to_es2(hd); int status = check_urb_status(urb); unsigned long flags; gb_message_cport_clear(message->header); spin_lock_irqsave(&es2->cport_out_urb_lock, flags); message->hcpriv = NULL; spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags); /* * Tell the submitter that the message send (attempt) is * complete, and report the status. */ greybus_message_sent(hd, message, status); free_urb(es2, urb); } static struct arpc *arpc_alloc(void *payload, u16 size, u8 type) { struct arpc *rpc; if (size + sizeof(*rpc->req) > ARPC_OUT_SIZE_MAX) return NULL; rpc = kzalloc(sizeof(*rpc), GFP_KERNEL); if (!rpc) return NULL; INIT_LIST_HEAD(&rpc->list); rpc->req = kzalloc(sizeof(*rpc->req) + size, GFP_KERNEL); if (!rpc->req) goto err_free_rpc; rpc->resp = kzalloc(sizeof(*rpc->resp), GFP_KERNEL); if (!rpc->resp) goto err_free_req; rpc->req->type = type; rpc->req->size = cpu_to_le16(sizeof(*rpc->req) + size); memcpy(rpc->req->data, payload, size); init_completion(&rpc->response_received); return rpc; err_free_req: kfree(rpc->req); err_free_rpc: kfree(rpc); return NULL; } static void arpc_free(struct arpc *rpc) { kfree(rpc->req); kfree(rpc->resp); kfree(rpc); } static struct arpc *arpc_find(struct es2_ap_dev *es2, __le16 id) { struct arpc *rpc; list_for_each_entry(rpc, &es2->arpcs, list) { if (rpc->req->id == id) return rpc; } return NULL; } static void arpc_add(struct es2_ap_dev *es2, struct arpc *rpc) { rpc->active = true; rpc->req->id = cpu_to_le16(es2->arpc_id_cycle++); list_add_tail(&rpc->list, &es2->arpcs); } static void arpc_del(struct es2_ap_dev *es2, struct arpc *rpc) { if (rpc->active) { rpc->active = false; list_del(&rpc->list); } } static int arpc_send(struct es2_ap_dev *es2, struct arpc *rpc, int timeout) { struct usb_device *udev = es2->usb_dev; int retval; retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), GB_APB_REQUEST_ARPC_RUN, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 0, 0, rpc->req, le16_to_cpu(rpc->req->size), ES2_USB_CTRL_TIMEOUT); if (retval != le16_to_cpu(rpc->req->size)) { dev_err(&udev->dev, "failed to send ARPC request %d: %d\n", rpc->req->type, retval); if (retval > 0) retval = -EIO; return retval; } return 0; } static int arpc_sync(struct es2_ap_dev *es2, u8 type, void *payload, size_t size, int *result, unsigned int timeout) { struct arpc *rpc; unsigned long flags; int retval; if (result) *result = 0; rpc = arpc_alloc(payload, size, type); if (!rpc) return -ENOMEM; spin_lock_irqsave(&es2->arpc_lock, flags); arpc_add(es2, rpc); spin_unlock_irqrestore(&es2->arpc_lock, flags); retval = arpc_send(es2, rpc, timeout); if (retval) goto out_arpc_del; retval = wait_for_completion_interruptible_timeout( &rpc->response_received, msecs_to_jiffies(timeout)); if (retval <= 0) { if (!retval) retval = -ETIMEDOUT; goto out_arpc_del; } if (rpc->resp->result) { retval = -EREMOTEIO; if (result) *result = rpc->resp->result; } else { retval = 0; } out_arpc_del: spin_lock_irqsave(&es2->arpc_lock, flags); arpc_del(es2, rpc); spin_unlock_irqrestore(&es2->arpc_lock, flags); arpc_free(rpc); if (retval < 0 && retval != -EREMOTEIO) { dev_err(&es2->usb_dev->dev, "failed to execute ARPC: %d\n", retval); } return retval; } static void arpc_in_callback(struct urb *urb) { struct es2_ap_dev *es2 = urb->context; struct device *dev = &urb->dev->dev; int status = check_urb_status(urb); struct arpc *rpc; struct arpc_response_message *resp; unsigned long flags; int retval; if (status) { if ((status == -EAGAIN) || (status == -EPROTO)) goto exit; /* The urb is being unlinked */ if (status == -ENOENT || status == -ESHUTDOWN) return; dev_err(dev, "arpc in-urb error %d (dropped)\n", status); return; } if (urb->actual_length < sizeof(*resp)) { dev_err(dev, "short aprc response received\n"); goto exit; } resp = urb->transfer_buffer; spin_lock_irqsave(&es2->arpc_lock, flags); rpc = arpc_find(es2, resp->id); if (!rpc) { dev_err(dev, "invalid arpc response id received: %u\n", le16_to_cpu(resp->id)); spin_unlock_irqrestore(&es2->arpc_lock, flags); goto exit; } arpc_del(es2, rpc); memcpy(rpc->resp, resp, sizeof(*resp)); complete(&rpc->response_received); spin_unlock_irqrestore(&es2->arpc_lock, flags); exit: /* put our urb back in the request pool */ retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval) dev_err(dev, "failed to resubmit arpc in-urb: %d\n", retval); } #define APB1_LOG_MSG_SIZE 64 static void apb_log_get(struct es2_ap_dev *es2, char *buf) { int retval; do { retval = usb_control_msg(es2->usb_dev, usb_rcvctrlpipe(es2->usb_dev, 0), GB_APB_REQUEST_LOG, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 0x00, 0x00, buf, APB1_LOG_MSG_SIZE, ES2_USB_CTRL_TIMEOUT); if (retval > 0) kfifo_in(&es2->apb_log_fifo, buf, retval); } while (retval > 0); } static int apb_log_poll(void *data) { struct es2_ap_dev *es2 = data; char *buf; buf = kmalloc(APB1_LOG_MSG_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; while (!kthread_should_stop()) { msleep(1000); apb_log_get(es2, buf); } kfree(buf); return 0; } static ssize_t apb_log_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct es2_ap_dev *es2 = file_inode(f)->i_private; ssize_t ret; size_t copied; char *tmp_buf; if (count > APB1_LOG_SIZE) count = APB1_LOG_SIZE; tmp_buf = kmalloc(count, GFP_KERNEL); if (!tmp_buf) return -ENOMEM; copied = kfifo_out(&es2->apb_log_fifo, tmp_buf, count); ret = simple_read_from_buffer(buf, count, ppos, tmp_buf, copied); kfree(tmp_buf); return ret; } static const struct file_operations apb_log_fops = { .read = apb_log_read, }; static void usb_log_enable(struct es2_ap_dev *es2) { if (!IS_ERR_OR_NULL(es2->apb_log_task)) return; /* get log from APB1 */ es2->apb_log_task = kthread_run(apb_log_poll, es2, "apb_log"); if (IS_ERR(es2->apb_log_task)) return; /* XXX We will need to rename this per APB */ es2->apb_log_dentry = debugfs_create_file("apb_log", 0444, gb_debugfs_get(), es2, &apb_log_fops); } static void usb_log_disable(struct es2_ap_dev *es2) { if (IS_ERR_OR_NULL(es2->apb_log_task)) return; debugfs_remove(es2->apb_log_dentry); es2->apb_log_dentry = NULL; kthread_stop(es2->apb_log_task); es2->apb_log_task = NULL; } static ssize_t apb_log_enable_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct es2_ap_dev *es2 = file_inode(f)->i_private; int enable = !IS_ERR_OR_NULL(es2->apb_log_task); char tmp_buf[3]; sprintf(tmp_buf, "%d\n", enable); return simple_read_from_buffer(buf, count, ppos, tmp_buf, 3); } static ssize_t apb_log_enable_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { int enable; ssize_t retval; struct es2_ap_dev *es2 = file_inode(f)->i_private; retval = kstrtoint_from_user(buf, count, 10, &enable); if (retval) return retval; if (enable) usb_log_enable(es2); else usb_log_disable(es2); return count; } static const struct file_operations apb_log_enable_fops = { .read = apb_log_enable_read, .write = apb_log_enable_write, }; static int apb_get_cport_count(struct usb_device *udev) { int retval; __le16 *cport_count; cport_count = kzalloc(sizeof(*cport_count), GFP_KERNEL); if (!cport_count) return -ENOMEM; retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), GB_APB_REQUEST_CPORT_COUNT, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 0, 0, cport_count, sizeof(*cport_count), ES2_USB_CTRL_TIMEOUT); if (retval != sizeof(*cport_count)) { dev_err(&udev->dev, "Cannot retrieve CPort count: %d\n", retval); if (retval >= 0) retval = -EIO; goto out; } retval = le16_to_cpu(*cport_count); /* We need to fit a CPort ID in one byte of a message header */ if (retval > U8_MAX) { retval = U8_MAX; dev_warn(&udev->dev, "Limiting number of CPorts to U8_MAX\n"); } out: kfree(cport_count); return retval; } /* * The ES2 USB Bridge device has 15 endpoints * 1 Control - usual USB stuff + AP -> APBridgeA messages * 7 Bulk IN - CPort data in * 7 Bulk OUT - CPort data out */ static int ap_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct es2_ap_dev *es2; struct gb_host_device *hd; struct usb_device *udev; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; __u8 ep_addr; int retval; int i; int num_cports; bool bulk_out_found = false; bool bulk_in_found = false; bool arpc_in_found = false; udev = usb_get_dev(interface_to_usbdev(interface)); num_cports = apb_get_cport_count(udev); if (num_cports < 0) { usb_put_dev(udev); dev_err(&udev->dev, "Cannot retrieve CPort count: %d\n", num_cports); return num_cports; } hd = gb_hd_create(&es2_driver, &udev->dev, ES2_GBUF_MSG_SIZE_MAX, num_cports); if (IS_ERR(hd)) { usb_put_dev(udev); return PTR_ERR(hd); } es2 = hd_to_es2(hd); es2->hd = hd; es2->usb_intf = interface; es2->usb_dev = udev; spin_lock_init(&es2->cport_out_urb_lock); INIT_KFIFO(es2->apb_log_fifo); usb_set_intfdata(interface, es2); /* * Reserve the CDSI0 and CDSI1 CPorts so they won't be allocated * dynamically. */ retval = gb_hd_cport_reserve(hd, ES2_CPORT_CDSI0); if (retval) goto error; retval = gb_hd_cport_reserve(hd, ES2_CPORT_CDSI1); if (retval) goto error; /* find all bulk endpoints */ iface_desc = interface->cur_altsetting; for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; ep_addr = endpoint->bEndpointAddress; if (usb_endpoint_is_bulk_in(endpoint)) { if (!bulk_in_found) { es2->cport_in.endpoint = ep_addr; bulk_in_found = true; } else if (!arpc_in_found) { es2->arpc_endpoint_in = ep_addr; arpc_in_found = true; } else { dev_warn(&udev->dev, "Unused bulk IN endpoint found: 0x%02x\n", ep_addr); } continue; } if (usb_endpoint_is_bulk_out(endpoint)) { if (!bulk_out_found) { es2->cport_out_endpoint = ep_addr; bulk_out_found = true; } else { dev_warn(&udev->dev, "Unused bulk OUT endpoint found: 0x%02x\n", ep_addr); } continue; } dev_warn(&udev->dev, "Unknown endpoint type found, address 0x%02x\n", ep_addr); } if (!bulk_in_found || !arpc_in_found || !bulk_out_found) { dev_err(&udev->dev, "Not enough endpoints found in device, aborting!\n"); retval = -ENODEV; goto error; } /* Allocate buffers for our cport in messages */ for (i = 0; i < NUM_CPORT_IN_URB; ++i) { struct urb *urb; u8 *buffer; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { retval = -ENOMEM; goto error; } es2->cport_in.urb[i] = urb; buffer = kmalloc(ES2_GBUF_MSG_SIZE_MAX, GFP_KERNEL); if (!buffer) { retval = -ENOMEM; goto error; } usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, es2->cport_in.endpoint), buffer, ES2_GBUF_MSG_SIZE_MAX, cport_in_callback, hd); es2->cport_in.buffer[i] = buffer; } /* Allocate buffers for ARPC in messages */ for (i = 0; i < NUM_ARPC_IN_URB; ++i) { struct urb *urb; u8 *buffer; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { retval = -ENOMEM; goto error; } es2->arpc_urb[i] = urb; buffer = kmalloc(ARPC_IN_SIZE_MAX, GFP_KERNEL); if (!buffer) { retval = -ENOMEM; goto error; } usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, es2->arpc_endpoint_in), buffer, ARPC_IN_SIZE_MAX, arpc_in_callback, es2); es2->arpc_buffer[i] = buffer; } /* Allocate urbs for our CPort OUT messages */ for (i = 0; i < NUM_CPORT_OUT_URB; ++i) { struct urb *urb; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { retval = -ENOMEM; goto error; } es2->cport_out_urb[i] = urb; es2->cport_out_urb_busy[i] = false; /* just to be anal */ } /* XXX We will need to rename this per APB */ es2->apb_log_enable_dentry = debugfs_create_file("apb_log_enable", 0644, gb_debugfs_get(), es2, &apb_log_enable_fops); INIT_LIST_HEAD(&es2->arpcs); spin_lock_init(&es2->arpc_lock); retval = es2_arpc_in_enable(es2); if (retval) goto error; retval = gb_hd_add(hd); if (retval) goto err_disable_arpc_in; retval = es2_cport_in_enable(es2, &es2->cport_in); if (retval) goto err_hd_del; return 0; err_hd_del: gb_hd_del(hd); err_disable_arpc_in: es2_arpc_in_disable(es2); error: es2_destroy(es2); return retval; } static void ap_disconnect(struct usb_interface *interface) { struct es2_ap_dev *es2 = usb_get_intfdata(interface); gb_hd_del(es2->hd); es2_cport_in_disable(es2, &es2->cport_in); es2_arpc_in_disable(es2); es2_destroy(es2); } static struct usb_driver es2_ap_driver = { .name = "es2_ap_driver", .probe = ap_probe, .disconnect = ap_disconnect, .id_table = id_table, .soft_unbind = 1, }; module_usb_driver(es2_ap_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Greg Kroah-Hartman <gregkh@linuxfoundation.org>");