/* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Copyright (C) 2011 ProFUSION Embedded Systems Written 2000,2001 by Maxim Krasnyansky This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ /* Bluetooth HCI core. */ #include #include #include #include #include #include #include #include #include #include #include "hci_request.h" #include "hci_debugfs.h" #include "smp.h" #include "leds.h" static void hci_rx_work(struct work_struct *work); static void hci_cmd_work(struct work_struct *work); static void hci_tx_work(struct work_struct *work); /* HCI device list */ LIST_HEAD(hci_dev_list); DEFINE_RWLOCK(hci_dev_list_lock); /* HCI callback list */ LIST_HEAD(hci_cb_list); DEFINE_MUTEX(hci_cb_list_lock); /* HCI ID Numbering */ static DEFINE_IDA(hci_index_ida); /* ---- HCI debugfs entries ---- */ static ssize_t dut_mode_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct hci_dev *hdev = file->private_data; char buf[3]; buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N'; buf[1] = '\n'; buf[2] = '\0'; return simple_read_from_buffer(user_buf, count, ppos, buf, 2); } static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct hci_dev *hdev = file->private_data; struct sk_buff *skb; bool enable; int err; if (!test_bit(HCI_UP, &hdev->flags)) return -ENETDOWN; err = kstrtobool_from_user(user_buf, count, &enable); if (err) return err; if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE)) return -EALREADY; hci_req_sync_lock(hdev); if (enable) skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, HCI_CMD_TIMEOUT); else skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT); hci_req_sync_unlock(hdev); if (IS_ERR(skb)) return PTR_ERR(skb); kfree_skb(skb); hci_dev_change_flag(hdev, HCI_DUT_MODE); return count; } static const struct file_operations dut_mode_fops = { .open = simple_open, .read = dut_mode_read, .write = dut_mode_write, .llseek = default_llseek, }; static ssize_t vendor_diag_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct hci_dev *hdev = file->private_data; char buf[3]; buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N'; buf[1] = '\n'; buf[2] = '\0'; return simple_read_from_buffer(user_buf, count, ppos, buf, 2); } static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct hci_dev *hdev = file->private_data; bool enable; int err; err = kstrtobool_from_user(user_buf, count, &enable); if (err) return err; /* When the diagnostic flags are not persistent and the transport * is not active or in user channel operation, then there is no need * for the vendor callback. Instead just store the desired value and * the setting will be programmed when the controller gets powered on. */ if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && (!test_bit(HCI_RUNNING, &hdev->flags) || hci_dev_test_flag(hdev, HCI_USER_CHANNEL))) goto done; hci_req_sync_lock(hdev); err = hdev->set_diag(hdev, enable); hci_req_sync_unlock(hdev); if (err < 0) return err; done: if (enable) hci_dev_set_flag(hdev, HCI_VENDOR_DIAG); else hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG); return count; } static const struct file_operations vendor_diag_fops = { .open = simple_open, .read = vendor_diag_read, .write = vendor_diag_write, .llseek = default_llseek, }; static void hci_debugfs_create_basic(struct hci_dev *hdev) { debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, &dut_mode_fops); if (hdev->set_diag) debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev, &vendor_diag_fops); } static int hci_reset_req(struct hci_request *req, unsigned long opt) { BT_DBG("%s %ld", req->hdev->name, opt); /* Reset device */ set_bit(HCI_RESET, &req->hdev->flags); hci_req_add(req, HCI_OP_RESET, 0, NULL); return 0; } static void bredr_init(struct hci_request *req) { req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; /* Read Local Supported Features */ hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); /* Read Local Version */ hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); /* Read BD Address */ hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); } static void amp_init1(struct hci_request *req) { req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; /* Read Local Version */ hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); /* Read Local Supported Commands */ hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); /* Read Local AMP Info */ hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); /* Read Data Blk size */ hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); /* Read Flow Control Mode */ hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); /* Read Location Data */ hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); } static int amp_init2(struct hci_request *req) { /* Read Local Supported Features. Not all AMP controllers * support this so it's placed conditionally in the second * stage init. */ if (req->hdev->commands[14] & 0x20) hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); return 0; } static int hci_init1_req(struct hci_request *req, unsigned long opt) { struct hci_dev *hdev = req->hdev; BT_DBG("%s %ld", hdev->name, opt); /* Reset */ if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) hci_reset_req(req, 0); switch (hdev->dev_type) { case HCI_PRIMARY: bredr_init(req); break; case HCI_AMP: amp_init1(req); break; default: bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); break; } return 0; } static void bredr_setup(struct hci_request *req) { __le16 param; __u8 flt_type; /* Read Buffer Size (ACL mtu, max pkt, etc.) */ hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); /* Read Class of Device */ hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); /* Read Local Name */ hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); /* Read Voice Setting */ hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); /* Read Number of Supported IAC */ hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); /* Read Current IAC LAP */ hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); /* Clear Event Filters */ flt_type = HCI_FLT_CLEAR_ALL; hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); /* Connection accept timeout ~20 secs */ param = cpu_to_le16(0x7d00); hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); } static void le_setup(struct hci_request *req) { struct hci_dev *hdev = req->hdev; /* Read LE Buffer Size */ hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); /* Read LE Local Supported Features */ hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); /* Read LE Supported States */ hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); /* LE-only controllers have LE implicitly enabled */ if (!lmp_bredr_capable(hdev)) hci_dev_set_flag(hdev, HCI_LE_ENABLED); } static void hci_setup_event_mask(struct hci_request *req) { struct hci_dev *hdev = req->hdev; /* The second byte is 0xff instead of 0x9f (two reserved bits * disabled) since a Broadcom 1.2 dongle doesn't respond to the * command otherwise. */ u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; /* CSR 1.1 dongles does not accept any bitfield so don't try to set * any event mask for pre 1.2 devices. */ if (hdev->hci_ver < BLUETOOTH_VER_1_2) return; if (lmp_bredr_capable(hdev)) { events[4] |= 0x01; /* Flow Specification Complete */ } else { /* Use a different default for LE-only devices */ memset(events, 0, sizeof(events)); events[1] |= 0x20; /* Command Complete */ events[1] |= 0x40; /* Command Status */ events[1] |= 0x80; /* Hardware Error */ /* If the controller supports the Disconnect command, enable * the corresponding event. In addition enable packet flow * control related events. */ if (hdev->commands[0] & 0x20) { events[0] |= 0x10; /* Disconnection Complete */ events[2] |= 0x04; /* Number of Completed Packets */ events[3] |= 0x02; /* Data Buffer Overflow */ } /* If the controller supports the Read Remote Version * Information command, enable the corresponding event. */ if (hdev->commands[2] & 0x80) events[1] |= 0x08; /* Read Remote Version Information * Complete */ if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { events[0] |= 0x80; /* Encryption Change */ events[5] |= 0x80; /* Encryption Key Refresh Complete */ } } if (lmp_inq_rssi_capable(hdev) || test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) events[4] |= 0x02; /* Inquiry Result with RSSI */ if (lmp_ext_feat_capable(hdev)) events[4] |= 0x04; /* Read Remote Extended Features Complete */ if (lmp_esco_capable(hdev)) { events[5] |= 0x08; /* Synchronous Connection Complete */ events[5] |= 0x10; /* Synchronous Connection Changed */ } if (lmp_sniffsubr_capable(hdev)) events[5] |= 0x20; /* Sniff Subrating */ if (lmp_pause_enc_capable(hdev)) events[5] |= 0x80; /* Encryption Key Refresh Complete */ if (lmp_ext_inq_capable(hdev)) events[5] |= 0x40; /* Extended Inquiry Result */ if (lmp_no_flush_capable(hdev)) events[7] |= 0x01; /* Enhanced Flush Complete */ if (lmp_lsto_capable(hdev)) events[6] |= 0x80; /* Link Supervision Timeout Changed */ if (lmp_ssp_capable(hdev)) { events[6] |= 0x01; /* IO Capability Request */ events[6] |= 0x02; /* IO Capability Response */ events[6] |= 0x04; /* User Confirmation Request */ events[6] |= 0x08; /* User Passkey Request */ events[6] |= 0x10; /* Remote OOB Data Request */ events[6] |= 0x20; /* Simple Pairing Complete */ events[7] |= 0x04; /* User Passkey Notification */ events[7] |= 0x08; /* Keypress Notification */ events[7] |= 0x10; /* Remote Host Supported * Features Notification */ } if (lmp_le_capable(hdev)) events[7] |= 0x20; /* LE Meta-Event */ hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); } static int hci_init2_req(struct hci_request *req, unsigned long opt) { struct hci_dev *hdev = req->hdev; if (hdev->dev_type == HCI_AMP) return amp_init2(req); if (lmp_bredr_capable(hdev)) bredr_setup(req); else hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); if (lmp_le_capable(hdev)) le_setup(req); /* All Bluetooth 1.2 and later controllers should support the * HCI command for reading the local supported commands. * * Unfortunately some controllers indicate Bluetooth 1.2 support, * but do not have support for this command. If that is the case, * the driver can quirk the behavior and skip reading the local * supported commands. */ if (hdev->hci_ver > BLUETOOTH_VER_1_1 && !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); if (lmp_ssp_capable(hdev)) { /* When SSP is available, then the host features page * should also be available as well. However some * controllers list the max_page as 0 as long as SSP * has not been enabled. To achieve proper debugging * output, force the minimum max_page to 1 at least. */ hdev->max_page = 0x01; if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { u8 mode = 0x01; hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); } else { struct hci_cp_write_eir cp; memset(hdev->eir, 0, sizeof(hdev->eir)); memset(&cp, 0, sizeof(cp)); hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); } } if (lmp_inq_rssi_capable(hdev) || test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) { u8 mode; /* If Extended Inquiry Result events are supported, then * they are clearly preferred over Inquiry Result with RSSI * events. */ mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); } if (lmp_inq_tx_pwr_capable(hdev)) hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); if (lmp_ext_feat_capable(hdev)) { struct hci_cp_read_local_ext_features cp; cp.page = 0x01; hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, sizeof(cp), &cp); } if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { u8 enable = 1; hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), &enable); } return 0; } static void hci_setup_link_policy(struct hci_request *req) { struct hci_dev *hdev = req->hdev; struct hci_cp_write_def_link_policy cp; u16 link_policy = 0; if (lmp_rswitch_capable(hdev)) link_policy |= HCI_LP_RSWITCH; if (lmp_hold_capable(hdev)) link_policy |= HCI_LP_HOLD; if (lmp_sniff_capable(hdev)) link_policy |= HCI_LP_SNIFF; if (lmp_park_capable(hdev)) link_policy |= HCI_LP_PARK; cp.policy = cpu_to_le16(link_policy); hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); } static void hci_set_le_support(struct hci_request *req) { struct hci_dev *hdev = req->hdev; struct hci_cp_write_le_host_supported cp; /* LE-only devices do not support explicit enablement */ if (!lmp_bredr_capable(hdev)) return; memset(&cp, 0, sizeof(cp)); if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { cp.le = 0x01; cp.simul = 0x00; } if (cp.le != lmp_host_le_capable(hdev)) hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), &cp); } static void hci_set_event_mask_page_2(struct hci_request *req) { struct hci_dev *hdev = req->hdev; u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; bool changed = false; /* If Connectionless Slave Broadcast master role is supported * enable all necessary events for it. */ if (lmp_csb_master_capable(hdev)) { events[1] |= 0x40; /* Triggered Clock Capture */ events[1] |= 0x80; /* Synchronization Train Complete */ events[2] |= 0x10; /* Slave Page Response Timeout */ events[2] |= 0x20; /* CSB Channel Map Change */ changed = true; } /* If Connectionless Slave Broadcast slave role is supported * enable all necessary events for it. */ if (lmp_csb_slave_capable(hdev)) { events[2] |= 0x01; /* Synchronization Train Received */ events[2] |= 0x02; /* CSB Receive */ events[2] |= 0x04; /* CSB Timeout */ events[2] |= 0x08; /* Truncated Page Complete */ changed = true; } /* Enable Authenticated Payload Timeout Expired event if supported */ if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { events[2] |= 0x80; changed = true; } /* Some Broadcom based controllers indicate support for Set Event * Mask Page 2 command, but then actually do not support it. Since * the default value is all bits set to zero, the command is only * required if the event mask has to be changed. In case no change * to the event mask is needed, skip this command. */ if (changed) hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events); } static int hci_init3_req(struct hci_request *req, unsigned long opt) { struct hci_dev *hdev = req->hdev; u8 p; hci_setup_event_mask(req); if (hdev->commands[6] & 0x20 && !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { struct hci_cp_read_stored_link_key cp; bacpy(&cp.bdaddr, BDADDR_ANY); cp.read_all = 0x01; hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp); } if (hdev->commands[5] & 0x10) hci_setup_link_policy(req); if (hdev->commands[8] & 0x01) hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); /* Some older Broadcom based Bluetooth 1.2 controllers do not * support the Read Page Scan Type command. Check support for * this command in the bit mask of supported commands. */ if (hdev->commands[13] & 0x01) hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); if (lmp_le_capable(hdev)) { u8 events[8]; memset(events, 0, sizeof(events)); if (hdev->le_features[0] & HCI_LE_ENCRYPTION) events[0] |= 0x10; /* LE Long Term Key Request */ /* If controller supports the Connection Parameters Request * Link Layer Procedure, enable the corresponding event. */ if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) events[0] |= 0x20; /* LE Remote Connection * Parameter Request */ /* If the controller supports the Data Length Extension * feature, enable the corresponding event. */ if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) events[0] |= 0x40; /* LE Data Length Change */ /* If the controller supports Extended Scanner Filter * Policies, enable the correspondig event. */ if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) events[1] |= 0x04; /* LE Direct Advertising * Report */ /* If the controller supports Channel Selection Algorithm #2 * feature, enable the corresponding event. */ if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) events[2] |= 0x08; /* LE Channel Selection * Algorithm */ /* If the controller supports the LE Set Scan Enable command, * enable the corresponding advertising report event. */ if (hdev->commands[26] & 0x08) events[0] |= 0x02; /* LE Advertising Report */ /* If the controller supports the LE Create Connection * command, enable the corresponding event. */ if (hdev->commands[26] & 0x10) events[0] |= 0x01; /* LE Connection Complete */ /* If the controller supports the LE Connection Update * command, enable the corresponding event. */ if (hdev->commands[27] & 0x04) events[0] |= 0x04; /* LE Connection Update * Complete */ /* If the controller supports the LE Read Remote Used Features * command, enable the corresponding event. */ if (hdev->commands[27] & 0x20) events[0] |= 0x08; /* LE Read Remote Used * Features Complete */ /* If the controller supports the LE Read Local P-256 * Public Key command, enable the corresponding event. */ if (hdev->commands[34] & 0x02) events[0] |= 0x80; /* LE Read Local P-256 * Public Key Complete */ /* If the controller supports the LE Generate DHKey * command, enable the corresponding event. */ if (hdev->commands[34] & 0x04) events[1] |= 0x01; /* LE Generate DHKey Complete */ /* If the controller supports the LE Set Default PHY or * LE Set PHY commands, enable the corresponding event. */ if (hdev->commands[35] & (0x20 | 0x40)) events[1] |= 0x08; /* LE PHY Update Complete */ /* If the controller supports LE Set Extended Scan Parameters * and LE Set Extended Scan Enable commands, enable the * corresponding event. */ if (use_ext_scan(hdev)) events[1] |= 0x10; /* LE Extended Advertising * Report */ /* If the controller supports the LE Extended Create Connection * command, enable the corresponding event. */ if (use_ext_conn(hdev)) events[1] |= 0x02; /* LE Enhanced Connection * Complete */ /* If the controller supports the LE Extended Advertising * command, enable the corresponding event. */ if (ext_adv_capable(hdev)) events[2] |= 0x02; /* LE Advertising Set * Terminated */ hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), events); /* Read LE Advertising Channel TX Power */ if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { /* HCI TS spec forbids mixing of legacy and extended * advertising commands wherein READ_ADV_TX_POWER is * also included. So do not call it if extended adv * is supported otherwise controller will return * COMMAND_DISALLOWED for extended commands. */ hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); } if (hdev->commands[26] & 0x40) { /* Read LE White List Size */ hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL); } if (hdev->commands[26] & 0x80) { /* Clear LE White List */ hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL); } if (hdev->commands[34] & 0x40) { /* Read LE Resolving List Size */ hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 0, NULL); } if (hdev->commands[34] & 0x20) { /* Clear LE Resolving List */ hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL); } if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { /* Read LE Maximum Data Length */ hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL); /* Read LE Suggested Default Data Length */ hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL); } if (ext_adv_capable(hdev)) { /* Read LE Number of Supported Advertising Sets */ hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 0, NULL); } hci_set_le_support(req); } /* Read features beyond page 1 if available */ for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { struct hci_cp_read_local_ext_features cp; cp.page = p; hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, sizeof(cp), &cp); } return 0; } static int hci_init4_req(struct hci_request *req, unsigned long opt) { struct hci_dev *hdev = req->hdev; /* Some Broadcom based Bluetooth controllers do not support the * Delete Stored Link Key command. They are clearly indicating its * absence in the bit mask of supported commands. * * Check the supported commands and only if the the command is marked * as supported send it. If not supported assume that the controller * does not have actual support for stored link keys which makes this * command redundant anyway. * * Some controllers indicate that they support handling deleting * stored link keys, but they don't. The quirk lets a driver * just disable this command. */ if (hdev->commands[6] & 0x80 && !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { struct hci_cp_delete_stored_link_key cp; bacpy(&cp.bdaddr, BDADDR_ANY); cp.delete_all = 0x01; hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp); } /* Set event mask page 2 if the HCI command for it is supported */ if (hdev->commands[22] & 0x04) hci_set_event_mask_page_2(req); /* Read local codec list if the HCI command is supported */ if (hdev->commands[29] & 0x20) hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); /* Get MWS transport configuration if the HCI command is supported */ if (hdev->commands[30] & 0x08) hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); /* Check for Synchronization Train support */ if (lmp_sync_train_capable(hdev)) hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); /* Enable Secure Connections if supported and configured */ if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && bredr_sc_enabled(hdev)) { u8 support = 0x01; hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, sizeof(support), &support); } /* Set Suggested Default Data Length to maximum if supported */ if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { struct hci_cp_le_write_def_data_len cp; cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp); } /* Set Default PHY parameters if command is supported */ if (hdev->commands[35] & 0x20) { struct hci_cp_le_set_default_phy cp; cp.all_phys = 0x00; cp.tx_phys = hdev->le_tx_def_phys; cp.rx_phys = hdev->le_rx_def_phys; hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp); } return 0; } static int __hci_init(struct hci_dev *hdev) { int err; err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL); if (err < 0) return err; if (hci_dev_test_flag(hdev, HCI_SETUP)) hci_debugfs_create_basic(hdev); err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL); if (err < 0) return err; /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode * BR/EDR/LE type controllers. AMP controllers only need the * first two stages of init. */ if (hdev->dev_type != HCI_PRIMARY) return 0; err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL); if (err < 0) return err; err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL); if (err < 0) return err; /* This function is only called when the controller is actually in * configured state. When the controller is marked as unconfigured, * this initialization procedure is not run. * * It means that it is possible that a controller runs through its * setup phase and then discovers missing settings. If that is the * case, then this function will not be called. It then will only * be called during the config phase. * * So only when in setup phase or config phase, create the debugfs * entries and register the SMP channels. */ if (!hci_dev_test_flag(hdev, HCI_SETUP) && !hci_dev_test_flag(hdev, HCI_CONFIG)) return 0; hci_debugfs_create_common(hdev); if (lmp_bredr_capable(hdev)) hci_debugfs_create_bredr(hdev); if (lmp_le_capable(hdev)) hci_debugfs_create_le(hdev); return 0; } static int hci_init0_req(struct hci_request *req, unsigned long opt) { struct hci_dev *hdev = req->hdev; BT_DBG("%s %ld", hdev->name, opt); /* Reset */ if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) hci_reset_req(req, 0); /* Read Local Version */ hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); /* Read BD Address */ if (hdev->set_bdaddr) hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); return 0; } static int __hci_unconf_init(struct hci_dev *hdev) { int err; if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) return 0; err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL); if (err < 0) return err; if (hci_dev_test_flag(hdev, HCI_SETUP)) hci_debugfs_create_basic(hdev); return 0; } static int hci_scan_req(struct hci_request *req, unsigned long opt) { __u8 scan = opt; BT_DBG("%s %x", req->hdev->name, scan); /* Inquiry and Page scans */ hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); return 0; } static int hci_auth_req(struct hci_request *req, unsigned long opt) { __u8 auth = opt; BT_DBG("%s %x", req->hdev->name, auth); /* Authentication */ hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); return 0; } static int hci_encrypt_req(struct hci_request *req, unsigned long opt) { __u8 encrypt = opt; BT_DBG("%s %x", req->hdev->name, encrypt); /* Encryption */ hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); return 0; } static int hci_linkpol_req(struct hci_request *req, unsigned long opt) { __le16 policy = cpu_to_le16(opt); BT_DBG("%s %x", req->hdev->name, policy); /* Default link policy */ hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); return 0; } /* Get HCI device by index. * Device is held on return. */ struct hci_dev *hci_dev_get(int index) { struct hci_dev *hdev = NULL, *d; BT_DBG("%d", index); if (index < 0) return NULL; read_lock(&hci_dev_list_lock); list_for_each_entry(d, &hci_dev_list, list) { if (d->id == index) { hdev = hci_dev_hold(d); break; } } read_unlock(&hci_dev_list_lock); return hdev; } /* ---- Inquiry support ---- */ bool hci_discovery_active(struct hci_dev *hdev) { struct discovery_state *discov = &hdev->discovery; switch (discov->state) { case DISCOVERY_FINDING: case DISCOVERY_RESOLVING: return true; default: return false; } } void hci_discovery_set_state(struct hci_dev *hdev, int state) { int old_state = hdev->discovery.state; BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); if (old_state == state) return; hdev->discovery.state = state; switch (state) { case DISCOVERY_STOPPED: hci_update_background_scan(hdev); if (old_state != DISCOVERY_STARTING) mgmt_discovering(hdev, 0); break; case DISCOVERY_STARTING: break; case DISCOVERY_FINDING: mgmt_discovering(hdev, 1); break; case DISCOVERY_RESOLVING: break; case DISCOVERY_STOPPING: break; } } void hci_inquiry_cache_flush(struct hci_dev *hdev) { struct discovery_state *cache = &hdev->discovery; struct inquiry_entry *p, *n; list_for_each_entry_safe(p, n, &cache->all, all) { list_del(&p->all); kfree(p); } INIT_LIST_HEAD(&cache->unknown); INIT_LIST_HEAD(&cache->resolve); } struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr) { struct discovery_state *cache = &hdev->discovery; struct inquiry_entry *e; BT_DBG("cache %p, %pMR", cache, bdaddr); list_for_each_entry(e, &cache->all, all) { if (!bacmp(&e->data.bdaddr, bdaddr)) return e; } return NULL; } struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, bdaddr_t *bdaddr) { struct discovery_state *cache = &hdev->discovery; struct inquiry_entry *e; BT_DBG("cache %p, %pMR", cache, bdaddr); list_for_each_entry(e, &cache->unknown, list) { if (!bacmp(&e->data.bdaddr, bdaddr)) return e; } return NULL; } struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, bdaddr_t *bdaddr, int state) { struct discovery_state *cache = &hdev->discovery; struct inquiry_entry *e; BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); list_for_each_entry(e, &cache->resolve, list) { if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) return e; if (!bacmp(&e->data.bdaddr, bdaddr)) return e; } return NULL; } void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, struct inquiry_entry *ie) { struct discovery_state *cache = &hdev->discovery; struct list_head *pos = &cache->resolve; struct inquiry_entry *p; list_del(&ie->list); list_for_each_entry(p, &cache->resolve, list) { if (p->name_state != NAME_PENDING && abs(p->data.rssi) >= abs(ie->data.rssi)) break; pos = &p->list; } list_add(&ie->list, pos); } u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, bool name_known) { struct discovery_state *cache = &hdev->discovery; struct inquiry_entry *ie; u32 flags = 0; BT_DBG("cache %p, %pMR", cache, &data->bdaddr); hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); if (!data->ssp_mode) flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); if (ie) { if (!ie->data.ssp_mode) flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; if (ie->name_state == NAME_NEEDED && data->rssi != ie->data.rssi) { ie->data.rssi = data->rssi; hci_inquiry_cache_update_resolve(hdev, ie); } goto update; } /* Entry not in the cache. Add new one. */ ie = kzalloc(sizeof(*ie), GFP_KERNEL); if (!ie) { flags |= MGMT_DEV_FOUND_CONFIRM_NAME; goto done; } list_add(&ie->all, &cache->all); if (name_known) { ie->name_state = NAME_KNOWN; } else { ie->name_state = NAME_NOT_KNOWN; list_add(&ie->list, &cache->unknown); } update: if (name_known && ie->name_state != NAME_KNOWN && ie->name_state != NAME_PENDING) { ie->name_state = NAME_KNOWN; list_del(&ie->list); } memcpy(&ie->data, data, sizeof(*data)); ie->timestamp = jiffies; cache->timestamp = jiffies; if (ie->name_state == NAME_NOT_KNOWN) flags |= MGMT_DEV_FOUND_CONFIRM_NAME; done: return flags; } static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) { struct discovery_state *cache = &hdev->discovery; struct inquiry_info *info = (struct inquiry_info *) buf; struct inquiry_entry *e; int copied = 0; list_for_each_entry(e, &cache->all, all) { struct inquiry_data *data = &e->data; if (copied >= num) break; bacpy(&info->bdaddr, &data->bdaddr); info->pscan_rep_mode = data->pscan_rep_mode; info->pscan_period_mode = data->pscan_period_mode; info->pscan_mode = data->pscan_mode; memcpy(info->dev_class, data->dev_class, 3); info->clock_offset = data->clock_offset; info++; copied++; } BT_DBG("cache %p, copied %d", cache, copied); return copied; } static int hci_inq_req(struct hci_request *req, unsigned long opt) { struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; struct hci_dev *hdev = req->hdev; struct hci_cp_inquiry cp; BT_DBG("%s", hdev->name); if (test_bit(HCI_INQUIRY, &hdev->flags)) return 0; /* Start Inquiry */ memcpy(&cp.lap, &ir->lap, 3); cp.length = ir->length; cp.num_rsp = ir->num_rsp; hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); return 0; } int hci_inquiry(void __user *arg) { __u8 __user *ptr = arg; struct hci_inquiry_req ir; struct hci_dev *hdev; int err = 0, do_inquiry = 0, max_rsp; long timeo; __u8 *buf; if (copy_from_user(&ir, ptr, sizeof(ir))) return -EFAULT; hdev = hci_dev_get(ir.dev_id); if (!hdev) return -ENODEV; if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { err = -EBUSY; goto done; } if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { err = -EOPNOTSUPP; goto done; } if (hdev->dev_type != HCI_PRIMARY) { err = -EOPNOTSUPP; goto done; } if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { err = -EOPNOTSUPP; goto done; } /* Restrict maximum inquiry length to 60 seconds */ if (ir.length > 60) { err = -EINVAL; goto done; } hci_dev_lock(hdev); if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { hci_inquiry_cache_flush(hdev); do_inquiry = 1; } hci_dev_unlock(hdev); timeo = ir.length * msecs_to_jiffies(2000); if (do_inquiry) { err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, timeo, NULL); if (err < 0) goto done; /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is * cleared). If it is interrupted by a signal, return -EINTR. */ if (wait_on_bit(&hdev->flags, HCI_INQUIRY, TASK_INTERRUPTIBLE)) { err = -EINTR; goto done; } } /* for unlimited number of responses we will use buffer with * 255 entries */ max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; /* cache_dump can't sleep. Therefore we allocate temp buffer and then * copy it to the user space. */ buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); if (!buf) { err = -ENOMEM; goto done; } hci_dev_lock(hdev); ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); hci_dev_unlock(hdev); BT_DBG("num_rsp %d", ir.num_rsp); if (!copy_to_user(ptr, &ir, sizeof(ir))) { ptr += sizeof(ir); if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * ir.num_rsp)) err = -EFAULT; } else err = -EFAULT; kfree(buf); done: hci_dev_put(hdev); return err; } static int hci_dev_do_open(struct hci_dev *hdev) { int ret = 0; BT_DBG("%s %p", hdev->name, hdev); hci_req_sync_lock(hdev); if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { ret = -ENODEV; goto done; } if (!hci_dev_test_flag(hdev, HCI_SETUP) && !hci_dev_test_flag(hdev, HCI_CONFIG)) { /* Check for rfkill but allow the HCI setup stage to * proceed (which in itself doesn't cause any RF activity). */ if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { ret = -ERFKILL; goto done; } /* Check for valid public address or a configured static * random adddress, but let the HCI setup proceed to * be able to determine if there is a public address * or not. * * In case of user channel usage, it is not important * if a public address or static random address is * available. * * This check is only valid for BR/EDR controllers * since AMP controllers do not have an address. */ if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && hdev->dev_type == HCI_PRIMARY && !bacmp(&hdev->bdaddr, BDADDR_ANY) && !bacmp(&hdev->static_addr, BDADDR_ANY)) { ret = -EADDRNOTAVAIL; goto done; } } if (test_bit(HCI_UP, &hdev->flags)) { ret = -EALREADY; goto done; } if (hdev->open(hdev)) { ret = -EIO; goto done; } set_bit(HCI_RUNNING, &hdev->flags); hci_sock_dev_event(hdev, HCI_DEV_OPEN); atomic_set(&hdev->cmd_cnt, 1); set_bit(HCI_INIT, &hdev->flags); if (hci_dev_test_flag(hdev, HCI_SETUP) || test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { hci_sock_dev_event(hdev, HCI_DEV_SETUP); if (hdev->setup) ret = hdev->setup(hdev); /* The transport driver can set these quirks before * creating the HCI device or in its setup callback. * * In case any of them is set, the controller has to * start up as unconfigured. */ if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks)) hci_dev_set_flag(hdev, HCI_UNCONFIGURED); /* For an unconfigured controller it is required to * read at least the version information provided by * the Read Local Version Information command. * * If the set_bdaddr driver callback is provided, then * also the original Bluetooth public device address * will be read using the Read BD Address command. */ if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) ret = __hci_unconf_init(hdev); } if (hci_dev_test_flag(hdev, HCI_CONFIG)) { /* If public address change is configured, ensure that * the address gets programmed. If the driver does not * support changing the public address, fail the power * on procedure. */ if (bacmp(&hdev->public_addr, BDADDR_ANY) && hdev->set_bdaddr) ret = hdev->set_bdaddr(hdev, &hdev->public_addr); else ret = -EADDRNOTAVAIL; } if (!ret) { if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { ret = __hci_init(hdev); if (!ret && hdev->post_init) ret = hdev->post_init(hdev); } } /* If the HCI Reset command is clearing all diagnostic settings, * then they need to be reprogrammed after the init procedure * completed. */ if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) ret = hdev->set_diag(hdev, true); clear_bit(HCI_INIT, &hdev->flags); if (!ret) { hci_dev_hold(hdev); hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); hci_adv_instances_set_rpa_expired(hdev, true); set_bit(HCI_UP, &hdev->flags); hci_sock_dev_event(hdev, HCI_DEV_UP); hci_leds_update_powered(hdev, true); if (!hci_dev_test_flag(hdev, HCI_SETUP) && !hci_dev_test_flag(hdev, HCI_CONFIG) && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && hci_dev_test_flag(hdev, HCI_MGMT) && hdev->dev_type == HCI_PRIMARY) { ret = __hci_req_hci_power_on(hdev); mgmt_power_on(hdev, ret); } } else { /* Init failed, cleanup */ flush_work(&hdev->tx_work); /* Since hci_rx_work() is possible to awake new cmd_work * it should be flushed first to avoid unexpected call of * hci_cmd_work() */ flush_work(&hdev->rx_work); flush_work(&hdev->cmd_work); skb_queue_purge(&hdev->cmd_q); skb_queue_purge(&hdev->rx_q); if (hdev->flush) hdev->flush(hdev); if (hdev->sent_cmd) { kfree_skb(hdev->sent_cmd); hdev->sent_cmd = NULL; } clear_bit(HCI_RUNNING, &hdev->flags); hci_sock_dev_event(hdev, HCI_DEV_CLOSE); hdev->close(hdev); hdev->flags &= BIT(HCI_RAW); } done: hci_req_sync_unlock(hdev); return ret; } /* ---- HCI ioctl helpers ---- */ int hci_dev_open(__u16 dev) { struct hci_dev *hdev; int err; hdev = hci_dev_get(dev); if (!hdev) return -ENODEV; /* Devices that are marked as unconfigured can only be powered * up as user channel. Trying to bring them up as normal devices * will result into a failure. Only user channel operation is * possible. * * When this function is called for a user channel, the flag * HCI_USER_CHANNEL will be set first before attempting to * open the device. */ if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { err = -EOPNOTSUPP; goto done; } /* We need to ensure that no other power on/off work is pending * before proceeding to call hci_dev_do_open. This is * particularly important if the setup procedure has not yet * completed. */ if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) cancel_delayed_work(&hdev->power_off); /* After this call it is guaranteed that the setup procedure * has finished. This means that error conditions like RFKILL * or no valid public or static random address apply. */ flush_workqueue(hdev->req_workqueue); /* For controllers not using the management interface and that * are brought up using legacy ioctl, set the HCI_BONDABLE bit * so that pairing works for them. Once the management interface * is in use this bit will be cleared again and userspace has * to explicitly enable it. */ if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && !hci_dev_test_flag(hdev, HCI_MGMT)) hci_dev_set_flag(hdev, HCI_BONDABLE); err = hci_dev_do_open(hdev); done: hci_dev_put(hdev); return err; } /* This function requires the caller holds hdev->lock */ static void hci_pend_le_actions_clear(struct hci_dev *hdev) { struct hci_conn_params *p; list_for_each_entry(p, &hdev->le_conn_params, list) { if (p->conn) { hci_conn_drop(p->conn); hci_conn_put(p->conn); p->conn = NULL; } list_del_init(&p->action); } BT_DBG("All LE pending actions cleared"); } int hci_dev_do_close(struct hci_dev *hdev) { bool auto_off; BT_DBG("%s %p", hdev->name, hdev); if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && test_bit(HCI_UP, &hdev->flags)) { /* Execute vendor specific shutdown routine */ if (hdev->shutdown) hdev->shutdown(hdev); } cancel_delayed_work(&hdev->power_off); hci_request_cancel_all(hdev); hci_req_sync_lock(hdev); if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && test_bit(HCI_UP, &hdev->flags)) { /* Execute vendor specific shutdown routine */ if (hdev->shutdown) hdev->shutdown(hdev); } if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { cancel_delayed_work_sync(&hdev->cmd_timer); hci_req_sync_unlock(hdev); return 0; } hci_leds_update_powered(hdev, false); /* Flush RX and TX works */ flush_work(&hdev->tx_work); flush_work(&hdev->rx_work); if (hdev->discov_timeout > 0) { hdev->discov_timeout = 0; hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); } if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) cancel_delayed_work(&hdev->service_cache); if (hci_dev_test_flag(hdev, HCI_MGMT)) { struct adv_info *adv_instance; cancel_delayed_work_sync(&hdev->rpa_expired); list_for_each_entry(adv_instance, &hdev->adv_instances, list) cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); } /* Avoid potential lockdep warnings from the *_flush() calls by * ensuring the workqueue is empty up front. */ drain_workqueue(hdev->workqueue); hci_dev_lock(hdev); hci_discovery_set_state(hdev, DISCOVERY_STOPPED); auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); if (!auto_off && hdev->dev_type == HCI_PRIMARY && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && hci_dev_test_flag(hdev, HCI_MGMT)) __mgmt_power_off(hdev); hci_inquiry_cache_flush(hdev); hci_pend_le_actions_clear(hdev); hci_conn_hash_flush(hdev); hci_dev_unlock(hdev); smp_unregister(hdev); hci_sock_dev_event(hdev, HCI_DEV_DOWN); if (hdev->flush) hdev->flush(hdev); /* Reset device */ skb_queue_purge(&hdev->cmd_q); atomic_set(&hdev->cmd_cnt, 1); if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { set_bit(HCI_INIT, &hdev->flags); __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL); clear_bit(HCI_INIT, &hdev->flags); } /* flush cmd work */ flush_work(&hdev->cmd_work); /* Drop queues */ skb_queue_purge(&hdev->rx_q); skb_queue_purge(&hdev->cmd_q); skb_queue_purge(&hdev->raw_q); /* Drop last sent command */ if (hdev->sent_cmd) { cancel_delayed_work_sync(&hdev->cmd_timer); kfree_skb(hdev->sent_cmd); hdev->sent_cmd = NULL; } clear_bit(HCI_RUNNING, &hdev->flags); hci_sock_dev_event(hdev, HCI_DEV_CLOSE); /* After this point our queues are empty * and no tasks are scheduled. */ hdev->close(hdev); /* Clear flags */ hdev->flags &= BIT(HCI_RAW); hci_dev_clear_volatile_flags(hdev); /* Controller radio is available but is currently powered down */ hdev->amp_status = AMP_STATUS_POWERED_DOWN; memset(hdev->eir, 0, sizeof(hdev->eir)); memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); bacpy(&hdev->random_addr, BDADDR_ANY); hci_req_sync_unlock(hdev); hci_dev_put(hdev); return 0; } int hci_dev_close(__u16 dev) { struct hci_dev *hdev; int err; hdev = hci_dev_get(dev); if (!hdev) return -ENODEV; if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { err = -EBUSY; goto done; } if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) cancel_delayed_work(&hdev->power_off); err = hci_dev_do_close(hdev); done: hci_dev_put(hdev); return err; } static int hci_dev_do_reset(struct hci_dev *hdev) { int ret; BT_DBG("%s %p", hdev->name, hdev); hci_req_sync_lock(hdev); /* Drop queues */ skb_queue_purge(&hdev->rx_q); skb_queue_purge(&hdev->cmd_q); /* Avoid potential lockdep warnings from the *_flush() calls by * ensuring the workqueue is empty up front. */ drain_workqueue(hdev->workqueue); hci_dev_lock(hdev); hci_inquiry_cache_flush(hdev); hci_conn_hash_flush(hdev); hci_dev_unlock(hdev); if (hdev->flush) hdev->flush(hdev); atomic_set(&hdev->cmd_cnt, 1); hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL); hci_req_sync_unlock(hdev); return ret; } int hci_dev_reset(__u16 dev) { struct hci_dev *hdev; int err; hdev = hci_dev_get(dev); if (!hdev) return -ENODEV; if (!test_bit(HCI_UP, &hdev->flags)) { err = -ENETDOWN; goto done; } if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { err = -EBUSY; goto done; } if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { err = -EOPNOTSUPP; goto done; } err = hci_dev_do_reset(hdev); done: hci_dev_put(hdev); return err; } int hci_dev_reset_stat(__u16 dev) { struct hci_dev *hdev; int ret = 0; hdev = hci_dev_get(dev); if (!hdev) return -ENODEV; if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { ret = -EBUSY; goto done; } if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { ret = -EOPNOTSUPP; goto done; } memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); done: hci_dev_put(hdev); return ret; } static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) { bool conn_changed, discov_changed; BT_DBG("%s scan 0x%02x", hdev->name, scan); if ((scan & SCAN_PAGE)) conn_changed = !hci_dev_test_and_set_flag(hdev, HCI_CONNECTABLE); else conn_changed = hci_dev_test_and_clear_flag(hdev, HCI_CONNECTABLE); if ((scan & SCAN_INQUIRY)) { discov_changed = !hci_dev_test_and_set_flag(hdev, HCI_DISCOVERABLE); } else { hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); discov_changed = hci_dev_test_and_clear_flag(hdev, HCI_DISCOVERABLE); } if (!hci_dev_test_flag(hdev, HCI_MGMT)) return; if (conn_changed || discov_changed) { /* In case this was disabled through mgmt */ hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) hci_req_update_adv_data(hdev, hdev->cur_adv_instance); mgmt_new_settings(hdev); } } int hci_dev_cmd(unsigned int cmd, void __user *arg) { struct hci_dev *hdev; struct hci_dev_req dr; int err = 0; if (copy_from_user(&dr, arg, sizeof(dr))) return -EFAULT; hdev = hci_dev_get(dr.dev_id); if (!hdev) return -ENODEV; if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { err = -EBUSY; goto done; } if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { err = -EOPNOTSUPP; goto done; } if (hdev->dev_type != HCI_PRIMARY) { err = -EOPNOTSUPP; goto done; } if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { err = -EOPNOTSUPP; goto done; } switch (cmd) { case HCISETAUTH: err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, HCI_INIT_TIMEOUT, NULL); break; case HCISETENCRYPT: if (!lmp_encrypt_capable(hdev)) { err = -EOPNOTSUPP; break; } if (!test_bit(HCI_AUTH, &hdev->flags)) { /* Auth must be enabled first */ err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, HCI_INIT_TIMEOUT, NULL); if (err) break; } err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, HCI_INIT_TIMEOUT, NULL); break; case HCISETSCAN: err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, HCI_INIT_TIMEOUT, NULL); /* Ensure that the connectable and discoverable states * get correctly modified as this was a non-mgmt change. */ if (!err) hci_update_scan_state(hdev, dr.dev_opt); break; case HCISETLINKPOL: err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, HCI_INIT_TIMEOUT, NULL); break; case HCISETLINKMODE: hdev->link_mode = ((__u16) dr.dev_opt) & (HCI_LM_MASTER | HCI_LM_ACCEPT); break; case HCISETPTYPE: if (hdev->pkt_type == (__u16) dr.dev_opt) break; hdev->pkt_type = (__u16) dr.dev_opt; mgmt_phy_configuration_changed(hdev, NULL); break; case HCISETACLMTU: hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); break; case HCISETSCOMTU: hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); break; default: err = -EINVAL; break; } done: hci_dev_put(hdev); return err; } int hci_get_dev_list(void __user *arg) { struct hci_dev *hdev; struct hci_dev_list_req *dl; struct hci_dev_req *dr; int n = 0, size, err; __u16 dev_num; if (get_user(dev_num, (__u16 __user *) arg)) return -EFAULT; if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) return -EINVAL; size = sizeof(*dl) + dev_num * sizeof(*dr); dl = kzalloc(size, GFP_KERNEL); if (!dl) return -ENOMEM; dr = dl->dev_req; read_lock(&hci_dev_list_lock); list_for_each_entry(hdev, &hci_dev_list, list) { unsigned long flags = hdev->flags; /* When the auto-off is configured it means the transport * is running, but in that case still indicate that the * device is actually down. */ if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) flags &= ~BIT(HCI_UP); (dr + n)->dev_id = hdev->id; (dr + n)->dev_opt = flags; if (++n >= dev_num) break; } read_unlock(&hci_dev_list_lock); dl->dev_num = n; size = sizeof(*dl) + n * sizeof(*dr); err = copy_to_user(arg, dl, size); kfree(dl); return err ? -EFAULT : 0; } int hci_get_dev_info(void __user *arg) { struct hci_dev *hdev; struct hci_dev_info di; unsigned long flags; int err = 0; if (copy_from_user(&di, arg, sizeof(di))) return -EFAULT; hdev = hci_dev_get(di.dev_id); if (!hdev) return -ENODEV; /* When the auto-off is configured it means the transport * is running, but in that case still indicate that the * device is actually down. */ if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) flags = hdev->flags & ~BIT(HCI_UP); else flags = hdev->flags; strcpy(di.name, hdev->name); di.bdaddr = hdev->bdaddr; di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); di.flags = flags; di.pkt_type = hdev->pkt_type; if (lmp_bredr_capable(hdev)) { di.acl_mtu = hdev->acl_mtu; di.acl_pkts = hdev->acl_pkts; di.sco_mtu = hdev->sco_mtu; di.sco_pkts = hdev->sco_pkts; } else { di.acl_mtu = hdev->le_mtu; di.acl_pkts = hdev->le_pkts; di.sco_mtu = 0; di.sco_pkts = 0; } di.link_policy = hdev->link_policy; di.link_mode = hdev->link_mode; memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); memcpy(&di.features, &hdev->features, sizeof(di.features)); if (copy_to_user(arg, &di, sizeof(di))) err = -EFAULT; hci_dev_put(hdev); return err; } /* ---- Interface to HCI drivers ---- */ static int hci_rfkill_set_block(void *data, bool blocked) { struct hci_dev *hdev = data; BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) return -EBUSY; if (blocked) { hci_dev_set_flag(hdev, HCI_RFKILLED); if (!hci_dev_test_flag(hdev, HCI_SETUP) && !hci_dev_test_flag(hdev, HCI_CONFIG)) hci_dev_do_close(hdev); } else { hci_dev_clear_flag(hdev, HCI_RFKILLED); } return 0; } static const struct rfkill_ops hci_rfkill_ops = { .set_block = hci_rfkill_set_block, }; static void hci_power_on(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); int err; BT_DBG("%s", hdev->name); if (test_bit(HCI_UP, &hdev->flags) && hci_dev_test_flag(hdev, HCI_MGMT) && hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { cancel_delayed_work(&hdev->power_off); hci_req_sync_lock(hdev); err = __hci_req_hci_power_on(hdev); hci_req_sync_unlock(hdev); mgmt_power_on(hdev, err); return; } err = hci_dev_do_open(hdev); if (err < 0) { hci_dev_lock(hdev); mgmt_set_powered_failed(hdev, err); hci_dev_unlock(hdev); return; } /* During the HCI setup phase, a few error conditions are * ignored and they need to be checked now. If they are still * valid, it is important to turn the device back off. */ if (hci_dev_test_flag(hdev, HCI_RFKILLED) || hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || (hdev->dev_type == HCI_PRIMARY && !bacmp(&hdev->bdaddr, BDADDR_ANY) && !bacmp(&hdev->static_addr, BDADDR_ANY))) { hci_dev_clear_flag(hdev, HCI_AUTO_OFF); hci_dev_do_close(hdev); } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { queue_delayed_work(hdev->req_workqueue, &hdev->power_off, HCI_AUTO_OFF_TIMEOUT); } if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { /* For unconfigured devices, set the HCI_RAW flag * so that userspace can easily identify them. */ if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) set_bit(HCI_RAW, &hdev->flags); /* For fully configured devices, this will send * the Index Added event. For unconfigured devices, * it will send Unconfigued Index Added event. * * Devices with HCI_QUIRK_RAW_DEVICE are ignored * and no event will be send. */ mgmt_index_added(hdev); } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { /* When the controller is now configured, then it * is important to clear the HCI_RAW flag. */ if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) clear_bit(HCI_RAW, &hdev->flags); /* Powering on the controller with HCI_CONFIG set only * happens with the transition from unconfigured to * configured. This will send the Index Added event. */ mgmt_index_added(hdev); } } static void hci_power_off(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, power_off.work); BT_DBG("%s", hdev->name); hci_dev_do_close(hdev); } static void hci_error_reset(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); BT_DBG("%s", hdev->name); if (hdev->hw_error) hdev->hw_error(hdev, hdev->hw_error_code); else bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); if (hci_dev_do_close(hdev)) return; hci_dev_do_open(hdev); } void hci_uuids_clear(struct hci_dev *hdev) { struct bt_uuid *uuid, *tmp; list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { list_del(&uuid->list); kfree(uuid); } } void hci_link_keys_clear(struct hci_dev *hdev) { struct link_key *key; list_for_each_entry_rcu(key, &hdev->link_keys, list) { list_del_rcu(&key->list); kfree_rcu(key, rcu); } } void hci_smp_ltks_clear(struct hci_dev *hdev) { struct smp_ltk *k; list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { list_del_rcu(&k->list); kfree_rcu(k, rcu); } } void hci_smp_irks_clear(struct hci_dev *hdev) { struct smp_irk *k; list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { list_del_rcu(&k->list); kfree_rcu(k, rcu); } } struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) { struct link_key *k; rcu_read_lock(); list_for_each_entry_rcu(k, &hdev->link_keys, list) { if (bacmp(bdaddr, &k->bdaddr) == 0) { rcu_read_unlock(); return k; } } rcu_read_unlock(); return NULL; } static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, u8 key_type, u8 old_key_type) { /* Legacy key */ if (key_type < 0x03) return true; /* Debug keys are insecure so don't store them persistently */ if (key_type == HCI_LK_DEBUG_COMBINATION) return false; /* Changed combination key and there's no previous one */ if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) return false; /* Security mode 3 case */ if (!conn) return true; /* BR/EDR key derived using SC from an LE link */ if (conn->type == LE_LINK) return true; /* Neither local nor remote side had no-bonding as requirement */ if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) return true; /* Local side had dedicated bonding as requirement */ if (conn->auth_type == 0x02 || conn->auth_type == 0x03) return true; /* Remote side had dedicated bonding as requirement */ if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) return true; /* If none of the above criteria match, then don't store the key * persistently */ return false; } static u8 ltk_role(u8 type) { if (type == SMP_LTK) return HCI_ROLE_MASTER; return HCI_ROLE_SLAVE; } struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 role) { struct smp_ltk *k; rcu_read_lock(); list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) continue; if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { rcu_read_unlock(); return k; } } rcu_read_unlock(); return NULL; } struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) { struct smp_irk *irk; rcu_read_lock(); list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { if (!bacmp(&irk->rpa, rpa)) { rcu_read_unlock(); return irk; } } list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { if (smp_irk_matches(hdev, irk->val, rpa)) { bacpy(&irk->rpa, rpa); rcu_read_unlock(); return irk; } } rcu_read_unlock(); return NULL; } struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) { struct smp_irk *irk; /* Identity Address must be public or static random */ if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) return NULL; rcu_read_lock(); list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { if (addr_type == irk->addr_type && bacmp(bdaddr, &irk->bdaddr) == 0) { rcu_read_unlock(); return irk; } } rcu_read_unlock(); return NULL; } struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len, bool *persistent) { struct link_key *key, *old_key; u8 old_key_type; old_key = hci_find_link_key(hdev, bdaddr); if (old_key) { old_key_type = old_key->type; key = old_key; } else { old_key_type = conn ? conn->key_type : 0xff; key = kzalloc(sizeof(*key), GFP_KERNEL); if (!key) return NULL; list_add_rcu(&key->list, &hdev->link_keys); } BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); /* Some buggy controller combinations generate a changed * combination key for legacy pairing even when there's no * previous key */ if (type == HCI_LK_CHANGED_COMBINATION && (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { type = HCI_LK_COMBINATION; if (conn) conn->key_type = type; } bacpy(&key->bdaddr, bdaddr); memcpy(key->val, val, HCI_LINK_KEY_SIZE); key->pin_len = pin_len; if (type == HCI_LK_CHANGED_COMBINATION) key->type = old_key_type; else key->type = type; if (persistent) *persistent = hci_persistent_key(hdev, conn, type, old_key_type); return key; } struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type, u8 authenticated, u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) { struct smp_ltk *key, *old_key; u8 role = ltk_role(type); old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); if (old_key) key = old_key; else { key = kzalloc(sizeof(*key), GFP_KERNEL); if (!key) return NULL; list_add_rcu(&key->list, &hdev->long_term_keys); } bacpy(&key->bdaddr, bdaddr); key->bdaddr_type = addr_type; memcpy(key->val, tk, sizeof(key->val)); key->authenticated = authenticated; key->ediv = ediv; key->rand = rand; key->enc_size = enc_size; key->type = type; return key; } struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 val[16], bdaddr_t *rpa) { struct smp_irk *irk; irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); if (!irk) { irk = kzalloc(sizeof(*irk), GFP_KERNEL); if (!irk) return NULL; bacpy(&irk->bdaddr, bdaddr); irk->addr_type = addr_type; list_add_rcu(&irk->list, &hdev->identity_resolving_keys); } memcpy(irk->val, val, 16); bacpy(&irk->rpa, rpa); return irk; } int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) { struct link_key *key; key = hci_find_link_key(hdev, bdaddr); if (!key) return -ENOENT; BT_DBG("%s removing %pMR", hdev->name, bdaddr); list_del_rcu(&key->list); kfree_rcu(key, rcu); return 0; } int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) { struct smp_ltk *k; int removed = 0; list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) continue; BT_DBG("%s removing %pMR", hdev->name, bdaddr); list_del_rcu(&k->list); kfree_rcu(k, rcu); removed++; } return removed ? 0 : -ENOENT; } void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) { struct smp_irk *k; list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) continue; BT_DBG("%s removing %pMR", hdev->name, bdaddr); list_del_rcu(&k->list); kfree_rcu(k, rcu); } } bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) { struct smp_ltk *k; struct smp_irk *irk; u8 addr_type; if (type == BDADDR_BREDR) { if (hci_find_link_key(hdev, bdaddr)) return true; return false; } /* Convert to HCI addr type which struct smp_ltk uses */ if (type == BDADDR_LE_PUBLIC) addr_type = ADDR_LE_DEV_PUBLIC; else addr_type = ADDR_LE_DEV_RANDOM; irk = hci_get_irk(hdev, bdaddr, addr_type); if (irk) { bdaddr = &irk->bdaddr; addr_type = irk->addr_type; } rcu_read_lock(); list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { rcu_read_unlock(); return true; } } rcu_read_unlock(); return false; } /* HCI command timer function */ static void hci_cmd_timeout(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_timer.work); if (hdev->sent_cmd) { struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; u16 opcode = __le16_to_cpu(sent->opcode); bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); } else { bt_dev_err(hdev, "command tx timeout"); } atomic_set(&hdev->cmd_cnt, 1); queue_work(hdev->workqueue, &hdev->cmd_work); } struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) { struct oob_data *data; list_for_each_entry(data, &hdev->remote_oob_data, list) { if (bacmp(bdaddr, &data->bdaddr) != 0) continue; if (data->bdaddr_type != bdaddr_type) continue; return data; } return NULL; } int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) { struct oob_data *data; data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); if (!data) return -ENOENT; BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); list_del(&data->list); kfree(data); return 0; } void hci_remote_oob_data_clear(struct hci_dev *hdev) { struct oob_data *data, *n; list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { list_del(&data->list); kfree(data); } } int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 *hash192, u8 *rand192, u8 *hash256, u8 *rand256) { struct oob_data *data; data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); if (!data) { data = kmalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; bacpy(&data->bdaddr, bdaddr); data->bdaddr_type = bdaddr_type; list_add(&data->list, &hdev->remote_oob_data); } if (hash192 && rand192) { memcpy(data->hash192, hash192, sizeof(data->hash192)); memcpy(data->rand192, rand192, sizeof(data->rand192)); if (hash256 && rand256) data->present = 0x03; } else { memset(data->hash192, 0, sizeof(data->hash192)); memset(data->rand192, 0, sizeof(data->rand192)); if (hash256 && rand256) data->present = 0x02; else data->present = 0x00; } if (hash256 && rand256) { memcpy(data->hash256, hash256, sizeof(data->hash256)); memcpy(data->rand256, rand256, sizeof(data->rand256)); } else { memset(data->hash256, 0, sizeof(data->hash256)); memset(data->rand256, 0, sizeof(data->rand256)); if (hash192 && rand192) data->present = 0x01; } BT_DBG("%s for %pMR", hdev->name, bdaddr); return 0; } /* This function requires the caller holds hdev->lock */ struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) { struct adv_info *adv_instance; list_for_each_entry(adv_instance, &hdev->adv_instances, list) { if (adv_instance->instance == instance) return adv_instance; } return NULL; } /* This function requires the caller holds hdev->lock */ struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) { struct adv_info *cur_instance; cur_instance = hci_find_adv_instance(hdev, instance); if (!cur_instance) return NULL; if (cur_instance == list_last_entry(&hdev->adv_instances, struct adv_info, list)) return list_first_entry(&hdev->adv_instances, struct adv_info, list); else return list_next_entry(cur_instance, list); } /* This function requires the caller holds hdev->lock */ int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) { struct adv_info *adv_instance; adv_instance = hci_find_adv_instance(hdev, instance); if (!adv_instance) return -ENOENT; BT_DBG("%s removing %dMR", hdev->name, instance); if (hdev->cur_adv_instance == instance) { if (hdev->adv_instance_timeout) { cancel_delayed_work(&hdev->adv_instance_expire); hdev->adv_instance_timeout = 0; } hdev->cur_adv_instance = 0x00; } cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); list_del(&adv_instance->list); kfree(adv_instance); hdev->adv_instance_cnt--; return 0; } void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) { struct adv_info *adv_instance, *n; list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) adv_instance->rpa_expired = rpa_expired; } /* This function requires the caller holds hdev->lock */ void hci_adv_instances_clear(struct hci_dev *hdev) { struct adv_info *adv_instance, *n; if (hdev->adv_instance_timeout) { cancel_delayed_work(&hdev->adv_instance_expire); hdev->adv_instance_timeout = 0; } list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); list_del(&adv_instance->list); kfree(adv_instance); } hdev->adv_instance_cnt = 0; hdev->cur_adv_instance = 0x00; } static void adv_instance_rpa_expired(struct work_struct *work) { struct adv_info *adv_instance = container_of(work, struct adv_info, rpa_expired_cb.work); BT_DBG(""); adv_instance->rpa_expired = true; } /* This function requires the caller holds hdev->lock */ int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, u16 adv_data_len, u8 *adv_data, u16 scan_rsp_len, u8 *scan_rsp_data, u16 timeout, u16 duration) { struct adv_info *adv_instance; adv_instance = hci_find_adv_instance(hdev, instance); if (adv_instance) { memset(adv_instance->adv_data, 0, sizeof(adv_instance->adv_data)); memset(adv_instance->scan_rsp_data, 0, sizeof(adv_instance->scan_rsp_data)); } else { if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES || instance < 1 || instance > HCI_MAX_ADV_INSTANCES) return -EOVERFLOW; adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL); if (!adv_instance) return -ENOMEM; adv_instance->pending = true; adv_instance->instance = instance; list_add(&adv_instance->list, &hdev->adv_instances); hdev->adv_instance_cnt++; } adv_instance->flags = flags; adv_instance->adv_data_len = adv_data_len; adv_instance->scan_rsp_len = scan_rsp_len; if (adv_data_len) memcpy(adv_instance->adv_data, adv_data, adv_data_len); if (scan_rsp_len) memcpy(adv_instance->scan_rsp_data, scan_rsp_data, scan_rsp_len); adv_instance->timeout = timeout; adv_instance->remaining_time = timeout; if (duration == 0) adv_instance->duration = HCI_DEFAULT_ADV_DURATION; else adv_instance->duration = duration; adv_instance->tx_power = HCI_TX_POWER_INVALID; INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb, adv_instance_rpa_expired); BT_DBG("%s for %dMR", hdev->name, instance); return 0; } struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, bdaddr_t *bdaddr, u8 type) { struct bdaddr_list *b; list_for_each_entry(b, bdaddr_list, list) { if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) return b; } return NULL; } void hci_bdaddr_list_clear(struct list_head *bdaddr_list) { struct bdaddr_list *b, *n; list_for_each_entry_safe(b, n, bdaddr_list, list) { list_del(&b->list); kfree(b); } } int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) { struct bdaddr_list *entry; if (!bacmp(bdaddr, BDADDR_ANY)) return -EBADF; if (hci_bdaddr_list_lookup(list, bdaddr, type)) return -EEXIST; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; bacpy(&entry->bdaddr, bdaddr); entry->bdaddr_type = type; list_add(&entry->list, list); return 0; } int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) { struct bdaddr_list *entry; if (!bacmp(bdaddr, BDADDR_ANY)) { hci_bdaddr_list_clear(list); return 0; } entry = hci_bdaddr_list_lookup(list, bdaddr, type); if (!entry) return -ENOENT; list_del(&entry->list); kfree(entry); return 0; } /* This function requires the caller holds hdev->lock */ struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) { struct hci_conn_params *params; list_for_each_entry(params, &hdev->le_conn_params, list) { if (bacmp(¶ms->addr, addr) == 0 && params->addr_type == addr_type) { return params; } } return NULL; } /* This function requires the caller holds hdev->lock */ struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, bdaddr_t *addr, u8 addr_type) { struct hci_conn_params *param; list_for_each_entry(param, list, action) { if (bacmp(¶m->addr, addr) == 0 && param->addr_type == addr_type) return param; } return NULL; } /* This function requires the caller holds hdev->lock */ struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) { struct hci_conn_params *params; params = hci_conn_params_lookup(hdev, addr, addr_type); if (params) return params; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) { bt_dev_err(hdev, "out of memory"); return NULL; } bacpy(¶ms->addr, addr); params->addr_type = addr_type; list_add(¶ms->list, &hdev->le_conn_params); INIT_LIST_HEAD(¶ms->action); params->conn_min_interval = hdev->le_conn_min_interval; params->conn_max_interval = hdev->le_conn_max_interval; params->conn_latency = hdev->le_conn_latency; params->supervision_timeout = hdev->le_supv_timeout; params->auto_connect = HCI_AUTO_CONN_DISABLED; BT_DBG("addr %pMR (type %u)", addr, addr_type); return params; } static void hci_conn_params_free(struct hci_conn_params *params) { if (params->conn) { hci_conn_drop(params->conn); hci_conn_put(params->conn); } list_del(¶ms->action); list_del(¶ms->list); kfree(params); } /* This function requires the caller holds hdev->lock */ void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) { struct hci_conn_params *params; params = hci_conn_params_lookup(hdev, addr, addr_type); if (!params) return; hci_conn_params_free(params); hci_update_background_scan(hdev); BT_DBG("addr %pMR (type %u)", addr, addr_type); } /* This function requires the caller holds hdev->lock */ void hci_conn_params_clear_disabled(struct hci_dev *hdev) { struct hci_conn_params *params, *tmp; list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { if (params->auto_connect != HCI_AUTO_CONN_DISABLED) continue; /* If trying to estabilish one time connection to disabled * device, leave the params, but mark them as just once. */ if (params->explicit_connect) { params->auto_connect = HCI_AUTO_CONN_EXPLICIT; continue; } list_del(¶ms->list); kfree(params); } BT_DBG("All LE disabled connection parameters were removed"); } /* This function requires the caller holds hdev->lock */ static void hci_conn_params_clear_all(struct hci_dev *hdev) { struct hci_conn_params *params, *tmp; list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) hci_conn_params_free(params); BT_DBG("All LE connection parameters were removed"); } /* Copy the Identity Address of the controller. * * If the controller has a public BD_ADDR, then by default use that one. * If this is a LE only controller without a public address, default to * the static random address. * * For debugging purposes it is possible to force controllers with a * public address to use the static random address instead. * * In case BR/EDR has been disabled on a dual-mode controller and * userspace has configured a static address, then that address * becomes the identity address instead of the public BR/EDR address. */ void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *bdaddr_type) { if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || !bacmp(&hdev->bdaddr, BDADDR_ANY) || (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && bacmp(&hdev->static_addr, BDADDR_ANY))) { bacpy(bdaddr, &hdev->static_addr); *bdaddr_type = ADDR_LE_DEV_RANDOM; } else { bacpy(bdaddr, &hdev->bdaddr); *bdaddr_type = ADDR_LE_DEV_PUBLIC; } } /* Alloc HCI device */ struct hci_dev *hci_alloc_dev(void) { struct hci_dev *hdev; hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); if (!hdev) return NULL; hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); hdev->esco_type = (ESCO_HV1); hdev->link_mode = (HCI_LM_ACCEPT); hdev->num_iac = 0x01; /* One IAC support is mandatory */ hdev->io_capability = 0x03; /* No Input No Output */ hdev->manufacturer = 0xffff; /* Default to internal use */ hdev->inq_tx_power = HCI_TX_POWER_INVALID; hdev->adv_tx_power = HCI_TX_POWER_INVALID; hdev->adv_instance_cnt = 0; hdev->cur_adv_instance = 0x00; hdev->adv_instance_timeout = 0; hdev->sniff_max_interval = 800; hdev->sniff_min_interval = 80; hdev->le_adv_channel_map = 0x07; hdev->le_adv_min_interval = 0x0800; hdev->le_adv_max_interval = 0x0800; hdev->le_scan_interval = 0x0060; hdev->le_scan_window = 0x0030; hdev->le_conn_min_interval = 0x0018; hdev->le_conn_max_interval = 0x0028; hdev->le_conn_latency = 0x0000; hdev->le_supv_timeout = 0x002a; hdev->le_def_tx_len = 0x001b; hdev->le_def_tx_time = 0x0148; hdev->le_max_tx_len = 0x001b; hdev->le_max_tx_time = 0x0148; hdev->le_max_rx_len = 0x001b; hdev->le_max_rx_time = 0x0148; hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; mutex_init(&hdev->lock); mutex_init(&hdev->req_lock); INIT_LIST_HEAD(&hdev->mgmt_pending); INIT_LIST_HEAD(&hdev->blacklist); INIT_LIST_HEAD(&hdev->whitelist); INIT_LIST_HEAD(&hdev->uuids); INIT_LIST_HEAD(&hdev->link_keys); INIT_LIST_HEAD(&hdev->long_term_keys); INIT_LIST_HEAD(&hdev->identity_resolving_keys); INIT_LIST_HEAD(&hdev->remote_oob_data); INIT_LIST_HEAD(&hdev->le_white_list); INIT_LIST_HEAD(&hdev->le_resolv_list); INIT_LIST_HEAD(&hdev->le_conn_params); INIT_LIST_HEAD(&hdev->pend_le_conns); INIT_LIST_HEAD(&hdev->pend_le_reports); INIT_LIST_HEAD(&hdev->conn_hash.list); INIT_LIST_HEAD(&hdev->adv_instances); INIT_WORK(&hdev->rx_work, hci_rx_work); INIT_WORK(&hdev->cmd_work, hci_cmd_work); INIT_WORK(&hdev->tx_work, hci_tx_work); INIT_WORK(&hdev->power_on, hci_power_on); INIT_WORK(&hdev->error_reset, hci_error_reset); INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); skb_queue_head_init(&hdev->rx_q); skb_queue_head_init(&hdev->cmd_q); skb_queue_head_init(&hdev->raw_q); init_waitqueue_head(&hdev->req_wait_q); INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); hci_request_setup(hdev); hci_init_sysfs(hdev); discovery_init(hdev); return hdev; } EXPORT_SYMBOL(hci_alloc_dev); /* Free HCI device */ void hci_free_dev(struct hci_dev *hdev) { /* will free via device release */ put_device(&hdev->dev); } EXPORT_SYMBOL(hci_free_dev); /* Register HCI device */ int hci_register_dev(struct hci_dev *hdev) { int id, error; if (!hdev->open || !hdev->close || !hdev->send) return -EINVAL; /* Do not allow HCI_AMP devices to register at index 0, * so the index can be used as the AMP controller ID. */ switch (hdev->dev_type) { case HCI_PRIMARY: id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL); break; case HCI_AMP: id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL); break; default: return -EINVAL; } if (id < 0) return id; snprintf(hdev->name, sizeof(hdev->name), "hci%d", id); hdev->id = id; BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); if (!hdev->workqueue) { error = -ENOMEM; goto err; } hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); if (!hdev->req_workqueue) { destroy_workqueue(hdev->workqueue); error = -ENOMEM; goto err; } if (!IS_ERR_OR_NULL(bt_debugfs)) hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); dev_set_name(&hdev->dev, "%s", hdev->name); error = device_add(&hdev->dev); if (error < 0) goto err_wqueue; hci_leds_init(hdev); hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev); if (hdev->rfkill) { if (rfkill_register(hdev->rfkill) < 0) { rfkill_destroy(hdev->rfkill); hdev->rfkill = NULL; } } if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) hci_dev_set_flag(hdev, HCI_RFKILLED); hci_dev_set_flag(hdev, HCI_SETUP); hci_dev_set_flag(hdev, HCI_AUTO_OFF); if (hdev->dev_type == HCI_PRIMARY) { /* Assume BR/EDR support until proven otherwise (such as * through reading supported features during init. */ hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); } write_lock(&hci_dev_list_lock); list_add(&hdev->list, &hci_dev_list); write_unlock(&hci_dev_list_lock); /* Devices that are marked for raw-only usage are unconfigured * and should not be included in normal operation. */ if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) hci_dev_set_flag(hdev, HCI_UNCONFIGURED); hci_sock_dev_event(hdev, HCI_DEV_REG); hci_dev_hold(hdev); queue_work(hdev->req_workqueue, &hdev->power_on); return id; err_wqueue: debugfs_remove_recursive(hdev->debugfs); destroy_workqueue(hdev->workqueue); destroy_workqueue(hdev->req_workqueue); err: ida_simple_remove(&hci_index_ida, hdev->id); return error; } EXPORT_SYMBOL(hci_register_dev); /* Unregister HCI device */ void hci_unregister_dev(struct hci_dev *hdev) { BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); hci_dev_set_flag(hdev, HCI_UNREGISTER); write_lock(&hci_dev_list_lock); list_del(&hdev->list); write_unlock(&hci_dev_list_lock); cancel_work_sync(&hdev->power_on); hci_dev_do_close(hdev); if (!test_bit(HCI_INIT, &hdev->flags) && !hci_dev_test_flag(hdev, HCI_SETUP) && !hci_dev_test_flag(hdev, HCI_CONFIG)) { hci_dev_lock(hdev); mgmt_index_removed(hdev); hci_dev_unlock(hdev); } /* mgmt_index_removed should take care of emptying the * pending list */ BUG_ON(!list_empty(&hdev->mgmt_pending)); hci_sock_dev_event(hdev, HCI_DEV_UNREG); if (hdev->rfkill) { rfkill_unregister(hdev->rfkill); rfkill_destroy(hdev->rfkill); } device_del(&hdev->dev); /* Actual cleanup is deferred until hci_cleanup_dev(). */ hci_dev_put(hdev); } EXPORT_SYMBOL(hci_unregister_dev); /* Cleanup HCI device */ void hci_cleanup_dev(struct hci_dev *hdev) { debugfs_remove_recursive(hdev->debugfs); kfree_const(hdev->hw_info); kfree_const(hdev->fw_info); destroy_workqueue(hdev->workqueue); destroy_workqueue(hdev->req_workqueue); hci_dev_lock(hdev); hci_bdaddr_list_clear(&hdev->blacklist); hci_bdaddr_list_clear(&hdev->whitelist); hci_uuids_clear(hdev); hci_link_keys_clear(hdev); hci_smp_ltks_clear(hdev); hci_smp_irks_clear(hdev); hci_remote_oob_data_clear(hdev); hci_adv_instances_clear(hdev); hci_bdaddr_list_clear(&hdev->le_white_list); hci_bdaddr_list_clear(&hdev->le_resolv_list); hci_conn_params_clear_all(hdev); hci_discovery_filter_clear(hdev); hci_dev_unlock(hdev); ida_simple_remove(&hci_index_ida, hdev->id); } /* Suspend HCI device */ int hci_suspend_dev(struct hci_dev *hdev) { hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); return 0; } EXPORT_SYMBOL(hci_suspend_dev); /* Resume HCI device */ int hci_resume_dev(struct hci_dev *hdev) { hci_sock_dev_event(hdev, HCI_DEV_RESUME); return 0; } EXPORT_SYMBOL(hci_resume_dev); /* Reset HCI device */ int hci_reset_dev(struct hci_dev *hdev) { const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; struct sk_buff *skb; skb = bt_skb_alloc(3, GFP_ATOMIC); if (!skb) return -ENOMEM; hci_skb_pkt_type(skb) = HCI_EVENT_PKT; skb_put_data(skb, hw_err, 3); /* Send Hardware Error to upper stack */ return hci_recv_frame(hdev, skb); } EXPORT_SYMBOL(hci_reset_dev); /* Receive frame from HCI drivers */ int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) { if (!hdev || (!test_bit(HCI_UP, &hdev->flags) && !test_bit(HCI_INIT, &hdev->flags))) { kfree_skb(skb); return -ENXIO; } if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { kfree_skb(skb); return -EINVAL; } /* Incoming skb */ bt_cb(skb)->incoming = 1; /* Time stamp */ __net_timestamp(skb); skb_queue_tail(&hdev->rx_q, skb); queue_work(hdev->workqueue, &hdev->rx_work); return 0; } EXPORT_SYMBOL(hci_recv_frame); /* Receive diagnostic message from HCI drivers */ int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) { /* Mark as diagnostic packet */ hci_skb_pkt_type(skb) = HCI_DIAG_PKT; /* Time stamp */ __net_timestamp(skb); skb_queue_tail(&hdev->rx_q, skb); queue_work(hdev->workqueue, &hdev->rx_work); return 0; } EXPORT_SYMBOL(hci_recv_diag); void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) { va_list vargs; va_start(vargs, fmt); kfree_const(hdev->hw_info); hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); va_end(vargs); } EXPORT_SYMBOL(hci_set_hw_info); void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) { va_list vargs; va_start(vargs, fmt); kfree_const(hdev->fw_info); hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); va_end(vargs); } EXPORT_SYMBOL(hci_set_fw_info); /* ---- Interface to upper protocols ---- */ int hci_register_cb(struct hci_cb *cb) { BT_DBG("%p name %s", cb, cb->name); mutex_lock(&hci_cb_list_lock); list_add_tail(&cb->list, &hci_cb_list); mutex_unlock(&hci_cb_list_lock); return 0; } EXPORT_SYMBOL(hci_register_cb); int hci_unregister_cb(struct hci_cb *cb) { BT_DBG("%p name %s", cb, cb->name); mutex_lock(&hci_cb_list_lock); list_del(&cb->list); mutex_unlock(&hci_cb_list_lock); return 0; } EXPORT_SYMBOL(hci_unregister_cb); static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) { int err; BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), skb->len); /* Time stamp */ __net_timestamp(skb); /* Send copy to monitor */ hci_send_to_monitor(hdev, skb); if (atomic_read(&hdev->promisc)) { /* Send copy to the sockets */ hci_send_to_sock(hdev, skb); } /* Get rid of skb owner, prior to sending to the driver. */ skb_orphan(skb); if (!test_bit(HCI_RUNNING, &hdev->flags)) { kfree_skb(skb); return; } err = hdev->send(hdev, skb); if (err < 0) { bt_dev_err(hdev, "sending frame failed (%d)", err); kfree_skb(skb); } } /* Send HCI command */ int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, const void *param) { struct sk_buff *skb; BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); skb = hci_prepare_cmd(hdev, opcode, plen, param); if (!skb) { bt_dev_err(hdev, "no memory for command"); return -ENOMEM; } /* Stand-alone HCI commands must be flagged as * single-command requests. */ bt_cb(skb)->hci.req_flags |= HCI_REQ_START; skb_queue_tail(&hdev->cmd_q, skb); queue_work(hdev->workqueue, &hdev->cmd_work); return 0; } int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param) { struct sk_buff *skb; if (hci_opcode_ogf(opcode) != 0x3f) { /* A controller receiving a command shall respond with either * a Command Status Event or a Command Complete Event. * Therefore, all standard HCI commands must be sent via the * standard API, using hci_send_cmd or hci_cmd_sync helpers. * Some vendors do not comply with this rule for vendor-specific * commands and do not return any event. We want to support * unresponded commands for such cases only. */ bt_dev_err(hdev, "unresponded command not supported"); return -EINVAL; } skb = hci_prepare_cmd(hdev, opcode, plen, param); if (!skb) { bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", opcode); return -ENOMEM; } hci_send_frame(hdev, skb); return 0; } EXPORT_SYMBOL(__hci_cmd_send); /* Get data from the previously sent command */ void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) { struct hci_command_hdr *hdr; if (!hdev->sent_cmd) return NULL; hdr = (void *) hdev->sent_cmd->data; if (hdr->opcode != cpu_to_le16(opcode)) return NULL; BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; } /* Send HCI command and wait for command commplete event */ struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u32 timeout) { struct sk_buff *skb; if (!test_bit(HCI_UP, &hdev->flags)) return ERR_PTR(-ENETDOWN); bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); hci_req_sync_lock(hdev); skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); hci_req_sync_unlock(hdev); return skb; } EXPORT_SYMBOL(hci_cmd_sync); /* Send ACL data */ static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) { struct hci_acl_hdr *hdr; int len = skb->len; skb_push(skb, HCI_ACL_HDR_SIZE); skb_reset_transport_header(skb); hdr = (struct hci_acl_hdr *)skb_transport_header(skb); hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); hdr->dlen = cpu_to_le16(len); } static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, struct sk_buff *skb, __u16 flags) { struct hci_conn *conn = chan->conn; struct hci_dev *hdev = conn->hdev; struct sk_buff *list; skb->len = skb_headlen(skb); skb->data_len = 0; hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; switch (hdev->dev_type) { case HCI_PRIMARY: hci_add_acl_hdr(skb, conn->handle, flags); break; case HCI_AMP: hci_add_acl_hdr(skb, chan->handle, flags); break; default: bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); return; } list = skb_shinfo(skb)->frag_list; if (!list) { /* Non fragmented */ BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); skb_queue_tail(queue, skb); } else { /* Fragmented */ BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); skb_shinfo(skb)->frag_list = NULL; /* Queue all fragments atomically. We need to use spin_lock_bh * here because of 6LoWPAN links, as there this function is * called from softirq and using normal spin lock could cause * deadlocks. */ spin_lock_bh(&queue->lock); __skb_queue_tail(queue, skb); flags &= ~ACL_START; flags |= ACL_CONT; do { skb = list; list = list->next; hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; hci_add_acl_hdr(skb, conn->handle, flags); BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); __skb_queue_tail(queue, skb); } while (list); spin_unlock_bh(&queue->lock); } } void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) { struct hci_dev *hdev = chan->conn->hdev; BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); hci_queue_acl(chan, &chan->data_q, skb, flags); queue_work(hdev->workqueue, &hdev->tx_work); } /* Send SCO data */ void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) { struct hci_dev *hdev = conn->hdev; struct hci_sco_hdr hdr; BT_DBG("%s len %d", hdev->name, skb->len); hdr.handle = cpu_to_le16(conn->handle); hdr.dlen = skb->len; skb_push(skb, HCI_SCO_HDR_SIZE); skb_reset_transport_header(skb); memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; skb_queue_tail(&conn->data_q, skb); queue_work(hdev->workqueue, &hdev->tx_work); } /* ---- HCI TX task (outgoing data) ---- */ /* HCI Connection scheduler */ static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *conn = NULL, *c; unsigned int num = 0, min = ~0; /* We don't have to lock device here. Connections are always * added and removed with TX task disabled. */ rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type != type || skb_queue_empty(&c->data_q)) continue; if (c->state != BT_CONNECTED && c->state != BT_CONFIG) continue; num++; if (c->sent < min) { min = c->sent; conn = c; } if (hci_conn_num(hdev, type) == num) break; } rcu_read_unlock(); if (conn) { int cnt, q; switch (conn->type) { case ACL_LINK: cnt = hdev->acl_cnt; break; case SCO_LINK: case ESCO_LINK: cnt = hdev->sco_cnt; break; case LE_LINK: cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; break; default: cnt = 0; bt_dev_err(hdev, "unknown link type %d", conn->type); } q = cnt / num; *quote = q ? q : 1; } else *quote = 0; BT_DBG("conn %p quote %d", conn, *quote); return conn; } static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; bt_dev_err(hdev, "link tx timeout"); rcu_read_lock(); /* Kill stalled connections */ list_for_each_entry_rcu(c, &h->list, list) { if (c->type == type && c->sent) { bt_dev_err(hdev, "killing stalled connection %pMR", &c->dst); hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); } } rcu_read_unlock(); } static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, int *quote) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_chan *chan = NULL; unsigned int num = 0, min = ~0, cur_prio = 0; struct hci_conn *conn; int cnt, q, conn_num = 0; BT_DBG("%s", hdev->name); rcu_read_lock(); list_for_each_entry_rcu(conn, &h->list, list) { struct hci_chan *tmp; if (conn->type != type) continue; if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) continue; conn_num++; list_for_each_entry_rcu(tmp, &conn->chan_list, list) { struct sk_buff *skb; if (skb_queue_empty(&tmp->data_q)) continue; skb = skb_peek(&tmp->data_q); if (skb->priority < cur_prio) continue; if (skb->priority > cur_prio) { num = 0; min = ~0; cur_prio = skb->priority; } num++; if (conn->sent < min) { min = conn->sent; chan = tmp; } } if (hci_conn_num(hdev, type) == conn_num) break; } rcu_read_unlock(); if (!chan) return NULL; switch (chan->conn->type) { case ACL_LINK: cnt = hdev->acl_cnt; break; case AMP_LINK: cnt = hdev->block_cnt; break; case SCO_LINK: case ESCO_LINK: cnt = hdev->sco_cnt; break; case LE_LINK: cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; break; default: cnt = 0; bt_dev_err(hdev, "unknown link type %d", chan->conn->type); } q = cnt / num; *quote = q ? q : 1; BT_DBG("chan %p quote %d", chan, *quote); return chan; } static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *conn; int num = 0; BT_DBG("%s", hdev->name); rcu_read_lock(); list_for_each_entry_rcu(conn, &h->list, list) { struct hci_chan *chan; if (conn->type != type) continue; if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) continue; num++; list_for_each_entry_rcu(chan, &conn->chan_list, list) { struct sk_buff *skb; if (chan->sent) { chan->sent = 0; continue; } if (skb_queue_empty(&chan->data_q)) continue; skb = skb_peek(&chan->data_q); if (skb->priority >= HCI_PRIO_MAX - 1) continue; skb->priority = HCI_PRIO_MAX - 1; BT_DBG("chan %p skb %p promoted to %d", chan, skb, skb->priority); } if (hci_conn_num(hdev, type) == num) break; } rcu_read_unlock(); } static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) { /* Calculate count of blocks used by this packet */ return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); } static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) { if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { /* ACL tx timeout must be longer than maximum * link supervision timeout (40.9 seconds) */ if (!cnt && time_after(jiffies, hdev->acl_last_tx + HCI_ACL_TX_TIMEOUT)) hci_link_tx_to(hdev, ACL_LINK); } } static void hci_sched_acl_pkt(struct hci_dev *hdev) { unsigned int cnt = hdev->acl_cnt; struct hci_chan *chan; struct sk_buff *skb; int quote; __check_timeout(hdev, cnt); while (hdev->acl_cnt && (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { u32 priority = (skb_peek(&chan->data_q))->priority; while (quote-- && (skb = skb_peek(&chan->data_q))) { BT_DBG("chan %p skb %p len %d priority %u", chan, skb, skb->len, skb->priority); /* Stop if priority has changed */ if (skb->priority < priority) break; skb = skb_dequeue(&chan->data_q); hci_conn_enter_active_mode(chan->conn, bt_cb(skb)->force_active); hci_send_frame(hdev, skb); hdev->acl_last_tx = jiffies; hdev->acl_cnt--; chan->sent++; chan->conn->sent++; } } if (cnt != hdev->acl_cnt) hci_prio_recalculate(hdev, ACL_LINK); } static void hci_sched_acl_blk(struct hci_dev *hdev) { unsigned int cnt = hdev->block_cnt; struct hci_chan *chan; struct sk_buff *skb; int quote; u8 type; __check_timeout(hdev, cnt); BT_DBG("%s", hdev->name); if (hdev->dev_type == HCI_AMP) type = AMP_LINK; else type = ACL_LINK; while (hdev->block_cnt > 0 && (chan = hci_chan_sent(hdev, type, "e))) { u32 priority = (skb_peek(&chan->data_q))->priority; while (quote > 0 && (skb = skb_peek(&chan->data_q))) { int blocks; BT_DBG("chan %p skb %p len %d priority %u", chan, skb, skb->len, skb->priority); /* Stop if priority has changed */ if (skb->priority < priority) break; skb = skb_dequeue(&chan->data_q); blocks = __get_blocks(hdev, skb); if (blocks > hdev->block_cnt) return; hci_conn_enter_active_mode(chan->conn, bt_cb(skb)->force_active); hci_send_frame(hdev, skb); hdev->acl_last_tx = jiffies; hdev->block_cnt -= blocks; quote -= blocks; chan->sent += blocks; chan->conn->sent += blocks; } } if (cnt != hdev->block_cnt) hci_prio_recalculate(hdev, type); } static void hci_sched_acl(struct hci_dev *hdev) { BT_DBG("%s", hdev->name); /* No ACL link over BR/EDR controller */ if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) return; /* No AMP link over AMP controller */ if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) return; switch (hdev->flow_ctl_mode) { case HCI_FLOW_CTL_MODE_PACKET_BASED: hci_sched_acl_pkt(hdev); break; case HCI_FLOW_CTL_MODE_BLOCK_BASED: hci_sched_acl_blk(hdev); break; } } /* Schedule SCO */ static void hci_sched_sco(struct hci_dev *hdev) { struct hci_conn *conn; struct sk_buff *skb; int quote; BT_DBG("%s", hdev->name); if (!hci_conn_num(hdev, SCO_LINK)) return; while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { while (quote-- && (skb = skb_dequeue(&conn->data_q))) { BT_DBG("skb %p len %d", skb, skb->len); hci_send_frame(hdev, skb); conn->sent++; if (conn->sent == ~0) conn->sent = 0; } } } static void hci_sched_esco(struct hci_dev *hdev) { struct hci_conn *conn; struct sk_buff *skb; int quote; BT_DBG("%s", hdev->name); if (!hci_conn_num(hdev, ESCO_LINK)) return; while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, "e))) { while (quote-- && (skb = skb_dequeue(&conn->data_q))) { BT_DBG("skb %p len %d", skb, skb->len); hci_send_frame(hdev, skb); conn->sent++; if (conn->sent == ~0) conn->sent = 0; } } } static void hci_sched_le(struct hci_dev *hdev) { struct hci_chan *chan; struct sk_buff *skb; int quote, cnt, tmp; BT_DBG("%s", hdev->name); if (!hci_conn_num(hdev, LE_LINK)) return; if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { /* LE tx timeout must be longer than maximum * link supervision timeout (40.9 seconds) */ if (!hdev->le_cnt && hdev->le_pkts && time_after(jiffies, hdev->le_last_tx + HZ * 45)) hci_link_tx_to(hdev, LE_LINK); } cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; tmp = cnt; while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { u32 priority = (skb_peek(&chan->data_q))->priority; while (quote-- && (skb = skb_peek(&chan->data_q))) { BT_DBG("chan %p skb %p len %d priority %u", chan, skb, skb->len, skb->priority); /* Stop if priority has changed */ if (skb->priority < priority) break; skb = skb_dequeue(&chan->data_q); hci_send_frame(hdev, skb); hdev->le_last_tx = jiffies; cnt--; chan->sent++; chan->conn->sent++; } } if (hdev->le_pkts) hdev->le_cnt = cnt; else hdev->acl_cnt = cnt; if (cnt != tmp) hci_prio_recalculate(hdev, LE_LINK); } static void hci_tx_work(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); struct sk_buff *skb; BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, hdev->sco_cnt, hdev->le_cnt); if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { /* Schedule queues and send stuff to HCI driver */ hci_sched_acl(hdev); hci_sched_sco(hdev); hci_sched_esco(hdev); hci_sched_le(hdev); } /* Send next queued raw (unknown type) packet */ while ((skb = skb_dequeue(&hdev->raw_q))) hci_send_frame(hdev, skb); } /* ----- HCI RX task (incoming data processing) ----- */ /* ACL data packet */ static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_acl_hdr *hdr = (void *) skb->data; struct hci_conn *conn; __u16 handle, flags; skb_pull(skb, HCI_ACL_HDR_SIZE); handle = __le16_to_cpu(hdr->handle); flags = hci_flags(handle); handle = hci_handle(handle); BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, handle, flags); hdev->stat.acl_rx++; hci_dev_lock(hdev); conn = hci_conn_hash_lookup_handle(hdev, handle); hci_dev_unlock(hdev); if (conn) { hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); /* Send to upper protocol */ l2cap_recv_acldata(conn, skb, flags); return; } else { bt_dev_err(hdev, "ACL packet for unknown connection handle %d", handle); } kfree_skb(skb); } /* SCO data packet */ static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_sco_hdr *hdr = (void *) skb->data; struct hci_conn *conn; __u16 handle; skb_pull(skb, HCI_SCO_HDR_SIZE); handle = __le16_to_cpu(hdr->handle); BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle); hdev->stat.sco_rx++; hci_dev_lock(hdev); conn = hci_conn_hash_lookup_handle(hdev, handle); hci_dev_unlock(hdev); if (conn) { /* Send to upper protocol */ sco_recv_scodata(conn, skb); return; } else { bt_dev_err(hdev, "SCO packet for unknown connection handle %d", handle); } kfree_skb(skb); } static bool hci_req_is_complete(struct hci_dev *hdev) { struct sk_buff *skb; skb = skb_peek(&hdev->cmd_q); if (!skb) return true; return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); } static void hci_resend_last(struct hci_dev *hdev) { struct hci_command_hdr *sent; struct sk_buff *skb; u16 opcode; if (!hdev->sent_cmd) return; sent = (void *) hdev->sent_cmd->data; opcode = __le16_to_cpu(sent->opcode); if (opcode == HCI_OP_RESET) return; skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); if (!skb) return; skb_queue_head(&hdev->cmd_q, skb); queue_work(hdev->workqueue, &hdev->cmd_work); } void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, hci_req_complete_t *req_complete, hci_req_complete_skb_t *req_complete_skb) { struct sk_buff *skb; unsigned long flags; BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); /* If the completed command doesn't match the last one that was * sent we need to do special handling of it. */ if (!hci_sent_cmd_data(hdev, opcode)) { /* Some CSR based controllers generate a spontaneous * reset complete event during init and any pending * command will never be completed. In such a case we * need to resend whatever was the last sent * command. */ if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) hci_resend_last(hdev); return; } /* If we reach this point this event matches the last command sent */ hci_dev_clear_flag(hdev, HCI_CMD_PENDING); /* If the command succeeded and there's still more commands in * this request the request is not yet complete. */ if (!status && !hci_req_is_complete(hdev)) return; /* If this was the last command in a request the complete * callback would be found in hdev->sent_cmd instead of the * command queue (hdev->cmd_q). */ if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; return; } if (bt_cb(hdev->sent_cmd)->hci.req_complete) { *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; return; } /* Remove all pending commands belonging to this request */ spin_lock_irqsave(&hdev->cmd_q.lock, flags); while ((skb = __skb_dequeue(&hdev->cmd_q))) { if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { __skb_queue_head(&hdev->cmd_q, skb); break; } if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; else *req_complete = bt_cb(skb)->hci.req_complete; kfree_skb(skb); } spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); } static void hci_rx_work(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); struct sk_buff *skb; BT_DBG("%s", hdev->name); while ((skb = skb_dequeue(&hdev->rx_q))) { /* Send copy to monitor */ hci_send_to_monitor(hdev, skb); if (atomic_read(&hdev->promisc)) { /* Send copy to the sockets */ hci_send_to_sock(hdev, skb); } /* If the device has been opened in HCI_USER_CHANNEL, * the userspace has exclusive access to device. * When device is HCI_INIT, we still need to process * the data packets to the driver in order * to complete its setup(). */ if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && !test_bit(HCI_INIT, &hdev->flags)) { kfree_skb(skb); continue; } if (test_bit(HCI_INIT, &hdev->flags)) { /* Don't process data packets in this states. */ switch (hci_skb_pkt_type(skb)) { case HCI_ACLDATA_PKT: case HCI_SCODATA_PKT: kfree_skb(skb); continue; } } /* Process frame */ switch (hci_skb_pkt_type(skb)) { case HCI_EVENT_PKT: BT_DBG("%s Event packet", hdev->name); hci_event_packet(hdev, skb); break; case HCI_ACLDATA_PKT: BT_DBG("%s ACL data packet", hdev->name); hci_acldata_packet(hdev, skb); break; case HCI_SCODATA_PKT: BT_DBG("%s SCO data packet", hdev->name); hci_scodata_packet(hdev, skb); break; default: kfree_skb(skb); break; } } } static void hci_cmd_work(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); struct sk_buff *skb; BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); /* Send queued commands */ if (atomic_read(&hdev->cmd_cnt)) { skb = skb_dequeue(&hdev->cmd_q); if (!skb) return; kfree_skb(hdev->sent_cmd); hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); if (hdev->sent_cmd) { if (hci_req_status_pend(hdev)) hci_dev_set_flag(hdev, HCI_CMD_PENDING); atomic_dec(&hdev->cmd_cnt); hci_send_frame(hdev, skb); if (test_bit(HCI_RESET, &hdev->flags)) cancel_delayed_work(&hdev->cmd_timer); else schedule_delayed_work(&hdev->cmd_timer, HCI_CMD_TIMEOUT); } else { skb_queue_head(&hdev->cmd_q, skb); queue_work(hdev->workqueue, &hdev->cmd_work); } } }