1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef ARCH_X86_KVM_X86_H
#define ARCH_X86_KVM_X86_H
#include <linux/kvm_host.h>
#include <asm/pvclock.h>
#include "kvm_cache_regs.h"
#define KVM_DEFAULT_PLE_GAP 128
#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
#define KVM_DEFAULT_PLE_WINDOW_GROW 2
#define KVM_DEFAULT_PLE_WINDOW_SHRINK 0
#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX
#define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX
#define KVM_SVM_DEFAULT_PLE_WINDOW 3000
static inline unsigned int __grow_ple_window(unsigned int val,
unsigned int base, unsigned int modifier, unsigned int max)
{
u64 ret = val;
if (modifier < 1)
return base;
if (modifier < base)
ret *= modifier;
else
ret += modifier;
return min(ret, (u64)max);
}
static inline unsigned int __shrink_ple_window(unsigned int val,
unsigned int base, unsigned int modifier, unsigned int min)
{
if (modifier < 1)
return base;
if (modifier < base)
val /= modifier;
else
val -= modifier;
return max(val, min);
}
#define MSR_IA32_CR_PAT_DEFAULT 0x0007040600070406ULL
static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
{
vcpu->arch.exception.pending = false;
vcpu->arch.exception.injected = false;
}
static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
bool soft)
{
vcpu->arch.interrupt.injected = true;
vcpu->arch.interrupt.soft = soft;
vcpu->arch.interrupt.nr = vector;
}
static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
{
vcpu->arch.interrupt.injected = false;
}
static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
{
return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
vcpu->arch.nmi_injected;
}
static inline bool kvm_exception_is_soft(unsigned int nr)
{
return (nr == BP_VECTOR) || (nr == OF_VECTOR);
}
static inline bool is_protmode(struct kvm_vcpu *vcpu)
{
return kvm_read_cr0_bits(vcpu, X86_CR0_PE);
}
static inline int is_long_mode(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
return vcpu->arch.efer & EFER_LMA;
#else
return 0;
#endif
}
static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
{
int cs_db, cs_l;
if (!is_long_mode(vcpu))
return false;
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
return cs_l;
}
static inline bool is_la57_mode(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
return (vcpu->arch.efer & EFER_LMA) &&
kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
#else
return 0;
#endif
}
static inline bool x86_exception_has_error_code(unsigned int vector)
{
static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
BIT(PF_VECTOR) | BIT(AC_VECTOR);
return (1U << vector) & exception_has_error_code;
}
static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
{
return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
}
static inline int is_pae(struct kvm_vcpu *vcpu)
{
return kvm_read_cr4_bits(vcpu, X86_CR4_PAE);
}
static inline int is_pse(struct kvm_vcpu *vcpu)
{
return kvm_read_cr4_bits(vcpu, X86_CR4_PSE);
}
static inline int is_paging(struct kvm_vcpu *vcpu)
{
return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG));
}
static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
{
return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
}
static inline u32 bit(int bitno)
{
return 1 << (bitno & 31);
}
static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
{
return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48;
}
static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
{
return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
}
static inline u64 get_canonical(u64 la, u8 vaddr_bits)
{
return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits);
}
static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la;
#else
return false;
#endif
}
static inline bool emul_is_noncanonical_address(u64 la,
struct x86_emulate_ctxt *ctxt)
{
#ifdef CONFIG_X86_64
return get_canonical(la, ctxt_virt_addr_bits(ctxt)) != la;
#else
return false;
#endif
}
static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
gva_t gva, gfn_t gfn, unsigned access)
{
u64 gen = kvm_memslots(vcpu->kvm)->generation;
if (unlikely(gen & 1))
return;
/*
* If this is a shadow nested page table, the "GVA" is
* actually a nGPA.
*/
vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
vcpu->arch.access = access;
vcpu->arch.mmio_gfn = gfn;
vcpu->arch.mmio_gen = gen;
}
static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
{
return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
}
/*
* Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
* clear all mmio cache info.
*/
#define MMIO_GVA_ANY (~(gva_t)0)
static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
{
if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
return;
vcpu->arch.mmio_gva = 0;
}
static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
{
if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
vcpu->arch.mmio_gva == (gva & PAGE_MASK))
return true;
return false;
}
static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
{
if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
return true;
return false;
}
static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
unsigned long val = kvm_register_read(vcpu, reg);
return is_64_bit_mode(vcpu) ? val : (u32)val;
}
static inline void kvm_register_writel(struct kvm_vcpu *vcpu,
enum kvm_reg reg,
unsigned long val)
{
if (!is_64_bit_mode(vcpu))
val = (u32)val;
return kvm_register_write(vcpu, reg, val);
}
static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
{
return !(kvm->arch.disabled_quirks & quirk);
}
void kvm_set_pending_timer(struct kvm_vcpu *vcpu);
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr);
u64 get_kvmclock_ns(struct kvm *kvm);
int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
gva_t addr, void *val, unsigned int bytes,
struct x86_exception *exception);
int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
gva_t addr, void *val, unsigned int bytes,
struct x86_exception *exception);
int handle_ud(struct kvm_vcpu *vcpu);
void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);
int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
int page_num);
bool kvm_vector_hashing_enabled(void);
int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
int emulation_type, void *insn, int insn_len);
#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
| XFEATURE_MASK_PKRU)
extern u64 host_xcr0;
extern u64 kvm_supported_xcr0(void);
extern unsigned int min_timer_period_us;
extern unsigned int lapic_timer_advance_ns;
extern bool enable_vmware_backdoor;
extern struct static_key kvm_no_apic_vcpu;
static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
{
return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
vcpu->arch.virtual_tsc_shift);
}
/* Same "calling convention" as do_div:
* - divide (n << 32) by base
* - put result in n
* - return remainder
*/
#define do_shl32_div32(n, base) \
({ \
u32 __quot, __rem; \
asm("divl %2" : "=a" (__quot), "=d" (__rem) \
: "rm" (base), "0" (0), "1" ((u32) n)); \
n = __quot; \
__rem; \
})
static inline bool kvm_mwait_in_guest(struct kvm *kvm)
{
return kvm->arch.mwait_in_guest;
}
static inline bool kvm_hlt_in_guest(struct kvm *kvm)
{
return kvm->arch.hlt_in_guest;
}
static inline bool kvm_pause_in_guest(struct kvm *kvm)
{
return kvm->arch.pause_in_guest;
}
DECLARE_PER_CPU(struct kvm_vcpu *, current_vcpu);
static inline void kvm_before_interrupt(struct kvm_vcpu *vcpu)
{
__this_cpu_write(current_vcpu, vcpu);
}
static inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
{
__this_cpu_write(current_vcpu, NULL);
}
static inline bool kvm_pat_valid(u64 data)
{
if (data & 0xF8F8F8F8F8F8F8F8ull)
return false;
/* 0, 1, 4, 5, 6, 7 are valid values. */
return (data | ((data & 0x0202020202020202ull) << 1)) == data;
}
void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu);
void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu);
#endif
|