/* $OpenLDAP$ */
/* This work is part of OpenLDAP Software .
*
* Copyright 1998-2018 The OpenLDAP Foundation.
* Portions Copyright 1998 A. Hartgers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* .
*/
/* ACKNOWLEDGEMENTS:
* This work was initially developed by Bart Hartgers for inclusion in
* OpenLDAP Software.
*/
/*
* util-int.c Various functions to replace missing threadsafe ones.
* Without the real *_r funcs, things will
* work, but might not be threadsafe.
*/
#include "portable.h"
#include
#include
#include
#include
#include
#include
#include "ldap-int.h"
#ifndef h_errno
/* newer systems declare this in for you, older ones don't.
* harmless to declare it again (unless defined by a macro).
*/
extern int h_errno;
#endif
#ifdef HAVE_HSTRERROR
# define HSTRERROR(e) hstrerror(e)
#else
# define HSTRERROR(e) hp_strerror(e)
#endif
#ifndef LDAP_R_COMPILE
# undef HAVE_REENTRANT_FUNCTIONS
# undef HAVE_CTIME_R
# undef HAVE_GETHOSTBYNAME_R
# undef HAVE_GETHOSTBYADDR_R
#else
# include
ldap_pvt_thread_mutex_t ldap_int_resolv_mutex;
ldap_pvt_thread_mutex_t ldap_int_hostname_mutex;
static ldap_pvt_thread_mutex_t ldap_int_gettime_mutex;
# if (defined( HAVE_CTIME_R ) || defined( HAVE_REENTRANT_FUNCTIONS)) \
&& defined( CTIME_R_NARGS )
# define USE_CTIME_R
# else
static ldap_pvt_thread_mutex_t ldap_int_ctime_mutex;
# endif
/* USE_GMTIME_R and USE_LOCALTIME_R defined in ldap_pvt.h */
#ifdef LDAP_DEVEL
/* to be released with 2.5 */
#if !defined( USE_GMTIME_R ) || !defined( USE_LOCALTIME_R )
/* we use the same mutex for gmtime(3) and localtime(3)
* because implementations may use the same buffer
* for both functions */
static ldap_pvt_thread_mutex_t ldap_int_gmtime_mutex;
#endif
#else /* ! LDAP_DEVEL */
ldap_pvt_thread_mutex_t ldap_int_gmtime_mutex;
#endif /* ! LDAP_DEVEL */
# if defined(HAVE_GETHOSTBYNAME_R) && \
(GETHOSTBYNAME_R_NARGS < 5) || (6 < GETHOSTBYNAME_R_NARGS)
/* Don't know how to handle this version, pretend it's not there */
# undef HAVE_GETHOSTBYNAME_R
# endif
# if defined(HAVE_GETHOSTBYADDR_R) && \
(GETHOSTBYADDR_R_NARGS < 7) || (8 < GETHOSTBYADDR_R_NARGS)
/* Don't know how to handle this version, pretend it's not there */
# undef HAVE_GETHOSTBYADDR_R
# endif
#endif /* LDAP_R_COMPILE */
char *ldap_pvt_ctime( const time_t *tp, char *buf )
{
#ifdef USE_CTIME_R
# if (CTIME_R_NARGS > 3) || (CTIME_R_NARGS < 2)
# error "CTIME_R_NARGS should be 2 or 3"
# elif CTIME_R_NARGS > 2 && defined(CTIME_R_RETURNS_INT)
return( ctime_r(tp,buf,26) < 0 ? 0 : buf );
# elif CTIME_R_NARGS > 2
return ctime_r(tp,buf,26);
# else
return ctime_r(tp,buf);
# endif
#else
LDAP_MUTEX_LOCK( &ldap_int_ctime_mutex );
AC_MEMCPY( buf, ctime(tp), 26 );
LDAP_MUTEX_UNLOCK( &ldap_int_ctime_mutex );
return buf;
#endif
}
#if !defined( USE_GMTIME_R ) || !defined( USE_LOCALTIME_R )
int
ldap_pvt_gmtime_lock( void )
{
# ifndef LDAP_R_COMPILE
return 0;
# else /* LDAP_R_COMPILE */
return ldap_pvt_thread_mutex_lock( &ldap_int_gmtime_mutex );
# endif /* LDAP_R_COMPILE */
}
int
ldap_pvt_gmtime_unlock( void )
{
# ifndef LDAP_R_COMPILE
return 0;
# else /* LDAP_R_COMPILE */
return ldap_pvt_thread_mutex_unlock( &ldap_int_gmtime_mutex );
# endif /* LDAP_R_COMPILE */
}
#endif /* !USE_GMTIME_R || !USE_LOCALTIME_R */
#ifndef USE_GMTIME_R
struct tm *
ldap_pvt_gmtime( const time_t *timep, struct tm *result )
{
struct tm *tm_ptr;
LDAP_MUTEX_LOCK( &ldap_int_gmtime_mutex );
tm_ptr = gmtime( timep );
if ( tm_ptr == NULL ) {
result = NULL;
} else {
*result = *tm_ptr;
}
LDAP_MUTEX_UNLOCK( &ldap_int_gmtime_mutex );
return result;
}
#endif /* !USE_GMTIME_R */
#ifndef USE_LOCALTIME_R
struct tm *
ldap_pvt_localtime( const time_t *timep, struct tm *result )
{
struct tm *tm_ptr;
LDAP_MUTEX_LOCK( &ldap_int_gmtime_mutex );
tm_ptr = localtime( timep );
if ( tm_ptr == NULL ) {
result = NULL;
} else {
*result = *tm_ptr;
}
LDAP_MUTEX_UNLOCK( &ldap_int_gmtime_mutex );
return result;
}
#endif /* !USE_LOCALTIME_R */
static int _ldap_pvt_gt_subs;
#ifdef _WIN32
/* Windows SYSTEMTIME only has 10 millisecond resolution, so we
* also need to use a high resolution timer to get microseconds.
* This is pretty clunky.
*/
static LARGE_INTEGER _ldap_pvt_gt_freq;
static LARGE_INTEGER _ldap_pvt_gt_prev;
static int _ldap_pvt_gt_offset;
#define SEC_TO_UNIX_EPOCH 11644473600LL
#define TICKS_PER_SECOND 10000000
static int
ldap_pvt_gettimeusec(int *sec)
{
LARGE_INTEGER count;
QueryPerformanceCounter( &count );
/* It shouldn't ever go backwards, but multiple CPUs might
* be able to hit in the same tick.
*/
LDAP_MUTEX_LOCK( &ldap_int_gettime_mutex );
/* We assume Windows has at least a vague idea of
* when a second begins. So we align our microsecond count
* with the Windows millisecond count using this offset.
* We retain the submillisecond portion of our own count.
*
* Note - this also assumes that the relationship between
* the PerformanceCounter and SystemTime stays constant;
* that assumption breaks if the SystemTime is adjusted by
* an external action.
*/
if ( !_ldap_pvt_gt_freq.QuadPart ) {
LARGE_INTEGER c2;
ULARGE_INTEGER ut;
FILETIME ft0, ft1;
long long t;
int usec;
/* Initialize our offset */
QueryPerformanceFrequency( &_ldap_pvt_gt_freq );
/* Wait for a tick of the system time: 10-15ms */
GetSystemTimeAsFileTime( &ft0 );
do {
GetSystemTimeAsFileTime( &ft1 );
} while ( ft1.dwLowDateTime == ft0.dwLowDateTime );
ut.LowPart = ft1.dwLowDateTime;
ut.HighPart = ft1.dwHighDateTime;
QueryPerformanceCounter( &c2 );
/* get second and fraction portion of counter */
t = c2.QuadPart % (_ldap_pvt_gt_freq.QuadPart*10);
/* convert to microseconds */
t *= 1000000;
usec = t / _ldap_pvt_gt_freq.QuadPart;
ut.QuadPart /= 10;
ut.QuadPart %= 10000000;
_ldap_pvt_gt_offset = usec - ut.QuadPart;
count = c2;
}
if ( count.QuadPart <= _ldap_pvt_gt_prev.QuadPart ) {
_ldap_pvt_gt_subs++;
} else {
_ldap_pvt_gt_subs = 0;
_ldap_pvt_gt_prev = count;
}
LDAP_MUTEX_UNLOCK( &ldap_int_gettime_mutex );
/* convert to microseconds */
count.QuadPart %= _ldap_pvt_gt_freq.QuadPart*10;
count.QuadPart *= 1000000;
count.QuadPart /= _ldap_pvt_gt_freq.QuadPart;
count.QuadPart -= _ldap_pvt_gt_offset;
/* We've extracted the 1s and microseconds.
* The 1sec digit is used to detect wraparound in microsecnds.
*/
if (count.QuadPart < 0)
count.QuadPart += 10000000;
else if (count.QuadPart >= 10000000)
count.QuadPart -= 10000000;
*sec = count.QuadPart / 1000000;
return count.QuadPart % 1000000;
}
/* emulate POSIX gettimeofday */
int
ldap_pvt_gettimeofday( struct timeval *tv, void *unused )
{
FILETIME ft;
ULARGE_INTEGER ut;
int sec, sec0;
GetSystemTimeAsFileTime( &ft );
ut.LowPart = ft.dwLowDateTime;
ut.HighPart = ft.dwHighDateTime;
/* convert to usec */
ut.QuadPart /= (TICKS_PER_SECOND / 1000000);
tv->tv_usec = ldap_pvt_gettimeusec(&sec);
tv->tv_sec = ut.QuadPart / 1000000 - SEC_TO_UNIX_EPOCH;
/* check for carry from microseconds */
sec0 = tv->tv_sec % 10;
if (sec0 < sec || (sec0 == 9 && !sec))
tv->tv_sec++;
return 0;
}
/* return a broken out time, with microseconds
*/
void
ldap_pvt_gettime( struct lutil_tm *tm )
{
SYSTEMTIME st;
int sec, sec0;
static const char daysPerMonth[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
GetSystemTime( &st );
tm->tm_usec = ldap_pvt_gettimeusec(&sec);
tm->tm_usub = _ldap_pvt_gt_subs;
/* any difference larger than microseconds is
* already reflected in st
*/
tm->tm_sec = st.wSecond;
tm->tm_min = st.wMinute;
tm->tm_hour = st.wHour;
tm->tm_mday = st.wDay;
tm->tm_mon = st.wMonth - 1;
tm->tm_year = st.wYear - 1900;
/* check for carry from microseconds */
sec0 = tm->tm_sec % 10;
if (sec0 < sec || (sec0 == 9 && !sec)) {
tm->tm_sec++;
/* FIXME: we don't handle leap seconds */
if (tm->tm_sec > 59) {
tm->tm_sec = 0;
tm->tm_min++;
if (tm->tm_min > 59) {
tm->tm_min = 0;
tm->tm_hour++;
if (tm->tm_hour > 23) {
int days = daysPerMonth[tm->tm_mon];
tm->tm_hour = 0;
tm->tm_mday++;
/* if it's February of a leap year,
* add 1 day to this month
*/
if (tm->tm_mon == 1 &&
((!(st.wYear % 4) && (st.wYear % 100)) ||
!(st.wYear % 400)))
days++;
if (tm->tm_mday > days) {
tm->tm_mday = 1;
tm->tm_mon++;
if (tm->tm_mon > 11) {
tm->tm_mon = 0;
tm->tm_year++;
}
}
}
}
}
}
}
#else
static struct timeval _ldap_pvt_gt_prevTv;
void
ldap_pvt_gettime( struct lutil_tm *ltm )
{
struct timeval tv;
struct tm tm;
time_t t;
gettimeofday( &tv, NULL );
t = tv.tv_sec;
LDAP_MUTEX_LOCK( &ldap_int_gettime_mutex );
if ( tv.tv_sec < _ldap_pvt_gt_prevTv.tv_sec
|| ( tv.tv_sec == _ldap_pvt_gt_prevTv.tv_sec
&& tv.tv_usec <= _ldap_pvt_gt_prevTv.tv_usec )) {
_ldap_pvt_gt_subs++;
} else {
_ldap_pvt_gt_subs = 0;
_ldap_pvt_gt_prevTv = tv;
}
LDAP_MUTEX_UNLOCK( &ldap_int_gettime_mutex );
ltm->tm_usub = _ldap_pvt_gt_subs;
ldap_pvt_gmtime( &t, &tm );
ltm->tm_sec = tm.tm_sec;
ltm->tm_min = tm.tm_min;
ltm->tm_hour = tm.tm_hour;
ltm->tm_mday = tm.tm_mday;
ltm->tm_mon = tm.tm_mon;
ltm->tm_year = tm.tm_year;
ltm->tm_usec = tv.tv_usec;
}
#endif
size_t
ldap_pvt_csnstr(char *buf, size_t len, unsigned int replica, unsigned int mod)
{
struct lutil_tm tm;
int n;
ldap_pvt_gettime( &tm );
n = snprintf( buf, len,
"%4d%02d%02d%02d%02d%02d.%06dZ#%06x#%03x#%06x",
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour,
tm.tm_min, tm.tm_sec, tm.tm_usec, tm.tm_usub, replica, mod );
if( n < 0 ) return 0;
return ( (size_t) n < len ) ? n : 0;
}
#define BUFSTART (1024-32)
#define BUFMAX (32*1024-32)
#if defined(LDAP_R_COMPILE)
static char *safe_realloc( char **buf, int len );
#if !(defined(HAVE_GETHOSTBYNAME_R) && defined(HAVE_GETHOSTBYADDR_R))
static int copy_hostent( struct hostent *res,
char **buf, struct hostent * src );
#endif
#endif
int ldap_pvt_gethostbyname_a(
const char *name,
struct hostent *resbuf,
char **buf,
struct hostent **result,
int *herrno_ptr )
{
#if defined( HAVE_GETHOSTBYNAME_R )
# define NEED_SAFE_REALLOC 1
int r=-1;
int buflen=BUFSTART;
*buf = NULL;
for(;buflensa_family == AF_INET6) {
struct sockaddr_in6 *sin = (struct sockaddr_in6 *)sa;
addr = (char *)&sin->sin6_addr;
alen = sizeof(sin->sin6_addr);
} else
#endif
if (sa->sa_family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in *)sa;
addr = (char *)&sin->sin_addr;
alen = sizeof(sin->sin_addr);
} else {
rc = NO_RECOVERY;
*err = (char *)HSTRERROR( rc );
return rc;
}
#if defined( HAVE_GETHOSTBYADDR_R )
for(;buflensa_family,
&hb, buf, buflen, &h_errno );
rc = (hp == NULL) ? -1 : 0;
#else
rc = gethostbyaddr_r( addr, alen, sa->sa_family,
&hb, buf, buflen,
&hp, &h_errno );
#endif
#ifdef NETDB_INTERNAL
if ((rc<0) &&
(h_errno==NETDB_INTERNAL) &&
(errno==ERANGE))
{
buflen*=2;
continue;
}
#endif
break;
}
if (hp) {
strncpy( name, hp->h_name, namelen );
} else {
*err = (char *)HSTRERROR( h_errno );
}
LDAP_FREE(buf);
#else /* HAVE_GETHOSTBYADDR_R */
LDAP_MUTEX_LOCK( &ldap_int_resolv_mutex );
hp = gethostbyaddr( addr, alen, sa->sa_family );
if (hp) {
strncpy( name, hp->h_name, namelen );
rc = 0;
} else {
rc = h_errno;
*err = (char *)HSTRERROR( h_errno );
}
LDAP_MUTEX_UNLOCK( &ldap_int_resolv_mutex );
#endif /* !HAVE_GETHOSTBYADDR_R */
return rc;
#endif /* !HAVE_GETNAMEINFO */
}
int ldap_pvt_gethostbyaddr_a(
const char *addr,
int len,
int type,
struct hostent *resbuf,
char **buf,
struct hostent **result,
int *herrno_ptr )
{
#if defined( HAVE_GETHOSTBYADDR_R )
# undef NEED_SAFE_REALLOC
# define NEED_SAFE_REALLOC
int r=-1;
int buflen=BUFSTART;
*buf = NULL;
for(;buflenh_name ) + 1;
if( src->h_aliases != NULL ) {
for( p = src->h_aliases; (*p) != NULL; p++ ) {
total_alias_len += strlen( *p ) + 1;
n_alias++;
}
}
if( src->h_addr_list != NULL ) {
for( p = src->h_addr_list; (*p) != NULL; p++ ) {
n_addr++;
}
total_addr_len = n_addr * src->h_length;
}
total_len = (n_alias + n_addr + 2) * sizeof( char * ) +
total_addr_len + total_alias_len + name_len;
if (safe_realloc( buf, total_len )) {
tp = (char **) *buf;
tbuf = *buf + (n_alias + n_addr + 2) * sizeof( char * );
AC_MEMCPY( res, src, sizeof( struct hostent ) );
/* first the name... */
AC_MEMCPY( tbuf, src->h_name, name_len );
res->h_name = tbuf; tbuf+=name_len;
/* now the aliases */
res->h_aliases = tp;
if ( src->h_aliases != NULL ) {
tbuf = cpy_aliases( &tp, tbuf, src->h_aliases );
}
*tp++=NULL;
/* finally the addresses */
res->h_addr_list = tp;
if ( src->h_addr_list != NULL ) {
tbuf = cpy_addresses( &tp, tbuf, src->h_addr_list, src->h_length );
}
*tp++=NULL;
return 0;
}
return -1;
}
#endif
#if defined( NEED_SAFE_REALLOC )
static char *safe_realloc( char **buf, int len )
{
char *tmpbuf;
tmpbuf = LDAP_REALLOC( *buf, len );
if (tmpbuf) {
*buf=tmpbuf;
}
return tmpbuf;
}
#endif
char * ldap_pvt_get_fqdn( char *name )
{
char *fqdn, *ha_buf;
char hostbuf[MAXHOSTNAMELEN+1];
struct hostent *hp, he_buf;
int rc, local_h_errno;
if( name == NULL ) {
if( gethostname( hostbuf, MAXHOSTNAMELEN ) == 0 ) {
hostbuf[MAXHOSTNAMELEN] = '\0';
name = hostbuf;
} else {
name = "localhost";
}
}
rc = ldap_pvt_gethostbyname_a( name,
&he_buf, &ha_buf, &hp, &local_h_errno );
if( rc < 0 || hp == NULL || hp->h_name == NULL ) {
fqdn = LDAP_STRDUP( name );
} else {
fqdn = LDAP_STRDUP( hp->h_name );
}
LDAP_FREE( ha_buf );
return fqdn;
}
#if ( defined( HAVE_GETADDRINFO ) || defined( HAVE_GETNAMEINFO ) ) \
&& !defined( HAVE_GAI_STRERROR )
char *ldap_pvt_gai_strerror (int code) {
static struct {
int code;
const char *msg;
} values[] = {
#ifdef EAI_ADDRFAMILY
{ EAI_ADDRFAMILY, N_("Address family for hostname not supported") },
#endif
{ EAI_AGAIN, N_("Temporary failure in name resolution") },
{ EAI_BADFLAGS, N_("Bad value for ai_flags") },
{ EAI_FAIL, N_("Non-recoverable failure in name resolution") },
{ EAI_FAMILY, N_("ai_family not supported") },
{ EAI_MEMORY, N_("Memory allocation failure") },
#ifdef EAI_NODATA
{ EAI_NODATA, N_("No address associated with hostname") },
#endif
{ EAI_NONAME, N_("Name or service not known") },
{ EAI_SERVICE, N_("Servname not supported for ai_socktype") },
{ EAI_SOCKTYPE, N_("ai_socktype not supported") },
#ifdef EAI_SYSTEM
{ EAI_SYSTEM, N_("System error") },
#endif
{ 0, NULL }
};
int i;
for ( i = 0; values[i].msg != NULL; i++ ) {
if ( values[i].code == code ) {
return (char *) _(values[i].msg);
}
}
return _("Unknown error");
}
#endif