summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/memobj-r0drv.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
commitf8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch)
tree26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/Runtime/r0drv/memobj-r0drv.cpp
parentInitial commit. (diff)
downloadvirtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.tar.xz
virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.zip
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--src/VBox/Runtime/r0drv/memobj-r0drv.cpp808
1 files changed, 808 insertions, 0 deletions
diff --git a/src/VBox/Runtime/r0drv/memobj-r0drv.cpp b/src/VBox/Runtime/r0drv/memobj-r0drv.cpp
new file mode 100644
index 00000000..f5f61a39
--- /dev/null
+++ b/src/VBox/Runtime/r0drv/memobj-r0drv.cpp
@@ -0,0 +1,808 @@
+/* $Id: memobj-r0drv.cpp $ */
+/** @file
+ * IPRT - Ring-0 Memory Objects, Common Code.
+ */
+
+/*
+ * Copyright (C) 2006-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ *
+ * The contents of this file may alternatively be used under the terms
+ * of the Common Development and Distribution License Version 1.0
+ * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
+ * VirtualBox OSE distribution, in which case the provisions of the
+ * CDDL are applicable instead of those of the GPL.
+ *
+ * You may elect to license modified versions of this file under the
+ * terms and conditions of either the GPL or the CDDL or both.
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP RTLOGGROUP_DEFAULT /// @todo RTLOGGROUP_MEM
+#define RTMEM_NO_WRAP_TO_EF_APIS /* circular dependency otherwise. */
+#include <iprt/memobj.h>
+#include "internal/iprt.h"
+
+#include <iprt/alloc.h>
+#include <iprt/asm.h>
+#include <iprt/assert.h>
+#include <iprt/err.h>
+#include <iprt/log.h>
+#include <iprt/mp.h>
+#include <iprt/param.h>
+#include <iprt/process.h>
+#include <iprt/thread.h>
+
+#include "internal/memobj.h"
+
+
+/**
+ * Internal function for allocating a new memory object.
+ *
+ * @returns The allocated and initialized handle.
+ * @param cbSelf The size of the memory object handle. 0 mean default size.
+ * @param enmType The memory object type.
+ * @param pv The memory object mapping.
+ * @param cb The size of the memory object.
+ */
+DECLHIDDEN(PRTR0MEMOBJINTERNAL) rtR0MemObjNew(size_t cbSelf, RTR0MEMOBJTYPE enmType, void *pv, size_t cb)
+{
+ PRTR0MEMOBJINTERNAL pNew;
+
+ /* validate the size */
+ if (!cbSelf)
+ cbSelf = sizeof(*pNew);
+ Assert(cbSelf >= sizeof(*pNew));
+ Assert(cbSelf == (uint32_t)cbSelf);
+ AssertMsg(RT_ALIGN_Z(cb, PAGE_SIZE) == cb, ("%#zx\n", cb));
+
+ /*
+ * Allocate and initialize the object.
+ */
+ pNew = (PRTR0MEMOBJINTERNAL)RTMemAllocZ(cbSelf);
+ if (pNew)
+ {
+ pNew->u32Magic = RTR0MEMOBJ_MAGIC;
+ pNew->cbSelf = (uint32_t)cbSelf;
+ pNew->enmType = enmType;
+ pNew->fFlags = 0;
+ pNew->cb = cb;
+ pNew->pv = pv;
+ }
+ return pNew;
+}
+
+
+/**
+ * Deletes an incomplete memory object.
+ *
+ * This is for cleaning up after failures during object creation.
+ *
+ * @param pMem The incomplete memory object to delete.
+ */
+DECLHIDDEN(void) rtR0MemObjDelete(PRTR0MEMOBJINTERNAL pMem)
+{
+ if (pMem)
+ {
+ ASMAtomicUoWriteU32(&pMem->u32Magic, ~RTR0MEMOBJ_MAGIC);
+ pMem->enmType = RTR0MEMOBJTYPE_END;
+ RTMemFree(pMem);
+ }
+}
+
+
+/**
+ * Links a mapping object to a primary object.
+ *
+ * @returns IPRT status code.
+ * @retval VINF_SUCCESS on success.
+ * @retval VINF_NO_MEMORY if we couldn't expand the mapping array of the parent.
+ * @param pParent The parent (primary) memory object.
+ * @param pChild The child (mapping) memory object.
+ */
+static int rtR0MemObjLink(PRTR0MEMOBJINTERNAL pParent, PRTR0MEMOBJINTERNAL pChild)
+{
+ uint32_t i;
+
+ /* sanity */
+ Assert(rtR0MemObjIsMapping(pChild));
+ Assert(!rtR0MemObjIsMapping(pParent));
+
+ /* expand the array? */
+ i = pParent->uRel.Parent.cMappings;
+ if (i >= pParent->uRel.Parent.cMappingsAllocated)
+ {
+ void *pv = RTMemRealloc(pParent->uRel.Parent.papMappings,
+ (i + 32) * sizeof(pParent->uRel.Parent.papMappings[0]));
+ if (!pv)
+ return VERR_NO_MEMORY;
+ pParent->uRel.Parent.papMappings = (PPRTR0MEMOBJINTERNAL)pv;
+ pParent->uRel.Parent.cMappingsAllocated = i + 32;
+ Assert(i == pParent->uRel.Parent.cMappings);
+ }
+
+ /* do the linking. */
+ pParent->uRel.Parent.papMappings[i] = pChild;
+ pParent->uRel.Parent.cMappings++;
+ pChild->uRel.Child.pParent = pParent;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks if this is mapping or not.
+ *
+ * @returns true if it's a mapping, otherwise false.
+ * @param MemObj The ring-0 memory object handle.
+ */
+RTR0DECL(bool) RTR0MemObjIsMapping(RTR0MEMOBJ MemObj)
+{
+ /* Validate the object handle. */
+ PRTR0MEMOBJINTERNAL pMem;
+ AssertPtrReturn(MemObj, false);
+ pMem = (PRTR0MEMOBJINTERNAL)MemObj;
+ AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), false);
+ AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), false);
+
+ /* hand it on to the inlined worker. */
+ return rtR0MemObjIsMapping(pMem);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjIsMapping);
+
+
+/**
+ * Gets the address of a ring-0 memory object.
+ *
+ * @returns The address of the memory object.
+ * @returns NULL if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
+ * @param MemObj The ring-0 memory object handle.
+ */
+RTR0DECL(void *) RTR0MemObjAddress(RTR0MEMOBJ MemObj)
+{
+ /* Validate the object handle. */
+ PRTR0MEMOBJINTERNAL pMem;
+ if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
+ return NULL;
+ AssertPtrReturn(MemObj, NULL);
+ pMem = (PRTR0MEMOBJINTERNAL)MemObj;
+ AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NULL);
+ AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NULL);
+
+ /* return the mapping address. */
+ return pMem->pv;
+}
+RT_EXPORT_SYMBOL(RTR0MemObjAddress);
+
+
+/**
+ * Gets the ring-3 address of a ring-0 memory object.
+ *
+ * This only applies to ring-0 memory object with ring-3 mappings of some kind, i.e.
+ * locked user memory, reserved user address space and user mappings. This API should
+ * not be used on any other objects.
+ *
+ * @returns The address of the memory object.
+ * @returns NIL_RTR3PTR if the handle is invalid or if it's not an object with a ring-3 mapping.
+ * Strict builds will assert in both cases.
+ * @param MemObj The ring-0 memory object handle.
+ */
+RTR0DECL(RTR3PTR) RTR0MemObjAddressR3(RTR0MEMOBJ MemObj)
+{
+ PRTR0MEMOBJINTERNAL pMem;
+
+ /* Validate the object handle. */
+ if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
+ return NIL_RTR3PTR;
+ AssertPtrReturn(MemObj, NIL_RTR3PTR);
+ pMem = (PRTR0MEMOBJINTERNAL)MemObj;
+ AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTR3PTR);
+ AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTR3PTR);
+ if (RT_UNLIKELY( ( pMem->enmType != RTR0MEMOBJTYPE_MAPPING
+ || pMem->u.Mapping.R0Process == NIL_RTR0PROCESS)
+ && ( pMem->enmType != RTR0MEMOBJTYPE_LOCK
+ || pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
+ && ( pMem->enmType != RTR0MEMOBJTYPE_PHYS_NC
+ || pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
+ && ( pMem->enmType != RTR0MEMOBJTYPE_RES_VIRT
+ || pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS)))
+ return NIL_RTR3PTR;
+
+ /* return the mapping address. */
+ return (RTR3PTR)pMem->pv;
+}
+RT_EXPORT_SYMBOL(RTR0MemObjAddressR3);
+
+
+/**
+ * Gets the size of a ring-0 memory object.
+ *
+ * The returned value may differ from the one specified to the API creating the
+ * object because of alignment adjustments. The minimal alignment currently
+ * employed by any API is PAGE_SIZE, so the result can safely be shifted by
+ * PAGE_SHIFT to calculate a page count.
+ *
+ * @returns The object size.
+ * @returns 0 if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
+ * @param MemObj The ring-0 memory object handle.
+ */
+RTR0DECL(size_t) RTR0MemObjSize(RTR0MEMOBJ MemObj)
+{
+ PRTR0MEMOBJINTERNAL pMem;
+
+ /* Validate the object handle. */
+ if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
+ return 0;
+ AssertPtrReturn(MemObj, 0);
+ pMem = (PRTR0MEMOBJINTERNAL)MemObj;
+ AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), 0);
+ AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), 0);
+ AssertMsg(RT_ALIGN_Z(pMem->cb, PAGE_SIZE) == pMem->cb, ("%#zx\n", pMem->cb));
+
+ /* return the size. */
+ return pMem->cb;
+}
+RT_EXPORT_SYMBOL(RTR0MemObjSize);
+
+
+/**
+ * Get the physical address of an page in the memory object.
+ *
+ * @returns The physical address.
+ * @returns NIL_RTHCPHYS if the object doesn't contain fixed physical pages.
+ * @returns NIL_RTHCPHYS if the iPage is out of range.
+ * @returns NIL_RTHCPHYS if the object handle isn't valid.
+ * @param MemObj The ring-0 memory object handle.
+ * @param iPage The page number within the object.
+ */
+/* Work around gcc bug 55940 */
+#if defined(__GNUC__) && defined(RT_ARCH_X86) && (__GNUC__ * 100 + __GNUC_MINOR__) == 407
+ __attribute__((__optimize__ ("no-shrink-wrap")))
+#endif
+RTR0DECL(RTHCPHYS) RTR0MemObjGetPagePhysAddr(RTR0MEMOBJ MemObj, size_t iPage)
+{
+ /* Validate the object handle. */
+ PRTR0MEMOBJINTERNAL pMem;
+ size_t cPages;
+ AssertPtrReturn(MemObj, NIL_RTHCPHYS);
+ pMem = (PRTR0MEMOBJINTERNAL)MemObj;
+ AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, NIL_RTHCPHYS);
+ AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, NIL_RTHCPHYS);
+ AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTHCPHYS);
+ AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTHCPHYS);
+ cPages = (pMem->cb >> PAGE_SHIFT);
+ if (iPage >= cPages)
+ {
+ /* permit: while (RTR0MemObjGetPagePhysAddr(pMem, iPage++) != NIL_RTHCPHYS) {} */
+ if (iPage == cPages)
+ return NIL_RTHCPHYS;
+ AssertReturn(iPage < (pMem->cb >> PAGE_SHIFT), NIL_RTHCPHYS);
+ }
+
+ /*
+ * We know the address of physically contiguous allocations and mappings.
+ */
+ if (pMem->enmType == RTR0MEMOBJTYPE_CONT)
+ return pMem->u.Cont.Phys + iPage * PAGE_SIZE;
+ if (pMem->enmType == RTR0MEMOBJTYPE_PHYS)
+ return pMem->u.Phys.PhysBase + iPage * PAGE_SIZE;
+
+ /*
+ * Do the job.
+ */
+ return rtR0MemObjNativeGetPagePhysAddr(pMem, iPage);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjGetPagePhysAddr);
+
+
+/**
+ * Frees a ring-0 memory object.
+ *
+ * @returns IPRT status code.
+ * @retval VERR_INVALID_HANDLE if
+ * @param MemObj The ring-0 memory object to be freed. NULL is accepted.
+ * @param fFreeMappings Whether or not to free mappings of the object.
+ */
+RTR0DECL(int) RTR0MemObjFree(RTR0MEMOBJ MemObj, bool fFreeMappings)
+{
+ /*
+ * Validate the object handle.
+ */
+ PRTR0MEMOBJINTERNAL pMem;
+ int rc;
+
+ if (MemObj == NIL_RTR0MEMOBJ)
+ return VINF_SUCCESS;
+ AssertPtrReturn(MemObj, VERR_INVALID_HANDLE);
+ pMem = (PRTR0MEMOBJINTERNAL)MemObj;
+ AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
+ AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
+ RT_ASSERT_PREEMPTIBLE();
+
+ /*
+ * Deal with mappings according to fFreeMappings.
+ */
+ if ( !rtR0MemObjIsMapping(pMem)
+ && pMem->uRel.Parent.cMappings > 0)
+ {
+ /* fail if not requested to free mappings. */
+ if (!fFreeMappings)
+ return VERR_MEMORY_BUSY;
+
+ while (pMem->uRel.Parent.cMappings > 0)
+ {
+ PRTR0MEMOBJINTERNAL pChild = pMem->uRel.Parent.papMappings[--pMem->uRel.Parent.cMappings];
+ pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings] = NULL;
+
+ /* sanity checks. */
+ AssertPtr(pChild);
+ AssertFatal(pChild->u32Magic == RTR0MEMOBJ_MAGIC);
+ AssertFatal(pChild->enmType > RTR0MEMOBJTYPE_INVALID && pChild->enmType < RTR0MEMOBJTYPE_END);
+ AssertFatal(rtR0MemObjIsMapping(pChild));
+
+ /* free the mapping. */
+ rc = rtR0MemObjNativeFree(pChild);
+ if (RT_FAILURE(rc))
+ {
+ Log(("RTR0MemObjFree: failed to free mapping %p: %p %#zx; rc=%Rrc\n", pChild, pChild->pv, pChild->cb, rc));
+ pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings++] = pChild;
+ return rc;
+ }
+ }
+ }
+
+ /*
+ * Free this object.
+ */
+ rc = rtR0MemObjNativeFree(pMem);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Ok, it was freed just fine. Now, if it's a mapping we'll have to remove it from the parent.
+ */
+ if (rtR0MemObjIsMapping(pMem))
+ {
+ PRTR0MEMOBJINTERNAL pParent = pMem->uRel.Child.pParent;
+ uint32_t i;
+
+ /* sanity checks */
+ AssertPtr(pParent);
+ AssertFatal(pParent->u32Magic == RTR0MEMOBJ_MAGIC);
+ AssertFatal(pParent->enmType > RTR0MEMOBJTYPE_INVALID && pParent->enmType < RTR0MEMOBJTYPE_END);
+ AssertFatal(!rtR0MemObjIsMapping(pParent));
+ AssertFatal(pParent->uRel.Parent.cMappings > 0);
+ AssertPtr(pParent->uRel.Parent.papMappings);
+
+ /* locate and remove from the array of mappings. */
+ i = pParent->uRel.Parent.cMappings;
+ while (i-- > 0)
+ {
+ if (pParent->uRel.Parent.papMappings[i] == pMem)
+ {
+ pParent->uRel.Parent.papMappings[i] = pParent->uRel.Parent.papMappings[--pParent->uRel.Parent.cMappings];
+ break;
+ }
+ }
+ Assert(i != UINT32_MAX);
+ }
+ else
+ Assert(pMem->uRel.Parent.cMappings == 0);
+
+ /*
+ * Finally, destroy the handle.
+ */
+ pMem->u32Magic++;
+ pMem->enmType = RTR0MEMOBJTYPE_END;
+ if (!rtR0MemObjIsMapping(pMem))
+ RTMemFree(pMem->uRel.Parent.papMappings);
+ RTMemFree(pMem);
+ }
+ else
+ Log(("RTR0MemObjFree: failed to free %p: %d %p %#zx; rc=%Rrc\n",
+ pMem, pMem->enmType, pMem->pv, pMem->cb, rc));
+ return rc;
+}
+RT_EXPORT_SYMBOL(RTR0MemObjFree);
+
+
+
+RTR0DECL(int) RTR0MemObjAllocPageTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the allocation. */
+ return rtR0MemObjNativeAllocPage(pMemObj, cbAligned, fExecutable);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjAllocPageTag);
+
+
+RTR0DECL(int) RTR0MemObjAllocLowTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the allocation. */
+ return rtR0MemObjNativeAllocLow(pMemObj, cbAligned, fExecutable);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjAllocLowTag);
+
+
+RTR0DECL(int) RTR0MemObjAllocContTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the allocation. */
+ return rtR0MemObjNativeAllocCont(pMemObj, cbAligned, fExecutable);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjAllocContTag);
+
+
+RTR0DECL(int) RTR0MemObjLockUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3Ptr, size_t cb,
+ uint32_t fAccess, RTR0PROCESS R0Process, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb + (R3Ptr & PAGE_OFFSET_MASK), PAGE_SIZE);
+ RTR3PTR const R3PtrAligned = (R3Ptr & ~(RTR3PTR)PAGE_OFFSET_MASK);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ if (R0Process == NIL_RTR0PROCESS)
+ R0Process = RTR0ProcHandleSelf();
+ AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
+ AssertReturn(fAccess, VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the locking. */
+ return rtR0MemObjNativeLockUser(pMemObj, R3PtrAligned, cbAligned, fAccess, R0Process);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjLockUserTag);
+
+
+RTR0DECL(int) RTR0MemObjLockKernelTag(PRTR0MEMOBJ pMemObj, void *pv, size_t cb, uint32_t fAccess, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb + ((uintptr_t)pv & PAGE_OFFSET_MASK), PAGE_SIZE);
+ void * const pvAligned = (void *)((uintptr_t)pv & ~(uintptr_t)PAGE_OFFSET_MASK);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pvAligned, VERR_INVALID_POINTER);
+ AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
+ AssertReturn(fAccess, VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the allocation. */
+ return rtR0MemObjNativeLockKernel(pMemObj, pvAligned, cbAligned, fAccess);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjLockKernelTag);
+
+
+RTR0DECL(int) RTR0MemObjAllocPhysTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the allocation. */
+ return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, PAGE_SIZE /* page aligned */);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysTag);
+
+
+RTR0DECL(int) RTR0MemObjAllocPhysExTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
+ if (uAlignment == 0)
+ uAlignment = PAGE_SIZE;
+ AssertReturn( uAlignment == PAGE_SIZE
+ || uAlignment == _2M
+ || uAlignment == _4M
+ || uAlignment == _1G,
+ VERR_INVALID_PARAMETER);
+#if HC_ARCH_BITS == 32
+ /* Memory allocated in this way is typically mapped into kernel space as well; simply
+ don't allow this on 32 bits hosts as the kernel space is too crowded already. */
+ if (uAlignment != PAGE_SIZE)
+ return VERR_NOT_SUPPORTED;
+#endif
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the allocation. */
+ return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, uAlignment);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysExTag);
+
+
+RTR0DECL(int) RTR0MemObjAllocPhysNCTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the allocation. */
+ return rtR0MemObjNativeAllocPhysNC(pMemObj, cbAligned, PhysHighest);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysNCTag);
+
+
+RTR0DECL(int) RTR0MemObjEnterPhysTag(PRTR0MEMOBJ pMemObj, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb + (Phys & PAGE_OFFSET_MASK), PAGE_SIZE);
+ const RTHCPHYS PhysAligned = Phys & ~(RTHCPHYS)PAGE_OFFSET_MASK;
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ AssertReturn(Phys != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
+ AssertReturn( uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE
+ || uCachePolicy == RTMEM_CACHE_POLICY_MMIO,
+ VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the allocation. */
+ return rtR0MemObjNativeEnterPhys(pMemObj, PhysAligned, cbAligned, uCachePolicy);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjEnterPhysTag);
+
+
+RTR0DECL(int) RTR0MemObjReserveKernelTag(PRTR0MEMOBJ pMemObj, void *pvFixed, size_t cb, size_t uAlignment, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ if (uAlignment == 0)
+ uAlignment = PAGE_SIZE;
+ AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ if (pvFixed != (void *)-1)
+ AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the reservation. */
+ return rtR0MemObjNativeReserveKernel(pMemObj, pvFixed, cbAligned, uAlignment);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjReserveKernelTag);
+
+
+RTR0DECL(int) RTR0MemObjReserveUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3PtrFixed, size_t cb,
+ size_t uAlignment, RTR0PROCESS R0Process, const char *pszTag)
+{
+ /* sanity checks. */
+ const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ if (uAlignment == 0)
+ uAlignment = PAGE_SIZE;
+ AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
+ AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
+ AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
+ if (R3PtrFixed != (RTR3PTR)-1)
+ AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
+ if (R0Process == NIL_RTR0PROCESS)
+ R0Process = RTR0ProcHandleSelf();
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the reservation. */
+ return rtR0MemObjNativeReserveUser(pMemObj, R3PtrFixed, cbAligned, uAlignment, R0Process);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjReserveUserTag);
+
+
+RTR0DECL(int) RTR0MemObjMapKernelTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed,
+ size_t uAlignment, unsigned fProt, const char *pszTag)
+{
+ return RTR0MemObjMapKernelExTag(pMemObj, MemObjToMap, pvFixed, uAlignment, fProt, 0, 0, pszTag);
+}
+RT_EXPORT_SYMBOL(RTR0MemObjMapKernelTag);
+
+
+RTR0DECL(int) RTR0MemObjMapKernelExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed, size_t uAlignment,
+ unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag)
+{
+ PRTR0MEMOBJINTERNAL pMemToMap;
+ PRTR0MEMOBJINTERNAL pNew;
+ int rc;
+
+ /* sanity checks. */
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
+ pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
+ AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
+ AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
+ AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
+ AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
+ if (uAlignment == 0)
+ uAlignment = PAGE_SIZE;
+ AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
+ if (pvFixed != (void *)-1)
+ AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
+ AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
+ AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
+ AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER);
+ AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER);
+ AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* adjust the request to simplify the native code. */
+ if (offSub == 0 && cbSub == pMemToMap->cb)
+ cbSub = 0;
+
+ /* do the mapping. */
+ rc = rtR0MemObjNativeMapKernel(&pNew, pMemToMap, pvFixed, uAlignment, fProt, offSub, cbSub);
+ if (RT_SUCCESS(rc))
+ {
+ /* link it. */
+ rc = rtR0MemObjLink(pMemToMap, pNew);
+ if (RT_SUCCESS(rc))
+ *pMemObj = pNew;
+ else
+ {
+ /* damn, out of memory. bail out. */
+ int rc2 = rtR0MemObjNativeFree(pNew);
+ AssertRC(rc2);
+ pNew->u32Magic++;
+ pNew->enmType = RTR0MEMOBJTYPE_END;
+ RTMemFree(pNew);
+ }
+ }
+
+ return rc;
+}
+RT_EXPORT_SYMBOL(RTR0MemObjMapKernelExTag);
+
+
+RTR0DECL(int) RTR0MemObjMapUserTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed,
+ size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process, const char *pszTag)
+{
+ /* sanity checks. */
+ PRTR0MEMOBJINTERNAL pMemToMap;
+ PRTR0MEMOBJINTERNAL pNew;
+ int rc;
+ AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
+ pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
+ *pMemObj = NIL_RTR0MEMOBJ;
+ AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
+ AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
+ AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
+ AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
+ AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
+ if (uAlignment == 0)
+ uAlignment = PAGE_SIZE;
+ AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
+ if (R3PtrFixed != (RTR3PTR)-1)
+ AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
+ AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
+ AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
+ if (R0Process == NIL_RTR0PROCESS)
+ R0Process = RTR0ProcHandleSelf();
+ RT_ASSERT_PREEMPTIBLE();
+
+ RT_NOREF_PV(pszTag);
+
+ /* do the mapping. */
+ rc = rtR0MemObjNativeMapUser(&pNew, pMemToMap, R3PtrFixed, uAlignment, fProt, R0Process);
+ if (RT_SUCCESS(rc))
+ {
+ /* link it. */
+ rc = rtR0MemObjLink(pMemToMap, pNew);
+ if (RT_SUCCESS(rc))
+ *pMemObj = pNew;
+ else
+ {
+ /* damn, out of memory. bail out. */
+ int rc2 = rtR0MemObjNativeFree(pNew);
+ AssertRC(rc2);
+ pNew->u32Magic++;
+ pNew->enmType = RTR0MEMOBJTYPE_END;
+ RTMemFree(pNew);
+ }
+ }
+
+ return rc;
+}
+RT_EXPORT_SYMBOL(RTR0MemObjMapUserTag);
+
+
+RTR0DECL(int) RTR0MemObjProtect(RTR0MEMOBJ hMemObj, size_t offSub, size_t cbSub, uint32_t fProt)
+{
+ PRTR0MEMOBJINTERNAL pMemObj;
+ int rc;
+
+ /* sanity checks. */
+ pMemObj = (PRTR0MEMOBJINTERNAL)hMemObj;
+ AssertPtrReturn(pMemObj, VERR_INVALID_HANDLE);
+ AssertReturn(pMemObj->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
+ AssertReturn(pMemObj->enmType > RTR0MEMOBJTYPE_INVALID && pMemObj->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
+ AssertReturn(rtR0MemObjIsProtectable(pMemObj), VERR_INVALID_PARAMETER);
+ AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ AssertReturn(offSub < pMemObj->cb, VERR_INVALID_PARAMETER);
+ AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
+ AssertReturn(cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
+ AssertReturn(offSub + cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
+ AssertReturn(!(fProt & ~(RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
+ RT_ASSERT_PREEMPTIBLE();
+
+ /* do the job */
+ rc = rtR0MemObjNativeProtect(pMemObj, offSub, cbSub, fProt);
+ if (RT_SUCCESS(rc))
+ pMemObj->fFlags |= RTR0MEMOBJ_FLAGS_PROT_CHANGED; /* record it */
+
+ return rc;
+}
+RT_EXPORT_SYMBOL(RTR0MemObjProtect);
+