diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
commit | f8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch) | |
tree | 26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h | |
parent | Initial commit. (diff) | |
download | virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.tar.xz virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.zip |
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h')
-rw-r--r-- | src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h | 8661 |
1 files changed, 8661 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h b/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h new file mode 100644 index 00000000..40cd37f6 --- /dev/null +++ b/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h @@ -0,0 +1,8661 @@ +/* $Id: IEMAllCImplVmxInstr.cpp.h $ */ +/** @file + * IEM - VT-x instruction implementation. + */ + +/* + * Copyright (C) 2011-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + */ + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +/** + * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their + * relative offsets. + */ +# ifdef IEM_WITH_CODE_TLB +# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0) +# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0) +# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0) +# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0) +# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0) +# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0) +# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0) +# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0) +# error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary." +# else /* !IEM_WITH_CODE_TLB */ +# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \ + do \ + { \ + Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \ + (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \ + } while (0) + +# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib) + +# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \ + do \ + { \ + Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \ + uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \ + uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \ + (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \ + } while (0) + +# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \ + do \ + { \ + Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \ + (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \ + } while (0) + +# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \ + do \ + { \ + Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \ + uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \ + uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \ + uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \ + uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \ + (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \ + } while (0) + +# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \ + do \ + { \ + Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \ + (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \ + } while (0) + +# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \ + do \ + { \ + Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \ + (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \ + } while (0) + +# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \ + do \ + { \ + Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \ + uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \ + uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \ + uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \ + uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \ + (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \ + } while (0) +# endif /* !IEM_WITH_CODE_TLB */ + +/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */ +# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs) + +/** Whether a shadow VMCS is present for the given VCPU. */ +# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS) + +/** Gets the VMXON region pointer. */ +# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon) + +/** Gets the guest-physical address of the current VMCS for the given VCPU. */ +# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs) + +/** Whether a current VMCS is present for the given VCPU. */ +# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS) + +/** Assigns the guest-physical address of the current VMCS for the given VCPU. */ +# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \ + do \ + { \ + Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \ + (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \ + } while (0) + +/** Clears any current VMCS for the given VCPU. */ +# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \ + do \ + { \ + (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \ + } while (0) + +/** Check for VMX instructions requiring to be in VMX operation. + * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */ +# define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \ + do \ + { \ + if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \ + { /* likely */ } \ + else \ + { \ + Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \ + (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \ + return iemRaiseUndefinedOpcode(a_pVCpu); \ + } \ + } while (0) + +/** Marks a VM-entry failure with a diagnostic reason, logs and returns. */ +# define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \ + do \ + { \ + Log(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \ + HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \ + (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \ + return VERR_VMX_VMENTRY_FAILED; \ + } while (0) + +/** Marks a VM-exit failure with a diagnostic reason, logs and returns. */ +# define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \ + do \ + { \ + Log(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \ + HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \ + (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \ + return VERR_VMX_VMEXIT_FAILED; \ + } while (0) + +/** Enables/disables IEM-only EM execution policy in and from ring-3. */ +# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3) +# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_ENABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcRet) \ + do { \ + Log(("%s: Enabling IEM-only EM execution policy!\n", (a_pszLogPrefix))); \ + return EMR3SetExecutionPolicy((a_pVCpu)->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true); \ + } while (0) + +# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_DISABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcRet) \ + do { \ + Log(("%s: Disabling IEM-only EM execution policy!\n", (a_pszLogPrefix))); \ + return EMR3SetExecutionPolicy((a_pVCpu)->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false); \ + } while (0) +# else +# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_ENABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcRet) do { return (a_rcRet); } while (0) +# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_DISABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcRet) do { return (a_rcRet); } while (0) +# endif + + +/********************************************************************************************************************************* +* Global Variables * +*********************************************************************************************************************************/ +/** @todo NSTVMX: The following VM-exit intercepts are pending: + * VMX_EXIT_IO_SMI + * VMX_EXIT_SMI + * VMX_EXIT_INT_WINDOW + * VMX_EXIT_NMI_WINDOW + * VMX_EXIT_GETSEC + * VMX_EXIT_RSM + * VMX_EXIT_MTF + * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending) + * VMX_EXIT_ERR_MACHINE_CHECK + * VMX_EXIT_TPR_BELOW_THRESHOLD + * VMX_EXIT_APIC_ACCESS + * VMX_EXIT_VIRTUALIZED_EOI + * VMX_EXIT_EPT_VIOLATION + * VMX_EXIT_EPT_MISCONFIG + * VMX_EXIT_INVEPT + * VMX_EXIT_PREEMPT_TIMER + * VMX_EXIT_INVVPID + * VMX_EXIT_APIC_WRITE + * VMX_EXIT_RDRAND + * VMX_EXIT_VMFUNC + * VMX_EXIT_ENCLS + * VMX_EXIT_RDSEED + * VMX_EXIT_PML_FULL + * VMX_EXIT_XSAVES + * VMX_EXIT_XRSTORS + */ +/** + * Map of VMCS field encodings to their virtual-VMCS structure offsets. + * + * The first array dimension is VMCS field encoding of Width OR'ed with Type and the + * second dimension is the Index, see VMXVMCSFIELDENC. + */ +uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] = +{ + /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_CONTROL: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex), + /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */ + { + /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 24-25 */ UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr), + /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr), + /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus), + /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex), + /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr), + /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_CONTROL: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr), + /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml), + /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset), + /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic), + /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess), + /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc), + /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls), + /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptpPtr), + /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0), + /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1), + /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2), + /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3), + /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList), + /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap), + /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap), + /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo), + /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssBitmap), + /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEnclsBitmap), + /* 24 */ UINT16_MAX, + /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier) + }, + /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr), + /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 25 */ UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1), + /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2), + /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3), + /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr), + /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr), + /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_CONTROL: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls), + /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount), + /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount), + /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls), + /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount), + /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo), + /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode), + /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen), + /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold), + /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2), + /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap), + /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow), + /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen), + /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo), + /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 24-25 */ UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit), + /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit), + /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit), + /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit), + /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr), + /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr), + /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr), + /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr), + /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr), + /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr), + /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr), + /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr), + /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState), + /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState), + /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase), + /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS), + /* 22 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer), + /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs), + /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 25 */ UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_CONTROL: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2), + /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3), + /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 24-25 */ UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr), + /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 22-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_GUEST_STATE: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase), + /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase), + /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase), + /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase), + /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase), + /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase), + /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase), + /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7), + /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp), + /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip), + /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags), + /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpt), + /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp), + /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip), + /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX + }, + /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_HOST_STATE: */ + { + /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0), + /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3), + /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4), + /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase), + /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase), + /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase), + /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase), + /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase), + /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp), + /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip), + /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp), + /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip), + /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, + /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX + } +}; + + +/** + * Returns whether the given VMCS field is valid and supported by our emulation. + * + * @param pVCpu The cross context virtual CPU structure. + * @param u64FieldEnc The VMCS field encoding. + * + * @remarks This takes into account the CPU features exposed to the guest. + */ +IEM_STATIC bool iemVmxIsVmcsFieldValid(PVMCPU pVCpu, uint64_t u64FieldEnc) +{ + uint32_t const uFieldEncHi = RT_HI_U32(u64FieldEnc); + uint32_t const uFieldEncLo = RT_LO_U32(u64FieldEnc); + if (!uFieldEncHi) + { /* likely */ } + else + return false; + + PCCPUMFEATURES pFeat = IEM_GET_GUEST_CPU_FEATURES(pVCpu); + switch (uFieldEncLo) + { + /* + * 16-bit fields. + */ + /* Control fields. */ + case VMX_VMCS16_VPID: return pFeat->fVmxVpid; + case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt; + case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe; + + /* Guest-state fields. */ + case VMX_VMCS16_GUEST_ES_SEL: + case VMX_VMCS16_GUEST_CS_SEL: + case VMX_VMCS16_GUEST_SS_SEL: + case VMX_VMCS16_GUEST_DS_SEL: + case VMX_VMCS16_GUEST_FS_SEL: + case VMX_VMCS16_GUEST_GS_SEL: + case VMX_VMCS16_GUEST_LDTR_SEL: + case VMX_VMCS16_GUEST_TR_SEL: return true; + case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery; + case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml; + + /* Host-state fields. */ + case VMX_VMCS16_HOST_ES_SEL: + case VMX_VMCS16_HOST_CS_SEL: + case VMX_VMCS16_HOST_SS_SEL: + case VMX_VMCS16_HOST_DS_SEL: + case VMX_VMCS16_HOST_FS_SEL: + case VMX_VMCS16_HOST_GS_SEL: + case VMX_VMCS16_HOST_TR_SEL: return true; + + /* + * 64-bit fields. + */ + /* Control fields. */ + case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL: + case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH: + case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL: + case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps; + case VMX_VMCS64_CTRL_MSR_BITMAP_FULL: + case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps; + case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL: + case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH: + case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL: + case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH: + case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL: + case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH: + case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL: + case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true; + case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL: + case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml; + case VMX_VMCS64_CTRL_TSC_OFFSET_FULL: + case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true; + case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL: + case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow; + case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL: + case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess; + case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL: + case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt; + case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL: + case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc; + case VMX_VMCS64_CTRL_EPTP_FULL: + case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt; + case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL: + case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH: + case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL: + case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH: + case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL: + case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH: + case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL: + case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery; + case VMX_VMCS64_CTRL_EPTP_LIST_FULL: + case VMX_VMCS64_CTRL_EPTP_LIST_HIGH: + { + uint64_t const uVmFuncMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64VmFunc; + return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING)); + } + case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL: + case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH: + case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL: + case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing; + case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL: + case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe; + case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL: + case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors; + case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL: + case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH: return false; + case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL: + case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling; + + /* Read-only data fields. */ + case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL: + case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt; + + /* Guest-state fields. */ + case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL: + case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH: + case VMX_VMCS64_GUEST_DEBUGCTL_FULL: + case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true; + case VMX_VMCS64_GUEST_PAT_FULL: + case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr; + case VMX_VMCS64_GUEST_EFER_FULL: + case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr; + case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL: + case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH: return false; + case VMX_VMCS64_GUEST_PDPTE0_FULL: + case VMX_VMCS64_GUEST_PDPTE0_HIGH: + case VMX_VMCS64_GUEST_PDPTE1_FULL: + case VMX_VMCS64_GUEST_PDPTE1_HIGH: + case VMX_VMCS64_GUEST_PDPTE2_FULL: + case VMX_VMCS64_GUEST_PDPTE2_HIGH: + case VMX_VMCS64_GUEST_PDPTE3_FULL: + case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt; + case VMX_VMCS64_GUEST_BNDCFGS_FULL: + case VMX_VMCS64_GUEST_BNDCFGS_HIGH: return false; + + /* Host-state fields. */ + case VMX_VMCS64_HOST_PAT_FULL: + case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr; + case VMX_VMCS64_HOST_EFER_FULL: + case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr; + case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL: + case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH: return false; + + /* + * 32-bit fields. + */ + /* Control fields. */ + case VMX_VMCS32_CTRL_PIN_EXEC: + case VMX_VMCS32_CTRL_PROC_EXEC: + case VMX_VMCS32_CTRL_EXCEPTION_BITMAP: + case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK: + case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH: + case VMX_VMCS32_CTRL_CR3_TARGET_COUNT: + case VMX_VMCS32_CTRL_EXIT: + case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT: + case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT: + case VMX_VMCS32_CTRL_ENTRY: + case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT: + case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO: + case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE: + case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true; + case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow; + case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls; + case VMX_VMCS32_CTRL_PLE_GAP: + case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit; + + /* Read-only data fields. */ + case VMX_VMCS32_RO_VM_INSTR_ERROR: + case VMX_VMCS32_RO_EXIT_REASON: + case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO: + case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE: + case VMX_VMCS32_RO_IDT_VECTORING_INFO: + case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE: + case VMX_VMCS32_RO_EXIT_INSTR_LENGTH: + case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true; + + /* Guest-state fields. */ + case VMX_VMCS32_GUEST_ES_LIMIT: + case VMX_VMCS32_GUEST_CS_LIMIT: + case VMX_VMCS32_GUEST_SS_LIMIT: + case VMX_VMCS32_GUEST_DS_LIMIT: + case VMX_VMCS32_GUEST_FS_LIMIT: + case VMX_VMCS32_GUEST_GS_LIMIT: + case VMX_VMCS32_GUEST_LDTR_LIMIT: + case VMX_VMCS32_GUEST_TR_LIMIT: + case VMX_VMCS32_GUEST_GDTR_LIMIT: + case VMX_VMCS32_GUEST_IDTR_LIMIT: + case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_INT_STATE: + case VMX_VMCS32_GUEST_ACTIVITY_STATE: + case VMX_VMCS32_GUEST_SMBASE: + case VMX_VMCS32_GUEST_SYSENTER_CS: return true; + case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer; + + /* Host-state fields. */ + case VMX_VMCS32_HOST_SYSENTER_CS: return true; + + /* + * Natural-width fields. + */ + /* Control fields. */ + case VMX_VMCS_CTRL_CR0_MASK: + case VMX_VMCS_CTRL_CR4_MASK: + case VMX_VMCS_CTRL_CR0_READ_SHADOW: + case VMX_VMCS_CTRL_CR4_READ_SHADOW: + case VMX_VMCS_CTRL_CR3_TARGET_VAL0: + case VMX_VMCS_CTRL_CR3_TARGET_VAL1: + case VMX_VMCS_CTRL_CR3_TARGET_VAL2: + case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true; + + /* Read-only data fields. */ + case VMX_VMCS_RO_EXIT_QUALIFICATION: + case VMX_VMCS_RO_IO_RCX: + case VMX_VMCS_RO_IO_RSX: + case VMX_VMCS_RO_IO_RDI: + case VMX_VMCS_RO_IO_RIP: + case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true; + + /* Guest-state fields. */ + case VMX_VMCS_GUEST_CR0: + case VMX_VMCS_GUEST_CR3: + case VMX_VMCS_GUEST_CR4: + case VMX_VMCS_GUEST_ES_BASE: + case VMX_VMCS_GUEST_CS_BASE: + case VMX_VMCS_GUEST_SS_BASE: + case VMX_VMCS_GUEST_DS_BASE: + case VMX_VMCS_GUEST_FS_BASE: + case VMX_VMCS_GUEST_GS_BASE: + case VMX_VMCS_GUEST_LDTR_BASE: + case VMX_VMCS_GUEST_TR_BASE: + case VMX_VMCS_GUEST_GDTR_BASE: + case VMX_VMCS_GUEST_IDTR_BASE: + case VMX_VMCS_GUEST_DR7: + case VMX_VMCS_GUEST_RSP: + case VMX_VMCS_GUEST_RIP: + case VMX_VMCS_GUEST_RFLAGS: + case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS: + case VMX_VMCS_GUEST_SYSENTER_ESP: + case VMX_VMCS_GUEST_SYSENTER_EIP: return true; + + /* Host-state fields. */ + case VMX_VMCS_HOST_CR0: + case VMX_VMCS_HOST_CR3: + case VMX_VMCS_HOST_CR4: + case VMX_VMCS_HOST_FS_BASE: + case VMX_VMCS_HOST_GS_BASE: + case VMX_VMCS_HOST_TR_BASE: + case VMX_VMCS_HOST_GDTR_BASE: + case VMX_VMCS_HOST_IDTR_BASE: + case VMX_VMCS_HOST_SYSENTER_ESP: + case VMX_VMCS_HOST_SYSENTER_EIP: + case VMX_VMCS_HOST_RSP: + case VMX_VMCS_HOST_RIP: return true; + } + + return false; +} + + +/** + * Gets a host selector from the VMCS. + * + * @param pVmcs Pointer to the virtual VMCS. + * @param iSelReg The index of the segment register (X86_SREG_XXX). + */ +DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg) +{ + Assert(iSegReg < X86_SREG_COUNT); + RTSEL HostSel; + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT; + uint8_t const uType = VMX_VMCS_ENC_TYPE_HOST_STATE; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCS_ENC_INDEX); + Assert(uIndex <= VMX_V_VMCS_MAX_INDEX); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t const *pbVmcs = (uint8_t *)pVmcs; + uint8_t const *pbField = pbVmcs + offField; + HostSel = *(uint16_t *)pbField; + return HostSel; +} + + +/** + * Sets a guest segment register in the VMCS. + * + * @param pVmcs Pointer to the virtual VMCS. + * @param iSegReg The index of the segment register (X86_SREG_XXX). + * @param pSelReg Pointer to the segment register. + */ +IEM_STATIC void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg) +{ + Assert(pSelReg); + Assert(iSegReg < X86_SREG_COUNT); + + /* Selector. */ + { + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT; + uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCS_ENC_INDEX); + Assert(uIndex <= VMX_V_VMCS_MAX_INDEX); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t *pbVmcs = (uint8_t *)pVmcs; + uint8_t *pbField = pbVmcs + offField; + *(uint16_t *)pbField = pSelReg->Sel; + } + + /* Limit. */ + { + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT; + uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCS_ENC_INDEX); + Assert(uIndex <= VMX_V_VMCS_MAX_INDEX); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t *pbVmcs = (uint8_t *)pVmcs; + uint8_t *pbField = pbVmcs + offField; + *(uint32_t *)pbField = pSelReg->u32Limit; + } + + /* Base. */ + { + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL; + uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCS_ENC_INDEX); + Assert(uIndex <= VMX_V_VMCS_MAX_INDEX); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t const *pbVmcs = (uint8_t *)pVmcs; + uint8_t const *pbField = pbVmcs + offField; + *(uint64_t *)pbField = pSelReg->u64Base; + } + + /* Attributes. */ + { + uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P + | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G + | X86DESCATTR_UNUSABLE; + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT; + uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCS_ENC_INDEX); + Assert(uIndex <= VMX_V_VMCS_MAX_INDEX); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t *pbVmcs = (uint8_t *)pVmcs; + uint8_t *pbField = pbVmcs + offField; + *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask; + } +} + + +/** + * Gets a guest segment register from the VMCS. + * + * @returns VBox status code. + * @param pVmcs Pointer to the virtual VMCS. + * @param iSegReg The index of the segment register (X86_SREG_XXX). + * @param pSelReg Where to store the segment register (only updated when + * VINF_SUCCESS is returned). + * + * @remarks Warning! This does not validate the contents of the retrieved segment + * register. + */ +IEM_STATIC int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg) +{ + Assert(pSelReg); + Assert(iSegReg < X86_SREG_COUNT); + + /* Selector. */ + uint16_t u16Sel; + { + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT; + uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCS_ENC_INDEX); + AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t const *pbVmcs = (uint8_t *)pVmcs; + uint8_t const *pbField = pbVmcs + offField; + u16Sel = *(uint16_t *)pbField; + } + + /* Limit. */ + uint32_t u32Limit; + { + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT; + uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCS_ENC_INDEX); + AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t const *pbVmcs = (uint8_t *)pVmcs; + uint8_t const *pbField = pbVmcs + offField; + u32Limit = *(uint32_t *)pbField; + } + + /* Base. */ + uint64_t u64Base; + { + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL; + uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCS_ENC_INDEX); + AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t const *pbVmcs = (uint8_t *)pVmcs; + uint8_t const *pbField = pbVmcs + offField; + u64Base = *(uint64_t *)pbField; + /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */ + } + + /* Attributes. */ + uint32_t u32Attr; + { + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT; + uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCS_ENC_INDEX); + AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t const *pbVmcs = (uint8_t *)pVmcs; + uint8_t const *pbField = pbVmcs + offField; + u32Attr = *(uint32_t *)pbField; + } + + pSelReg->Sel = u16Sel; + pSelReg->ValidSel = u16Sel; + pSelReg->fFlags = CPUMSELREG_FLAGS_VALID; + pSelReg->u32Limit = u32Limit; + pSelReg->u64Base = u64Base; + pSelReg->Attr.u = u32Attr; + return VINF_SUCCESS; +} + + +/** + * Gets a CR3 target value from the VMCS. + * + * @returns VBox status code. + * @param pVmcs Pointer to the virtual VMCS. + * @param idxCr3Target The index of the CR3-target value to retrieve. + * @param puValue Where to store the CR3-target value. + */ +DECLINLINE(uint64_t) iemVmxVmcsGetCr3TargetValue(PCVMXVVMCS pVmcs, uint8_t idxCr3Target) +{ + Assert(idxCr3Target < VMX_V_CR3_TARGET_COUNT); + uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL; + uint8_t const uType = VMX_VMCS_ENC_TYPE_CONTROL; + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = idxCr3Target + RT_BF_GET(VMX_VMCS_CTRL_CR3_TARGET_VAL0, VMX_BF_VMCS_ENC_INDEX); + Assert(uIndex <= VMX_V_VMCS_MAX_INDEX); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + uint8_t const *pbVmcs = (uint8_t *)pVmcs; + uint8_t const *pbField = pbVmcs + offField; + uint64_t const uCr3TargetValue = *(uint64_t *)pbField; + + return uCr3TargetValue; +} + + +/** + * Converts an IEM exception event type to a VMX event type. + * + * @returns The VMX event type. + * @param uVector The interrupt / exception vector. + * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX). + */ +DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags) +{ + /* Paranoia (callers may use these interchangeably). */ + AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT); + AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT); + + if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT) + { + if (uVector == X86_XCPT_NMI) + return VMX_EXIT_INT_INFO_TYPE_NMI; + return VMX_EXIT_INT_INFO_TYPE_HW_XCPT; + } + + if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) + { + if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR)) + return VMX_EXIT_INT_INFO_TYPE_SW_XCPT; + if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR) + return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT; + return VMX_EXIT_INT_INFO_TYPE_SW_INT; + } + + Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT); + return VMX_EXIT_INT_INFO_TYPE_EXT_INT; +} + + +/** + * Sets the VM-instruction error VMCS field. + * + * @param pVCpu The cross context virtual CPU structure. + * @param enmInsErr The VM-instruction error. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetVmInstrErr(PVMCPU pVCpu, VMXINSTRERR enmInsErr) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u32RoVmInstrError = enmInsErr; +} + + +/** + * Sets the VM-exit qualification VMCS field. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uExitQual The VM-exit qualification. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPU pVCpu, uint64_t uExitQual) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u64RoExitQual.u = uExitQual; +} + + +/** + * Sets the VM-exit interruption information field. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uExitQual The VM-exit interruption information. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPU pVCpu, uint32_t uExitIntInfo) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u32RoExitIntInfo = uExitIntInfo; +} + + +/** + * Sets the VM-exit interruption error code. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uErrCode The error code. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPU pVCpu, uint32_t uErrCode) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u32RoExitIntErrCode = uErrCode; +} + + +/** + * Sets the IDT-vectoring information field. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uIdtVectorInfo The IDT-vectoring information. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPU pVCpu, uint32_t uIdtVectorInfo) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u32RoIdtVectoringInfo = uIdtVectorInfo; +} + + +/** + * Sets the IDT-vectoring error code field. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uErrCode The error code. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPU pVCpu, uint32_t uErrCode) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u32RoIdtVectoringErrCode = uErrCode; +} + + +/** + * Sets the VM-exit guest-linear address VMCS field. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uGuestLinearAddr The VM-exit guest-linear address. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPU pVCpu, uint64_t uGuestLinearAddr) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u64RoGuestLinearAddr.u = uGuestLinearAddr; +} + + +/** + * Sets the VM-exit guest-physical address VMCS field. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uGuestPhysAddr The VM-exit guest-physical address. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPU pVCpu, uint64_t uGuestPhysAddr) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u64RoGuestPhysAddr.u = uGuestPhysAddr; +} + + +/** + * Sets the VM-exit instruction length VMCS field. + * + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The VM-exit instruction length in bytes. + * + * @remarks Callers may clear this field to 0. Hence, this function does not check + * the validity of the instruction length. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPU pVCpu, uint32_t cbInstr) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u32RoExitInstrLen = cbInstr; +} + + +/** + * Sets the VM-exit instruction info. VMCS field. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uExitInstrInfo The VM-exit instruction information. + */ +DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitInstrInfo) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVmcs->u32RoExitInstrInfo = uExitInstrInfo; +} + + +/** + * Implements VMSucceed for VMX instruction success. + * + * @param pVCpu The cross context virtual CPU structure. + */ +DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPU pVCpu) +{ + pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF); +} + + +/** + * Implements VMFailInvalid for VMX instruction failure. + * + * @param pVCpu The cross context virtual CPU structure. + */ +DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPU pVCpu) +{ + pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF); + pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_CF; +} + + +/** + * Implements VMFailValid for VMX instruction failure. + * + * @param pVCpu The cross context virtual CPU structure. + * @param enmInsErr The VM instruction error. + */ +DECL_FORCE_INLINE(void) iemVmxVmFailValid(PVMCPU pVCpu, VMXINSTRERR enmInsErr) +{ + if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu)) + { + pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF); + pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_ZF; + iemVmxVmcsSetVmInstrErr(pVCpu, enmInsErr); + } +} + + +/** + * Implements VMFail for VMX instruction failure. + * + * @param pVCpu The cross context virtual CPU structure. + * @param enmInsErr The VM instruction error. + */ +DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPU pVCpu, VMXINSTRERR enmInsErr) +{ + if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu)) + iemVmxVmFailValid(pVCpu, enmInsErr); + else + iemVmxVmFailInvalid(pVCpu); +} + + +/** + * Checks if the given auto-load/store MSR area count is valid for the + * implementation. + * + * @returns @c true if it's within the valid limit, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * @param uMsrCount The MSR area count to check. + */ +DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PVMCPU pVCpu, uint32_t uMsrCount) +{ + uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc; + uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr); + Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR)); + if (uMsrCount <= cMaxSupportedMsrs) + return true; + return false; +} + + +/** + * Flushes the current VMCS contents back to guest memory. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + */ +DECL_FORCE_INLINE(int) iemVmxCommitCurrentVmcsToMemory(PVMCPU pVCpu) +{ + Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu)); + int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu), + pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), sizeof(VMXVVMCS)); + IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu); + return rc; +} + + +/** + * Implements VMSucceed for the VMREAD instruction and increments the guest RIP. + * + * @param pVCpu The cross context virtual CPU structure. + */ +DECL_FORCE_INLINE(void) iemVmxVmreadSuccess(PVMCPU pVCpu, uint8_t cbInstr) +{ + iemVmxVmSucceed(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); +} + + +/** + * Gets the instruction diagnostic for segment base checks during VM-entry of a + * nested-guest. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1); + } +} + + +/** + * Gets the instruction diagnostic for segment base checks during VM-entry of a + * nested-guest that is in Virtual-8086 mode. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2); + } +} + + +/** + * Gets the instruction diagnostic for segment limit checks during VM-entry of a + * nested-guest that is in Virtual-8086 mode. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3); + } +} + + +/** + * Gets the instruction diagnostic for segment attribute checks during VM-entry of a + * nested-guest that is in Virtual-8086 mode. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4); + } +} + + +/** + * Gets the instruction diagnostic for segment attributes reserved bits failure + * during VM-entry of a nested-guest. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5); + } +} + + +/** + * Gets the instruction diagnostic for segment attributes descriptor-type + * (code/segment or system) failure during VM-entry of a nested-guest. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6); + } +} + + +/** + * Gets the instruction diagnostic for segment attributes descriptor-type + * (code/segment or system) failure during VM-entry of a nested-guest. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7); + } +} + + +/** + * Gets the instruction diagnostic for segment attribute granularity failure during + * VM-entry of a nested-guest. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8); + } +} + +/** + * Gets the instruction diagnostic for segment attribute DPL/RPL failure during + * VM-entry of a nested-guest. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9); + } +} + + +/** + * Gets the instruction diagnostic for segment attribute type accessed failure + * during VM-entry of a nested-guest. + * + * @param iSegReg The segment index (X86_SREG_XXX). + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg) +{ + switch (iSegReg) + { + case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs; + case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs; + case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs; + case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs; + case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs; + case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10); + } +} + + +/** + * Gets the instruction diagnostic for guest CR3 referenced PDPTE reserved bits + * failure during VM-entry of a nested-guest. + * + * @param iSegReg The PDPTE entry index. + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmentryPdpteRsvd(unsigned iPdpte) +{ + Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES); + switch (iPdpte) + { + case 0: return kVmxVDiag_Vmentry_GuestPdpte0Rsvd; + case 1: return kVmxVDiag_Vmentry_GuestPdpte1Rsvd; + case 2: return kVmxVDiag_Vmentry_GuestPdpte2Rsvd; + case 3: return kVmxVDiag_Vmentry_GuestPdpte3Rsvd; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_11); + } +} + + +/** + * Gets the instruction diagnostic for host CR3 referenced PDPTE reserved bits + * failure during VM-exit of a nested-guest. + * + * @param iSegReg The PDPTE entry index. + */ +IEM_STATIC VMXVDIAG iemVmxGetDiagVmexitPdpteRsvd(unsigned iPdpte) +{ + Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES); + switch (iPdpte) + { + case 0: return kVmxVDiag_Vmexit_HostPdpte0Rsvd; + case 1: return kVmxVDiag_Vmexit_HostPdpte1Rsvd; + case 2: return kVmxVDiag_Vmexit_HostPdpte2Rsvd; + case 3: return kVmxVDiag_Vmexit_HostPdpte3Rsvd; + IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_12); + } +} + + +/** + * Masks the nested-guest CR0/CR4 mask subjected to the corresponding guest/host + * mask and the read-shadow (CR0/CR4 read). + * + * @returns The masked CR0/CR4. + * @param pVCpu The cross context virtual CPU structure. + * @param iCrReg The control register (either CR0 or CR4). + * @param uGuestCrX The current guest CR0 or guest CR4. + */ +IEM_STATIC uint64_t iemVmxMaskCr0CR4(PVMCPU pVCpu, uint8_t iCrReg, uint64_t uGuestCrX) +{ + Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu)); + Assert(iCrReg == 0 || iCrReg == 4); + + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * For each CR0 or CR4 bit owned by the host, the corresponding bit is loaded from the + * CR0 read shadow or CR4 read shadow. For each CR0 or CR4 bit that is not owned by the + * host, the corresponding bit from the guest CR0 or guest CR4 is loaded. + * + * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation". + */ + uint64_t fGstHostMask; + uint64_t fReadShadow; + if (iCrReg == 0) + { + fGstHostMask = pVmcs->u64Cr0Mask.u; + fReadShadow = pVmcs->u64Cr0ReadShadow.u; + } + else + { + fGstHostMask = pVmcs->u64Cr4Mask.u; + fReadShadow = pVmcs->u64Cr4ReadShadow.u; + } + + uint64_t const fMaskedCrX = (fReadShadow & fGstHostMask) | (uGuestCrX & ~fGstHostMask); + return fMaskedCrX; +} + + +/** + * Saves the guest control registers, debug registers and some MSRs are part of + * VM-exit. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPU pVCpu) +{ + /* + * Saves the guest control registers, debug registers and some MSRs. + * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs". + */ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + + /* Save control registers. */ + pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0; + pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3; + pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4; + + /* Save SYSENTER CS, ESP, EIP. */ + pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs; + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp; + pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip; + } + else + { + pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp; + pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip; + } + + /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */ + if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG) + { + pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7]; + /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */ + } + + /* Save PAT MSR. */ + if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR) + pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT; + + /* Save EFER MSR. */ + if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR) + pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER; + + /* We don't support clearing IA32_BNDCFGS MSR yet. */ + Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR)); + + /* Nothing to do for SMBASE register - We don't support SMM yet. */ +} + + +/** + * Saves the guest force-flags in preparation of entering the nested-guest. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxVmentrySaveNmiBlockingFF(PVMCPU pVCpu) +{ + /* We shouldn't be called multiple times during VM-entry. */ + Assert(pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions == 0); + + /* MTF should not be set outside VMX non-root mode. */ + Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF)); + + /* + * Preserve the required force-flags. + * + * We cache and clear force-flags that would affect the execution of the + * nested-guest. Cached flags are then restored while returning to the guest + * if necessary. + * + * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects + * interrupts until the completion of the current VMLAUNCH/VMRESUME + * instruction. Interrupt inhibition for any nested-guest instruction + * is supplied by the guest-interruptibility state VMCS field and will + * be set up as part of loading the guest state. + * + * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before + * successful VM-entry (due to invalid guest-state) need to continue + * blocking NMIs if it was in effect before VM-entry. + * + * - MTF need not be preserved as it's used only in VMX non-root mode and + * is supplied through the VM-execution controls. + * + * The remaining FFs (e.g. timers, APIC updates) can stay in place so that + * we will be able to generate interrupts that may cause VM-exits for + * the nested-guest. + */ + pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS; +} + + +/** + * Restores the guest force-flags in preparation of exiting the nested-guest. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxVmexitRestoreNmiBlockingFF(PVMCPU pVCpu) +{ + if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions) + { + VMCPU_FF_SET_MASK(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions); + pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0; + } +} + + +/** + * Perform a VMX transition updated PGM, IEM and CPUM. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC int iemVmxWorldSwitch(PVMCPU pVCpu) +{ + /* + * Inform PGM about paging mode changes. + * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet, + * see comment in iemMemPageTranslateAndCheckAccess(). + */ + int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER); +# ifdef IN_RING3 + Assert(rc != VINF_PGM_CHANGE_MODE); +# endif + AssertRCReturn(rc, rc); + + /* Inform CPUM (recompiler), can later be removed. */ + CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL); + + /* + * Flush the TLB with new CR3. This is required in case the PGM mode change + * above doesn't actually change anything. + */ + if (rc == VINF_SUCCESS) + { + rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true); + AssertRCReturn(rc, rc); + } + + /* Re-initialize IEM cache/state after the drastic mode switch. */ + iemReInitExec(pVCpu); + return rc; +} + + +/** + * Calculates the current VMX-preemption timer value. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC uint32_t iemVmxCalcPreemptTimer(PVMCPU pVCpu) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * Assume the following: + * PreemptTimerShift = 5 + * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks) + * VmentryTick = 50000 (TSC at time of VM-entry) + * + * CurTick Delta PreemptTimerVal + * ---------------------------------- + * 60000 10000 2 + * 80000 30000 1 + * 90000 40000 0 -> VM-exit. + * + * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit. + * The saved VMX-preemption timer value is calculated as follows: + * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift))) + * E.g.: + * Delta = 10000 + * Tmp = 10000 / (2 * 10000) = 0.5 + * NewPt = 2 - 0.5 = 2 + * Delta = 30000 + * Tmp = 30000 / (2 * 10000) = 1.5 + * NewPt = 2 - 1.5 = 1 + * Delta = 40000 + * Tmp = 40000 / 20000 = 2 + * NewPt = 2 - 2 = 0 + */ + uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu); + uint64_t const uVmentryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uVmentryTick; + uint64_t const uDelta = uCurTick - uVmentryTick; + uint32_t const uVmcsPreemptVal = pVmcs->u32PreemptTimer; + uint32_t const uPreemptTimer = uVmcsPreemptVal + - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT)); + return uPreemptTimer; +} + + +/** + * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxVmexitSaveGuestSegRegs(PVMCPU pVCpu) +{ + /* + * Save guest segment registers, GDTR, IDTR, LDTR, TR. + * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers". + */ + /* CS, SS, ES, DS, FS, GS. */ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++) + { + PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg]; + if (!pSelReg->Attr.n.u1Unusable) + iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg); + else + { + /* + * For unusable segments the attributes are undefined except for CS and SS. + * For the rest we don't bother preserving anything but the unusable bit. + */ + switch (iSegReg) + { + case X86_SREG_CS: + pVmcs->GuestCs = pSelReg->Sel; + pVmcs->u64GuestCsBase.u = pSelReg->u64Base; + pVmcs->u32GuestCsLimit = pSelReg->u32Limit; + pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G + | X86DESCATTR_UNUSABLE); + break; + + case X86_SREG_SS: + pVmcs->GuestSs = pSelReg->Sel; + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff); + pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE); + break; + + case X86_SREG_DS: + pVmcs->GuestDs = pSelReg->Sel; + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff); + pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE; + break; + + case X86_SREG_ES: + pVmcs->GuestEs = pSelReg->Sel; + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff); + pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE; + break; + + case X86_SREG_FS: + pVmcs->GuestFs = pSelReg->Sel; + pVmcs->u64GuestFsBase.u = pSelReg->u64Base; + pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE; + break; + + case X86_SREG_GS: + pVmcs->GuestGs = pSelReg->Sel; + pVmcs->u64GuestGsBase.u = pSelReg->u64Base; + pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE; + break; + } + } + } + + /* Segment attribute bits 31:7 and 11:8 MBZ. */ + uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P + | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_UNUSABLE; + /* LDTR. */ + { + PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr; + pVmcs->GuestLdtr = pSelReg->Sel; + pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base; + Assert(X86_IS_CANONICAL(pSelReg->u64Base)); + pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit; + pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask; + } + + /* TR. */ + { + PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr; + pVmcs->GuestTr = pSelReg->Sel; + pVmcs->u64GuestTrBase.u = pSelReg->u64Base; + pVmcs->u32GuestTrLimit = pSelReg->u32Limit; + pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask; + } + + /* GDTR. */ + pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt; + pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt; + + /* IDTR. */ + pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt; + pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt; +} + + +/** + * Saves guest non-register state as part of VM-exit. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason. + */ +IEM_STATIC void iemVmxVmexitSaveGuestNonRegState(PVMCPU pVCpu, uint32_t uExitReason) +{ + /* + * Save guest non-register state. + * See Intel spec. 27.3.4 "Saving Non-Register State". + */ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + + /* + * Activity state. + * Most VM-exits will occur in the active state. However, if the first instruction + * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set, + * the VM-exit will be from the HLT activity state. + * + * See Intel spec. 25.5.2 "Monitor Trap Flag". + */ + /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or + * not? */ + EMSTATE enmActivityState = EMGetState(pVCpu); + switch (enmActivityState) + { + case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break; + default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break; + } + + /* Interruptibility-state. */ + pVmcs->u32GuestIntrState = 0; + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) + pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI; + + if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) + && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu)) + { + /** @todo NSTVMX: We can't distinguish between blocking-by-MovSS and blocking-by-STI + * currently. */ + pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI; + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); + } + /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */ + + /* + * Pending debug exceptions. + */ + if ( uExitReason != VMX_EXIT_INIT_SIGNAL + && uExitReason != VMX_EXIT_SMI + && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK + && !HMVmxIsVmexitTrapLike(uExitReason)) + { + /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when + * block-by-MovSS is in effect. */ + pVmcs->u64GuestPendingDbgXcpt.u = 0; + } + else + { + /* + * Pending debug exception field is identical to DR6 except the RTM bit (16) which needs to be flipped. + * The "enabled breakpoint" bit (12) is not present in DR6, so we need to update it here. + * + * See Intel spec. 24.4.2 "Guest Non-Register State". + */ + uint64_t fPendingDbgMask = pVCpu->cpum.GstCtx.dr[6]; + uint64_t const fBpHitMask = VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP0 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP1 + | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP2 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP3; + if (fPendingDbgMask & fBpHitMask) + fPendingDbgMask |= VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP; + fPendingDbgMask ^= VMX_VMCS_GUEST_PENDING_DEBUG_RTM; + pVmcs->u64GuestPendingDbgXcpt.u = fPendingDbgMask; + } + + /* + * Save the VMX-preemption timer value back into the VMCS if the feature is enabled. + * + * For VMX-preemption timer VM-exits, we should have already written back 0 if the + * feature is supported back into the VMCS, and thus there is nothing further to do here. + */ + if ( uExitReason != VMX_EXIT_PREEMPT_TIMER + && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)) + pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu); + + /* PDPTEs. */ + /* We don't support EPT yet. */ + Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)); + pVmcs->u64GuestPdpte0.u = 0; + pVmcs->u64GuestPdpte1.u = 0; + pVmcs->u64GuestPdpte2.u = 0; + pVmcs->u64GuestPdpte3.u = 0; +} + + +/** + * Saves the guest-state as part of VM-exit. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason. + */ +IEM_STATIC void iemVmxVmexitSaveGuestState(PVMCPU pVCpu, uint32_t uExitReason) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu); + iemVmxVmexitSaveGuestSegRegs(pVCpu); + + /** @todo r=ramshankar: The below hack is no longer necessary because we invoke the + * VM-exit after updating RIP. I'm leaving it in-place temporarily in case + * we need to fix missing exit information or callers still setting + * instruction-length field when it is not necessary. */ +#if 0 + /* + * Save guest RIP, RSP and RFLAGS. + * See Intel spec. 27.3.3 "Saving RIP, RSP and RFLAGS". + * + * For trap-like VM-exits we must advance the RIP by the length of the instruction. + * Callers must pass the instruction length in the VM-exit instruction length + * field though it is undefined for such VM-exits. After updating RIP here, we clear + * the VM-exit instruction length field. + * + * See Intel spec. 27.1 "Architectural State Before A VM Exit" + */ + if (HMVmxIsTrapLikeVmexit(uExitReason)) + { + uint8_t const cbInstr = pVmcs->u32RoExitInstrLen; + AssertMsg(cbInstr >= 1 && cbInstr <= 15, ("uReason=%u cbInstr=%u\n", uExitReason, cbInstr)); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + iemVmxVmcsSetExitInstrLen(pVCpu, 0 /* cbInstr */); + } +#endif + + /* We don't support enclave mode yet. */ + pVmcs->u64GuestRip.u = pVCpu->cpum.GstCtx.rip; + pVmcs->u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp; + pVmcs->u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */ + + iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason); +} + + +/** + * Saves the guest MSRs into the VM-exit auto-store MSRs area as part of VM-exit. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason (for diagnostic purposes). + */ +IEM_STATIC int iemVmxVmexitSaveGuestAutoMsrs(PVMCPU pVCpu, uint32_t uExitReason) +{ + /* + * Save guest MSRs. + * See Intel spec. 27.4 "Saving MSRs". + */ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char *const pszFailure = "VMX-abort"; + + /* + * The VM-exit MSR-store area address need not be a valid guest-physical address if the + * VM-exit MSR-store count is 0. If this is the case, bail early without reading it. + * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs". + */ + uint32_t const cMsrs = pVmcs->u32ExitMsrStoreCount; + if (!cMsrs) + return VINF_SUCCESS; + + /* + * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count + * is exceeded including possibly raising #MC exceptions during VMX transition. Our + * implementation causes a VMX-abort followed by a triple-fault. + */ + bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs); + if (fIsMsrCountValid) + { /* likely */ } + else + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount); + + PVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea); + Assert(pMsr); + for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++) + { + if ( !pMsr->u32Reserved + && pMsr->u32Msr != MSR_IA32_SMBASE + && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8) + { + VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value); + if (rcStrict == VINF_SUCCESS) + continue; + + /* + * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit. + * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort + * recording the MSR index in the auxiliary info. field and indicated further by our + * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0 + * if possible, or come up with a better, generic solution. + */ + pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr; + VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ + ? kVmxVDiag_Vmexit_MsrStoreRing3 + : kVmxVDiag_Vmexit_MsrStore; + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag); + } + else + { + pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr; + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd); + } + } + + RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrExitMsrStore.u; + int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysAutoMsrArea, + pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea), cMsrs * sizeof(VMXAUTOMSR)); + if (RT_SUCCESS(rc)) + { /* likely */ } + else + { + AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysAutoMsrArea, rc)); + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys); + } + + NOREF(uExitReason); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Performs a VMX abort (due to an fatal error during VM-exit). + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param enmAbort The VMX abort reason. + */ +IEM_STATIC VBOXSTRICTRC iemVmxAbort(PVMCPU pVCpu, VMXABORT enmAbort) +{ + /* + * Perform the VMX abort. + * See Intel spec. 27.7 "VMX Aborts". + */ + LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, HMGetVmxAbortDesc(enmAbort))); + + /* We don't support SMX yet. */ + pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort; + if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu)) + { + RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu); + uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort); + PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort)); + } + + return VINF_EM_TRIPLE_FAULT; +} + + +/** + * Loads host control registers, debug registers and MSRs as part of VM-exit. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPU pVCpu) +{ + /* + * Load host control registers, debug registers and MSRs. + * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE); + + /* CR0. */ + { + /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 MB1 bits are not modified. */ + uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0; + uint64_t const fCr0IgnMask = UINT64_C(0xffffffff1ff8ffc0) | X86_CR0_ET | X86_CR0_CD | X86_CR0_NW | uCr0Fixed0; + uint64_t const uHostCr0 = pVmcs->u64HostCr0.u; + uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0; + uint64_t const uValidCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask); + CPUMSetGuestCR0(pVCpu, uValidCr0); + } + + /* CR4. */ + { + /* CR4 MB1 bits are not modified. */ + uint64_t const fCr4IgnMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0; + uint64_t const uHostCr4 = pVmcs->u64HostCr4.u; + uint64_t const uGuestCr4 = pVCpu->cpum.GstCtx.cr4; + uint64_t uValidCr4 = (uHostCr4 & ~fCr4IgnMask) | (uGuestCr4 & fCr4IgnMask); + if (fHostInLongMode) + uValidCr4 |= X86_CR4_PAE; + else + uValidCr4 &= ~X86_CR4_PCIDE; + CPUMSetGuestCR4(pVCpu, uValidCr4); + } + + /* CR3 (host value validated while checking host-state during VM-entry). */ + pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u; + + /* DR7. */ + pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL; + + /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */ + + /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */ + pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u; + pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u; + pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs; + + /* FS, GS bases are loaded later while we load host segment registers. */ + + /* EFER MSR (host value validated while checking host-state during VM-entry). */ + if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR) + pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u; + else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + if (fHostInLongMode) + pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME); + else + pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME); + } + + /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */ + + /* PAT MSR (host value is validated while checking host-state during VM-entry). */ + if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR) + pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u; + + /* We don't support IA32_BNDCFGS MSR yet. */ +} + + +/** + * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxVmexitLoadHostSegRegs(PVMCPU pVCpu) +{ + /* + * Load host segment registers, GDTR, IDTR, LDTR and TR. + * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers". + * + * Warning! Be careful to not touch fields that are reserved by VT-x, + * e.g. segment limit high bits stored in segment attributes (in bits 11:8). + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE); + + /* CS, SS, ES, DS, FS, GS. */ + for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++) + { + RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg); + bool const fUnusable = RT_BOOL(HostSel == 0); + PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg]; + + /* Selector. */ + pSelReg->Sel = HostSel; + pSelReg->ValidSel = HostSel; + pSelReg->fFlags = CPUMSELREG_FLAGS_VALID; + + /* Limit. */ + pSelReg->u32Limit = 0xffffffff; + + /* Base. */ + pSelReg->u64Base = 0; + + /* Attributes. */ + if (iSegReg == X86_SREG_CS) + { + pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED; + pSelReg->Attr.n.u1DescType = 1; + pSelReg->Attr.n.u2Dpl = 0; + pSelReg->Attr.n.u1Present = 1; + pSelReg->Attr.n.u1Long = fHostInLongMode; + pSelReg->Attr.n.u1DefBig = !fHostInLongMode; + pSelReg->Attr.n.u1Granularity = 1; + Assert(!pSelReg->Attr.n.u1Unusable); + Assert(!fUnusable); + } + else + { + pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED; + pSelReg->Attr.n.u1DescType = 1; + pSelReg->Attr.n.u2Dpl = 0; + pSelReg->Attr.n.u1Present = 1; + pSelReg->Attr.n.u1DefBig = 1; + pSelReg->Attr.n.u1Granularity = 1; + pSelReg->Attr.n.u1Unusable = fUnusable; + } + } + + /* FS base. */ + if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable + || fHostInLongMode) + { + Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)); + pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u; + } + + /* GS base. */ + if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable + || fHostInLongMode) + { + Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u)); + pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u; + } + + /* TR. */ + Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u)); + Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable); + pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr; + pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr; + pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN; + pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u; + pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; + pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0; + pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0; + pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1; + pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0; + pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0; + + /* LDTR (Warning! do not touch the base and limits here). */ + pVCpu->cpum.GstCtx.ldtr.Sel = 0; + pVCpu->cpum.GstCtx.ldtr.ValidSel = 0; + pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE; + + /* GDTR. */ + Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)); + pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u; + pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff; + + /* IDTR.*/ + Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)); + pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u; + pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff; +} + + +/** + * Checks host PDPTes as part of VM-exit. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason (for logging purposes). + */ +IEM_STATIC int iemVmxVmexitCheckHostPdptes(PVMCPU pVCpu, uint32_t uExitReason) +{ + /* + * Check host PDPTEs. + * See Intel spec. 27.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char *const pszFailure = "VMX-abort"; + bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE); + + if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE) + && !fHostInLongMode) + { + uint64_t const uHostCr3 = pVCpu->cpum.GstCtx.cr3 & X86_CR3_PAE_PAGE_MASK; + X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES]; + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uHostCr3, sizeof(aPdptes)); + if (RT_SUCCESS(rc)) + { + for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++) + { + if ( !(aPdptes[iPdpte].u & X86_PDPE_P) + || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK)) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmexitPdpteRsvd(iPdpte); + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag); + } + } + } + else + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_HostPdpteCr3ReadPhys); + } + + NOREF(pszFailure); + NOREF(uExitReason); + return VINF_SUCCESS; +} + + +/** + * Loads the host MSRs from the VM-exit auto-load MSRs area as part of VM-exit. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmexitLoadHostAutoMsrs(PVMCPU pVCpu, uint32_t uExitReason) +{ + /* + * Load host MSRs. + * See Intel spec. 27.6 "Loading MSRs". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char *const pszFailure = "VMX-abort"; + + /* + * The VM-exit MSR-load area address need not be a valid guest-physical address if the + * VM-exit MSR load count is 0. If this is the case, bail early without reading it. + * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs". + */ + uint32_t const cMsrs = pVmcs->u32ExitMsrLoadCount; + if (!cMsrs) + return VINF_SUCCESS; + + /* + * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count + * is exceeded including possibly raising #MC exceptions during VMX transition. Our + * implementation causes a VMX-abort followed by a triple-fault. + */ + bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs); + if (fIsMsrCountValid) + { /* likely */ } + else + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount); + + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea)); + RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrExitMsrLoad.u; + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea), + GCPhysAutoMsrArea, cMsrs * sizeof(VMXAUTOMSR)); + if (RT_SUCCESS(rc)) + { + PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea); + Assert(pMsr); + for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++) + { + if ( !pMsr->u32Reserved + && pMsr->u32Msr != MSR_K8_FS_BASE + && pMsr->u32Msr != MSR_K8_GS_BASE + && pMsr->u32Msr != MSR_K6_EFER + && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL + && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8) + { + VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value); + if (rcStrict == VINF_SUCCESS) + continue; + + /* + * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit. + * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort + * recording the MSR index in the auxiliary info. field and indicated further by our + * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0 + * if possible, or come up with a better, generic solution. + */ + pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr; + VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE + ? kVmxVDiag_Vmexit_MsrLoadRing3 + : kVmxVDiag_Vmexit_MsrLoad; + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag); + } + else + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd); + } + } + else + { + AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysAutoMsrArea, rc)); + IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys); + } + + NOREF(uExitReason); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Loads the host state as part of VM-exit. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason (for logging purposes). + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPU pVCpu, uint32_t uExitReason) +{ + /* + * Load host state. + * See Intel spec. 27.5 "Loading Host State". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE); + + /* We cannot return from a long-mode guest to a host that is not in long mode. */ + if ( CPUMIsGuestInLongMode(pVCpu) + && !fHostInLongMode) + { + Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n")); + return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE); + } + + iemVmxVmexitLoadHostControlRegsMsrs(pVCpu); + iemVmxVmexitLoadHostSegRegs(pVCpu); + + /* + * Load host RIP, RSP and RFLAGS. + * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS" + */ + pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u; + pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u; + pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1; + + /* Clear address range monitoring. */ + EMMonitorWaitClear(pVCpu); + + /* Perform the VMX transition (PGM updates). */ + VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu); + if (rcStrict == VINF_SUCCESS) + { + /* Check host PDPTEs (only when we've fully switched page tables_. */ + /** @todo r=ramshankar: I don't know if PGM does this for us already or not... */ + int rc = iemVmxVmexitCheckHostPdptes(pVCpu, uExitReason); + if (RT_FAILURE(rc)) + { + Log(("VM-exit failed while restoring host PDPTEs -> VMX-Abort\n")); + return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE); + } + } + else if (RT_SUCCESS(rcStrict)) + { + Log3(("VM-exit: iemVmxWorldSwitch returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict), + uExitReason)); + rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); + } + else + { + Log3(("VM-exit: iemVmxWorldSwitch failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason)); + return VBOXSTRICTRC_VAL(rcStrict); + } + + Assert(rcStrict == VINF_SUCCESS); + + /* Load MSRs from the VM-exit auto-load MSR area. */ + int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason); + if (RT_FAILURE(rc)) + { + Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n")); + return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR); + } + return VINF_SUCCESS; +} + + +/** + * Gets VM-exit instruction information along with any displacement for an + * instruction VM-exit. + * + * @returns The VM-exit instruction information. + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason. + * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX). + * @param pGCPtrDisp Where to store the displacement field. Optional, can be + * NULL. + */ +IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp) +{ + RTGCPTR GCPtrDisp; + VMXEXITINSTRINFO ExitInstrInfo; + ExitInstrInfo.u = 0; + + /* + * Get and parse the ModR/M byte from our decoded opcodes. + */ + uint8_t bRm; + uint8_t const offModRm = pVCpu->iem.s.offModRm; + IEM_MODRM_GET_U8(pVCpu, bRm, offModRm); + if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT)) + { + /* + * ModR/M indicates register addressing. + * + * The primary/secondary register operands are reported in the iReg1 or iReg2 + * fields depending on whether it is a read/write form. + */ + uint8_t idxReg1; + uint8_t idxReg2; + if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId)) + { + idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg; + idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB; + } + else + { + idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB; + idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg; + } + ExitInstrInfo.All.u2Scaling = 0; + ExitInstrInfo.All.iReg1 = idxReg1; + ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode; + ExitInstrInfo.All.fIsRegOperand = 1; + ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize; + ExitInstrInfo.All.iSegReg = 0; + ExitInstrInfo.All.iIdxReg = 0; + ExitInstrInfo.All.fIdxRegInvalid = 1; + ExitInstrInfo.All.iBaseReg = 0; + ExitInstrInfo.All.fBaseRegInvalid = 1; + ExitInstrInfo.All.iReg2 = idxReg2; + + /* Displacement not applicable for register addressing. */ + GCPtrDisp = 0; + } + else + { + /* + * ModR/M indicates memory addressing. + */ + uint8_t uScale = 0; + bool fBaseRegValid = false; + bool fIdxRegValid = false; + uint8_t iBaseReg = 0; + uint8_t iIdxReg = 0; + if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT) + { + /* + * Parse the ModR/M, displacement for 16-bit addressing mode. + * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte". + */ + uint16_t u16Disp = 0; + uint8_t const offDisp = offModRm + sizeof(bRm); + if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6) + { + /* Displacement without any registers. */ + IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); + } + else + { + /* Register (index and base). */ + switch (bRm & X86_MODRM_RM_MASK) + { + case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break; + case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break; + case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break; + case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break; + case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break; + case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break; + case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break; + case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break; + } + + /* Register + displacement. */ + switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK) + { + case 0: break; + case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break; + case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break; + default: + { + /* Register addressing, handled at the beginning. */ + AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm)); + break; + } + } + } + + Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */ + GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */ + } + else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT) + { + /* + * Parse the ModR/M, SIB, displacement for 32-bit addressing mode. + * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte". + */ + uint32_t u32Disp = 0; + if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5) + { + /* Displacement without any registers. */ + uint8_t const offDisp = offModRm + sizeof(bRm); + IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); + } + else + { + /* Register (and perhaps scale, index and base). */ + uint8_t offDisp = offModRm + sizeof(bRm); + iBaseReg = (bRm & X86_MODRM_RM_MASK); + if (iBaseReg == 4) + { + /* An SIB byte follows the ModR/M byte, parse it. */ + uint8_t bSib; + uint8_t const offSib = offModRm + sizeof(bRm); + IEM_SIB_GET_U8(pVCpu, bSib, offSib); + + /* A displacement may follow SIB, update its offset. */ + offDisp += sizeof(bSib); + + /* Get the scale. */ + uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK; + + /* Get the index register. */ + iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK; + fIdxRegValid = RT_BOOL(iIdxReg != 4); + + /* Get the base register. */ + iBaseReg = bSib & X86_SIB_BASE_MASK; + fBaseRegValid = true; + if (iBaseReg == 5) + { + if ((bRm & X86_MODRM_MOD_MASK) == 0) + { + /* Mod is 0 implies a 32-bit displacement with no base. */ + fBaseRegValid = false; + IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); + } + else + { + /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */ + iBaseReg = X86_GREG_xBP; + } + } + } + + /* Register + displacement. */ + switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK) + { + case 0: /* Handled above */ break; + case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break; + case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break; + default: + { + /* Register addressing, handled at the beginning. */ + AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm)); + break; + } + } + } + + GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */ + } + else + { + Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT); + + /* + * Parse the ModR/M, SIB, displacement for 64-bit addressing mode. + * See Intel instruction spec. 2.2 "IA-32e Mode". + */ + uint64_t u64Disp = 0; + bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5); + if (fRipRelativeAddr) + { + /* + * RIP-relative addressing mode. + * + * The displacement is 32-bit signed implying an offset range of +/-2G. + * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing". + */ + uint8_t const offDisp = offModRm + sizeof(bRm); + IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); + } + else + { + uint8_t offDisp = offModRm + sizeof(bRm); + + /* + * Register (and perhaps scale, index and base). + * + * REX.B extends the most-significant bit of the base register. However, REX.B + * is ignored while determining whether an SIB follows the opcode. Hence, we + * shall OR any REX.B bit -after- inspecting for an SIB byte below. + * + * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings". + */ + iBaseReg = (bRm & X86_MODRM_RM_MASK); + if (iBaseReg == 4) + { + /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */ + uint8_t bSib; + uint8_t const offSib = offModRm + sizeof(bRm); + IEM_SIB_GET_U8(pVCpu, bSib, offSib); + + /* Displacement may follow SIB, update its offset. */ + offDisp += sizeof(bSib); + + /* Get the scale. */ + uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK; + + /* Get the index. */ + iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex; + fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */ + + /* Get the base. */ + iBaseReg = (bSib & X86_SIB_BASE_MASK); + fBaseRegValid = true; + if (iBaseReg == 5) + { + if ((bRm & X86_MODRM_MOD_MASK) == 0) + { + /* Mod is 0 implies a signed 32-bit displacement with no base. */ + IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); + } + else + { + /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */ + iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP; + } + } + } + iBaseReg |= pVCpu->iem.s.uRexB; + + /* Register + displacement. */ + switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK) + { + case 0: /* Handled above */ break; + case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break; + case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break; + default: + { + /* Register addressing, handled at the beginning. */ + AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm)); + break; + } + } + } + + GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp; + } + + /* + * The primary or secondary register operand is reported in iReg2 depending + * on whether the primary operand is in read/write form. + */ + uint8_t idxReg2; + if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId)) + { + idxReg2 = bRm & X86_MODRM_RM_MASK; + if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT) + idxReg2 |= pVCpu->iem.s.uRexB; + } + else + { + idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK; + if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT) + idxReg2 |= pVCpu->iem.s.uRexReg; + } + ExitInstrInfo.All.u2Scaling = uScale; + ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */ + ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode; + ExitInstrInfo.All.fIsRegOperand = 0; + ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize; + ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg; + ExitInstrInfo.All.iIdxReg = iIdxReg; + ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid; + ExitInstrInfo.All.iBaseReg = iBaseReg; + ExitInstrInfo.All.iIdxReg = !fBaseRegValid; + ExitInstrInfo.All.iReg2 = idxReg2; + } + + /* + * Handle exceptions to the norm for certain instructions. + * (e.g. some instructions convey an instruction identity in place of iReg2). + */ + switch (uExitReason) + { + case VMX_EXIT_GDTR_IDTR_ACCESS: + { + Assert(VMXINSTRID_IS_VALID(uInstrId)); + Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3)); + ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId); + ExitInstrInfo.GdtIdt.u2Undef0 = 0; + break; + } + + case VMX_EXIT_LDTR_TR_ACCESS: + { + Assert(VMXINSTRID_IS_VALID(uInstrId)); + Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3)); + ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId); + ExitInstrInfo.LdtTr.u2Undef0 = 0; + break; + } + + case VMX_EXIT_RDRAND: + case VMX_EXIT_RDSEED: + { + Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3); + break; + } + } + + /* Update displacement and return the constructed VM-exit instruction information field. */ + if (pGCPtrDisp) + *pGCPtrDisp = GCPtrDisp; + + return ExitInstrInfo.u; +} + + +/** + * VMX VM-exit handler. + * + * @returns Strict VBox status code. + * @retval VINF_VMX_VMEXIT when the VM-exit is successful. + * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a + * triple-fault. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason. + * + * @remarks Make sure VM-exit qualification is updated before calling this + * function! + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexit(PVMCPU pVCpu, uint32_t uExitReason) +{ +# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3) + RT_NOREF2(pVCpu, uExitReason); + return VINF_EM_RAW_EMULATE_INSTR; +# else + IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMEXIT_MASK); + + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* Update the VM-exit reason, the other relevant data fields are expected to be updated by the caller already. */ + pVmcs->u32RoExitReason = uExitReason; + Log3(("vmexit: uExitReason=%#RX32 uExitQual=%#RX64\n", uExitReason, pVmcs->u64RoExitQual)); + + /* + * We need to clear the VM-entry interruption information field's valid bit on VM-exit. + * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection". + */ + pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID; + + /* + * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now. + * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control". + */ + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma) + { + if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA) + pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST; + else + pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST; + } + + /* + * Save the guest state back into the VMCS. + * We only need to save the state when the VM-entry was successful. + */ + bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason); + if (!fVmentryFailed) + { + /* + * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit + * occurs in enclave mode/SMM which we don't support yet. + * + * If we ever add support for it, we can pass just the lower bits to the functions + * below, till then an assert should suffice. + */ + Assert(!RT_HI_U16(uExitReason)); + + /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */ + iemVmxVmexitSaveGuestState(pVCpu, uExitReason); + int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason); + if (RT_SUCCESS(rc)) + { /* likely */ } + else + return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS); + + /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */ + pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions &= ~VMCPU_FF_BLOCK_NMIS; + } + else + { + /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */ + uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason); + if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE + || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD) + iemVmxVmexitRestoreNmiBlockingFF(pVCpu); + } + + /* Restore the host (outer guest) state. */ + VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason); + if (RT_SUCCESS(rcStrict)) + { + Assert(rcStrict == VINF_SUCCESS); + rcStrict = VINF_VMX_VMEXIT; + } + else + Log3(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict))); + + /* We're no longer in nested-guest execution mode. */ + pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false; + + /* Revert any IEM-only nested-guest execution policy if it was set earlier, otherwise return rcStrict. */ + IEM_VMX_R3_EXECPOLICY_IEM_ALL_DISABLE_RET(pVCpu, "VM-exit", rcStrict); +# endif +} + + +/** + * VMX VM-exit handler for VM-exits due to instruction execution. + * + * This is intended for instructions where the caller provides all the relevant + * VM-exit information. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pExitInfo Pointer to the VM-exit instruction information struct. + */ +DECLINLINE(VBOXSTRICTRC) iemVmxVmexitInstrWithInfo(PVMCPU pVCpu, PCVMXVEXITINFO pExitInfo) +{ + /* + * For instructions where any of the following fields are not applicable: + * - VM-exit instruction info. is undefined. + * - VM-exit qualification must be cleared. + * - VM-exit guest-linear address is undefined. + * - VM-exit guest-physical address is undefined. + * + * The VM-exit instruction length is mandatory for all VM-exits that are caused by + * instruction execution. For VM-exits that are not due to instruction execution this + * field is undefined. + * + * In our implementation in IEM, all undefined fields are generally cleared. However, + * if the caller supplies information (from say the physical CPU directly) it is + * then possible that the undefined fields are not cleared. + * + * See Intel spec. 27.2.1 "Basic VM-Exit Information". + * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution". + */ + Assert(pExitInfo); + AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason)); + AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15, + ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr)); + + /* Update all the relevant fields from the VM-exit instruction information struct. */ + iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u); + iemVmxVmcsSetExitQual(pVCpu, pExitInfo->u64Qual); + iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr); + iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr); + iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr); + + /* Perform the VM-exit. */ + return iemVmxVmexit(pVCpu, pExitInfo->uReason); +} + + +/** + * VMX VM-exit handler for VM-exits due to instruction execution. + * + * This is intended for instructions that only provide the VM-exit instruction + * length. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstr(PVMCPU pVCpu, uint32_t uExitReason, uint8_t cbInstr) +{ + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = uExitReason; + ExitInfo.cbInstr = cbInstr; + +#ifdef VBOX_STRICT + /* To prevent us from shooting ourselves in the foot. Maybe remove later. */ + switch (uExitReason) + { + case VMX_EXIT_INVEPT: + case VMX_EXIT_INVPCID: + case VMX_EXIT_LDTR_TR_ACCESS: + case VMX_EXIT_GDTR_IDTR_ACCESS: + case VMX_EXIT_VMCLEAR: + case VMX_EXIT_VMPTRLD: + case VMX_EXIT_VMPTRST: + case VMX_EXIT_VMREAD: + case VMX_EXIT_VMWRITE: + case VMX_EXIT_VMXON: + case VMX_EXIT_XRSTORS: + case VMX_EXIT_XSAVES: + case VMX_EXIT_RDRAND: + case VMX_EXIT_RDSEED: + case VMX_EXIT_IO_INSTR: + AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5); + break; + } +#endif + + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); +} + + +/** + * VMX VM-exit handler for VM-exits due to instruction execution. + * + * This is intended for instructions that have a ModR/M byte and update the VM-exit + * instruction information and VM-exit qualification fields. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason. + * @param uInstrid The instruction identity (VMXINSTRID_XXX). + * @param cbInstr The instruction length in bytes. + * + * @remarks Do not use this for INS/OUTS instruction. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) +{ + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = uExitReason; + ExitInfo.cbInstr = cbInstr; + + /* + * Update the VM-exit qualification field with displacement bytes. + * See Intel spec. 27.2.1 "Basic VM-Exit Information". + */ + switch (uExitReason) + { + case VMX_EXIT_INVEPT: + case VMX_EXIT_INVPCID: + case VMX_EXIT_LDTR_TR_ACCESS: + case VMX_EXIT_GDTR_IDTR_ACCESS: + case VMX_EXIT_VMCLEAR: + case VMX_EXIT_VMPTRLD: + case VMX_EXIT_VMPTRST: + case VMX_EXIT_VMREAD: + case VMX_EXIT_VMWRITE: + case VMX_EXIT_VMXON: + case VMX_EXIT_XRSTORS: + case VMX_EXIT_XSAVES: + case VMX_EXIT_RDRAND: + case VMX_EXIT_RDSEED: + { + /* Construct the VM-exit instruction information. */ + RTGCPTR GCPtrDisp; + uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp); + + /* Update the VM-exit instruction information. */ + ExitInfo.InstrInfo.u = uInstrInfo; + + /* Update the VM-exit qualification. */ + ExitInfo.u64Qual = GCPtrDisp; + break; + } + + default: + AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5); + break; + } + + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); +} + + +/** + * Checks whether an I/O instruction for the given port is intercepted (causes a + * VM-exit) or not. + * + * @returns @c true if the instruction is intercepted, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * @param u16Port The I/O port being accessed by the instruction. + * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes). + */ +IEM_STATIC bool iemVmxIsIoInterceptSet(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * Check whether the I/O instruction must cause a VM-exit or not. + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT) + return true; + + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS) + { + uint8_t const *pbIoBitmapA = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvIoBitmap); + uint8_t const *pbIoBitmapB = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvIoBitmap) + VMX_V_IO_BITMAP_A_SIZE; + Assert(pbIoBitmapA); + Assert(pbIoBitmapB); + return HMGetVmxIoBitmapPermission(pbIoBitmapA, pbIoBitmapB, u16Port, cbAccess); + } + + return false; +} + + +/** + * VMX VM-exit handler for VM-exits due to Monitor-Trap Flag (MTF). + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitMtf(PVMCPU pVCpu) +{ + /* + * The MTF VM-exit can occur even when the MTF VM-execution control is + * not set (e.g. when VM-entry injects an MTF pending event), so do not + * check for it here. + */ + + /* Clear the force-flag indicating that monitor-trap flag is no longer active. */ + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER); + + /* Cause the MTF VM-exit. The VM-exit qualification MBZ. */ + return iemVmxVmexit(pVCpu, VMX_EXIT_MTF); +} + + +/** + * VMX VM-exit handler for VM-exits due to INVLPG. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param GCPtrPage The guest-linear address of the page being invalidated. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPU pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) +{ + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_INVLPG; + ExitInfo.cbInstr = cbInstr; + ExitInfo.u64Qual = GCPtrPage; + Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual)); + + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); +} + + +/** + * VMX VM-exit handler for VM-exits due to LMSW. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uGuestCr0 The current guest CR0. + * @param pu16NewMsw The machine-status word specified in LMSW's source + * operand. This will be updated depending on the VMX + * guest/host CR0 mask if LMSW is not intercepted. + * @param GCPtrEffDst The guest-linear address of the source operand in case + * of a memory operand. For register operand, pass + * NIL_RTGCPTR. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPU pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw, RTGCPTR GCPtrEffDst, + uint8_t cbInstr) +{ + /* + * LMSW VM-exits are subject to the CR0 guest/host mask and the CR0 read shadow. + * + * See Intel spec. 24.6.6 "Guest/Host Masks and Read Shadows for CR0 and CR4". + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pu16NewMsw); + + bool fIntercept = false; + uint32_t const fGstHostMask = pVmcs->u64Cr0Mask.u; + uint32_t const fReadShadow = pVmcs->u64Cr0ReadShadow.u; + + /* + * LMSW can never clear CR0.PE but it may set it. Hence, we handle the + * CR0.PE case first, before the rest of the bits in the MSW. + * + * If CR0.PE is owned by the host and CR0.PE differs between the + * MSW (source operand) and the read-shadow, we must cause a VM-exit. + */ + if ( (fGstHostMask & X86_CR0_PE) + && (*pu16NewMsw & X86_CR0_PE) + && !(fReadShadow & X86_CR0_PE)) + fIntercept = true; + + /* + * If CR0.MP, CR0.EM or CR0.TS is owned by the host, and the corresponding + * bits differ between the MSW (source operand) and the read-shadow, we must + * cause a VM-exit. + */ + uint32_t fGstHostLmswMask = fGstHostMask & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS); + if ((fReadShadow & fGstHostLmswMask) != (*pu16NewMsw & fGstHostLmswMask)) + fIntercept = true; + + if (fIntercept) + { + Log2(("lmsw: Guest intercept -> VM-exit\n")); + + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_MOV_CRX; + ExitInfo.cbInstr = cbInstr; + + bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR); + if (fMemOperand) + { + Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst)); + ExitInfo.u64GuestLinearAddr = GCPtrEffDst; + } + + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */ + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, *pu16NewMsw); + + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + /* + * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the + * CR0 guest/host mask must be left unmodified. + * + * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation". + */ + fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS); + *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (*pu16NewMsw & ~fGstHostLmswMask); + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to CLTS. + * + * @returns Strict VBox status code. + * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a + * VM-exit but must not modify the guest CR0.TS bit. + * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a + * VM-exit and modification to the guest CR0.TS bit is allowed (subject to + * CR0 fixed bits in VMX operation). + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPU pVCpu, uint8_t cbInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + uint32_t const fGstHostMask = pVmcs->u64Cr0Mask.u; + uint32_t const fReadShadow = pVmcs->u64Cr0ReadShadow.u; + + /* + * If CR0.TS is owned by the host: + * - If CR0.TS is set in the read-shadow, we must cause a VM-exit. + * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the + * CLTS instruction completes without clearing CR0.TS. + * + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + if (fGstHostMask & X86_CR0_TS) + { + if (fReadShadow & X86_CR0_TS) + { + Log2(("clts: Guest intercept -> VM-exit\n")); + + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_MOV_CRX; + ExitInfo.cbInstr = cbInstr; + + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */ + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_CLTS); + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + return VINF_VMX_MODIFIES_BEHAVIOR; + } + + /* + * If CR0.TS is not owned by the host, the CLTS instructions operates normally + * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation). + */ + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg' + * (CR0/CR4 write). + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param iCrReg The control register (either CR0 or CR4). + * @param uGuestCrX The current guest CR0/CR4. + * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated + * if no VM-exit is caused. + * @param iGReg The general register from which the CR0/CR4 value is + * being loaded. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPU pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, + uint8_t cbInstr) +{ + Assert(puNewCrX); + Assert(iCrReg == 0 || iCrReg == 4); + + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + uint64_t uGuestCrX; + uint64_t fGstHostMask; + uint64_t fReadShadow; + if (iCrReg == 0) + { + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0); + uGuestCrX = pVCpu->cpum.GstCtx.cr0; + fGstHostMask = pVmcs->u64Cr0Mask.u; + fReadShadow = pVmcs->u64Cr0ReadShadow.u; + } + else + { + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4); + uGuestCrX = pVCpu->cpum.GstCtx.cr4; + fGstHostMask = pVmcs->u64Cr4Mask.u; + fReadShadow = pVmcs->u64Cr4ReadShadow.u; + } + + /* + * For any CR0/CR4 bit owned by the host (in the CR0/CR4 guest/host mask), if the + * corresponding bits differ between the source operand and the read-shadow, + * we must cause a VM-exit. + * + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + if ((fReadShadow & fGstHostMask) != (*puNewCrX & fGstHostMask)) + { + Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg)); + + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_MOV_CRX; + ExitInfo.cbInstr = cbInstr; + + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg); + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + /* + * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host + * must not be modified the instruction. + * + * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation". + */ + *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask); + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read). + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param iGReg The general register to which the CR3 value is being stored. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPU pVCpu, uint8_t iGReg, uint8_t cbInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3); + + /* + * If the CR3-store exiting control is set, we must cause a VM-exit. + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT) + { + Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n")); + + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_MOV_CRX; + ExitInfo.cbInstr = cbInstr; + + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */ + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg); + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write). + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uNewCr3 The new CR3 value. + * @param iGReg The general register from which the CR3 value is being + * loaded. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPU pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * If the CR3-load exiting control is set and the new CR3 value does not + * match any of the CR3-target values in the VMCS, we must cause a VM-exit. + * + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT) + { + uint32_t uCr3TargetCount = pVmcs->u32Cr3TargetCount; + Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT); + + for (uint32_t idxCr3Target = 0; idxCr3Target < uCr3TargetCount; idxCr3Target++) + { + uint64_t const uCr3TargetValue = iemVmxVmcsGetCr3TargetValue(pVmcs, idxCr3Target); + if (uNewCr3 != uCr3TargetValue) + { + Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n")); + + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_MOV_CRX; + ExitInfo.cbInstr = cbInstr; + + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */ + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg); + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + } + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read). + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param iGReg The general register to which the CR8 value is being stored. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPU pVCpu, uint8_t iGReg, uint8_t cbInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * If the CR8-store exiting control is set, we must cause a VM-exit. + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT) + { + Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n")); + + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_MOV_CRX; + ExitInfo.cbInstr = cbInstr; + + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */ + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg); + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write). + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param iGReg The general register from which the CR8 value is being + * loaded. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPU pVCpu, uint8_t iGReg, uint8_t cbInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * If the CR8-load exiting control is set, we must cause a VM-exit. + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT) + { + Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n")); + + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_MOV_CRX; + ExitInfo.cbInstr = cbInstr; + + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */ + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg); + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov + * GReg,DRx' (DRx read). + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or + * VMXINSTRID_MOV_FROM_DRX). + * @param iDrReg The debug register being accessed. + * @param iGReg The general register to/from which the DRx value is being + * store/loaded. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPU pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, + uint8_t cbInstr) +{ + Assert(iDrReg <= 7); + Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX); + + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT) + { + uint32_t const uDirection = uInstrId == VMXINSTRID_MOV_TO_DRX ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE + : VMX_EXIT_QUAL_DRX_DIRECTION_READ; + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_MOV_DRX; + ExitInfo.cbInstr = cbInstr; + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION, uDirection) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg); + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT). + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or + * VMXINSTRID_IO_OUT). + * @param u16Port The I/O port being accessed. + * @param fImm Whether the I/O port was encoded using an immediate operand + * or the implicit DX register. + * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes). + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPU pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, bool fImm, uint8_t cbAccess, + uint8_t cbInstr) +{ + Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT); + Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4); + + bool const fIntercept = iemVmxIsIoInterceptSet(pVCpu, u16Port, cbAccess); + if (fIntercept) + { + uint32_t const uDirection = uInstrId == VMXINSTRID_IO_IN ? VMX_EXIT_QUAL_IO_DIRECTION_IN + : VMX_EXIT_QUAL_IO_DIRECTION_OUT; + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_IO_INSTR; + ExitInfo.cbInstr = cbInstr; + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port); + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS). + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or + * VMXINSTRID_IO_OUTS). + * @param u16Port The I/O port being accessed. + * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes). + * @param fRep Whether the instruction has a REP prefix or not. + * @param ExitInstrInfo The VM-exit instruction info. field. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPU pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess, bool fRep, + VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) +{ + Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS); + Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4); + Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT); + Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2); + Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES); + + bool const fIntercept = iemVmxIsIoInterceptSet(pVCpu, u16Port, cbAccess); + if (fIntercept) + { + /* + * Figure out the guest-linear address and the direction bit (INS/OUTS). + */ + /** @todo r=ramshankar: Is there something in IEM that already does this? */ + static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) }; + uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg; + uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize; + uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize]; + + uint32_t uDirection; + uint64_t uGuestLinearAddr; + if (uInstrId == VMXINSTRID_IO_INS) + { + uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN; + uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask); + } + else + { + uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT; + uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask); + } + + /* + * If the segment is ununsable, the guest-linear address in undefined. + * We shall clear it for consistency. + * + * See Intel spec. 27.2.1 "Basic VM-Exit Information". + */ + if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable) + uGuestLinearAddr = 0; + + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_IO_INSTR; + ExitInfo.cbInstr = cbInstr; + ExitInfo.InstrInfo = ExitInstrInfo; + ExitInfo.u64GuestLinearAddr = uGuestLinearAddr; + ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, VMX_EXIT_QUAL_IO_ENCODING_DX) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port); + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to MWAIT. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param fMonitorHwArmed Whether the address-range monitor hardware is armed. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPU pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) +{ + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_MWAIT; + ExitInfo.cbInstr = cbInstr; + ExitInfo.u64Qual = fMonitorHwArmed; + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); +} + + +/** + * VMX VM-exit handler for VM-exits due to PAUSE. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPU pVCpu, uint8_t cbInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the + * "PAUSE-loop exiting" control. + * + * The PLE-Gap is the maximum number of TSC ticks between two successive executions of + * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount + * of TSC ticks the guest is allowed to execute in a pause loop before we must cause + * a VM-exit. + * + * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting". + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + bool fIntercept = false; + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT) + fIntercept = true; + else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT) + && pVCpu->iem.s.uCpl == 0) + { + IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT); + + /* + * A previous-PAUSE-tick value of 0 is used to identify the first time + * execution of a PAUSE instruction after VM-entry at CPL 0. We must + * consider this to be the first execution of PAUSE in a loop according + * to the Intel. + * + * All subsequent records for the previous-PAUSE-tick we ensure that it + * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0. + */ + uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick; + uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick; + uint64_t const uTick = TMCpuTickGet(pVCpu); + uint32_t const uPleGap = pVmcs->u32PleGap; + uint32_t const uPleWindow = pVmcs->u32PleWindow; + if ( *puPrevPauseTick == 0 + || uTick - *puPrevPauseTick > uPleGap) + *puFirstPauseLoopTick = uTick; + else if (uTick - *puFirstPauseLoopTick > uPleWindow) + fIntercept = true; + + *puPrevPauseTick = uTick | 1; + } + + if (fIntercept) + { + VMXVEXITINFO ExitInfo; + RT_ZERO(ExitInfo); + ExitInfo.uReason = VMX_EXIT_PAUSE; + ExitInfo.cbInstr = cbInstr; + return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to task switches. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param enmTaskSwitch The cause of the task switch. + * @param SelNewTss The selector of the new TSS. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPU pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) +{ + /* + * Task-switch VM-exits are unconditional and provide the VM-exit qualification. + * + * If the cause of the task switch is due to execution of CALL, IRET or the JMP + * instruction or delivery of the exception generated by one of these instructions + * lead to a task switch through a task gate in the IDT, we need to provide the + * VM-exit instruction length. Any other means of invoking a task switch VM-exit + * leaves the VM-exit instruction length field undefined. + * + * See Intel spec. 25.2 "Other Causes Of VM Exits". + * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution". + */ + Assert(cbInstr <= 15); + + uint8_t uType; + switch (enmTaskSwitch) + { + case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break; + case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break; + case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break; + case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break; + IEM_NOT_REACHED_DEFAULT_CASE_RET(); + } + + uint64_t const uExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType); + iemVmxVmcsSetExitQual(pVCpu, uExitQual); + iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr); + return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH); +} + + +/** + * VMX VM-exit handler for VM-exits due to expiring of the preemption timer. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPU pVCpu) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* Check if the guest has enabled VMX-preemption timers in the first place. */ + if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER) + { + /* + * Calculate the current VMX-preemption timer value. + * Only if the value has reached zero, we cause the VM-exit. + */ + uint32_t uPreemptTimer = iemVmxCalcPreemptTimer(pVCpu); + if (!uPreemptTimer) + { + /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */ + if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER) + pVmcs->u32PreemptTimer = 0; + + /* Clear the force-flag indicating the VMX-preemption timer no longer active. */ + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER); + + /* Cause the VMX-preemption timer VM-exit. The VM-exit qualification MBZ. */ + return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER); + } + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to external interrupts. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uVector The external interrupt vector (pass 0 if the interrupt + * is still pending since we typically won't know the + * vector). + * @param fIntPending Whether the external interrupt is pending or + * acknowledged in the interrupt controller. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPU pVCpu, uint8_t uVector, bool fIntPending) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(fIntPending || uVector == 0); + + /* The VM-exit is subject to "External interrupt exiting" is being set. */ + if (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT) + { + if (fIntPending) + { + /* + * If the interrupt is pending and we don't need to acknowledge the + * interrupt on VM-exit, cause the VM-exit immediately. + * + * See Intel spec 25.2 "Other Causes Of VM Exits". + */ + if (!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)) + return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT); + + /* + * If the interrupt is pending and we -do- need to acknowledge the interrupt + * on VM-exit, postpone VM-exit till after the interrupt controller has been + * acknowledged that the interrupt has been consumed. + */ + return VINF_VMX_INTERCEPT_NOT_ACTIVE; + } + + /* + * If the interrupt is no longer pending (i.e. it has been acknowledged) and the + * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are + * all set, we cause the VM-exit now. We need to record the external interrupt that + * just occurred in the VM-exit interruption information field. + * + * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events". + */ + if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT) + { + bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret; + uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector) + | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT) + | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking) + | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1); + iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo); + return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT); + } + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to startup-IPIs (SIPI). + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uVector The SIPI vector. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitStartupIpi(PVMCPU pVCpu, uint8_t uVector) +{ + iemVmxVmcsSetExitQual(pVCpu, uVector); + return iemVmxVmexit(pVCpu, VMX_EXIT_SIPI); +} + + +/** + * VMX VM-exit handler for VM-exits due to init-IPIs (INIT). + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitInitIpi(PVMCPU pVCpu) +{ + return iemVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL); +} + + +/** + * VMX VM-exit handler for interrupt-window VM-exits. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitIntWindow(PVMCPU pVCpu) +{ + return iemVmxVmexit(pVCpu, VMX_EXIT_INT_WINDOW); +} + + +/** + * VMX VM-exit handler for VM-exits due to delivery of an event. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uVector The interrupt / exception vector. + * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX). + * @param uErrCode The error code associated with the event. + * @param uCr2 The CR2 value in case of a \#PF exception. + * @param cbInstr The instruction length in bytes. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitEvent(PVMCPU pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, + uint8_t cbInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * If the event is being injected as part of VM-entry, it isn't subject to event + * intercepts in the nested-guest. However, secondary exceptions that occur during + * injection of any event -are- subject to event interception. + * + * See Intel spec. 26.5.1.2 "VM Exits During Event Injection". + */ + if (!pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents) + { + /* Update the IDT-vectoring event in the VMCS as the source of the upcoming event. */ + uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags); + bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR); + uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector) + | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType) + | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid) + | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1); + iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo); + iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode); + + pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents = true; + return VINF_VMX_INTERCEPT_NOT_ACTIVE; + } + + /* + * We are injecting an external interrupt, check if we need to cause a VM-exit now. + * If not, the caller will continue delivery of the external interrupt as it would + * normally. + */ + if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT) + { + Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVmcs->u32RoIdtVectoringInfo)); + return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */); + } + + /* + * Evaluate intercepts for hardware exceptions including #BP, #DB, #OF + * generated by INT3, INT1 (ICEBP) and INTO respectively. + */ + Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT)); + bool fIntercept = false; + bool fIsHwXcpt = false; + if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) + || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR))) + { + fIsHwXcpt = true; + /* NMIs have a dedicated VM-execution control for causing VM-exits. */ + if (uVector == X86_XCPT_NMI) + fIntercept = RT_BOOL(pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT); + else + { + /* Page-faults are subject to masking using its error code. */ + uint32_t fXcptBitmap = pVmcs->u32XcptBitmap; + if (uVector == X86_XCPT_PF) + { + uint32_t const fXcptPFMask = pVmcs->u32XcptPFMask; + uint32_t const fXcptPFMatch = pVmcs->u32XcptPFMatch; + if ((uErrCode & fXcptPFMask) != fXcptPFMatch) + fXcptBitmap ^= RT_BIT(X86_XCPT_PF); + } + + /* Consult the exception bitmap for all hardware exceptions (except NMI). */ + if (fXcptBitmap & RT_BIT(uVector)) + fIntercept = true; + } + } + /* else: Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */ + + /* + * Now that we've determined whether the software interrupt or hardware exception + * causes a VM-exit, we need to construct the relevant VM-exit information and + * cause the VM-exit. + */ + if (fIntercept) + { + Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT)); + + /* Construct the rest of the event related information fields and cause the VM-exit. */ + uint64_t uExitQual = 0; + if (fIsHwXcpt) + { + if (uVector == X86_XCPT_PF) + { + Assert(fFlags & IEM_XCPT_FLAGS_CR2); + uExitQual = uCr2; + } + else if (uVector == X86_XCPT_DB) + { + IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR6); + uExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK; + } + } + + uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret; + bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR); + uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags); + uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector) + | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType) + | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid) + | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking) + | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1); + iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo); + iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode); + iemVmxVmcsSetExitQual(pVCpu, uExitQual); + + /* + * For VM exits due to software exceptions (those generated by INT3 or INTO) or privileged + * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction + * length. + */ + if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) + && (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR))) + iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr); + else + iemVmxVmcsSetExitInstrLen(pVCpu, 0); + + return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI); + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * VMX VM-exit handler for VM-exits due to a triple fault. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitTripleFault(PVMCPU pVCpu) +{ + return iemVmxVmexit(pVCpu, VMX_EXIT_TRIPLE_FAULT); +} + + +/** + * VMX VM-exit handler for APIC-accesses. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offAccess The offset of the register being accessed. + * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or + * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION). + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPU pVCpu, uint16_t offAccess, uint32_t fAccess) +{ + Assert((fAccess & IEM_ACCESS_TYPE_READ) || (fAccess & IEM_ACCESS_TYPE_WRITE) || (fAccess & IEM_ACCESS_INSTRUCTION)); + + VMXAPICACCESS enmAccess; + bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL); + if (fInEventDelivery) + enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY; + else if (fAccess & IEM_ACCESS_INSTRUCTION) + enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH; + else if (fAccess & IEM_ACCESS_TYPE_WRITE) + enmAccess = VMXAPICACCESS_LINEAR_WRITE; + else + enmAccess = VMXAPICACCESS_LINEAR_WRITE; + + uint64_t const uExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess) + | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess); + iemVmxVmcsSetExitQual(pVCpu, uExitQual); + return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS); +} + + +/** + * VMX VM-exit handler for APIC-write VM-exits. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offApic The write to the virtual-APIC page offset that caused this + * VM-exit. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPU pVCpu, uint16_t offApic) +{ + Assert(offApic < XAPIC_OFF_END + 4); + + /* Write only bits 11:0 of the APIC offset into the VM-exit qualification field. */ + offApic &= UINT16_C(0xfff); + iemVmxVmcsSetExitQual(pVCpu, offApic); + return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE); +} + + +/** + * VMX VM-exit handler for virtualized-EOIs. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmexitVirtEoi(PVMCPU pVCpu, uint8_t uVector) +{ + iemVmxVmcsSetExitQual(pVCpu, uVector); + return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI); +} + + +/** + * Sets virtual-APIC write emulation as pending. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offApic The offset in the virtual-APIC page that was written. + */ +DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPU pVCpu, uint16_t offApic) +{ + Assert(offApic < XAPIC_OFF_END + 4); + + /* + * Record the currently updated APIC offset, as we need this later for figuring + * out whether to perform TPR, EOI or self-IPI virtualization as well as well + * as for supplying the exit qualification when causing an APIC-write VM-exit. + */ + pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic; + + /* + * Signal that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI + * virtualization or APIC-write emulation). + */ + if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE)) + VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE); +} + + +/** + * Clears any pending virtual-APIC write emulation. + * + * @returns The virtual-APIC offset that was written before clearing it. + * @param pVCpu The cross context virtual CPU structure. + */ +DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPU pVCpu) +{ + uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite; + pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0; + Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE)); + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE); + return offVirtApicWrite; +} + + +/** + * Reads a 32-bit register from the virtual-APIC page at the given offset. + * + * @returns The register from the virtual-APIC page. + * @param pVCpu The cross context virtual CPU structure. + * @param offReg The offset of the register being read. + */ +DECLINLINE(uint32_t) iemVmxVirtApicReadRaw32(PVMCPU pVCpu, uint16_t offReg) +{ + Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t)); + uint8_t const *pbVirtApic = (const uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage); + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)); + uint32_t const uReg = *(const uint32_t *)(pbVirtApic + offReg); + return uReg; +} + + +/** + * Reads a 64-bit register from the virtual-APIC page at the given offset. + * + * @returns The register from the virtual-APIC page. + * @param pVCpu The cross context virtual CPU structure. + * @param offReg The offset of the register being read. + */ +DECLINLINE(uint64_t) iemVmxVirtApicReadRaw64(PVMCPU pVCpu, uint16_t offReg) +{ + Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t)); + uint8_t const *pbVirtApic = (const uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage); + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)); + uint64_t const uReg = *(const uint64_t *)(pbVirtApic + offReg); + return uReg; +} + + +/** + * Writes a 32-bit register to the virtual-APIC page at the given offset. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offReg The offset of the register being written. + * @param uReg The register value to write. + */ +DECLINLINE(void) iemVmxVirtApicWriteRaw32(PVMCPU pVCpu, uint16_t offReg, uint32_t uReg) +{ + Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t)); + uint8_t *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage); + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)); + *(uint32_t *)(pbVirtApic + offReg) = uReg; +} + + +/** + * Writes a 64-bit register to the virtual-APIC page at the given offset. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offReg The offset of the register being written. + * @param uReg The register value to write. + */ +DECLINLINE(void) iemVmxVirtApicWriteRaw64(PVMCPU pVCpu, uint16_t offReg, uint64_t uReg) +{ + Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t)); + uint8_t *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage); + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)); + *(uint64_t *)(pbVirtApic + offReg) = uReg; +} + + +/** + * Sets the vector in a virtual-APIC 256-bit sparse register. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offReg The offset of the 256-bit spare register. + * @param uVector The vector to set. + * + * @remarks This is based on our APIC device code. + */ +DECLINLINE(void) iemVmxVirtApicSetVector(PVMCPU pVCpu, uint16_t offReg, uint8_t uVector) +{ + Assert(offReg == XAPIC_OFF_ISR0 || offReg == XAPIC_OFF_TMR0 || offReg == XAPIC_OFF_IRR0); + uint8_t *pbBitmap = ((uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)) + offReg; + uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1; + uint16_t const idxVectorBit = uVector & UINT32_C(0x1f); + ASMAtomicBitSet(pbBitmap + offVector, idxVectorBit); +} + + +/** + * Clears the vector in a virtual-APIC 256-bit sparse register. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offReg The offset of the 256-bit spare register. + * @param uVector The vector to clear. + * + * @remarks This is based on our APIC device code. + */ +DECLINLINE(void) iemVmxVirtApicClearVector(PVMCPU pVCpu, uint16_t offReg, uint8_t uVector) +{ + Assert(offReg == XAPIC_OFF_ISR0 || offReg == XAPIC_OFF_TMR0 || offReg == XAPIC_OFF_IRR0); + uint8_t *pbBitmap = ((uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)) + offReg; + uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1; + uint16_t const idxVectorBit = uVector & UINT32_C(0x1f); + ASMAtomicBitClear(pbBitmap + offVector, idxVectorBit); +} + + +/** + * Checks if a memory access to the APIC-access page must causes an APIC-access + * VM-exit. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offAccess The offset of the register being accessed. + * @param cbAccess The size of the access in bytes. + * @param fAccess The type of access (must be IEM_ACCESS_TYPE_READ or + * IEM_ACCESS_TYPE_WRITE). + * + * @remarks This must not be used for MSR-based APIC-access page accesses! + * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead. + */ +IEM_STATIC bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPU pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(fAccess == IEM_ACCESS_TYPE_READ || fAccess == IEM_ACCESS_TYPE_WRITE); + + /* + * We must cause a VM-exit if any of the following are true: + * - TPR shadowing isn't active. + * - The access size exceeds 32-bits. + * - The access is not contained within low 4 bytes of a 16-byte aligned offset. + * + * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page". + * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized". + */ + if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW) + || cbAccess > sizeof(uint32_t) + || ((offAccess + cbAccess - 1) & 0xc) + || offAccess >= XAPIC_OFF_END + 4) + return true; + + /* + * If the access is part of an operation where we have already + * virtualized a virtual-APIC write, we must cause a VM-exit. + */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE)) + return true; + + /* + * Check write accesses to the APIC-access page that cause VM-exits. + */ + if (fAccess & IEM_ACCESS_TYPE_WRITE) + { + if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT) + { + /* + * With APIC-register virtualization, a write access to any of the + * following registers are virtualized. Accessing any other register + * causes a VM-exit. + */ + uint16_t const offAlignedAccess = offAccess & 0xfffc; + switch (offAlignedAccess) + { + case XAPIC_OFF_ID: + case XAPIC_OFF_TPR: + case XAPIC_OFF_EOI: + case XAPIC_OFF_LDR: + case XAPIC_OFF_DFR: + case XAPIC_OFF_SVR: + case XAPIC_OFF_ESR: + case XAPIC_OFF_ICR_LO: + case XAPIC_OFF_ICR_HI: + case XAPIC_OFF_LVT_TIMER: + case XAPIC_OFF_LVT_THERMAL: + case XAPIC_OFF_LVT_PERF: + case XAPIC_OFF_LVT_LINT0: + case XAPIC_OFF_LVT_LINT1: + case XAPIC_OFF_LVT_ERROR: + case XAPIC_OFF_TIMER_ICR: + case XAPIC_OFF_TIMER_DCR: + break; + default: + return true; + } + } + else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY) + { + /* + * With virtual-interrupt delivery, a write access to any of the + * following registers are virtualized. Accessing any other register + * causes a VM-exit. + * + * Note! The specification does not allow writing to offsets in-between + * these registers (e.g. TPR + 1 byte) unlike read accesses. + */ + switch (offAccess) + { + case XAPIC_OFF_TPR: + case XAPIC_OFF_EOI: + case XAPIC_OFF_ICR_LO: + break; + default: + return true; + } + } + else + { + /* + * Without APIC-register virtualization or virtual-interrupt delivery, + * only TPR accesses are virtualized. + */ + if (offAccess == XAPIC_OFF_TPR) + { /* likely */ } + else + return true; + } + } + else + { + /* + * Check read accesses to the APIC-access page that cause VM-exits. + */ + if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT) + { + /* + * With APIC-register virtualization, a read access to any of the + * following registers are virtualized. Accessing any other register + * causes a VM-exit. + */ + uint16_t const offAlignedAccess = offAccess & 0xfffc; + switch (offAlignedAccess) + { + /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */ + case XAPIC_OFF_ID: + case XAPIC_OFF_VERSION: + case XAPIC_OFF_TPR: + case XAPIC_OFF_EOI: + case XAPIC_OFF_LDR: + case XAPIC_OFF_DFR: + case XAPIC_OFF_SVR: + case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3: + case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7: + case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3: + case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7: + case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3: + case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7: + case XAPIC_OFF_ESR: + case XAPIC_OFF_ICR_LO: + case XAPIC_OFF_ICR_HI: + case XAPIC_OFF_LVT_TIMER: + case XAPIC_OFF_LVT_THERMAL: + case XAPIC_OFF_LVT_PERF: + case XAPIC_OFF_LVT_LINT0: + case XAPIC_OFF_LVT_LINT1: + case XAPIC_OFF_LVT_ERROR: + case XAPIC_OFF_TIMER_ICR: + case XAPIC_OFF_TIMER_DCR: + break; + default: + return true; + } + } + else + { + /* Without APIC-register virtualization, only TPR accesses are virtualized. */ + if (offAccess == XAPIC_OFF_TPR) + { /* likely */ } + else + return true; + } + } + + /* The APIC-access is virtualized, does not cause a VM-exit. */ + return false; +} + + +/** + * Virtualizes a memory-based APIC-access where the address is not used to access + * memory. + * + * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause + * page-faults but do not use the address to access memory. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pGCPhysAccess Pointer to the guest-physical address used. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPU pVCpu, PRTGCPHYS pGCPhysAccess) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS); + Assert(pGCPhysAccess); + + RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)PAGE_OFFSET_MASK; + RTGCPHYS const GCPhysApic = pVmcs->u64AddrApicAccess.u; + Assert(!(GCPhysApic & PAGE_OFFSET_MASK)); + + if (GCPhysAccess == GCPhysApic) + { + uint16_t const offAccess = *pGCPhysAccess & PAGE_OFFSET_MASK; + uint32_t const fAccess = IEM_ACCESS_TYPE_READ; + uint16_t const cbAccess = 1; + bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess); + if (fIntercept) + return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess); + + *pGCPhysAccess = GCPhysApic | offAccess; + return VINF_VMX_MODIFIES_BEHAVIOR; + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * Virtualizes a memory-based APIC-access. + * + * @returns VBox strict status code. + * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized. + * @retval VINF_VMX_VMEXIT if the access causes a VM-exit. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offAccess The offset of the register being accessed (within the + * APIC-access page). + * @param cbAccess The size of the access in bytes. + * @param pvData Pointer to the data being written or where to store the data + * being read. + * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or + * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION). + */ +IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPU pVCpu, uint16_t offAccess, size_t cbAccess, void *pvData, + uint32_t fAccess) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS); NOREF(pVmcs); + Assert(pvData); + Assert( (fAccess & IEM_ACCESS_TYPE_READ) + || (fAccess & IEM_ACCESS_TYPE_WRITE) + || (fAccess & IEM_ACCESS_INSTRUCTION)); + + bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess); + if (fIntercept) + return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess); + + if (fAccess & IEM_ACCESS_TYPE_WRITE) + { + /* + * A write access to the APIC-access page that is virtualized (rather than + * causing a VM-exit) writes data to the virtual-APIC page. + */ + uint32_t const u32Data = *(uint32_t *)pvData; + iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data); + + /* + * Record the currently updated APIC offset, as we need this later for figuring + * out whether to perform TPR, EOI or self-IPI virtualization as well as well + * as for supplying the exit qualification when causing an APIC-write VM-exit. + * + * After completion of the current operation, we need to perform TPR virtualization, + * EOI virtualization or APIC-write VM-exit depending on which register was written. + * + * The current operation may be a REP-prefixed string instruction, execution of any + * other instruction, or delivery of an event through the IDT. + * + * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be + * performed now but later after completion of the current operation. + * + * See Intel spec. 29.4.3.2 "APIC-Write Emulation". + */ + iemVmxVirtApicSetPendingWrite(pVCpu, offAccess); + } + else + { + /* + * A read access from the APIC-access page that is virtualized (rather than + * causing a VM-exit) returns data from the virtual-APIC page. + * + * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page". + */ + Assert(cbAccess <= 4); + Assert(offAccess < XAPIC_OFF_END + 4); + static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff }; + + uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess); + u32Data &= s_auAccessSizeMasks[cbAccess]; + *(uint32_t *)pvData = u32Data; + } + + return VINF_VMX_MODIFIES_BEHAVIOR; +} + + +/** + * Virtualizes an MSR-based APIC read access. + * + * @returns VBox strict status code. + * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized. + * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be + * handled by the x2APIC device. + * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was + * not within the range of valid MSRs, caller must raise \#GP(0). + * @param pVCpu The cross context virtual CPU structure. + * @param idMsr The x2APIC MSR being read. + * @param pu64Value Where to store the read x2APIC MSR value (only valid when + * VINF_VMX_MODIFIES_BEHAVIOR is returned). + */ +IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPU pVCpu, uint32_t idMsr, uint64_t *pu64Value) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS2_VIRT_X2APIC_MODE); + Assert(pu64Value); + + if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT) + { + /* + * Intel has different ideas in the x2APIC spec. vs the VT-x spec. as to + * what the end of the valid x2APIC MSR range is. Hence the use of different + * macros here. + * + * See Intel spec. 10.12.1.2 "x2APIC Register Address Space". + * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses". + */ + if ( idMsr >= VMX_V_VIRT_APIC_MSR_START + && idMsr <= VMX_V_VIRT_APIC_MSR_END) + { + uint16_t const offReg = (idMsr & 0xff) << 4; + uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg); + *pu64Value = u64Value; + return VINF_VMX_MODIFIES_BEHAVIOR; + } + return VERR_OUT_OF_RANGE; + } + + if (idMsr == MSR_IA32_X2APIC_TPR) + { + uint16_t const offReg = (idMsr & 0xff) << 4; + uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg); + *pu64Value = u64Value; + return VINF_VMX_MODIFIES_BEHAVIOR; + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * Virtualizes an MSR-based APIC write access. + * + * @returns VBox strict status code. + * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized. + * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was + * not within the range of valid MSRs, caller must raise \#GP(0). + * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally. + * + * @param pVCpu The cross context virtual CPU structure. + * @param idMsr The x2APIC MSR being written. + * @param u64Value The value of the x2APIC MSR being written. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPU pVCpu, uint32_t idMsr, uint64_t u64Value) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * Check if the access is to be virtualized. + * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses". + */ + if ( idMsr == MSR_IA32_X2APIC_TPR + || ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY) + && ( idMsr == MSR_IA32_X2APIC_EOI + || idMsr == MSR_IA32_X2APIC_SELF_IPI))) + { + /* Validate the MSR write depending on the register. */ + switch (idMsr) + { + case MSR_IA32_X2APIC_TPR: + case MSR_IA32_X2APIC_SELF_IPI: + { + if (u64Value & UINT64_C(0xffffffffffffff00)) + return VERR_OUT_OF_RANGE; + break; + } + case MSR_IA32_X2APIC_EOI: + { + if (u64Value != 0) + return VERR_OUT_OF_RANGE; + break; + } + } + + /* Write the MSR to the virtual-APIC page. */ + uint16_t const offReg = (idMsr & 0xff) << 4; + iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value); + + /* + * Record the currently updated APIC offset, as we need this later for figuring + * out whether to perform TPR, EOI or self-IPI virtualization as well as well + * as for supplying the exit qualification when causing an APIC-write VM-exit. + */ + iemVmxVirtApicSetPendingWrite(pVCpu, offReg); + + return VINF_VMX_MODIFIES_BEHAVIOR; + } + + return VINF_VMX_INTERCEPT_NOT_ACTIVE; +} + + +/** + * Finds the most significant set bit in a virtual-APIC 256-bit sparse register. + * + * @returns VBox status code. + * @retval VINF_SUCCES when the highest set bit is found. + * @retval VERR_NOT_FOUND when no bit is set. + * + * @param pVCpu The cross context virtual CPU structure. + * @param offReg The offset of the APIC 256-bit sparse register. + * @param pidxHighestBit Where to store the highest bit (most significant bit) + * set in the register. Only valid when VINF_SUCCESS is + * returned. + * + * @remarks The format of the 256-bit sparse register here mirrors that found in + * real APIC hardware. + */ +static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPU pVCpu, uint16_t offReg, uint8_t *pidxHighestBit) +{ + Assert(offReg < XAPIC_OFF_END + 4); + Assert(pidxHighestBit); + + /* + * There are 8 contiguous fragments (of 16-bytes each) in the sparse register. + * However, in each fragment only the first 4 bytes are used. + */ + uint8_t const cFrags = 8; + for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--) + { + uint16_t const offFrag = iFrag * 16; + uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag); + if (!u32Frag) + continue; + + unsigned idxHighestBit = ASMBitLastSetU32(u32Frag); + Assert(idxHighestBit > 0); + --idxHighestBit; + Assert(idxHighestBit <= UINT8_MAX); + *pidxHighestBit = idxHighestBit; + return VINF_SUCCESS; + } + return VERR_NOT_FOUND; +} + + +/** + * Evaluates pending virtual interrupts. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxEvalPendingVirtIntrs(PVMCPU pVCpu) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY); + + if (!(pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)) + { + uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus); + uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR); + + if ((uRvi >> 4) > (uPpr >> 4)) + { + Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signaling pending interrupt\n", uRvi, uPpr)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST); + } + else + Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr)); + } +} + + +/** + * Performs PPR virtualization. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxPprVirtualization(PVMCPU pVCpu) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); + Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY); + + /* + * PPR virtualization is caused in response to a VM-entry, TPR-virtualization, + * or EOI-virtualization. + * + * See Intel spec. 29.1.3 "PPR Virtualization". + */ + uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR); + uint32_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus); + + uint32_t uPpr; + if (((uTpr >> 4) & 0xf) >= ((uSvi >> 4) & 0xf)) + uPpr = uTpr & 0xff; + else + uPpr = uSvi & 0xf0; + + Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr)); + iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr); +} + + +/** + * Performs VMX TPR virtualization. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxTprVirtualization(PVMCPU pVCpu) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); + + /* + * We should have already performed the virtual-APIC write to the TPR offset + * in the virtual-APIC page. We now perform TPR virtualization. + * + * See Intel spec. 29.1.2 "TPR Virtualization". + */ + if (!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)) + { + uint32_t const uTprThreshold = pVmcs->u32TprThreshold; + uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR); + + /* + * If the VTPR falls below the TPR threshold, we must cause a VM-exit. + * See Intel spec. 29.1.2 "TPR Virtualization". + */ + if (((uTpr >> 4) & 0xf) < uTprThreshold) + { + Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold)); + return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD); + } + } + else + { + iemVmxPprVirtualization(pVCpu); + iemVmxEvalPendingVirtIntrs(pVCpu); + } + + return VINF_SUCCESS; +} + + +/** + * Checks whether an EOI write for the given interrupt vector causes a VM-exit or + * not. + * + * @returns @c true if the EOI write is intercepted, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * @param uVector The interrupt that was acknowledged using an EOI. + */ +IEM_STATIC bool iemVmxIsEoiInterceptSet(PVMCPU pVCpu, uint8_t uVector) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY); + + if (uVector < 64) + return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector)); + if (uVector < 128) + return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector)); + if (uVector < 192) + return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector)); + return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector)); +} + + +/** + * Performs EOI virtualization. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPU pVCpu) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY); + + /* + * Clear the interrupt guest-interrupt as no longer in-service (ISR) + * and get the next guest-interrupt that's in-service (if any). + * + * See Intel spec. 29.1.4 "EOI Virtualization". + */ + uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus); + uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus); + Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi)); + + uint8_t uVector = uSvi; + iemVmxVirtApicClearVector(pVCpu, XAPIC_OFF_ISR0, uVector); + + uVector = 0; + iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector); + + if (uVector) + Log2(("eoi_virt: next interrupt %#x\n", uVector)); + else + Log2(("eoi_virt: no interrupt pending in ISR\n")); + + /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */ + pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector); + + iemVmxPprVirtualization(pVCpu); + if (iemVmxIsEoiInterceptSet(pVCpu, uVector)) + return iemVmxVmexitVirtEoi(pVCpu, uVector); + iemVmxEvalPendingVirtIntrs(pVCpu); + return VINF_SUCCESS; +} + + +/** + * Performs self-IPI virtualization. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPU pVCpu) +{ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); + + /* + * We should have already performed the virtual-APIC write to the self-IPI offset + * in the virtual-APIC page. We now perform self-IPI virtualization. + * + * See Intel spec. 29.1.5 "Self-IPI Virtualization". + */ + uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO); + Log2(("self_ipi_virt: uVector=%#x\n", uVector)); + iemVmxVirtApicSetVector(pVCpu, XAPIC_OFF_IRR0, uVector); + uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus); + uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus); + if (uVector > uRvi) + pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi); + iemVmxEvalPendingVirtIntrs(pVCpu); + return VINF_SUCCESS; +} + + +/** + * Performs VMX APIC-write emulation. + * + * @returns VBox strict status code. + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPU pVCpu) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* + * Perform APIC-write emulation based on the virtual-APIC register written. + * See Intel spec. 29.4.3.2 "APIC-Write Emulation". + */ + uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu); + VBOXSTRICTRC rcStrict; + switch (offApicWrite) + { + case XAPIC_OFF_TPR: + { + /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */ + uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR); + uTpr &= UINT32_C(0x000000ff); + iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr); + Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr)); + rcStrict = iemVmxTprVirtualization(pVCpu); + break; + } + + case XAPIC_OFF_EOI: + { + if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY) + { + /* Clear VEOI and perform EOI virtualization. */ + iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0); + Log2(("iemVmxApicWriteEmulation: EOI write\n")); + rcStrict = iemVmxEoiVirtualization(pVCpu); + } + else + rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite); + break; + } + + case XAPIC_OFF_ICR_LO: + { + if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY) + { + /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */ + uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR); + uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700); + uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0); + if ( !(uIcrLo & fIcrLoMb0) + && (uIcrLo & fIcrLoMb1)) + { + Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff))); + rcStrict = iemVmxSelfIpiVirtualization(pVCpu); + } + else + rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite); + } + else + rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite); + break; + } + + case XAPIC_OFF_ICR_HI: + { + /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */ + uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI); + uIcrHi &= UINT32_C(0xff000000); + iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi); + rcStrict = VINF_SUCCESS; + break; + } + + default: + { + /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */ + rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite); + break; + } + } + + return rcStrict; +} + + +/** + * Checks guest control registers, debug registers and MSRs as part of VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * Guest Control Registers, Debug Registers, and MSRs. + * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char *const pszFailure = "VM-exit"; + bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST); + + /* CR0 reserved bits. */ + { + /* CR0 MB1 bits. */ + uint64_t u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0; + Assert(!(u64Cr0Fixed0 & (X86_CR0_NW | X86_CR0_CD))); + if (fUnrestrictedGuest) + u64Cr0Fixed0 &= ~(X86_CR0_PE | X86_CR0_PG); + if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) != u64Cr0Fixed0) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0); + + /* CR0 MBZ bits. */ + uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1; + if (pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1); + + /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */ + if ( !fUnrestrictedGuest + && (pVmcs->u64GuestCr0.u & X86_CR0_PG) + && !(pVmcs->u64GuestCr0.u & X86_CR0_PE)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe); + } + + /* CR4 reserved bits. */ + { + /* CR4 MB1 bits. */ + uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0; + if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) != u64Cr4Fixed0) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0); + + /* CR4 MBZ bits. */ + uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1; + if (pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1); + } + + /* DEBUGCTL MSR. */ + if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG) + && (pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl); + + /* 64-bit CPU checks. */ + bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST); + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + if (fGstInLongMode) + { + /* PAE must be set. */ + if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG) + && (pVmcs->u64GuestCr0.u & X86_CR4_PAE)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae); + } + else + { + /* PCIDE should not be set. */ + if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide); + } + + /* CR3. */ + if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3); + + /* DR7. */ + if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG) + && (pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7); + + /* SYSENTER ESP and SYSENTER EIP. */ + if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u) + && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip); + } + + /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */ + Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)); + + /* PAT MSR. */ + if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR) + && !CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr); + + /* EFER MSR. */ + uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM)); + if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR) + && (pVmcs->u64GuestEferMsr.u & ~uValidEferMask)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd); + + bool const fGstLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_BIT_LMA); + bool const fGstLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_BIT_LME); + if ( fGstInLongMode == fGstLma + && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG) + || fGstLma == fGstLme)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr); + + /* We don't support IA32_BNDCFGS MSR yet. */ + Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR)); + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Checks guest segment registers, LDTR and TR as part of VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckGuestSegRegs(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * Segment registers. + * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char *const pszFailure = "VM-exit"; + bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM); + bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST); + bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST); + + /* Selectors. */ + if ( !fGstInV86Mode + && !fUnrestrictedGuest + && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl); + + for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++) + { + CPUMSELREG SelReg; + int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg); + if (RT_LIKELY(rc == VINF_SUCCESS)) + { /* likely */ } + else + return rc; + + /* + * Virtual-8086 mode checks. + */ + if (fGstInV86Mode) + { + /* Base address. */ + if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + + /* Limit. */ + if (SelReg.u32Limit == 0xffff) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + + /* Attribute. */ + if (SelReg.Attr.u == 0xf3) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + + /* We're done; move to checking the next segment. */ + continue; + } + + /* Checks done by 64-bit CPUs. */ + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + /* Base address. */ + if ( iSegReg == X86_SREG_FS + || iSegReg == X86_SREG_GS) + { + if (X86_IS_CANONICAL(SelReg.u64Base)) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + } + else if (iSegReg == X86_SREG_CS) + { + if (!RT_HI_U32(SelReg.u64Base)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs); + } + else + { + if ( SelReg.Attr.n.u1Unusable + || !RT_HI_U32(SelReg.u64Base)) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + } + } + + /* + * Checks outside Virtual-8086 mode. + */ + uint8_t const uSegType = SelReg.Attr.n.u4Type; + uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType; + uint8_t const fUsable = !SelReg.Attr.n.u1Unusable; + uint8_t const uDpl = SelReg.Attr.n.u2Dpl; + uint8_t const fPresent = SelReg.Attr.n.u1Present; + uint8_t const uGranularity = SelReg.Attr.n.u1Granularity; + uint8_t const uDefBig = SelReg.Attr.n.u1DefBig; + uint8_t const fSegLong = SelReg.Attr.n.u1Long; + + /* Code or usable segment. */ + if ( iSegReg == X86_SREG_CS + || fUsable) + { + /* Reserved bits (bits 31:17 and bits 11:8). */ + if (!(SelReg.Attr.u & 0xfffe0f00)) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + + /* Descriptor type. */ + if (fCodeDataSeg) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + + /* Present. */ + if (fPresent) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + + /* Granularity. */ + if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity) + && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity)) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + } + + if (iSegReg == X86_SREG_CS) + { + /* Segment Type and DPL. */ + if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED) + && fUnrestrictedGuest) + { + if (uDpl == 0) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero); + } + else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED) + || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED)) + { + X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr; + if (uDpl == AttrSs.n.u2Dpl) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs); + } + else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED)) + == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED)) + { + X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr; + if (uDpl <= AttrSs.n.u2Dpl) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs); + } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType); + + /* Def/Big. */ + if ( fGstInLongMode + && fSegLong) + { + if (uDefBig == 0) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig); + } + } + else if (iSegReg == X86_SREG_SS) + { + /* Segment Type. */ + if ( !fUsable + || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED) + || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType); + + /* DPL. */ + if (fUnrestrictedGuest) + { + if (uDpl == (SelReg.Sel & X86_SEL_RPL)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl); + } + X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr; + if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED) + || (pVmcs->u64GuestCr0.u & X86_CR0_PE)) + { + if (uDpl == 0) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero); + } + } + else + { + /* DS, ES, FS, GS. */ + if (fUsable) + { + /* Segment type. */ + if (uSegType & X86_SEL_TYPE_ACCESSED) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + + if ( !(uSegType & X86_SEL_TYPE_CODE) + || (uSegType & X86_SEL_TYPE_READ)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead); + + /* DPL. */ + if ( !fUnrestrictedGuest + && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED)) + { + if (uDpl >= (SelReg.Sel & X86_SEL_RPL)) + { /* likely */ } + else + { + VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + } + } + } + } + + /* + * LDTR. + */ + { + CPUMSELREG Ldtr; + Ldtr.Sel = pVmcs->GuestLdtr; + Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit; + Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u; + Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr; + + if (!Ldtr.Attr.n.u1Unusable) + { + /* Selector. */ + if (!(Ldtr.Sel & X86_SEL_LDT)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr); + + /* Base. */ + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + if (X86_IS_CANONICAL(Ldtr.u64Base)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr); + } + + /* Attributes. */ + /* Reserved bits (bits 31:17 and bits 11:8). */ + if (!(Ldtr.Attr.u & 0xfffe0f00)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd); + + if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType); + + if (!Ldtr.Attr.n.u1DescType) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType); + + if (Ldtr.Attr.n.u1Present) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent); + + if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity) + && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran); + } + } + + /* + * TR. + */ + { + CPUMSELREG Tr; + Tr.Sel = pVmcs->GuestTr; + Tr.u32Limit = pVmcs->u32GuestTrLimit; + Tr.u64Base = pVmcs->u64GuestTrBase.u; + Tr.Attr.u = pVmcs->u32GuestTrAttr; + + /* Selector. */ + if (!(Tr.Sel & X86_SEL_LDT)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr); + + /* Base. */ + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + if (X86_IS_CANONICAL(Tr.u64Base)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr); + } + + /* Attributes. */ + /* Reserved bits (bits 31:17 and bits 11:8). */ + if (!(Tr.Attr.u & 0xfffe0f00)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd); + + if (!Tr.Attr.n.u1Unusable) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable); + + if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY + || ( !fGstInLongMode + && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType); + + if (!Tr.Attr.n.u1DescType) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType); + + if (Tr.Attr.n.u1Present) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent); + + if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity) + && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran); + } + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Checks guest GDTR and IDTR as part of VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckGuestGdtrIdtr(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * GDTR and IDTR. + * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char *const pszFailure = "VM-exit"; + + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + /* Base. */ + if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase); + + if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase); + } + + /* Limit. */ + if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit); + + if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit); + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Checks guest RIP and RFLAGS as part of VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckGuestRipRFlags(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * RIP and RFLAGS. + * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char *const pszFailure = "VM-exit"; + bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST); + + /* RIP. */ + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr; + if ( !fGstInLongMode + || !AttrCs.n.u1Long) + { + if (!RT_HI_U32(pVmcs->u64GuestRip.u)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd); + } + + if ( fGstInLongMode + && AttrCs.n.u1Long) + { + Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */ + if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64 + && X86_IS_CANONICAL(pVmcs->u64GuestRip.u)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip); + } + } + + /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */ + uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u + : pVmcs->u64GuestRFlags.s.Lo; + if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK)) + && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd); + + if ( fGstInLongMode + || !(pVmcs->u64GuestCr0.u & X86_CR0_PE)) + { + if (!(uGuestRFlags & X86_EFL_VM)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm); + } + + if ( VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo) + && VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_EXT_INT) + { + if (uGuestRFlags & X86_EFL_IF) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf); + } + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Checks guest non-register state as part of VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckGuestNonRegState(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * Guest non-register state. + * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State". + */ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char *const pszFailure = "VM-exit"; + + /* + * Activity state. + */ + uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc; + uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES); + if (!(pVmcs->u32GuestActivityState & fActivityStateMask)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd); + + X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr; + if ( !AttrSs.n.u2Dpl + || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl); + + if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI + || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS) + { + if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs); + } + + if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo)) + { + uint8_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo); + uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo); + AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN)); + switch (pVmcs->u32GuestActivityState) + { + case VMX_VMCS_GUEST_ACTIVITY_HLT: + { + if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT + || uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI + || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT + && ( uVector == X86_XCPT_DB + || uVector == X86_XCPT_MC)) + || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT + && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt); + break; + } + + case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN: + { + if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI + || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT + && uVector == X86_XCPT_MC)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown); + break; + } + + case VMX_VMCS_GUEST_ACTIVITY_ACTIVE: + default: + break; + } + } + + /* + * Interruptibility state. + */ + if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd); + + if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)) + != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs); + + if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF) + || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti); + + if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo)) + { + uint8_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo); + if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT) + { + if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt); + } + else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI) + { + if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))) + { /* likely */ } + else + { + /* + * We don't support injecting NMIs when blocking-by-STI would be in effect. + * We update the VM-exit qualification only when blocking-by-STI is set + * without blocking-by-MovSS being set. Although in practise it does not + * make much difference since the order of checks are implementation defined. + */ + if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)) + iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi); + } + + if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI) + || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi); + } + } + + /* We don't support SMM yet. So blocking-by-SMIs must not be set. */ + if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi); + + /* We don't support SGX yet. So enclave-interruption must not be set. */ + if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave); + + /* + * Pending debug exceptions. + */ + uint64_t const uPendingDbgXcpt = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode + ? pVmcs->u64GuestPendingDbgXcpt.u + : pVmcs->u64GuestPendingDbgXcpt.s.Lo; + if (!(uPendingDbgXcpt & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd); + + if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)) + || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT) + { + if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF) + && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF) + && !(uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf); + + if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF) + || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)) + && (uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf); + } + + /* We don't support RTM (Real-time Transactional Memory) yet. */ + if (uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_RTM) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm); + + /* + * VMCS link pointer. + */ + if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff)) + { + RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u; + /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */ + if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu)) + { /* likely */ } + else + { + iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs); + } + + /* Validate the address. */ + if ( (GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK) + || (GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs)) + { + iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr); + } + + /* Read the VMCS-link pointer from guest memory. */ + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)); + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs), + GCPhysShadowVmcs, VMX_V_VMCS_SIZE); + if (RT_FAILURE(rc)) + { + iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys); + } + + /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */ + if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID) + { /* likely */ } + else + { + iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId); + } + + /* Verify the shadow bit is set if VMCS shadowing is enabled . */ + if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING) + || pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.fIsShadowVmcs) + { /* likely */ } + else + { + iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow); + } + + /* Finally update our cache of the guest physical address of the shadow VMCS. */ + pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs; + } + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Checks if the PDPTEs referenced by the nested-guest CR3 are valid as part of + * VM-entry. + * + * @returns @c true if all PDPTEs are valid, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + * @param pVmcs Pointer to the virtual VMCS. + */ +IEM_STATIC int iemVmxVmentryCheckGuestPdptesForCr3(PVMCPU pVCpu, const char *pszInstr, PVMXVVMCS pVmcs) +{ + /* + * Check PDPTEs. + * See Intel spec. 4.4.1 "PDPTE Registers". + */ + uint64_t const uGuestCr3 = pVmcs->u64GuestCr3.u & X86_CR3_PAE_PAGE_MASK; + const char *const pszFailure = "VM-exit"; + + X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES]; + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uGuestCr3, sizeof(aPdptes)); + if (RT_SUCCESS(rc)) + { + for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++) + { + if ( !(aPdptes[iPdpte].u & X86_PDPE_P) + || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK)) + { /* likely */ } + else + { + iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE); + VMXVDIAG const enmDiag = iemVmxGetDiagVmentryPdpteRsvd(iPdpte); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + } + } + else + { + iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpteCr3ReadPhys); + } + + NOREF(pszFailure); + NOREF(pszInstr); + return rc; +} + + +/** + * Checks guest PDPTEs as part of VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckGuestPdptes(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * Guest PDPTEs. + * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries". + */ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST); + + /* Check PDPTes if the VM-entry is to a guest using PAE paging. */ + int rc; + if ( !fGstInLongMode + && (pVmcs->u64GuestCr4.u & X86_CR4_PAE) + && (pVmcs->u64GuestCr0.u & X86_CR0_PG)) + { + /* + * We don't support nested-paging for nested-guests yet. + * + * Without nested-paging for nested-guests, PDPTEs in the VMCS are not used, + * rather we need to check the PDPTEs referenced by the guest CR3. + */ + rc = iemVmxVmentryCheckGuestPdptesForCr3(pVCpu, pszInstr, pVmcs); + } + else + rc = VINF_SUCCESS; + return rc; +} + + +/** + * Checks guest-state as part of VM-entry. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckGuestState(PVMCPU pVCpu, const char *pszInstr) +{ + int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + return iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr); + } + } + } + } + return rc; +} + + +/** + * Checks host-state as part of VM-entry. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckHostState(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * Host Control Registers and MSRs. + * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char * const pszFailure = "VMFail"; + + /* CR0 reserved bits. */ + { + /* CR0 MB1 bits. */ + uint64_t const u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0; + if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) != u64Cr0Fixed0) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0); + + /* CR0 MBZ bits. */ + uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1; + if (pVmcs->u64HostCr0.u & ~u64Cr0Fixed1) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1); + } + + /* CR4 reserved bits. */ + { + /* CR4 MB1 bits. */ + uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0; + if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) != u64Cr4Fixed0) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0); + + /* CR4 MBZ bits. */ + uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1; + if (pVmcs->u64HostCr4.u & ~u64Cr4Fixed1) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1); + } + + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + /* CR3 reserved bits. */ + if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3); + + /* SYSENTER ESP and SYSENTER EIP. */ + if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u) + && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip); + } + + /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */ + Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR)); + + /* PAT MSR. */ + if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR) + || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr); + + /* EFER MSR. */ + uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM)); + if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR) + || !(pVmcs->u64HostEferMsr.u & ~uValidEferMask)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd); + + bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE); + bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA); + bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME); + if ( fHostInLongMode == fHostLma + && fHostInLongMode == fHostLme) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr); + + /* + * Host Segment and Descriptor-Table Registers. + * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers". + */ + /* Selector RPL and TI. */ + if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT)) + && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT)) + && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT)) + && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT)) + && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT)) + && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT)) + && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT))) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel); + + /* CS and TR selectors cannot be 0. */ + if ( pVmcs->HostCs + && pVmcs->HostTr) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr); + + /* SS cannot be 0 if 32-bit host. */ + if ( fHostInLongMode + || pVmcs->HostSs) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs); + + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + /* FS, GS, GDTR, IDTR, TR base address. */ + if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u) + && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u) + && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u) + && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u) + && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase); + } + + /* + * Host address-space size for 64-bit CPUs. + * See Intel spec. 26.2.4 "Checks Related to Address-Space Size". + */ + bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST); + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu); + + /* Logical processor in IA-32e mode. */ + if (fCpuInLongMode) + { + if (fHostInLongMode) + { + /* PAE must be set. */ + if (pVmcs->u64HostCr4.u & X86_CR4_PAE) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae); + + /* RIP must be canonical. */ + if (X86_IS_CANONICAL(pVmcs->u64HostRip.u)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip); + } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode); + } + else + { + /* Logical processor is outside IA-32e mode. */ + if ( !fGstInLongMode + && !fHostInLongMode) + { + /* PCIDE should not be set. */ + if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide); + + /* The high 32-bits of RIP MBZ. */ + if (!pVmcs->u64HostRip.s.Hi) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd); + } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode); + } + } + else + { + /* Host address-space size for 32-bit CPUs. */ + if ( !fGstInLongMode + && !fHostInLongMode) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu); + } + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Checks VM-entry controls fields as part of VM-entry. + * See Intel spec. 26.2.1.3 "VM-Entry Control Fields". + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckEntryCtls(PVMCPU pVCpu, const char *pszInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char * const pszFailure = "VMFail"; + + /* VM-entry controls. */ + VMXCTLSMSR const EntryCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls; + if (~pVmcs->u32EntryCtls & EntryCtls.n.allowed0) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0); + + if (pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1); + + /* Event injection. */ + uint32_t const uIntInfo = pVmcs->u32EntryIntInfo; + if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID)) + { + /* Type and vector. */ + uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE); + uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR); + uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30); + if ( !uRsvd + && HMVmxIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType) + && HMVmxIsEntryIntInfoVectorValid(uVector, uType)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd); + + /* Exception error code. */ + if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID)) + { + /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */ + if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST) + || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe); + + /* Exceptions that provide an error code. */ + if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT + && ( uVector == X86_XCPT_DF + || uVector == X86_XCPT_TS + || uVector == X86_XCPT_NP + || uVector == X86_XCPT_SS + || uVector == X86_XCPT_GP + || uVector == X86_XCPT_PF + || uVector == X86_XCPT_AC)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec); + + /* Exception error-code reserved bits. */ + if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK)) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd); + + /* Injecting a software interrupt, software exception or privileged software exception. */ + if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT + || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT + || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT) + { + /* Instruction length must be in the range 0-15. */ + if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen); + + /* Instruction length of 0 is allowed only when its CPU feature is present. */ + if ( pVmcs->u32EntryInstrLen == 0 + && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero); + } + } + } + + /* VM-entry MSR-load count and VM-entry MSR-load area address. */ + if (pVmcs->u32EntryMsrLoadCount) + { + if ( (pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK) + || (pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad); + } + + Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */ + Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */ + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Checks VM-exit controls fields as part of VM-entry. + * See Intel spec. 26.2.1.2 "VM-Exit Control Fields". + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryCheckExitCtls(PVMCPU pVCpu, const char *pszInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char * const pszFailure = "VMFail"; + + /* VM-exit controls. */ + VMXCTLSMSR const ExitCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls; + if (~pVmcs->u32ExitCtls & ExitCtls.n.allowed0) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0); + + if (pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1); + + /* Save preemption timer without activating it. */ + if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER) + && (pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer); + + /* VM-exit MSR-store count and VM-exit MSR-store area address. */ + if (pVmcs->u32ExitMsrStoreCount) + { + if ( (pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK) + || (pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore); + } + + /* VM-exit MSR-load count and VM-exit MSR-load area address. */ + if (pVmcs->u32ExitMsrLoadCount) + { + if ( (pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK) + || (pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad); + } + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Checks VM-execution controls fields as part of VM-entry. + * See Intel spec. 26.2.1.1 "VM-Execution Control Fields". + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + * + * @remarks This may update secondary-processor based VM-execution control fields + * in the current VMCS if necessary. + */ +IEM_STATIC int iemVmxVmentryCheckExecCtls(PVMCPU pVCpu, const char *pszInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char * const pszFailure = "VMFail"; + + /* Pin-based VM-execution controls. */ + { + VMXCTLSMSR const PinCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls; + if (~pVmcs->u32PinCtls & PinCtls.n.allowed0) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0); + + if (pVmcs->u32PinCtls & ~PinCtls.n.allowed1) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1); + } + + /* Processor-based VM-execution controls. */ + { + VMXCTLSMSR const ProcCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls; + if (~pVmcs->u32ProcCtls & ProcCtls.n.allowed0) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0); + + if (pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1); + } + + /* Secondary processor-based VM-execution controls. */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS) + { + VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2; + if (~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0); + + if (pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1); + } + else + Assert(!pVmcs->u32ProcCtls2); + + /* CR3-target count. */ + if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount); + + /* I/O bitmaps physical addresses. */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS) + { + if ( (pVmcs->u64AddrIoBitmapA.u & X86_PAGE_4K_OFFSET_MASK) + || (pVmcs->u64AddrIoBitmapA.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapA.u)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA); + + if ( (pVmcs->u64AddrIoBitmapB.u & X86_PAGE_4K_OFFSET_MASK) + || (pVmcs->u64AddrIoBitmapB.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapB.u)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB); + } + + /* MSR bitmap physical address. */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS) + { + RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u; + if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK) + || (GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap); + + /* Read the MSR bitmap. */ + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap)); + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), + GCPhysMsrBitmap, VMX_V_MSR_BITMAP_SIZE); + if (RT_FAILURE(rc)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys); + } + + /* TPR shadow related controls. */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW) + { + /* Virtual-APIC page physical address. */ + RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u; + if ( (GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK) + || (GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage); + + /* Read the Virtual-APIC page. */ + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)); + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage), + GCPhysVirtApic, VMX_V_VIRT_APIC_PAGES); + if (RT_FAILURE(rc)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys); + + /* TPR threshold without virtual-interrupt delivery. */ + if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY) + && (pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd); + + /* TPR threshold and VTPR. */ + uint8_t const *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage); + uint8_t const u8VTpr = *(pbVirtApic + XAPIC_OFF_TPR); + if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS) + && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY) + && RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) > ((u8VTpr >> 4) & UINT32_C(0xf)) /* Bits 4:7 */) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr); + } + else + { + if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE) + && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT) + && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)) + { /* likely */ } + else + { + if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow); + if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt); + Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery); + } + } + + /* NMI exiting and virtual-NMIs. */ + if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT) + && (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi); + + /* Virtual-NMIs and NMI-window exiting. */ + if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI) + && (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit); + + /* Virtualize APIC accesses. */ + if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS) + { + /* APIC-access physical address. */ + RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u; + if ( (GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK) + || (GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess); + + /* + * Disallow APIC-access page and virtual-APIC page from being the same address. + * Note! This is not an Intel requirement, but one imposed by our implementation. + */ + /** @todo r=ramshankar: This is done primarily to simplify recursion scenarios while + * redirecting accesses between the APIC-access page and the virtual-APIC + * page. If any nested hypervisor requires this, we can implement it later. */ + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW) + { + RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u; + if (GCPhysVirtApic == GCPhysApicAccess) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic); + } + + /* + * Register the handler for the APIC-access page. + * + * We don't deregister the APIC-access page handler during the VM-exit as a different + * nested-VCPU might be using the same guest-physical address for its APIC-access page. + * + * We leave the page registered until the first access that happens outside VMX non-root + * mode. Guest software is allowed to access structures such as the APIC-access page + * only when no logical processor with a current VMCS references it in VMX non-root mode, + * otherwise it can lead to unpredictable behavior including guest triple-faults. + * + * See Intel spec. 24.11.4 "Software Access to Related Structures". + */ + int rc = PGMHandlerPhysicalRegister(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess, GCPhysApicAccess, + pVCpu->iem.s.hVmxApicAccessPage, NIL_RTR3PTR /* pvUserR3 */, + NIL_RTR0PTR /* pvUserR0 */, NIL_RTRCPTR /* pvUserRC */, NULL /* pszDesc */); + if (RT_FAILURE(rc)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg); + } + + /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */ + if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE) + && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic); + + /* Virtual-interrupt delivery requires external interrupt exiting. */ + if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY) + && !(pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic); + + /* VPID. */ + if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID) + || pVmcs->u16Vpid != 0) + { /* likely */ } + else + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid); + + Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */ + Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)); /* We don't support EPT yet. */ + Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */ + Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)); /* We don't support Unrestricted-guests yet. */ + Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */ + Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_VE)); /* We don't support EPT-violation #VE yet. */ + Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)); /* We don't support Pause-loop exiting yet. */ + + /* VMCS shadowing. */ + if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING) + { + /* VMREAD-bitmap physical address. */ + RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u; + if ( ( GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK) + || ( GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap); + + /* VMWRITE-bitmap physical address. */ + RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u; + if ( ( GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK) + || ( GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap); + + /* Read the VMREAD-bitmap. */ + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap)); + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap), + GCPhysVmreadBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE); + if (RT_FAILURE(rc)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys); + + /* Read the VMWRITE-bitmap. */ + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap)); + rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap), + GCPhysVmwriteBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE); + if (RT_FAILURE(rc)) + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys); + } + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Loads the guest control registers, debug register and some MSRs as part of + * VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPU pVCpu) +{ + /* + * Load guest control registers, debug registers and MSRs. + * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_CR0_IGNORE_MASK) + | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_CR0_IGNORE_MASK); + CPUMSetGuestCR0(pVCpu, uGstCr0); + CPUMSetGuestCR4(pVCpu, pVmcs->u64GuestCr4.u); + pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u; + + if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG) + pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_DR7_MBZ_MASK) | VMX_ENTRY_DR7_MB1_MASK; + + pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo; + pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo; + pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS; + + if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode) + { + /* FS base and GS base are loaded while loading the rest of the guest segment registers. */ + + /* EFER MSR. */ + if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)) + { + bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST); + bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG); + uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER; + if (fGstInLongMode) + { + /* If the nested-guest is in long mode, LMA and LME are both set. */ + Assert(fGstPaging); + pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME); + } + else + { + /* + * If the nested-guest is outside long mode: + * - With paging: LMA is cleared, LME is cleared. + * - Without paging: LMA is cleared, LME is left unmodified. + */ + uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0); + pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask; + } + } + /* else: see below. */ + } + + /* PAT MSR. */ + if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR) + pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u; + + /* EFER MSR. */ + if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR) + pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u; + + /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */ + Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)); + + /* We don't support IA32_BNDCFGS MSR yet. */ + Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR)); + + /* Nothing to do for SMBASE register - We don't support SMM yet. */ +} + + +/** + * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxVmentryLoadGuestSegRegs(PVMCPU pVCpu) +{ + /* + * Load guest segment registers, GDTR, IDTR, LDTR and TR. + * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers". + */ + /* CS, SS, ES, DS, FS, GS. */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++) + { + PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg]; + CPUMSELREG VmcsSelReg; + int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg); + AssertRC(rc); NOREF(rc); + if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE)) + { + pGstSelReg->Sel = VmcsSelReg.Sel; + pGstSelReg->ValidSel = VmcsSelReg.Sel; + pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID; + pGstSelReg->u64Base = VmcsSelReg.u64Base; + pGstSelReg->u32Limit = VmcsSelReg.u32Limit; + pGstSelReg->Attr.u = VmcsSelReg.Attr.u; + } + else + { + pGstSelReg->Sel = VmcsSelReg.Sel; + pGstSelReg->ValidSel = VmcsSelReg.Sel; + pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID; + switch (iSegReg) + { + case X86_SREG_CS: + pGstSelReg->u64Base = VmcsSelReg.u64Base; + pGstSelReg->u32Limit = VmcsSelReg.u32Limit; + pGstSelReg->Attr.u = VmcsSelReg.Attr.u; + break; + + case X86_SREG_SS: + pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0); + pGstSelReg->u32Limit = 0; + pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE; + break; + + case X86_SREG_ES: + case X86_SREG_DS: + pGstSelReg->u64Base = 0; + pGstSelReg->u32Limit = 0; + pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE; + break; + + case X86_SREG_FS: + case X86_SREG_GS: + pGstSelReg->u64Base = VmcsSelReg.u64Base; + pGstSelReg->u32Limit = 0; + pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE; + break; + } + Assert(pGstSelReg->Attr.n.u1Unusable); + } + } + + /* LDTR. */ + pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr; + pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr; + pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID; + if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE)) + { + pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u; + pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit; + pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr; + } + else + { + pVCpu->cpum.GstCtx.ldtr.u64Base = 0; + pVCpu->cpum.GstCtx.ldtr.u32Limit = 0; + pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE; + } + + /* TR. */ + Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE)); + pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr; + pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr; + pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u; + pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit; + pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr; + + /* GDTR. */ + pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit; + pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u; + + /* IDTR. */ + pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit; + pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u; +} + + +/** + * Loads the guest MSRs from the VM-entry auto-load MSRs as part of VM-entry. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryLoadGuestAutoMsrs(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * Load guest MSRs. + * See Intel spec. 26.4 "Loading MSRs". + */ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + const char *const pszFailure = "VM-exit"; + + /* + * The VM-entry MSR-load area address need not be a valid guest-physical address if the + * VM-entry MSR load count is 0. If this is the case, bail early without reading it. + * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs". + */ + uint32_t const cMsrs = pVmcs->u32EntryMsrLoadCount; + if (!cMsrs) + return VINF_SUCCESS; + + /* + * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is + * exceeded including possibly raising #MC exceptions during VMX transition. Our + * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit. + */ + bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs); + if (fIsMsrCountValid) + { /* likely */ } + else + { + iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR)); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount); + } + + RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrEntryMsrLoad.u; + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea), + GCPhysAutoMsrArea, cMsrs * sizeof(VMXAUTOMSR)); + if (RT_SUCCESS(rc)) + { + PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea); + Assert(pMsr); + for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++) + { + if ( !pMsr->u32Reserved + && pMsr->u32Msr != MSR_K8_FS_BASE + && pMsr->u32Msr != MSR_K8_GS_BASE + && pMsr->u32Msr != MSR_K6_EFER + && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL + && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8) + { + VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value); + if (rcStrict == VINF_SUCCESS) + continue; + + /* + * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry. + * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure + * recording the MSR index in the VM-exit qualification (as per the Intel spec.) and indicated + * further by our own, specific diagnostic code. Later, we can try implement handling of the + * MSR in ring-0 if possible, or come up with a better, generic solution. + */ + iemVmxVmcsSetExitQual(pVCpu, idxMsr); + VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE + ? kVmxVDiag_Vmentry_MsrLoadRing3 + : kVmxVDiag_Vmentry_MsrLoad; + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag); + } + else + { + iemVmxVmcsSetExitQual(pVCpu, idxMsr); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd); + } + } + } + else + { + AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysAutoMsrArea, rc)); + IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys); + } + + NOREF(pszInstr); + NOREF(pszFailure); + return VINF_SUCCESS; +} + + +/** + * Loads the guest-state non-register state as part of VM-entry. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks This must be called only after loading the nested-guest register state + * (especially nested-guest RIP). + */ +IEM_STATIC void iemVmxVmentryLoadGuestNonRegState(PVMCPU pVCpu) +{ + /* + * Load guest non-register state. + * See Intel spec. 26.6 "Special Features of VM Entry" + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + bool const fEntryVectoring = HMVmxIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */); + if (!fEntryVectoring) + { + if (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)) + EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip); + else + Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)); + + /* SMI blocking is irrelevant. We don't support SMIs yet. */ + } + else + { + /* When the VM-entry is not vectoring, there is no blocking by STI or Mov-SS. */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); + } + + /* NMI blocking. */ + if ( (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI) + && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) + VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS); + + /* Loading PDPTEs will be taken care when we switch modes. We don't support EPT yet. */ + Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)); + + /* VPID is irrelevant. We don't support VPID yet. */ + + /* Clear address-range monitoring. */ + EMMonitorWaitClear(pVCpu); +} + + +/** + * Loads the guest-state as part of VM-entry. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + * + * @remarks This must be done after all the necessary steps prior to loading of + * guest-state (e.g. checking various VMCS state). + */ +IEM_STATIC int iemVmxVmentryLoadGuestState(PVMCPU pVCpu, const char *pszInstr) +{ + iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu); + iemVmxVmentryLoadGuestSegRegs(pVCpu); + + /* + * Load guest RIP, RSP and RFLAGS. + * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u; + pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u; + pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u; + + /* Initialize the PAUSE-loop controls as part of VM-entry. */ + pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0; + pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0; + + iemVmxVmentryLoadGuestNonRegState(pVCpu); + + NOREF(pszInstr); + return VINF_SUCCESS; +} + + +/** + * Returns whether there are is a pending debug exception on VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC bool iemVmxVmentryIsPendingDebugXcpt(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * Pending debug exceptions. + * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpt.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS + | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP)); + if (fPendingDbgXcpt) + { + uint8_t uEntryIntInfoType; + bool const fEntryVectoring = HMVmxIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType); + if (fEntryVectoring) + { + switch (uEntryIntInfoType) + { + case VMX_ENTRY_INT_INFO_TYPE_EXT_INT: + case VMX_ENTRY_INT_INFO_TYPE_NMI: + case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT: + case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT: + fPendingDbgXcpt = false; + break; + + case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT: + { + /* + * Whether the pending debug exception for software exceptions other than + * #BP and #OF is delivered after injecting the exception or is discard + * is CPU implementation specific. We will discard them (easier). + */ + uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo); + if ( uVector != X86_XCPT_BP + && uVector != X86_XCPT_OF) + fPendingDbgXcpt = false; + RT_FALL_THRU(); + } + case VMX_ENTRY_INT_INFO_TYPE_SW_INT: + { + if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)) + fPendingDbgXcpt = false; + break; + } + } + } + else + { + /* + * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the + * pending debug exception is held pending or is discarded is CPU implementation + * specific. We will discard them (easier). + */ + if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS) + fPendingDbgXcpt = false; + + /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */ + if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT)) + fPendingDbgXcpt = false; + } + } + + NOREF(pszInstr); + return fPendingDbgXcpt; +} + + +/** + * Set up the monitor-trap flag (MTF). + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC void iemVmxVmentrySetupMtf(PVMCPU pVCpu, const char *pszInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG) + { + VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF); + Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr)); + } + else + Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF)); + NOREF(pszInstr); +} + + +/** + * Set up the VMX-preemption timer. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC void iemVmxVmentrySetupPreemptTimer(PVMCPU pVCpu, const char *pszInstr) +{ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER) + { + uint64_t const uVmentryTick = TMCpuTickGetNoCheck(pVCpu); + pVCpu->cpum.GstCtx.hwvirt.vmx.uVmentryTick = uVmentryTick; + VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER); + + Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uVmentryTick)); + } + else + Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER)); + + NOREF(pszInstr); +} + + +/** + * Injects an event using TRPM given a VM-entry interruption info. and related + * fields. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uEntryIntInfo The VM-entry interruption info. + * @param uErrCode The error code associated with the event if any. + * @param cbInstr The VM-entry instruction length (for software + * interrupts and software exceptions). Pass 0 + * otherwise. + * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event. + */ +IEM_STATIC int iemVmxVmentryInjectTrpmEvent(PVMCPU pVCpu, uint32_t uEntryIntInfo, uint32_t uErrCode, uint32_t cbInstr, + RTGCUINTPTR GCPtrFaultAddress) +{ + Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo)); + + uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo); + uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo); + bool const fErrCodeValid = VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo); + + TRPMEVENT enmTrapType; + switch (uType) + { + case VMX_ENTRY_INT_INFO_TYPE_EXT_INT: + enmTrapType = TRPM_HARDWARE_INT; + break; + + case VMX_ENTRY_INT_INFO_TYPE_SW_INT: + enmTrapType = TRPM_SOFTWARE_INT; + break; + + case VMX_ENTRY_INT_INFO_TYPE_NMI: + case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT: /* ICEBP. */ + case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT: /* #BP and #OF */ + case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT: + enmTrapType = TRPM_TRAP; + break; + + default: + /* Shouldn't really happen. */ + AssertMsgFailedReturn(("Invalid trap type %#x\n", uType), VERR_VMX_IPE_4); + break; + } + + int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType); + AssertRCReturn(rc, rc); + + if (fErrCodeValid) + TRPMSetErrorCode(pVCpu, uErrCode); + + if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT + && uVector == X86_XCPT_PF) + TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress); + else if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT + || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT + || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT) + { + AssertMsg( uType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT + || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF), + ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uType)); + TRPMSetInstrLength(pVCpu, cbInstr); + } + + return VINF_SUCCESS; +} + + +/** + * Performs event injection (if any) as part of VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pszInstr The VMX instruction name (for logging purposes). + */ +IEM_STATIC int iemVmxVmentryInjectEvent(PVMCPU pVCpu, const char *pszInstr) +{ + /* + * Inject events. + * The event that is going to be made pending for injection is not subject to VMX intercepts, + * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery + * of the current event -are- subject to intercepts, hence this flag will be flipped during + * the actually delivery of this event. + * + * See Intel spec. 26.5 "Event Injection". + */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + uint32_t const uEntryIntInfo = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->u32EntryIntInfo; + bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo); + + pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents = !fEntryIntInfoValid; + if (fEntryIntInfoValid) + { + uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo); + if (uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT) + { + Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF); + VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF); + return VINF_SUCCESS; + } + + return iemVmxVmentryInjectTrpmEvent(pVCpu, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen, + pVCpu->cpum.GstCtx.cr2); + } + + /* + * Inject any pending guest debug exception. + * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept. + * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry". + */ + bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr); + if (fPendingDbgXcpt) + { + uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1); + return iemVmxVmentryInjectTrpmEvent(pVCpu, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen, + 0 /* GCPtrFaultAddress */); + } + + NOREF(pszInstr); + return VINF_SUCCESS; +} + + +/** + * Initializes all read-only VMCS fields as part of VM-entry. + * + * @param pVCpu The cross context virtual CPU structure. + */ +IEM_STATIC void iemVmxVmentryInitReadOnlyFields(PVMCPU pVCpu) +{ + /* + * Any VMCS field which we do not establish on every VM-exit but may potentially + * be used on the VM-exit path of a nested hypervisor -and- is not explicitly + * specified to be undefined needs to be initialized here. + * + * Thus, it is especially important to clear the VM-exit qualification field + * since it must be zero for VM-exits where it is not used. Similarly, the + * VM-exit interruption information field's valid bit needs to be cleared for + * the same reasons. + */ + PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + + /* 16-bit (none currently). */ + /* 32-bit. */ + pVmcs->u32RoVmInstrError = 0; + pVmcs->u32RoExitReason = 0; + pVmcs->u32RoExitIntInfo = 0; + pVmcs->u32RoExitIntErrCode = 0; + pVmcs->u32RoIdtVectoringInfo = 0; + pVmcs->u32RoIdtVectoringErrCode = 0; + pVmcs->u32RoExitInstrLen = 0; + pVmcs->u32RoExitInstrInfo = 0; + + /* 64-bit. */ + pVmcs->u64RoGuestPhysAddr.u = 0; + + /* Natural-width. */ + pVmcs->u64RoExitQual.u = 0; + pVmcs->u64RoIoRcx.u = 0; + pVmcs->u64RoIoRsi.u = 0; + pVmcs->u64RoIoRdi.u = 0; + pVmcs->u64RoIoRip.u = 0; + pVmcs->u64RoGuestLinearAddr.u = 0; +} + + +/** + * VMLAUNCH/VMRESUME instruction execution worker. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or + * VMXINSTRID_VMRESUME). + * + * @remarks Common VMX instruction checks are already expected to by the caller, + * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPU pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId) +{ +# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3) + RT_NOREF3(pVCpu, cbInstr, uInstrId); + return VINF_EM_RAW_EMULATE_INSTR; +# else + Assert( uInstrId == VMXINSTRID_VMLAUNCH + || uInstrId == VMXINSTRID_VMRESUME); + const char *pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch"; + + /* Nested-guest intercept. */ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr); + + Assert(IEM_VMX_IS_ROOT_MODE(pVCpu)); + + /* CPL. */ + if (pVCpu->iem.s.uCpl == 0) + { /* likely */ } + else + { + Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Current VMCS valid. */ + if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu)) + { /* likely */ } + else + { + Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /** @todo Distinguish block-by-MOV-SS from block-by-STI. Currently we + * use block-by-STI here which is not quite correct. */ + if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) + && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu)) + { + Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + if (uInstrId == VMXINSTRID_VMLAUNCH) + { + /* VMLAUNCH with non-clear VMCS. */ + if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_STATE_CLEAR) + { /* likely */ } + else + { + Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + } + else + { + /* VMRESUME with non-launched VMCS. */ + if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_STATE_LAUNCHED) + { /* likely */ } + else + { + Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + } + + /* + * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps) + * while entering VMX non-root mode. We do some of this while checking VM-execution + * controls. The guest hypervisor should not make assumptions and cannot expect + * predictable behavior if changes to these structures are made in guest memory while + * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot + * modify them anyway as we cache them in host memory. We are trade memory for speed here. + * + * See Intel spec. 24.11.4 "Software Access to Related Structures". + */ + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)); + Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu)); + int rc = iemVmxVmentryCheckExecCtls(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + rc = iemVmxVmentryCheckExitCtls(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + rc = iemVmxVmentryCheckEntryCtls(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + /* Initialize read-only VMCS fields before VM-entry since we don't update all of them for every VM-exit. */ + iemVmxVmentryInitReadOnlyFields(pVCpu); + + /* + * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state. + * So we save the the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on + * VM-exit when required. + * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State" + */ + iemVmxVmentrySaveNmiBlockingFF(pVCpu); + + rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr); + if (RT_SUCCESS(rc)) + { + Assert(rc != VINF_CPUM_R3_MSR_WRITE); + + /* VMLAUNCH instruction must update the VMCS launch state. */ + if (uInstrId == VMXINSTRID_VMLAUNCH) + pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = VMX_V_VMCS_STATE_LAUNCHED; + + /* Perform the VMX transition (PGM updates). */ + VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu); + if (rcStrict == VINF_SUCCESS) + { /* likely */ } + else if (RT_SUCCESS(rcStrict)) + { + Log3(("%s: iemVmxWorldSwitch returns %Rrc -> Setting passup status\n", pszInstr, + VBOXSTRICTRC_VAL(rcStrict))); + rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); + } + else + { + Log3(("%s: iemVmxWorldSwitch failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + + /* We've now entered nested-guest execution. */ + pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true; + + /* + * The priority of potential VM-exits during VM-entry is important. + * The priorities of VM-exits and events are listed from highest + * to lowest as follows: + * + * 1. Event injection. + * 2. Trap on task-switch (T flag set in TSS). + * 3. TPR below threshold / APIC-write. + * 4. SMI, INIT. + * 5. MTF exit. + * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions. + * 7. VMX-preemption timer. + * 9. NMI-window exit. + * 10. NMI injection. + * 11. Interrupt-window exit. + * 12. Virtual-interrupt injection. + * 13. Interrupt injection. + * 14. Process next instruction (fetch, decode, execute). + */ + + /* Setup the VMX-preemption timer. */ + iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr); + + /* Setup monitor-trap flag. */ + iemVmxVmentrySetupMtf(pVCpu, pszInstr); + + /* Now that we've switched page tables, we can go ahead and inject any event. */ + rcStrict = iemVmxVmentryInjectEvent(pVCpu, pszInstr); + if (RT_SUCCESS(rcStrict)) + { + /* Reschedule to IEM-only execution of the nested-guest or return VINF_SUCCESS. */ + IEM_VMX_R3_EXECPOLICY_IEM_ALL_ENABLE_RET(pVCpu, pszInstr, VINF_SUCCESS); + } + + Log(("%s: VM-entry event injection failed. rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED); + } + } + return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED); + } + + iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + } + } + + iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +# endif +} + + +/** + * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted + * (causes a VM-exit) or not. + * + * @returns @c true if the instruction is intercepted, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or + * VMX_EXIT_WRMSR). + * @param idMsr The MSR. + */ +IEM_STATIC bool iemVmxIsRdmsrWrmsrInterceptSet(PVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) +{ + Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu)); + Assert( uExitReason == VMX_EXIT_RDMSR + || uExitReason == VMX_EXIT_WRMSR); + + /* Consult the MSR bitmap if the feature is supported. */ + PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + Assert(pVmcs); + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS) + { + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap)); + if (uExitReason == VMX_EXIT_RDMSR) + { + VMXMSREXITREAD enmRead; + int rc = HMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), idMsr, &enmRead, + NULL /* penmWrite */); + AssertRC(rc); + if (enmRead == VMXMSREXIT_INTERCEPT_READ) + return true; + } + else + { + VMXMSREXITWRITE enmWrite; + int rc = HMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), idMsr, NULL /* penmRead */, + &enmWrite); + AssertRC(rc); + if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE) + return true; + } + return false; + } + + /* Without MSR bitmaps, all MSR accesses are intercepted. */ + return true; +} + + +/** + * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field is + * intercepted (causes a VM-exit) or not. + * + * @returns @c true if the instruction is intercepted, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * @param u64FieldEnc The VMCS field encoding. + * @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or + * VMX_EXIT_VMREAD). + */ +IEM_STATIC bool iemVmxIsVmreadVmwriteInterceptSet(PVMCPU pVCpu, uint32_t uExitReason, uint64_t u64FieldEnc) +{ + Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu)); + Assert( uExitReason == VMX_EXIT_VMREAD + || uExitReason == VMX_EXIT_VMWRITE); + + /* Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted. */ + if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing) + return true; + + /* + * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE is intercepted. + * This excludes any reserved bits in the valid parts of the field encoding (i.e. bit 12). + */ + if (u64FieldEnc & VMX_VMCS_ENC_RSVD_MASK) + return true; + + /* Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not. */ + uint32_t u32FieldEnc = RT_LO_U32(u64FieldEnc); + Assert(u32FieldEnc >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE); + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap)); + uint8_t const *pbBitmap = uExitReason == VMX_EXIT_VMREAD + ? (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap) + : (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap); + pbBitmap += (u32FieldEnc >> 3); + if (*pbBitmap & RT_BIT(u32FieldEnc & 7)) + return true; + + return false; +} + + +/** + * VMREAD common (memory/register) instruction execution worker + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param pu64Dst Where to write the VMCS value (only updated when + * VINF_SUCCESS is returned). + * @param u64FieldEnc The VMCS field encoding. + * @param pExitInfo Pointer to the VM-exit information struct. Optional, can + * be NULL. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmreadCommon(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc, + PCVMXVEXITINFO pExitInfo) +{ + /* Nested-guest intercept. */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && iemVmxIsVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64FieldEnc)) + { + if (pExitInfo) + return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo); + return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr); + } + + /* CPL. */ + if (pVCpu->iem.s.uCpl == 0) + { /* likely */ } + else + { + Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* VMCS pointer in root mode. */ + if ( IEM_VMX_IS_ROOT_MODE(pVCpu) + && !IEM_VMX_HAS_CURRENT_VMCS(pVCpu)) + { + Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* VMCS-link pointer in non-root mode. */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && !IEM_VMX_HAS_SHADOW_VMCS(pVCpu)) + { + Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Supported VMCS field. */ + if (iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc)) + { /* likely */ } + else + { + Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* + * Setup reading from the current or shadow VMCS. + */ + uint8_t *pbVmcs; + if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + else + pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs); + Assert(pbVmcs); + + VMXVMCSFIELDENC FieldEnc; + FieldEnc.u = u64FieldEnc; + uint8_t const uWidth = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_WIDTH); + uint8_t const uType = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_TYPE); + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_INDEX); + AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + Assert(offField < VMX_V_VMCS_SIZE); + + /* + * Read the VMCS component based on the field's effective width. + * + * The effective width is 64-bit fields adjusted to 32-bits if the access-type + * indicates high bits (little endian). + * + * Note! The caller is responsible to trim the result and update registers + * or memory locations are required. Here we just zero-extend to the largest + * type (i.e. 64-bits). + */ + uint8_t *pbField = pbVmcs + offField; + uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u); + switch (uEffWidth) + { + case VMX_VMCS_ENC_WIDTH_64BIT: + case VMX_VMCS_ENC_WIDTH_NATURAL: *pu64Dst = *(uint64_t *)pbField; break; + case VMX_VMCS_ENC_WIDTH_32BIT: *pu64Dst = *(uint32_t *)pbField; break; + case VMX_VMCS_ENC_WIDTH_16BIT: *pu64Dst = *(uint16_t *)pbField; break; + } + return VINF_SUCCESS; +} + + +/** + * VMREAD (64-bit register) instruction execution worker. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param pu64Dst Where to store the VMCS field's value. + * @param u64FieldEnc The VMCS field encoding. + * @param pExitInfo Pointer to the VM-exit information struct. Optional, can + * be NULL. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg64(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc, + PCVMXVEXITINFO pExitInfo) +{ + VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64FieldEnc, pExitInfo); + if (rcStrict == VINF_SUCCESS) + { + iemVmxVmreadSuccess(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; +} + + +/** + * VMREAD (32-bit register) instruction execution worker. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param pu32Dst Where to store the VMCS field's value. + * @param u32FieldEnc The VMCS field encoding. + * @param pExitInfo Pointer to the VM-exit information struct. Optional, can + * be NULL. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg32(PVMCPU pVCpu, uint8_t cbInstr, uint32_t *pu32Dst, uint64_t u32FieldEnc, + PCVMXVEXITINFO pExitInfo) +{ + uint64_t u64Dst; + VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32FieldEnc, pExitInfo); + if (rcStrict == VINF_SUCCESS) + { + *pu32Dst = u64Dst; + iemVmxVmreadSuccess(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; +} + + +/** + * VMREAD (memory) instruction execution worker. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param iEffSeg The effective segment register to use with @a u64Val. + * Pass UINT8_MAX if it is a register access. + * @param enmEffAddrMode The effective addressing mode (only used with memory + * operand). + * @param GCPtrDst The guest linear address to store the VMCS field's + * value. + * @param u64FieldEnc The VMCS field encoding. + * @param pExitInfo Pointer to the VM-exit information struct. Optional, can + * be NULL. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmreadMem(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode, + RTGCPTR GCPtrDst, uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo) +{ + uint64_t u64Dst; + VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64FieldEnc, pExitInfo); + if (rcStrict == VINF_SUCCESS) + { + /* + * Write the VMCS field's value to the location specified in guest-memory. + * + * The pointer size depends on the address size (address-size prefix allowed). + * The operand size depends on IA-32e mode (operand-size prefix not allowed). + */ + static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) }; + Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks)); + GCPtrDst &= s_auAddrSizeMasks[enmEffAddrMode]; + + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst); + else + rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst); + if (rcStrict == VINF_SUCCESS) + { + iemVmxVmreadSuccess(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap; + return rcStrict; + } + + Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; +} + + +/** + * VMWRITE instruction execution worker. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param iEffSeg The effective segment register to use with @a u64Val. + * Pass UINT8_MAX if it is a register access. + * @param enmEffAddrMode The effective addressing mode (only used with memory + * operand). + * @param u64Val The value to write (or guest linear address to the + * value), @a iEffSeg will indicate if it's a memory + * operand. + * @param u64FieldEnc The VMCS field encoding. + * @param pExitInfo Pointer to the VM-exit information struct. Optional, can + * be NULL. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmwrite(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode, uint64_t u64Val, + uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo) +{ + /* Nested-guest intercept. */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && iemVmxIsVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64FieldEnc)) + { + if (pExitInfo) + return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo); + return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr); + } + + /* CPL. */ + if (pVCpu->iem.s.uCpl == 0) + { /* likely */ } + else + { + Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* VMCS pointer in root mode. */ + if ( IEM_VMX_IS_ROOT_MODE(pVCpu) + && !IEM_VMX_HAS_CURRENT_VMCS(pVCpu)) + { + Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* VMCS-link pointer in non-root mode. */ + if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu) + && !IEM_VMX_HAS_SHADOW_VMCS(pVCpu)) + { + Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* If the VMWRITE instruction references memory, access the specified memory operand. */ + bool const fIsRegOperand = iEffSeg == UINT8_MAX; + if (!fIsRegOperand) + { + static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) }; + Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks)); + RTGCPTR const GCPtrVal = u64Val & s_auAddrSizeMasks[enmEffAddrMode]; + + /* Read the value from the specified guest memory location. */ + VBOXSTRICTRC rcStrict; + if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) + rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal); + else + { + uint32_t u32Val; + rcStrict = iemMemFetchDataU32(pVCpu, &u32Val, iEffSeg, GCPtrVal); + u64Val = u32Val; + } + if (RT_UNLIKELY(rcStrict != VINF_SUCCESS)) + { + Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap; + return rcStrict; + } + } + else + Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand); + + /* Supported VMCS field. */ + if (iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc)) + { /* likely */ } + else + { + Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Read-only VMCS field. */ + bool const fIsFieldReadOnly = HMVmxIsVmcsFieldReadOnly(u64FieldEnc); + if ( fIsFieldReadOnly + && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll) + { + Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64FieldEnc)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* + * Setup writing to the current or shadow VMCS. + */ + uint8_t *pbVmcs; + if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs); + else + pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs); + Assert(pbVmcs); + + VMXVMCSFIELDENC FieldEnc; + FieldEnc.u = u64FieldEnc; + uint8_t const uWidth = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_WIDTH); + uint8_t const uType = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_TYPE); + uint8_t const uWidthType = (uWidth << 2) | uType; + uint8_t const uIndex = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_INDEX); + AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2); + uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex]; + Assert(offField < VMX_V_VMCS_SIZE); + + /* + * Write the VMCS component based on the field's effective width. + * + * The effective width is 64-bit fields adjusted to 32-bits if the access-type + * indicates high bits (little endian). + */ + uint8_t *pbField = pbVmcs + offField; + uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u); + switch (uEffWidth) + { + case VMX_VMCS_ENC_WIDTH_64BIT: + case VMX_VMCS_ENC_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break; + case VMX_VMCS_ENC_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break; + case VMX_VMCS_ENC_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break; + } + + iemVmxVmSucceed(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * VMCLEAR instruction execution worker. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param iEffSeg The effective segment register to use with @a GCPtrVmcs. + * @param GCPtrVmcs The linear address of the VMCS pointer. + * @param pExitInfo Pointer to the VM-exit information struct. Optional, can + * be NULL. + * + * @remarks Common VMX instruction checks are already expected to by the caller, + * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs, + PCVMXVEXITINFO pExitInfo) +{ + /* Nested-guest intercept. */ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + if (pExitInfo) + return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo); + return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr); + } + + Assert(IEM_VMX_IS_ROOT_MODE(pVCpu)); + + /* CPL. */ + if (pVCpu->iem.s.uCpl == 0) + { /* likely */ } + else + { + Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Get the VMCS pointer from the location specified by the source memory operand. */ + RTGCPHYS GCPhysVmcs; + VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs); + if (RT_UNLIKELY(rcStrict != VINF_SUCCESS)) + { + Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap; + return rcStrict; + } + + /* VMCS pointer alignment. */ + if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK) + { + Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* VMCS physical-address width limits. */ + if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + { + Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* VMCS is not the VMXON region. */ + if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon) + { + Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a + restriction imposed by our implementation. */ + if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs)) + { + Log(("vmclear: VMCS not normal memory -> VMFail()\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* + * VMCLEAR allows committing and clearing any valid VMCS pointer. + * + * If the current VMCS is the one being cleared, set its state to 'clear' and commit + * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory + * to 'clear'. + */ + uint8_t const fVmcsStateClear = VMX_V_VMCS_STATE_CLEAR; + if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu) + && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs) + { + Assert(GCPhysVmcs != NIL_RTGCPHYS); /* Paranoia. */ + Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)); + pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = fVmcsStateClear; + iemVmxCommitCurrentVmcsToMemory(pVCpu); + Assert(!IEM_VMX_HAS_CURRENT_VMCS(pVCpu)); + } + else + { + AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsStateClear)); + rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState), + (const void *)&fVmcsStateClear, sizeof(fVmcsStateClear)); + if (RT_FAILURE(rcStrict)) + return rcStrict; + } + + iemVmxVmSucceed(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * VMPTRST instruction execution worker. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param iEffSeg The effective segment register to use with @a GCPtrVmcs. + * @param GCPtrVmcs The linear address of where to store the current VMCS + * pointer. + * @param pExitInfo Pointer to the VM-exit information struct. Optional, can + * be NULL. + * + * @remarks Common VMX instruction checks are already expected to by the caller, + * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs, + PCVMXVEXITINFO pExitInfo) +{ + /* Nested-guest intercept. */ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + if (pExitInfo) + return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo); + return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr); + } + + Assert(IEM_VMX_IS_ROOT_MODE(pVCpu)); + + /* CPL. */ + if (pVCpu->iem.s.uCpl == 0) + { /* likely */ } + else + { + Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Set the VMCS pointer to the location specified by the destination memory operand. */ + AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U); + VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu)); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { + iemVmxVmSucceed(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return rcStrict; + } + + Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap; + return rcStrict; +} + + +/** + * VMPTRLD instruction execution worker. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param GCPtrVmcs The linear address of the current VMCS pointer. + * @param pExitInfo Pointer to the VM-exit information struct. Optional, can + * be NULL. + * + * @remarks Common VMX instruction checks are already expected to by the caller, + * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs, + PCVMXVEXITINFO pExitInfo) +{ + /* Nested-guest intercept. */ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + if (pExitInfo) + return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo); + return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr); + } + + Assert(IEM_VMX_IS_ROOT_MODE(pVCpu)); + + /* CPL. */ + if (pVCpu->iem.s.uCpl == 0) + { /* likely */ } + else + { + Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Get the VMCS pointer from the location specified by the source memory operand. */ + RTGCPHYS GCPhysVmcs; + VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs); + if (RT_UNLIKELY(rcStrict != VINF_SUCCESS)) + { + Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap; + return rcStrict; + } + + /* VMCS pointer alignment. */ + if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK) + { + Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* VMCS physical-address width limits. */ + if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + { + Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* VMCS is not the VMXON region. */ + if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon) + { + Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a + restriction imposed by our implementation. */ + if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs)) + { + Log(("vmptrld: VMCS not normal memory -> VMFail()\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Read just the VMCS revision from the VMCS. */ + VMXVMCSREVID VmcsRevId; + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId)); + if (RT_FAILURE(rc)) + { + Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys; + return rc; + } + + /* + * Verify the VMCS revision specified by the guest matches what we reported to the guest. + * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported. + */ + if ( VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID + || ( VmcsRevId.n.fIsShadowVmcs + && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing)) + { + if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID) + { + Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n", + VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + Log(("vmptrld: Shadow VMCS -> VMFail()\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs; + iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* + * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush + * the cache of an existing, current VMCS back to guest memory before loading a new, + * different current VMCS. + */ + bool fLoadVmcsFromMem; + if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu)) + { + if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs) + { + iemVmxCommitCurrentVmcsToMemory(pVCpu); + Assert(!IEM_VMX_HAS_CURRENT_VMCS(pVCpu)); + fLoadVmcsFromMem = true; + } + else + fLoadVmcsFromMem = false; + } + else + fLoadVmcsFromMem = true; + + if (fLoadVmcsFromMem) + { + /* Finally, cache the new VMCS from guest memory and mark it as the current VMCS. */ + rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), GCPhysVmcs, + sizeof(VMXVVMCS)); + if (RT_FAILURE(rc)) + { + Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys; + return rc; + } + IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs); + } + + Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu)); + iemVmxVmSucceed(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * VMXON instruction execution worker. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr The instruction length in bytes. + * @param iEffSeg The effective segment register to use with @a + * GCPtrVmxon. + * @param GCPtrVmxon The linear address of the VMXON pointer. + * @param pExitInfo Pointer to the VM-exit instruction information struct. + * Optional, can be NULL. + * + * @remarks Common VMX instruction checks are already expected to by the caller, + * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks. + */ +IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmxon, + PCVMXVEXITINFO pExitInfo) +{ + if (!IEM_VMX_IS_ROOT_MODE(pVCpu)) + { + /* CPL. */ + if (pVCpu->iem.s.uCpl == 0) + { /* likely */ } + else + { + Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* A20M (A20 Masked) mode. */ + if (PGMPhysIsA20Enabled(pVCpu)) + { /* likely */ } + else + { + Log(("vmxon: A20M mode -> #GP(0)\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* CR0. */ + { + /* CR0 MB1 bits. */ + uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0; + if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) != uCr0Fixed0) + { + Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* CR0 MBZ bits. */ + uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1; + if (pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1) + { + Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + + /* CR4. */ + { + /* CR4 MB1 bits. */ + uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0; + if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) != uCr4Fixed0) + { + Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* CR4 MBZ bits. */ + uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1; + if (pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1) + { + Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + } + + /* Feature control MSR's LOCK and VMXON bits. */ + uint64_t const uMsrFeatCtl = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64FeatCtrl; + if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON)) + != (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON)) + { + Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Get the VMXON pointer from the location specified by the source memory operand. */ + RTGCPHYS GCPhysVmxon; + VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon); + if (RT_UNLIKELY(rcStrict != VINF_SUCCESS)) + { + Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict))); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap; + return rcStrict; + } + + /* VMXON region pointer alignment. */ + if (GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK) + { + Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* VMXON physical-address width limits. */ + if (GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth) + { + Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a + restriction imposed by our implementation. */ + if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon)) + { + Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Read the VMCS revision ID from the VMXON region. */ + VMXVMCSREVID VmcsRevId; + int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId)); + if (RT_FAILURE(rc)) + { + Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys; + return rc; + } + + /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */ + if (RT_UNLIKELY(VmcsRevId.u != VMX_V_VMCS_REVISION_ID)) + { + /* Revision ID mismatch. */ + if (!VmcsRevId.n.fIsShadowVmcs) + { + Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID, + VmcsRevId.n.u31RevisionId)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Shadow VMCS disallowed. */ + Log(("vmxon: Shadow VMCS -> VMFailInvalid\n")); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs; + iemVmxVmFailInvalid(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* + * Record that we're in VMX operation, block INIT, block and disable A20M. + */ + pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon; + IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu); + pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true; + + /* Clear address-range monitoring. */ + EMMonitorWaitClear(pVCpu); + /** @todo NSTVMX: Intel PT. */ + + iemVmxVmSucceed(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + else if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + /* Nested-guest intercept. */ + if (pExitInfo) + return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo); + return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr); + } + + Assert(IEM_VMX_IS_ROOT_MODE(pVCpu)); + + /* CPL. */ + if (pVCpu->iem.s.uCpl > 0) + { + Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* VMXON when already in VMX root mode. */ + iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot; + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'VMXOFF'. + * + * @remarks Common VMX instruction checks are already expected to by the caller, + * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks. + */ +IEM_CIMPL_DEF_0(iemCImpl_vmxoff) +{ + /* Nested-guest intercept. */ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr); + + /* CPL. */ + if (pVCpu->iem.s.uCpl == 0) + { /* likely */ } + else + { + Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); + pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl; + return iemRaiseGeneralProtectionFault0(pVCpu); + } + + /* Dual monitor treatment of SMIs and SMM. */ + uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu); + if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID) + { + iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; + } + + /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */ + pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false; + Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode); + + if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI) + { /** @todo NSTVMX: Unblock SMI. */ } + + EMMonitorWaitClear(pVCpu); + /** @todo NSTVMX: Unblock and enable A20M. */ + + iemVmxVmSucceed(pVCpu); + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + + +/** + * Implements 'VMXON'. + */ +IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon) +{ + return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */); +} + + +/** + * Implements 'VMLAUNCH'. + */ +IEM_CIMPL_DEF_0(iemCImpl_vmlaunch) +{ + return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH); +} + + +/** + * Implements 'VMRESUME'. + */ +IEM_CIMPL_DEF_0(iemCImpl_vmresume) +{ + return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME); +} + + +/** + * Implements 'VMPTRLD'. + */ +IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs) +{ + return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */); +} + + +/** + * Implements 'VMPTRST'. + */ +IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs) +{ + return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */); +} + + +/** + * Implements 'VMCLEAR'. + */ +IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs) +{ + return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */); +} + + +/** + * Implements 'VMWRITE' register. + */ +IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64FieldEnc) +{ + return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, IEMMODE_64BIT /* N/A */, u64Val, u64FieldEnc, + NULL /* pExitInfo */); +} + + +/** + * Implements 'VMWRITE' memory. + */ +IEM_CIMPL_DEF_4(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrVal, uint32_t, u64FieldEnc) +{ + return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrVal, u64FieldEnc, NULL /* pExitInfo */); +} + + +/** + * Implements 'VMREAD' register (64-bit). + */ +IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64FieldEnc) +{ + return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64FieldEnc, NULL /* pExitInfo */); +} + + +/** + * Implements 'VMREAD' register (32-bit). + */ +IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32FieldEnc) +{ + return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32FieldEnc, NULL /* pExitInfo */); +} + + +/** + * Implements 'VMREAD' memory, 64-bit register. + */ +IEM_CIMPL_DEF_4(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrDst, uint32_t, u64FieldEnc) +{ + return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrDst, u64FieldEnc, NULL /* pExitInfo */); +} + + +/** + * Implements 'VMREAD' memory, 32-bit register. + */ +IEM_CIMPL_DEF_4(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrDst, uint32_t, u32FieldEnc) +{ + return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrDst, u32FieldEnc, NULL /* pExitInfo */); +} + + +/** + * Implements VMX's implementation of PAUSE. + */ +IEM_CIMPL_DEF_0(iemCImpl_vmx_pause) +{ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + { + VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr); + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + } + + /* + * Outside VMX non-root operation or if the PAUSE instruction does not cause + * a VM-exit, the instruction operates normally. + */ + iemRegAddToRipAndClearRF(pVCpu, cbInstr); + return VINF_SUCCESS; +} + +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ + + +/** + * Implements 'VMCALL'. + */ +IEM_CIMPL_DEF_0(iemCImpl_vmcall) +{ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + /* Nested-guest intercept. */ + if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu)) + return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr); +#endif + + /* Join forces with vmmcall. */ + return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL); +} + |