summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
commitf8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch)
tree26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h
parentInitial commit. (diff)
downloadvirtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.tar.xz
virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.zip
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h')
-rw-r--r--src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h8661
1 files changed, 8661 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h b/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h
new file mode 100644
index 00000000..40cd37f6
--- /dev/null
+++ b/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h
@@ -0,0 +1,8661 @@
+/* $Id: IEMAllCImplVmxInstr.cpp.h $ */
+/** @file
+ * IEM - VT-x instruction implementation.
+ */
+
+/*
+ * Copyright (C) 2011-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+/**
+ * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
+ * relative offsets.
+ */
+# ifdef IEM_WITH_CODE_TLB
+# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
+# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
+# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
+# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
+# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
+# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
+# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
+# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
+# error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
+# else /* !IEM_WITH_CODE_TLB */
+# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
+ do \
+ { \
+ Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
+ (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
+ } while (0)
+
+# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
+
+# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
+ do \
+ { \
+ Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
+ uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
+ uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
+ (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
+ } while (0)
+
+# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
+ do \
+ { \
+ Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
+ (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
+ } while (0)
+
+# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
+ do \
+ { \
+ Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
+ uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
+ uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
+ uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
+ uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
+ (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
+ } while (0)
+
+# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
+ do \
+ { \
+ Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
+ (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
+ } while (0)
+
+# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
+ do \
+ { \
+ Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
+ (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
+ } while (0)
+
+# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
+ do \
+ { \
+ Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
+ uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
+ uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
+ uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
+ uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
+ (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
+ } while (0)
+# endif /* !IEM_WITH_CODE_TLB */
+
+/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
+# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
+
+/** Whether a shadow VMCS is present for the given VCPU. */
+# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
+
+/** Gets the VMXON region pointer. */
+# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
+
+/** Gets the guest-physical address of the current VMCS for the given VCPU. */
+# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
+
+/** Whether a current VMCS is present for the given VCPU. */
+# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
+
+/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
+# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
+ do \
+ { \
+ Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
+ (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
+ } while (0)
+
+/** Clears any current VMCS for the given VCPU. */
+# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
+ do \
+ { \
+ (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
+ } while (0)
+
+/** Check for VMX instructions requiring to be in VMX operation.
+ * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */
+# define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
+ do \
+ { \
+ if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
+ { /* likely */ } \
+ else \
+ { \
+ Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
+ (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
+ return iemRaiseUndefinedOpcode(a_pVCpu); \
+ } \
+ } while (0)
+
+/** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
+# define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
+ do \
+ { \
+ Log(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
+ HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
+ (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
+ return VERR_VMX_VMENTRY_FAILED; \
+ } while (0)
+
+/** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
+# define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
+ do \
+ { \
+ Log(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
+ HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
+ (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
+ return VERR_VMX_VMEXIT_FAILED; \
+ } while (0)
+
+/** Enables/disables IEM-only EM execution policy in and from ring-3. */
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
+# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_ENABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcRet) \
+ do { \
+ Log(("%s: Enabling IEM-only EM execution policy!\n", (a_pszLogPrefix))); \
+ return EMR3SetExecutionPolicy((a_pVCpu)->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true); \
+ } while (0)
+
+# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_DISABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcRet) \
+ do { \
+ Log(("%s: Disabling IEM-only EM execution policy!\n", (a_pszLogPrefix))); \
+ return EMR3SetExecutionPolicy((a_pVCpu)->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false); \
+ } while (0)
+# else
+# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_ENABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcRet) do { return (a_rcRet); } while (0)
+# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_DISABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcRet) do { return (a_rcRet); } while (0)
+# endif
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+/** @todo NSTVMX: The following VM-exit intercepts are pending:
+ * VMX_EXIT_IO_SMI
+ * VMX_EXIT_SMI
+ * VMX_EXIT_INT_WINDOW
+ * VMX_EXIT_NMI_WINDOW
+ * VMX_EXIT_GETSEC
+ * VMX_EXIT_RSM
+ * VMX_EXIT_MTF
+ * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
+ * VMX_EXIT_ERR_MACHINE_CHECK
+ * VMX_EXIT_TPR_BELOW_THRESHOLD
+ * VMX_EXIT_APIC_ACCESS
+ * VMX_EXIT_VIRTUALIZED_EOI
+ * VMX_EXIT_EPT_VIOLATION
+ * VMX_EXIT_EPT_MISCONFIG
+ * VMX_EXIT_INVEPT
+ * VMX_EXIT_PREEMPT_TIMER
+ * VMX_EXIT_INVVPID
+ * VMX_EXIT_APIC_WRITE
+ * VMX_EXIT_RDRAND
+ * VMX_EXIT_VMFUNC
+ * VMX_EXIT_ENCLS
+ * VMX_EXIT_RDSEED
+ * VMX_EXIT_PML_FULL
+ * VMX_EXIT_XSAVES
+ * VMX_EXIT_XRSTORS
+ */
+/**
+ * Map of VMCS field encodings to their virtual-VMCS structure offsets.
+ *
+ * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
+ * second dimension is the Index, see VMXVMCSFIELDENC.
+ */
+uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
+{
+ /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex),
+ /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
+ {
+ /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 24-25 */ UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr),
+ /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr),
+ /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus),
+ /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex),
+ /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr),
+ /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
+ /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml),
+ /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset),
+ /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic),
+ /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess),
+ /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
+ /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls),
+ /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptpPtr),
+ /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
+ /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
+ /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
+ /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
+ /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList),
+ /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
+ /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
+ /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
+ /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssBitmap),
+ /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEnclsBitmap),
+ /* 24 */ UINT16_MAX,
+ /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier)
+ },
+ /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
+ /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 25 */ UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1),
+ /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2),
+ /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3),
+ /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
+ /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
+ /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls),
+ /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
+ /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
+ /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls),
+ /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
+ /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo),
+ /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
+ /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen),
+ /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold),
+ /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2),
+ /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap),
+ /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow),
+ /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen),
+ /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
+ /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 24-25 */ UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
+ /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit),
+ /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
+ /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
+ /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr),
+ /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr),
+ /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr),
+ /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr),
+ /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr),
+ /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr),
+ /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
+ /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr),
+ /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState),
+ /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState),
+ /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase),
+ /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS),
+ /* 22 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer),
+ /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs),
+ /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 25 */ UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_CONTROL: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2),
+ /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3),
+ /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 24-25 */ UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
+ /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 22-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase),
+ /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase),
+ /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase),
+ /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase),
+ /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase),
+ /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase),
+ /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase),
+ /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7),
+ /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp),
+ /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip),
+ /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags),
+ /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpt),
+ /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
+ /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip),
+ /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
+ },
+ /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_HOST_STATE: */
+ {
+ /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0),
+ /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3),
+ /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4),
+ /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase),
+ /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase),
+ /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase),
+ /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase),
+ /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase),
+ /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp),
+ /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip),
+ /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp),
+ /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip),
+ /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
+ /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
+ }
+};
+
+
+/**
+ * Returns whether the given VMCS field is valid and supported by our emulation.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param u64FieldEnc The VMCS field encoding.
+ *
+ * @remarks This takes into account the CPU features exposed to the guest.
+ */
+IEM_STATIC bool iemVmxIsVmcsFieldValid(PVMCPU pVCpu, uint64_t u64FieldEnc)
+{
+ uint32_t const uFieldEncHi = RT_HI_U32(u64FieldEnc);
+ uint32_t const uFieldEncLo = RT_LO_U32(u64FieldEnc);
+ if (!uFieldEncHi)
+ { /* likely */ }
+ else
+ return false;
+
+ PCCPUMFEATURES pFeat = IEM_GET_GUEST_CPU_FEATURES(pVCpu);
+ switch (uFieldEncLo)
+ {
+ /*
+ * 16-bit fields.
+ */
+ /* Control fields. */
+ case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
+ case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
+ case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
+
+ /* Guest-state fields. */
+ case VMX_VMCS16_GUEST_ES_SEL:
+ case VMX_VMCS16_GUEST_CS_SEL:
+ case VMX_VMCS16_GUEST_SS_SEL:
+ case VMX_VMCS16_GUEST_DS_SEL:
+ case VMX_VMCS16_GUEST_FS_SEL:
+ case VMX_VMCS16_GUEST_GS_SEL:
+ case VMX_VMCS16_GUEST_LDTR_SEL:
+ case VMX_VMCS16_GUEST_TR_SEL: return true;
+ case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
+ case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
+
+ /* Host-state fields. */
+ case VMX_VMCS16_HOST_ES_SEL:
+ case VMX_VMCS16_HOST_CS_SEL:
+ case VMX_VMCS16_HOST_SS_SEL:
+ case VMX_VMCS16_HOST_DS_SEL:
+ case VMX_VMCS16_HOST_FS_SEL:
+ case VMX_VMCS16_HOST_GS_SEL:
+ case VMX_VMCS16_HOST_TR_SEL: return true;
+
+ /*
+ * 64-bit fields.
+ */
+ /* Control fields. */
+ case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
+ case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
+ case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
+ case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
+ case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
+ case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
+ case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
+ case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
+ case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
+ case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
+ case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
+ case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
+ case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
+ case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
+ case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
+ case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
+ case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
+ case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
+ case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
+ case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
+ case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
+ case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
+ case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
+ case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
+ case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
+ case VMX_VMCS64_CTRL_EPTP_FULL:
+ case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
+ case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
+ case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
+ case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
+ {
+ uint64_t const uVmFuncMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64VmFunc;
+ return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
+ }
+ case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
+ case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
+ case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL:
+ case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
+ case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
+ case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH: return false;
+ case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
+ case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
+
+ /* Read-only data fields. */
+ case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
+ case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
+
+ /* Guest-state fields. */
+ case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
+ case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
+ case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
+ case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
+ case VMX_VMCS64_GUEST_PAT_FULL:
+ case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
+ case VMX_VMCS64_GUEST_EFER_FULL:
+ case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
+ case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
+ case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH: return false;
+ case VMX_VMCS64_GUEST_PDPTE0_FULL:
+ case VMX_VMCS64_GUEST_PDPTE0_HIGH:
+ case VMX_VMCS64_GUEST_PDPTE1_FULL:
+ case VMX_VMCS64_GUEST_PDPTE1_HIGH:
+ case VMX_VMCS64_GUEST_PDPTE2_FULL:
+ case VMX_VMCS64_GUEST_PDPTE2_HIGH:
+ case VMX_VMCS64_GUEST_PDPTE3_FULL:
+ case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
+ case VMX_VMCS64_GUEST_BNDCFGS_FULL:
+ case VMX_VMCS64_GUEST_BNDCFGS_HIGH: return false;
+
+ /* Host-state fields. */
+ case VMX_VMCS64_HOST_PAT_FULL:
+ case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
+ case VMX_VMCS64_HOST_EFER_FULL:
+ case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
+ case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
+ case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH: return false;
+
+ /*
+ * 32-bit fields.
+ */
+ /* Control fields. */
+ case VMX_VMCS32_CTRL_PIN_EXEC:
+ case VMX_VMCS32_CTRL_PROC_EXEC:
+ case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
+ case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
+ case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
+ case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
+ case VMX_VMCS32_CTRL_EXIT:
+ case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
+ case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
+ case VMX_VMCS32_CTRL_ENTRY:
+ case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
+ case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
+ case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
+ case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
+ case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
+ case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
+ case VMX_VMCS32_CTRL_PLE_GAP:
+ case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
+
+ /* Read-only data fields. */
+ case VMX_VMCS32_RO_VM_INSTR_ERROR:
+ case VMX_VMCS32_RO_EXIT_REASON:
+ case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
+ case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
+ case VMX_VMCS32_RO_IDT_VECTORING_INFO:
+ case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
+ case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
+ case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
+
+ /* Guest-state fields. */
+ case VMX_VMCS32_GUEST_ES_LIMIT:
+ case VMX_VMCS32_GUEST_CS_LIMIT:
+ case VMX_VMCS32_GUEST_SS_LIMIT:
+ case VMX_VMCS32_GUEST_DS_LIMIT:
+ case VMX_VMCS32_GUEST_FS_LIMIT:
+ case VMX_VMCS32_GUEST_GS_LIMIT:
+ case VMX_VMCS32_GUEST_LDTR_LIMIT:
+ case VMX_VMCS32_GUEST_TR_LIMIT:
+ case VMX_VMCS32_GUEST_GDTR_LIMIT:
+ case VMX_VMCS32_GUEST_IDTR_LIMIT:
+ case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_INT_STATE:
+ case VMX_VMCS32_GUEST_ACTIVITY_STATE:
+ case VMX_VMCS32_GUEST_SMBASE:
+ case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
+ case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
+
+ /* Host-state fields. */
+ case VMX_VMCS32_HOST_SYSENTER_CS: return true;
+
+ /*
+ * Natural-width fields.
+ */
+ /* Control fields. */
+ case VMX_VMCS_CTRL_CR0_MASK:
+ case VMX_VMCS_CTRL_CR4_MASK:
+ case VMX_VMCS_CTRL_CR0_READ_SHADOW:
+ case VMX_VMCS_CTRL_CR4_READ_SHADOW:
+ case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
+ case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
+ case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
+ case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
+
+ /* Read-only data fields. */
+ case VMX_VMCS_RO_EXIT_QUALIFICATION:
+ case VMX_VMCS_RO_IO_RCX:
+ case VMX_VMCS_RO_IO_RSX:
+ case VMX_VMCS_RO_IO_RDI:
+ case VMX_VMCS_RO_IO_RIP:
+ case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true;
+
+ /* Guest-state fields. */
+ case VMX_VMCS_GUEST_CR0:
+ case VMX_VMCS_GUEST_CR3:
+ case VMX_VMCS_GUEST_CR4:
+ case VMX_VMCS_GUEST_ES_BASE:
+ case VMX_VMCS_GUEST_CS_BASE:
+ case VMX_VMCS_GUEST_SS_BASE:
+ case VMX_VMCS_GUEST_DS_BASE:
+ case VMX_VMCS_GUEST_FS_BASE:
+ case VMX_VMCS_GUEST_GS_BASE:
+ case VMX_VMCS_GUEST_LDTR_BASE:
+ case VMX_VMCS_GUEST_TR_BASE:
+ case VMX_VMCS_GUEST_GDTR_BASE:
+ case VMX_VMCS_GUEST_IDTR_BASE:
+ case VMX_VMCS_GUEST_DR7:
+ case VMX_VMCS_GUEST_RSP:
+ case VMX_VMCS_GUEST_RIP:
+ case VMX_VMCS_GUEST_RFLAGS:
+ case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
+ case VMX_VMCS_GUEST_SYSENTER_ESP:
+ case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
+
+ /* Host-state fields. */
+ case VMX_VMCS_HOST_CR0:
+ case VMX_VMCS_HOST_CR3:
+ case VMX_VMCS_HOST_CR4:
+ case VMX_VMCS_HOST_FS_BASE:
+ case VMX_VMCS_HOST_GS_BASE:
+ case VMX_VMCS_HOST_TR_BASE:
+ case VMX_VMCS_HOST_GDTR_BASE:
+ case VMX_VMCS_HOST_IDTR_BASE:
+ case VMX_VMCS_HOST_SYSENTER_ESP:
+ case VMX_VMCS_HOST_SYSENTER_EIP:
+ case VMX_VMCS_HOST_RSP:
+ case VMX_VMCS_HOST_RIP: return true;
+ }
+
+ return false;
+}
+
+
+/**
+ * Gets a host selector from the VMCS.
+ *
+ * @param pVmcs Pointer to the virtual VMCS.
+ * @param iSelReg The index of the segment register (X86_SREG_XXX).
+ */
+DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
+{
+ Assert(iSegReg < X86_SREG_COUNT);
+ RTSEL HostSel;
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_HOST_STATE;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCS_ENC_INDEX);
+ Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t const *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t const *pbField = pbVmcs + offField;
+ HostSel = *(uint16_t *)pbField;
+ return HostSel;
+}
+
+
+/**
+ * Sets a guest segment register in the VMCS.
+ *
+ * @param pVmcs Pointer to the virtual VMCS.
+ * @param iSegReg The index of the segment register (X86_SREG_XXX).
+ * @param pSelReg Pointer to the segment register.
+ */
+IEM_STATIC void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg)
+{
+ Assert(pSelReg);
+ Assert(iSegReg < X86_SREG_COUNT);
+
+ /* Selector. */
+ {
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCS_ENC_INDEX);
+ Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t *pbField = pbVmcs + offField;
+ *(uint16_t *)pbField = pSelReg->Sel;
+ }
+
+ /* Limit. */
+ {
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCS_ENC_INDEX);
+ Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t *pbField = pbVmcs + offField;
+ *(uint32_t *)pbField = pSelReg->u32Limit;
+ }
+
+ /* Base. */
+ {
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCS_ENC_INDEX);
+ Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t const *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t const *pbField = pbVmcs + offField;
+ *(uint64_t *)pbField = pSelReg->u64Base;
+ }
+
+ /* Attributes. */
+ {
+ uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
+ | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
+ | X86DESCATTR_UNUSABLE;
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCS_ENC_INDEX);
+ Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t *pbField = pbVmcs + offField;
+ *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
+ }
+}
+
+
+/**
+ * Gets a guest segment register from the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVmcs Pointer to the virtual VMCS.
+ * @param iSegReg The index of the segment register (X86_SREG_XXX).
+ * @param pSelReg Where to store the segment register (only updated when
+ * VINF_SUCCESS is returned).
+ *
+ * @remarks Warning! This does not validate the contents of the retrieved segment
+ * register.
+ */
+IEM_STATIC int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg)
+{
+ Assert(pSelReg);
+ Assert(iSegReg < X86_SREG_COUNT);
+
+ /* Selector. */
+ uint16_t u16Sel;
+ {
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCS_ENC_INDEX);
+ AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t const *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t const *pbField = pbVmcs + offField;
+ u16Sel = *(uint16_t *)pbField;
+ }
+
+ /* Limit. */
+ uint32_t u32Limit;
+ {
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCS_ENC_INDEX);
+ AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t const *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t const *pbField = pbVmcs + offField;
+ u32Limit = *(uint32_t *)pbField;
+ }
+
+ /* Base. */
+ uint64_t u64Base;
+ {
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCS_ENC_INDEX);
+ AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t const *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t const *pbField = pbVmcs + offField;
+ u64Base = *(uint64_t *)pbField;
+ /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
+ }
+
+ /* Attributes. */
+ uint32_t u32Attr;
+ {
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCS_ENC_INDEX);
+ AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t const *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t const *pbField = pbVmcs + offField;
+ u32Attr = *(uint32_t *)pbField;
+ }
+
+ pSelReg->Sel = u16Sel;
+ pSelReg->ValidSel = u16Sel;
+ pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
+ pSelReg->u32Limit = u32Limit;
+ pSelReg->u64Base = u64Base;
+ pSelReg->Attr.u = u32Attr;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Gets a CR3 target value from the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVmcs Pointer to the virtual VMCS.
+ * @param idxCr3Target The index of the CR3-target value to retrieve.
+ * @param puValue Where to store the CR3-target value.
+ */
+DECLINLINE(uint64_t) iemVmxVmcsGetCr3TargetValue(PCVMXVVMCS pVmcs, uint8_t idxCr3Target)
+{
+ Assert(idxCr3Target < VMX_V_CR3_TARGET_COUNT);
+ uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL;
+ uint8_t const uType = VMX_VMCS_ENC_TYPE_CONTROL;
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = idxCr3Target + RT_BF_GET(VMX_VMCS_CTRL_CR3_TARGET_VAL0, VMX_BF_VMCS_ENC_INDEX);
+ Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ uint8_t const *pbVmcs = (uint8_t *)pVmcs;
+ uint8_t const *pbField = pbVmcs + offField;
+ uint64_t const uCr3TargetValue = *(uint64_t *)pbField;
+
+ return uCr3TargetValue;
+}
+
+
+/**
+ * Converts an IEM exception event type to a VMX event type.
+ *
+ * @returns The VMX event type.
+ * @param uVector The interrupt / exception vector.
+ * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX).
+ */
+DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags)
+{
+ /* Paranoia (callers may use these interchangeably). */
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT);
+ AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT);
+
+ if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
+ {
+ if (uVector == X86_XCPT_NMI)
+ return VMX_EXIT_INT_INFO_TYPE_NMI;
+ return VMX_EXIT_INT_INFO_TYPE_HW_XCPT;
+ }
+
+ if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
+ {
+ if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
+ return VMX_EXIT_INT_INFO_TYPE_SW_XCPT;
+ if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
+ return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT;
+ return VMX_EXIT_INT_INFO_TYPE_SW_INT;
+ }
+
+ Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT);
+ return VMX_EXIT_INT_INFO_TYPE_EXT_INT;
+}
+
+
+/**
+ * Sets the VM-instruction error VMCS field.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param enmInsErr The VM-instruction error.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetVmInstrErr(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u32RoVmInstrError = enmInsErr;
+}
+
+
+/**
+ * Sets the VM-exit qualification VMCS field.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitQual The VM-exit qualification.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPU pVCpu, uint64_t uExitQual)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u64RoExitQual.u = uExitQual;
+}
+
+
+/**
+ * Sets the VM-exit interruption information field.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitQual The VM-exit interruption information.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPU pVCpu, uint32_t uExitIntInfo)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u32RoExitIntInfo = uExitIntInfo;
+}
+
+
+/**
+ * Sets the VM-exit interruption error code.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uErrCode The error code.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPU pVCpu, uint32_t uErrCode)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u32RoExitIntErrCode = uErrCode;
+}
+
+
+/**
+ * Sets the IDT-vectoring information field.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uIdtVectorInfo The IDT-vectoring information.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPU pVCpu, uint32_t uIdtVectorInfo)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u32RoIdtVectoringInfo = uIdtVectorInfo;
+}
+
+
+/**
+ * Sets the IDT-vectoring error code field.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uErrCode The error code.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPU pVCpu, uint32_t uErrCode)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u32RoIdtVectoringErrCode = uErrCode;
+}
+
+
+/**
+ * Sets the VM-exit guest-linear address VMCS field.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uGuestLinearAddr The VM-exit guest-linear address.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPU pVCpu, uint64_t uGuestLinearAddr)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u64RoGuestLinearAddr.u = uGuestLinearAddr;
+}
+
+
+/**
+ * Sets the VM-exit guest-physical address VMCS field.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uGuestPhysAddr The VM-exit guest-physical address.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPU pVCpu, uint64_t uGuestPhysAddr)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u64RoGuestPhysAddr.u = uGuestPhysAddr;
+}
+
+
+/**
+ * Sets the VM-exit instruction length VMCS field.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The VM-exit instruction length in bytes.
+ *
+ * @remarks Callers may clear this field to 0. Hence, this function does not check
+ * the validity of the instruction length.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPU pVCpu, uint32_t cbInstr)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u32RoExitInstrLen = cbInstr;
+}
+
+
+/**
+ * Sets the VM-exit instruction info. VMCS field.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitInstrInfo The VM-exit instruction information.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitInstrInfo)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVmcs->u32RoExitInstrInfo = uExitInstrInfo;
+}
+
+
+/**
+ * Implements VMSucceed for VMX instruction success.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPU pVCpu)
+{
+ pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
+}
+
+
+/**
+ * Implements VMFailInvalid for VMX instruction failure.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPU pVCpu)
+{
+ pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
+ pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_CF;
+}
+
+
+/**
+ * Implements VMFailValid for VMX instruction failure.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param enmInsErr The VM instruction error.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmFailValid(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
+{
+ if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
+ {
+ pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
+ pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_ZF;
+ iemVmxVmcsSetVmInstrErr(pVCpu, enmInsErr);
+ }
+}
+
+
+/**
+ * Implements VMFail for VMX instruction failure.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param enmInsErr The VM instruction error.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
+{
+ if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
+ iemVmxVmFailValid(pVCpu, enmInsErr);
+ else
+ iemVmxVmFailInvalid(pVCpu);
+}
+
+
+/**
+ * Checks if the given auto-load/store MSR area count is valid for the
+ * implementation.
+ *
+ * @returns @c true if it's within the valid limit, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uMsrCount The MSR area count to check.
+ */
+DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PVMCPU pVCpu, uint32_t uMsrCount)
+{
+ uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
+ uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
+ Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
+ if (uMsrCount <= cMaxSupportedMsrs)
+ return true;
+ return false;
+}
+
+
+/**
+ * Flushes the current VMCS contents back to guest memory.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECL_FORCE_INLINE(int) iemVmxCommitCurrentVmcsToMemory(PVMCPU pVCpu)
+{
+ Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
+ int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
+ pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), sizeof(VMXVVMCS));
+ IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
+ return rc;
+}
+
+
+/**
+ * Implements VMSucceed for the VMREAD instruction and increments the guest RIP.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECL_FORCE_INLINE(void) iemVmxVmreadSuccess(PVMCPU pVCpu, uint8_t cbInstr)
+{
+ iemVmxVmSucceed(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+}
+
+
+/**
+ * Gets the instruction diagnostic for segment base checks during VM-entry of a
+ * nested-guest.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for segment base checks during VM-entry of a
+ * nested-guest that is in Virtual-8086 mode.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for segment limit checks during VM-entry of a
+ * nested-guest that is in Virtual-8086 mode.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
+ * nested-guest that is in Virtual-8086 mode.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for segment attributes reserved bits failure
+ * during VM-entry of a nested-guest.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for segment attributes descriptor-type
+ * (code/segment or system) failure during VM-entry of a nested-guest.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for segment attributes descriptor-type
+ * (code/segment or system) failure during VM-entry of a nested-guest.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for segment attribute granularity failure during
+ * VM-entry of a nested-guest.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
+ }
+}
+
+/**
+ * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
+ * VM-entry of a nested-guest.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for segment attribute type accessed failure
+ * during VM-entry of a nested-guest.
+ *
+ * @param iSegReg The segment index (X86_SREG_XXX).
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg)
+{
+ switch (iSegReg)
+ {
+ case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
+ case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
+ case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
+ case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
+ case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
+ case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for guest CR3 referenced PDPTE reserved bits
+ * failure during VM-entry of a nested-guest.
+ *
+ * @param iSegReg The PDPTE entry index.
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmentryPdpteRsvd(unsigned iPdpte)
+{
+ Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES);
+ switch (iPdpte)
+ {
+ case 0: return kVmxVDiag_Vmentry_GuestPdpte0Rsvd;
+ case 1: return kVmxVDiag_Vmentry_GuestPdpte1Rsvd;
+ case 2: return kVmxVDiag_Vmentry_GuestPdpte2Rsvd;
+ case 3: return kVmxVDiag_Vmentry_GuestPdpte3Rsvd;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_11);
+ }
+}
+
+
+/**
+ * Gets the instruction diagnostic for host CR3 referenced PDPTE reserved bits
+ * failure during VM-exit of a nested-guest.
+ *
+ * @param iSegReg The PDPTE entry index.
+ */
+IEM_STATIC VMXVDIAG iemVmxGetDiagVmexitPdpteRsvd(unsigned iPdpte)
+{
+ Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES);
+ switch (iPdpte)
+ {
+ case 0: return kVmxVDiag_Vmexit_HostPdpte0Rsvd;
+ case 1: return kVmxVDiag_Vmexit_HostPdpte1Rsvd;
+ case 2: return kVmxVDiag_Vmexit_HostPdpte2Rsvd;
+ case 3: return kVmxVDiag_Vmexit_HostPdpte3Rsvd;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_12);
+ }
+}
+
+
+/**
+ * Masks the nested-guest CR0/CR4 mask subjected to the corresponding guest/host
+ * mask and the read-shadow (CR0/CR4 read).
+ *
+ * @returns The masked CR0/CR4.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param iCrReg The control register (either CR0 or CR4).
+ * @param uGuestCrX The current guest CR0 or guest CR4.
+ */
+IEM_STATIC uint64_t iemVmxMaskCr0CR4(PVMCPU pVCpu, uint8_t iCrReg, uint64_t uGuestCrX)
+{
+ Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
+ Assert(iCrReg == 0 || iCrReg == 4);
+
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * For each CR0 or CR4 bit owned by the host, the corresponding bit is loaded from the
+ * CR0 read shadow or CR4 read shadow. For each CR0 or CR4 bit that is not owned by the
+ * host, the corresponding bit from the guest CR0 or guest CR4 is loaded.
+ *
+ * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
+ */
+ uint64_t fGstHostMask;
+ uint64_t fReadShadow;
+ if (iCrReg == 0)
+ {
+ fGstHostMask = pVmcs->u64Cr0Mask.u;
+ fReadShadow = pVmcs->u64Cr0ReadShadow.u;
+ }
+ else
+ {
+ fGstHostMask = pVmcs->u64Cr4Mask.u;
+ fReadShadow = pVmcs->u64Cr4ReadShadow.u;
+ }
+
+ uint64_t const fMaskedCrX = (fReadShadow & fGstHostMask) | (uGuestCrX & ~fGstHostMask);
+ return fMaskedCrX;
+}
+
+
+/**
+ * Saves the guest control registers, debug registers and some MSRs are part of
+ * VM-exit.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPU pVCpu)
+{
+ /*
+ * Saves the guest control registers, debug registers and some MSRs.
+ * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
+ */
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+
+ /* Save control registers. */
+ pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
+ pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
+ pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
+
+ /* Save SYSENTER CS, ESP, EIP. */
+ pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
+ pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
+ }
+ else
+ {
+ pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
+ pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
+ }
+
+ /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
+ if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
+ {
+ pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
+ /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
+ }
+
+ /* Save PAT MSR. */
+ if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
+ pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
+
+ /* Save EFER MSR. */
+ if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
+ pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
+
+ /* We don't support clearing IA32_BNDCFGS MSR yet. */
+ Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
+
+ /* Nothing to do for SMBASE register - We don't support SMM yet. */
+}
+
+
+/**
+ * Saves the guest force-flags in preparation of entering the nested-guest.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxVmentrySaveNmiBlockingFF(PVMCPU pVCpu)
+{
+ /* We shouldn't be called multiple times during VM-entry. */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions == 0);
+
+ /* MTF should not be set outside VMX non-root mode. */
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
+
+ /*
+ * Preserve the required force-flags.
+ *
+ * We cache and clear force-flags that would affect the execution of the
+ * nested-guest. Cached flags are then restored while returning to the guest
+ * if necessary.
+ *
+ * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
+ * interrupts until the completion of the current VMLAUNCH/VMRESUME
+ * instruction. Interrupt inhibition for any nested-guest instruction
+ * is supplied by the guest-interruptibility state VMCS field and will
+ * be set up as part of loading the guest state.
+ *
+ * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
+ * successful VM-entry (due to invalid guest-state) need to continue
+ * blocking NMIs if it was in effect before VM-entry.
+ *
+ * - MTF need not be preserved as it's used only in VMX non-root mode and
+ * is supplied through the VM-execution controls.
+ *
+ * The remaining FFs (e.g. timers, APIC updates) can stay in place so that
+ * we will be able to generate interrupts that may cause VM-exits for
+ * the nested-guest.
+ */
+ pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
+}
+
+
+/**
+ * Restores the guest force-flags in preparation of exiting the nested-guest.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxVmexitRestoreNmiBlockingFF(PVMCPU pVCpu)
+{
+ if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions)
+ {
+ VMCPU_FF_SET_MASK(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions);
+ pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0;
+ }
+}
+
+
+/**
+ * Perform a VMX transition updated PGM, IEM and CPUM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC int iemVmxWorldSwitch(PVMCPU pVCpu)
+{
+ /*
+ * Inform PGM about paging mode changes.
+ * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
+ * see comment in iemMemPageTranslateAndCheckAccess().
+ */
+ int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
+# ifdef IN_RING3
+ Assert(rc != VINF_PGM_CHANGE_MODE);
+# endif
+ AssertRCReturn(rc, rc);
+
+ /* Inform CPUM (recompiler), can later be removed. */
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
+
+ /*
+ * Flush the TLB with new CR3. This is required in case the PGM mode change
+ * above doesn't actually change anything.
+ */
+ if (rc == VINF_SUCCESS)
+ {
+ rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true);
+ AssertRCReturn(rc, rc);
+ }
+
+ /* Re-initialize IEM cache/state after the drastic mode switch. */
+ iemReInitExec(pVCpu);
+ return rc;
+}
+
+
+/**
+ * Calculates the current VMX-preemption timer value.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC uint32_t iemVmxCalcPreemptTimer(PVMCPU pVCpu)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * Assume the following:
+ * PreemptTimerShift = 5
+ * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks)
+ * VmentryTick = 50000 (TSC at time of VM-entry)
+ *
+ * CurTick Delta PreemptTimerVal
+ * ----------------------------------
+ * 60000 10000 2
+ * 80000 30000 1
+ * 90000 40000 0 -> VM-exit.
+ *
+ * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit.
+ * The saved VMX-preemption timer value is calculated as follows:
+ * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift)))
+ * E.g.:
+ * Delta = 10000
+ * Tmp = 10000 / (2 * 10000) = 0.5
+ * NewPt = 2 - 0.5 = 2
+ * Delta = 30000
+ * Tmp = 30000 / (2 * 10000) = 1.5
+ * NewPt = 2 - 1.5 = 1
+ * Delta = 40000
+ * Tmp = 40000 / 20000 = 2
+ * NewPt = 2 - 2 = 0
+ */
+ uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu);
+ uint64_t const uVmentryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uVmentryTick;
+ uint64_t const uDelta = uCurTick - uVmentryTick;
+ uint32_t const uVmcsPreemptVal = pVmcs->u32PreemptTimer;
+ uint32_t const uPreemptTimer = uVmcsPreemptVal
+ - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT));
+ return uPreemptTimer;
+}
+
+
+/**
+ * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxVmexitSaveGuestSegRegs(PVMCPU pVCpu)
+{
+ /*
+ * Save guest segment registers, GDTR, IDTR, LDTR, TR.
+ * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
+ */
+ /* CS, SS, ES, DS, FS, GS. */
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
+ {
+ PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
+ if (!pSelReg->Attr.n.u1Unusable)
+ iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
+ else
+ {
+ /*
+ * For unusable segments the attributes are undefined except for CS and SS.
+ * For the rest we don't bother preserving anything but the unusable bit.
+ */
+ switch (iSegReg)
+ {
+ case X86_SREG_CS:
+ pVmcs->GuestCs = pSelReg->Sel;
+ pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
+ pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
+ pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
+ | X86DESCATTR_UNUSABLE);
+ break;
+
+ case X86_SREG_SS:
+ pVmcs->GuestSs = pSelReg->Sel;
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
+ pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
+ break;
+
+ case X86_SREG_DS:
+ pVmcs->GuestDs = pSelReg->Sel;
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
+ pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
+ break;
+
+ case X86_SREG_ES:
+ pVmcs->GuestEs = pSelReg->Sel;
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
+ pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
+ break;
+
+ case X86_SREG_FS:
+ pVmcs->GuestFs = pSelReg->Sel;
+ pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
+ pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
+ break;
+
+ case X86_SREG_GS:
+ pVmcs->GuestGs = pSelReg->Sel;
+ pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
+ pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
+ break;
+ }
+ }
+ }
+
+ /* Segment attribute bits 31:7 and 11:8 MBZ. */
+ uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
+ | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_UNUSABLE;
+ /* LDTR. */
+ {
+ PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
+ pVmcs->GuestLdtr = pSelReg->Sel;
+ pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
+ Assert(X86_IS_CANONICAL(pSelReg->u64Base));
+ pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
+ pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
+ }
+
+ /* TR. */
+ {
+ PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
+ pVmcs->GuestTr = pSelReg->Sel;
+ pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
+ pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
+ pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
+ }
+
+ /* GDTR. */
+ pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
+ pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
+
+ /* IDTR. */
+ pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
+ pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
+}
+
+
+/**
+ * Saves guest non-register state as part of VM-exit.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason.
+ */
+IEM_STATIC void iemVmxVmexitSaveGuestNonRegState(PVMCPU pVCpu, uint32_t uExitReason)
+{
+ /*
+ * Save guest non-register state.
+ * See Intel spec. 27.3.4 "Saving Non-Register State".
+ */
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+
+ /*
+ * Activity state.
+ * Most VM-exits will occur in the active state. However, if the first instruction
+ * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set,
+ * the VM-exit will be from the HLT activity state.
+ *
+ * See Intel spec. 25.5.2 "Monitor Trap Flag".
+ */
+ /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or
+ * not? */
+ EMSTATE enmActivityState = EMGetState(pVCpu);
+ switch (enmActivityState)
+ {
+ case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break;
+ default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break;
+ }
+
+ /* Interruptibility-state. */
+ pVmcs->u32GuestIntrState = 0;
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
+
+ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
+ && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
+ {
+ /** @todo NSTVMX: We can't distinguish between blocking-by-MovSS and blocking-by-STI
+ * currently. */
+ pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+ }
+ /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
+
+ /*
+ * Pending debug exceptions.
+ */
+ if ( uExitReason != VMX_EXIT_INIT_SIGNAL
+ && uExitReason != VMX_EXIT_SMI
+ && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
+ && !HMVmxIsVmexitTrapLike(uExitReason))
+ {
+ /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
+ * block-by-MovSS is in effect. */
+ pVmcs->u64GuestPendingDbgXcpt.u = 0;
+ }
+ else
+ {
+ /*
+ * Pending debug exception field is identical to DR6 except the RTM bit (16) which needs to be flipped.
+ * The "enabled breakpoint" bit (12) is not present in DR6, so we need to update it here.
+ *
+ * See Intel spec. 24.4.2 "Guest Non-Register State".
+ */
+ uint64_t fPendingDbgMask = pVCpu->cpum.GstCtx.dr[6];
+ uint64_t const fBpHitMask = VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP0 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP1
+ | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP2 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP3;
+ if (fPendingDbgMask & fBpHitMask)
+ fPendingDbgMask |= VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP;
+ fPendingDbgMask ^= VMX_VMCS_GUEST_PENDING_DEBUG_RTM;
+ pVmcs->u64GuestPendingDbgXcpt.u = fPendingDbgMask;
+ }
+
+ /*
+ * Save the VMX-preemption timer value back into the VMCS if the feature is enabled.
+ *
+ * For VMX-preemption timer VM-exits, we should have already written back 0 if the
+ * feature is supported back into the VMCS, and thus there is nothing further to do here.
+ */
+ if ( uExitReason != VMX_EXIT_PREEMPT_TIMER
+ && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
+ pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
+
+ /* PDPTEs. */
+ /* We don't support EPT yet. */
+ Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
+ pVmcs->u64GuestPdpte0.u = 0;
+ pVmcs->u64GuestPdpte1.u = 0;
+ pVmcs->u64GuestPdpte2.u = 0;
+ pVmcs->u64GuestPdpte3.u = 0;
+}
+
+
+/**
+ * Saves the guest-state as part of VM-exit.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason.
+ */
+IEM_STATIC void iemVmxVmexitSaveGuestState(PVMCPU pVCpu, uint32_t uExitReason)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
+ iemVmxVmexitSaveGuestSegRegs(pVCpu);
+
+ /** @todo r=ramshankar: The below hack is no longer necessary because we invoke the
+ * VM-exit after updating RIP. I'm leaving it in-place temporarily in case
+ * we need to fix missing exit information or callers still setting
+ * instruction-length field when it is not necessary. */
+#if 0
+ /*
+ * Save guest RIP, RSP and RFLAGS.
+ * See Intel spec. 27.3.3 "Saving RIP, RSP and RFLAGS".
+ *
+ * For trap-like VM-exits we must advance the RIP by the length of the instruction.
+ * Callers must pass the instruction length in the VM-exit instruction length
+ * field though it is undefined for such VM-exits. After updating RIP here, we clear
+ * the VM-exit instruction length field.
+ *
+ * See Intel spec. 27.1 "Architectural State Before A VM Exit"
+ */
+ if (HMVmxIsTrapLikeVmexit(uExitReason))
+ {
+ uint8_t const cbInstr = pVmcs->u32RoExitInstrLen;
+ AssertMsg(cbInstr >= 1 && cbInstr <= 15, ("uReason=%u cbInstr=%u\n", uExitReason, cbInstr));
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ iemVmxVmcsSetExitInstrLen(pVCpu, 0 /* cbInstr */);
+ }
+#endif
+
+ /* We don't support enclave mode yet. */
+ pVmcs->u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
+ pVmcs->u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
+ pVmcs->u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
+
+ iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
+}
+
+
+/**
+ * Saves the guest MSRs into the VM-exit auto-store MSRs area as part of VM-exit.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason (for diagnostic purposes).
+ */
+IEM_STATIC int iemVmxVmexitSaveGuestAutoMsrs(PVMCPU pVCpu, uint32_t uExitReason)
+{
+ /*
+ * Save guest MSRs.
+ * See Intel spec. 27.4 "Saving MSRs".
+ */
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char *const pszFailure = "VMX-abort";
+
+ /*
+ * The VM-exit MSR-store area address need not be a valid guest-physical address if the
+ * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
+ * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
+ */
+ uint32_t const cMsrs = pVmcs->u32ExitMsrStoreCount;
+ if (!cMsrs)
+ return VINF_SUCCESS;
+
+ /*
+ * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
+ * is exceeded including possibly raising #MC exceptions during VMX transition. Our
+ * implementation causes a VMX-abort followed by a triple-fault.
+ */
+ bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
+ if (fIsMsrCountValid)
+ { /* likely */ }
+ else
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
+
+ PVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea);
+ Assert(pMsr);
+ for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
+ {
+ if ( !pMsr->u32Reserved
+ && pMsr->u32Msr != MSR_IA32_SMBASE
+ && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
+ {
+ VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
+ if (rcStrict == VINF_SUCCESS)
+ continue;
+
+ /*
+ * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
+ * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
+ * recording the MSR index in the auxiliary info. field and indicated further by our
+ * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
+ * if possible, or come up with a better, generic solution.
+ */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
+ VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
+ ? kVmxVDiag_Vmexit_MsrStoreRing3
+ : kVmxVDiag_Vmexit_MsrStore;
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
+ }
+ }
+
+ RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrExitMsrStore.u;
+ int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysAutoMsrArea,
+ pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea), cMsrs * sizeof(VMXAUTOMSR));
+ if (RT_SUCCESS(rc))
+ { /* likely */ }
+ else
+ {
+ AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysAutoMsrArea, rc));
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
+ }
+
+ NOREF(uExitReason);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Performs a VMX abort (due to an fatal error during VM-exit).
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param enmAbort The VMX abort reason.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxAbort(PVMCPU pVCpu, VMXABORT enmAbort)
+{
+ /*
+ * Perform the VMX abort.
+ * See Intel spec. 27.7 "VMX Aborts".
+ */
+ LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, HMGetVmxAbortDesc(enmAbort)));
+
+ /* We don't support SMX yet. */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
+ if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
+ {
+ RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
+ uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort);
+ PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
+ }
+
+ return VINF_EM_TRIPLE_FAULT;
+}
+
+
+/**
+ * Loads host control registers, debug registers and MSRs as part of VM-exit.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPU pVCpu)
+{
+ /*
+ * Load host control registers, debug registers and MSRs.
+ * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
+
+ /* CR0. */
+ {
+ /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 MB1 bits are not modified. */
+ uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
+ uint64_t const fCr0IgnMask = UINT64_C(0xffffffff1ff8ffc0) | X86_CR0_ET | X86_CR0_CD | X86_CR0_NW | uCr0Fixed0;
+ uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
+ uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
+ uint64_t const uValidCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
+ CPUMSetGuestCR0(pVCpu, uValidCr0);
+ }
+
+ /* CR4. */
+ {
+ /* CR4 MB1 bits are not modified. */
+ uint64_t const fCr4IgnMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
+ uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
+ uint64_t const uGuestCr4 = pVCpu->cpum.GstCtx.cr4;
+ uint64_t uValidCr4 = (uHostCr4 & ~fCr4IgnMask) | (uGuestCr4 & fCr4IgnMask);
+ if (fHostInLongMode)
+ uValidCr4 |= X86_CR4_PAE;
+ else
+ uValidCr4 &= ~X86_CR4_PCIDE;
+ CPUMSetGuestCR4(pVCpu, uValidCr4);
+ }
+
+ /* CR3 (host value validated while checking host-state during VM-entry). */
+ pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
+
+ /* DR7. */
+ pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
+
+ /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
+
+ /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
+ pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
+ pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
+ pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
+
+ /* FS, GS bases are loaded later while we load host segment registers. */
+
+ /* EFER MSR (host value validated while checking host-state during VM-entry). */
+ if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
+ pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
+ else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ if (fHostInLongMode)
+ pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
+ else
+ pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
+ }
+
+ /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
+
+ /* PAT MSR (host value is validated while checking host-state during VM-entry). */
+ if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
+ pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
+
+ /* We don't support IA32_BNDCFGS MSR yet. */
+}
+
+
+/**
+ * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxVmexitLoadHostSegRegs(PVMCPU pVCpu)
+{
+ /*
+ * Load host segment registers, GDTR, IDTR, LDTR and TR.
+ * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
+ *
+ * Warning! Be careful to not touch fields that are reserved by VT-x,
+ * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
+
+ /* CS, SS, ES, DS, FS, GS. */
+ for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
+ {
+ RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
+ bool const fUnusable = RT_BOOL(HostSel == 0);
+ PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
+
+ /* Selector. */
+ pSelReg->Sel = HostSel;
+ pSelReg->ValidSel = HostSel;
+ pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
+
+ /* Limit. */
+ pSelReg->u32Limit = 0xffffffff;
+
+ /* Base. */
+ pSelReg->u64Base = 0;
+
+ /* Attributes. */
+ if (iSegReg == X86_SREG_CS)
+ {
+ pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
+ pSelReg->Attr.n.u1DescType = 1;
+ pSelReg->Attr.n.u2Dpl = 0;
+ pSelReg->Attr.n.u1Present = 1;
+ pSelReg->Attr.n.u1Long = fHostInLongMode;
+ pSelReg->Attr.n.u1DefBig = !fHostInLongMode;
+ pSelReg->Attr.n.u1Granularity = 1;
+ Assert(!pSelReg->Attr.n.u1Unusable);
+ Assert(!fUnusable);
+ }
+ else
+ {
+ pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
+ pSelReg->Attr.n.u1DescType = 1;
+ pSelReg->Attr.n.u2Dpl = 0;
+ pSelReg->Attr.n.u1Present = 1;
+ pSelReg->Attr.n.u1DefBig = 1;
+ pSelReg->Attr.n.u1Granularity = 1;
+ pSelReg->Attr.n.u1Unusable = fUnusable;
+ }
+ }
+
+ /* FS base. */
+ if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable
+ || fHostInLongMode)
+ {
+ Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
+ pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u;
+ }
+
+ /* GS base. */
+ if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable
+ || fHostInLongMode)
+ {
+ Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
+ pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u;
+ }
+
+ /* TR. */
+ Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
+ Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
+ pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
+ pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
+ pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
+ pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
+ pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
+ pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
+ pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
+ pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
+ pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
+ pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
+
+ /* LDTR (Warning! do not touch the base and limits here). */
+ pVCpu->cpum.GstCtx.ldtr.Sel = 0;
+ pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
+ pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
+
+ /* GDTR. */
+ Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
+ pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
+ pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff;
+
+ /* IDTR.*/
+ Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
+ pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
+ pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff;
+}
+
+
+/**
+ * Checks host PDPTes as part of VM-exit.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmexitCheckHostPdptes(PVMCPU pVCpu, uint32_t uExitReason)
+{
+ /*
+ * Check host PDPTEs.
+ * See Intel spec. 27.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char *const pszFailure = "VMX-abort";
+ bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
+
+ if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
+ && !fHostInLongMode)
+ {
+ uint64_t const uHostCr3 = pVCpu->cpum.GstCtx.cr3 & X86_CR3_PAE_PAGE_MASK;
+ X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES];
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uHostCr3, sizeof(aPdptes));
+ if (RT_SUCCESS(rc))
+ {
+ for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++)
+ {
+ if ( !(aPdptes[iPdpte].u & X86_PDPE_P)
+ || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK))
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmexitPdpteRsvd(iPdpte);
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
+ }
+ }
+ }
+ else
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_HostPdpteCr3ReadPhys);
+ }
+
+ NOREF(pszFailure);
+ NOREF(uExitReason);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Loads the host MSRs from the VM-exit auto-load MSRs area as part of VM-exit.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmexitLoadHostAutoMsrs(PVMCPU pVCpu, uint32_t uExitReason)
+{
+ /*
+ * Load host MSRs.
+ * See Intel spec. 27.6 "Loading MSRs".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char *const pszFailure = "VMX-abort";
+
+ /*
+ * The VM-exit MSR-load area address need not be a valid guest-physical address if the
+ * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
+ * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
+ */
+ uint32_t const cMsrs = pVmcs->u32ExitMsrLoadCount;
+ if (!cMsrs)
+ return VINF_SUCCESS;
+
+ /*
+ * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
+ * is exceeded including possibly raising #MC exceptions during VMX transition. Our
+ * implementation causes a VMX-abort followed by a triple-fault.
+ */
+ bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
+ if (fIsMsrCountValid)
+ { /* likely */ }
+ else
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
+
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea));
+ RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrExitMsrLoad.u;
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea),
+ GCPhysAutoMsrArea, cMsrs * sizeof(VMXAUTOMSR));
+ if (RT_SUCCESS(rc))
+ {
+ PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea);
+ Assert(pMsr);
+ for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
+ {
+ if ( !pMsr->u32Reserved
+ && pMsr->u32Msr != MSR_K8_FS_BASE
+ && pMsr->u32Msr != MSR_K8_GS_BASE
+ && pMsr->u32Msr != MSR_K6_EFER
+ && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
+ && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
+ {
+ VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
+ if (rcStrict == VINF_SUCCESS)
+ continue;
+
+ /*
+ * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
+ * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
+ * recording the MSR index in the auxiliary info. field and indicated further by our
+ * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
+ * if possible, or come up with a better, generic solution.
+ */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
+ VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
+ ? kVmxVDiag_Vmexit_MsrLoadRing3
+ : kVmxVDiag_Vmexit_MsrLoad;
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
+ }
+ else
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
+ }
+ }
+ else
+ {
+ AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysAutoMsrArea, rc));
+ IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
+ }
+
+ NOREF(uExitReason);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Loads the host state as part of VM-exit.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason (for logging purposes).
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPU pVCpu, uint32_t uExitReason)
+{
+ /*
+ * Load host state.
+ * See Intel spec. 27.5 "Loading Host State".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
+
+ /* We cannot return from a long-mode guest to a host that is not in long mode. */
+ if ( CPUMIsGuestInLongMode(pVCpu)
+ && !fHostInLongMode)
+ {
+ Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
+ return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
+ }
+
+ iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
+ iemVmxVmexitLoadHostSegRegs(pVCpu);
+
+ /*
+ * Load host RIP, RSP and RFLAGS.
+ * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
+ */
+ pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
+ pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
+ pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
+
+ /* Clear address range monitoring. */
+ EMMonitorWaitClear(pVCpu);
+
+ /* Perform the VMX transition (PGM updates). */
+ VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /* Check host PDPTEs (only when we've fully switched page tables_. */
+ /** @todo r=ramshankar: I don't know if PGM does this for us already or not... */
+ int rc = iemVmxVmexitCheckHostPdptes(pVCpu, uExitReason);
+ if (RT_FAILURE(rc))
+ {
+ Log(("VM-exit failed while restoring host PDPTEs -> VMX-Abort\n"));
+ return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
+ }
+ }
+ else if (RT_SUCCESS(rcStrict))
+ {
+ Log3(("VM-exit: iemVmxWorldSwitch returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
+ uExitReason));
+ rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
+ }
+ else
+ {
+ Log3(("VM-exit: iemVmxWorldSwitch failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
+ return VBOXSTRICTRC_VAL(rcStrict);
+ }
+
+ Assert(rcStrict == VINF_SUCCESS);
+
+ /* Load MSRs from the VM-exit auto-load MSR area. */
+ int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
+ if (RT_FAILURE(rc))
+ {
+ Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
+ return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Gets VM-exit instruction information along with any displacement for an
+ * instruction VM-exit.
+ *
+ * @returns The VM-exit instruction information.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason.
+ * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
+ * @param pGCPtrDisp Where to store the displacement field. Optional, can be
+ * NULL.
+ */
+IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp)
+{
+ RTGCPTR GCPtrDisp;
+ VMXEXITINSTRINFO ExitInstrInfo;
+ ExitInstrInfo.u = 0;
+
+ /*
+ * Get and parse the ModR/M byte from our decoded opcodes.
+ */
+ uint8_t bRm;
+ uint8_t const offModRm = pVCpu->iem.s.offModRm;
+ IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
+ if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
+ {
+ /*
+ * ModR/M indicates register addressing.
+ *
+ * The primary/secondary register operands are reported in the iReg1 or iReg2
+ * fields depending on whether it is a read/write form.
+ */
+ uint8_t idxReg1;
+ uint8_t idxReg2;
+ if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
+ {
+ idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
+ idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
+ }
+ else
+ {
+ idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
+ idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
+ }
+ ExitInstrInfo.All.u2Scaling = 0;
+ ExitInstrInfo.All.iReg1 = idxReg1;
+ ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
+ ExitInstrInfo.All.fIsRegOperand = 1;
+ ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
+ ExitInstrInfo.All.iSegReg = 0;
+ ExitInstrInfo.All.iIdxReg = 0;
+ ExitInstrInfo.All.fIdxRegInvalid = 1;
+ ExitInstrInfo.All.iBaseReg = 0;
+ ExitInstrInfo.All.fBaseRegInvalid = 1;
+ ExitInstrInfo.All.iReg2 = idxReg2;
+
+ /* Displacement not applicable for register addressing. */
+ GCPtrDisp = 0;
+ }
+ else
+ {
+ /*
+ * ModR/M indicates memory addressing.
+ */
+ uint8_t uScale = 0;
+ bool fBaseRegValid = false;
+ bool fIdxRegValid = false;
+ uint8_t iBaseReg = 0;
+ uint8_t iIdxReg = 0;
+ if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
+ {
+ /*
+ * Parse the ModR/M, displacement for 16-bit addressing mode.
+ * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
+ */
+ uint16_t u16Disp = 0;
+ uint8_t const offDisp = offModRm + sizeof(bRm);
+ if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
+ {
+ /* Displacement without any registers. */
+ IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
+ }
+ else
+ {
+ /* Register (index and base). */
+ switch (bRm & X86_MODRM_RM_MASK)
+ {
+ case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
+ case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
+ case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
+ case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
+ case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
+ case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
+ case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
+ case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
+ }
+
+ /* Register + displacement. */
+ switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
+ {
+ case 0: break;
+ case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
+ case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
+ default:
+ {
+ /* Register addressing, handled at the beginning. */
+ AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
+ break;
+ }
+ }
+ }
+
+ Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
+ GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
+ }
+ else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
+ {
+ /*
+ * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
+ * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
+ */
+ uint32_t u32Disp = 0;
+ if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
+ {
+ /* Displacement without any registers. */
+ uint8_t const offDisp = offModRm + sizeof(bRm);
+ IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
+ }
+ else
+ {
+ /* Register (and perhaps scale, index and base). */
+ uint8_t offDisp = offModRm + sizeof(bRm);
+ iBaseReg = (bRm & X86_MODRM_RM_MASK);
+ if (iBaseReg == 4)
+ {
+ /* An SIB byte follows the ModR/M byte, parse it. */
+ uint8_t bSib;
+ uint8_t const offSib = offModRm + sizeof(bRm);
+ IEM_SIB_GET_U8(pVCpu, bSib, offSib);
+
+ /* A displacement may follow SIB, update its offset. */
+ offDisp += sizeof(bSib);
+
+ /* Get the scale. */
+ uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
+
+ /* Get the index register. */
+ iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
+ fIdxRegValid = RT_BOOL(iIdxReg != 4);
+
+ /* Get the base register. */
+ iBaseReg = bSib & X86_SIB_BASE_MASK;
+ fBaseRegValid = true;
+ if (iBaseReg == 5)
+ {
+ if ((bRm & X86_MODRM_MOD_MASK) == 0)
+ {
+ /* Mod is 0 implies a 32-bit displacement with no base. */
+ fBaseRegValid = false;
+ IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
+ }
+ else
+ {
+ /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
+ iBaseReg = X86_GREG_xBP;
+ }
+ }
+ }
+
+ /* Register + displacement. */
+ switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
+ {
+ case 0: /* Handled above */ break;
+ case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
+ case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
+ default:
+ {
+ /* Register addressing, handled at the beginning. */
+ AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
+ break;
+ }
+ }
+ }
+
+ GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
+ }
+ else
+ {
+ Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
+
+ /*
+ * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
+ * See Intel instruction spec. 2.2 "IA-32e Mode".
+ */
+ uint64_t u64Disp = 0;
+ bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
+ if (fRipRelativeAddr)
+ {
+ /*
+ * RIP-relative addressing mode.
+ *
+ * The displacement is 32-bit signed implying an offset range of +/-2G.
+ * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
+ */
+ uint8_t const offDisp = offModRm + sizeof(bRm);
+ IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
+ }
+ else
+ {
+ uint8_t offDisp = offModRm + sizeof(bRm);
+
+ /*
+ * Register (and perhaps scale, index and base).
+ *
+ * REX.B extends the most-significant bit of the base register. However, REX.B
+ * is ignored while determining whether an SIB follows the opcode. Hence, we
+ * shall OR any REX.B bit -after- inspecting for an SIB byte below.
+ *
+ * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
+ */
+ iBaseReg = (bRm & X86_MODRM_RM_MASK);
+ if (iBaseReg == 4)
+ {
+ /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
+ uint8_t bSib;
+ uint8_t const offSib = offModRm + sizeof(bRm);
+ IEM_SIB_GET_U8(pVCpu, bSib, offSib);
+
+ /* Displacement may follow SIB, update its offset. */
+ offDisp += sizeof(bSib);
+
+ /* Get the scale. */
+ uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
+
+ /* Get the index. */
+ iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
+ fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
+
+ /* Get the base. */
+ iBaseReg = (bSib & X86_SIB_BASE_MASK);
+ fBaseRegValid = true;
+ if (iBaseReg == 5)
+ {
+ if ((bRm & X86_MODRM_MOD_MASK) == 0)
+ {
+ /* Mod is 0 implies a signed 32-bit displacement with no base. */
+ IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
+ }
+ else
+ {
+ /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
+ iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
+ }
+ }
+ }
+ iBaseReg |= pVCpu->iem.s.uRexB;
+
+ /* Register + displacement. */
+ switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
+ {
+ case 0: /* Handled above */ break;
+ case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
+ case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
+ default:
+ {
+ /* Register addressing, handled at the beginning. */
+ AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
+ break;
+ }
+ }
+ }
+
+ GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
+ }
+
+ /*
+ * The primary or secondary register operand is reported in iReg2 depending
+ * on whether the primary operand is in read/write form.
+ */
+ uint8_t idxReg2;
+ if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
+ {
+ idxReg2 = bRm & X86_MODRM_RM_MASK;
+ if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
+ idxReg2 |= pVCpu->iem.s.uRexB;
+ }
+ else
+ {
+ idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
+ if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
+ idxReg2 |= pVCpu->iem.s.uRexReg;
+ }
+ ExitInstrInfo.All.u2Scaling = uScale;
+ ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
+ ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
+ ExitInstrInfo.All.fIsRegOperand = 0;
+ ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
+ ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
+ ExitInstrInfo.All.iIdxReg = iIdxReg;
+ ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
+ ExitInstrInfo.All.iBaseReg = iBaseReg;
+ ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
+ ExitInstrInfo.All.iReg2 = idxReg2;
+ }
+
+ /*
+ * Handle exceptions to the norm for certain instructions.
+ * (e.g. some instructions convey an instruction identity in place of iReg2).
+ */
+ switch (uExitReason)
+ {
+ case VMX_EXIT_GDTR_IDTR_ACCESS:
+ {
+ Assert(VMXINSTRID_IS_VALID(uInstrId));
+ Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
+ ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
+ ExitInstrInfo.GdtIdt.u2Undef0 = 0;
+ break;
+ }
+
+ case VMX_EXIT_LDTR_TR_ACCESS:
+ {
+ Assert(VMXINSTRID_IS_VALID(uInstrId));
+ Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
+ ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
+ ExitInstrInfo.LdtTr.u2Undef0 = 0;
+ break;
+ }
+
+ case VMX_EXIT_RDRAND:
+ case VMX_EXIT_RDSEED:
+ {
+ Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
+ break;
+ }
+ }
+
+ /* Update displacement and return the constructed VM-exit instruction information field. */
+ if (pGCPtrDisp)
+ *pGCPtrDisp = GCPtrDisp;
+
+ return ExitInstrInfo.u;
+}
+
+
+/**
+ * VMX VM-exit handler.
+ *
+ * @returns Strict VBox status code.
+ * @retval VINF_VMX_VMEXIT when the VM-exit is successful.
+ * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a
+ * triple-fault.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason.
+ *
+ * @remarks Make sure VM-exit qualification is updated before calling this
+ * function!
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexit(PVMCPU pVCpu, uint32_t uExitReason)
+{
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
+ RT_NOREF2(pVCpu, uExitReason);
+ return VINF_EM_RAW_EMULATE_INSTR;
+# else
+ IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMEXIT_MASK);
+
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /* Update the VM-exit reason, the other relevant data fields are expected to be updated by the caller already. */
+ pVmcs->u32RoExitReason = uExitReason;
+ Log3(("vmexit: uExitReason=%#RX32 uExitQual=%#RX64\n", uExitReason, pVmcs->u64RoExitQual));
+
+ /*
+ * We need to clear the VM-entry interruption information field's valid bit on VM-exit.
+ * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
+ */
+ pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
+
+ /*
+ * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now.
+ * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control".
+ */
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma)
+ {
+ if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
+ pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
+ else
+ pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
+ }
+
+ /*
+ * Save the guest state back into the VMCS.
+ * We only need to save the state when the VM-entry was successful.
+ */
+ bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
+ if (!fVmentryFailed)
+ {
+ /*
+ * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit
+ * occurs in enclave mode/SMM which we don't support yet.
+ *
+ * If we ever add support for it, we can pass just the lower bits to the functions
+ * below, till then an assert should suffice.
+ */
+ Assert(!RT_HI_U16(uExitReason));
+
+ /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */
+ iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
+ int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
+ if (RT_SUCCESS(rc))
+ { /* likely */ }
+ else
+ return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
+
+ /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */
+ pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions &= ~VMCPU_FF_BLOCK_NMIS;
+ }
+ else
+ {
+ /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */
+ uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason);
+ if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE
+ || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD)
+ iemVmxVmexitRestoreNmiBlockingFF(pVCpu);
+ }
+
+ /* Restore the host (outer guest) state. */
+ VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
+ if (RT_SUCCESS(rcStrict))
+ {
+ Assert(rcStrict == VINF_SUCCESS);
+ rcStrict = VINF_VMX_VMEXIT;
+ }
+ else
+ Log3(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
+
+ /* We're no longer in nested-guest execution mode. */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
+
+ /* Revert any IEM-only nested-guest execution policy if it was set earlier, otherwise return rcStrict. */
+ IEM_VMX_R3_EXECPOLICY_IEM_ALL_DISABLE_RET(pVCpu, "VM-exit", rcStrict);
+# endif
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to instruction execution.
+ *
+ * This is intended for instructions where the caller provides all the relevant
+ * VM-exit information.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pExitInfo Pointer to the VM-exit instruction information struct.
+ */
+DECLINLINE(VBOXSTRICTRC) iemVmxVmexitInstrWithInfo(PVMCPU pVCpu, PCVMXVEXITINFO pExitInfo)
+{
+ /*
+ * For instructions where any of the following fields are not applicable:
+ * - VM-exit instruction info. is undefined.
+ * - VM-exit qualification must be cleared.
+ * - VM-exit guest-linear address is undefined.
+ * - VM-exit guest-physical address is undefined.
+ *
+ * The VM-exit instruction length is mandatory for all VM-exits that are caused by
+ * instruction execution. For VM-exits that are not due to instruction execution this
+ * field is undefined.
+ *
+ * In our implementation in IEM, all undefined fields are generally cleared. However,
+ * if the caller supplies information (from say the physical CPU directly) it is
+ * then possible that the undefined fields are not cleared.
+ *
+ * See Intel spec. 27.2.1 "Basic VM-Exit Information".
+ * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
+ */
+ Assert(pExitInfo);
+ AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
+ AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
+ ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
+
+ /* Update all the relevant fields from the VM-exit instruction information struct. */
+ iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
+ iemVmxVmcsSetExitQual(pVCpu, pExitInfo->u64Qual);
+ iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
+ iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
+ iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
+
+ /* Perform the VM-exit. */
+ return iemVmxVmexit(pVCpu, pExitInfo->uReason);
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to instruction execution.
+ *
+ * This is intended for instructions that only provide the VM-exit instruction
+ * length.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstr(PVMCPU pVCpu, uint32_t uExitReason, uint8_t cbInstr)
+{
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = uExitReason;
+ ExitInfo.cbInstr = cbInstr;
+
+#ifdef VBOX_STRICT
+ /* To prevent us from shooting ourselves in the foot. Maybe remove later. */
+ switch (uExitReason)
+ {
+ case VMX_EXIT_INVEPT:
+ case VMX_EXIT_INVPCID:
+ case VMX_EXIT_LDTR_TR_ACCESS:
+ case VMX_EXIT_GDTR_IDTR_ACCESS:
+ case VMX_EXIT_VMCLEAR:
+ case VMX_EXIT_VMPTRLD:
+ case VMX_EXIT_VMPTRST:
+ case VMX_EXIT_VMREAD:
+ case VMX_EXIT_VMWRITE:
+ case VMX_EXIT_VMXON:
+ case VMX_EXIT_XRSTORS:
+ case VMX_EXIT_XSAVES:
+ case VMX_EXIT_RDRAND:
+ case VMX_EXIT_RDSEED:
+ case VMX_EXIT_IO_INSTR:
+ AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
+ break;
+ }
+#endif
+
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to instruction execution.
+ *
+ * This is intended for instructions that have a ModR/M byte and update the VM-exit
+ * instruction information and VM-exit qualification fields.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason.
+ * @param uInstrid The instruction identity (VMXINSTRID_XXX).
+ * @param cbInstr The instruction length in bytes.
+ *
+ * @remarks Do not use this for INS/OUTS instruction.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr)
+{
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = uExitReason;
+ ExitInfo.cbInstr = cbInstr;
+
+ /*
+ * Update the VM-exit qualification field with displacement bytes.
+ * See Intel spec. 27.2.1 "Basic VM-Exit Information".
+ */
+ switch (uExitReason)
+ {
+ case VMX_EXIT_INVEPT:
+ case VMX_EXIT_INVPCID:
+ case VMX_EXIT_LDTR_TR_ACCESS:
+ case VMX_EXIT_GDTR_IDTR_ACCESS:
+ case VMX_EXIT_VMCLEAR:
+ case VMX_EXIT_VMPTRLD:
+ case VMX_EXIT_VMPTRST:
+ case VMX_EXIT_VMREAD:
+ case VMX_EXIT_VMWRITE:
+ case VMX_EXIT_VMXON:
+ case VMX_EXIT_XRSTORS:
+ case VMX_EXIT_XSAVES:
+ case VMX_EXIT_RDRAND:
+ case VMX_EXIT_RDSEED:
+ {
+ /* Construct the VM-exit instruction information. */
+ RTGCPTR GCPtrDisp;
+ uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
+
+ /* Update the VM-exit instruction information. */
+ ExitInfo.InstrInfo.u = uInstrInfo;
+
+ /* Update the VM-exit qualification. */
+ ExitInfo.u64Qual = GCPtrDisp;
+ break;
+ }
+
+ default:
+ AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
+ break;
+ }
+
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+}
+
+
+/**
+ * Checks whether an I/O instruction for the given port is intercepted (causes a
+ * VM-exit) or not.
+ *
+ * @returns @c true if the instruction is intercepted, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param u16Port The I/O port being accessed by the instruction.
+ * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
+ */
+IEM_STATIC bool iemVmxIsIoInterceptSet(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * Check whether the I/O instruction must cause a VM-exit or not.
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT)
+ return true;
+
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
+ {
+ uint8_t const *pbIoBitmapA = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvIoBitmap);
+ uint8_t const *pbIoBitmapB = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvIoBitmap) + VMX_V_IO_BITMAP_A_SIZE;
+ Assert(pbIoBitmapA);
+ Assert(pbIoBitmapB);
+ return HMGetVmxIoBitmapPermission(pbIoBitmapA, pbIoBitmapB, u16Port, cbAccess);
+ }
+
+ return false;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to Monitor-Trap Flag (MTF).
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitMtf(PVMCPU pVCpu)
+{
+ /*
+ * The MTF VM-exit can occur even when the MTF VM-execution control is
+ * not set (e.g. when VM-entry injects an MTF pending event), so do not
+ * check for it here.
+ */
+
+ /* Clear the force-flag indicating that monitor-trap flag is no longer active. */
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
+
+ /* Cause the MTF VM-exit. The VM-exit qualification MBZ. */
+ return iemVmxVmexit(pVCpu, VMX_EXIT_MTF);
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to INVLPG.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param GCPtrPage The guest-linear address of the page being invalidated.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPU pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr)
+{
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_INVLPG;
+ ExitInfo.cbInstr = cbInstr;
+ ExitInfo.u64Qual = GCPtrPage;
+ Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
+
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to LMSW.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uGuestCr0 The current guest CR0.
+ * @param pu16NewMsw The machine-status word specified in LMSW's source
+ * operand. This will be updated depending on the VMX
+ * guest/host CR0 mask if LMSW is not intercepted.
+ * @param GCPtrEffDst The guest-linear address of the source operand in case
+ * of a memory operand. For register operand, pass
+ * NIL_RTGCPTR.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPU pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw, RTGCPTR GCPtrEffDst,
+ uint8_t cbInstr)
+{
+ /*
+ * LMSW VM-exits are subject to the CR0 guest/host mask and the CR0 read shadow.
+ *
+ * See Intel spec. 24.6.6 "Guest/Host Masks and Read Shadows for CR0 and CR4".
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pu16NewMsw);
+
+ bool fIntercept = false;
+ uint32_t const fGstHostMask = pVmcs->u64Cr0Mask.u;
+ uint32_t const fReadShadow = pVmcs->u64Cr0ReadShadow.u;
+
+ /*
+ * LMSW can never clear CR0.PE but it may set it. Hence, we handle the
+ * CR0.PE case first, before the rest of the bits in the MSW.
+ *
+ * If CR0.PE is owned by the host and CR0.PE differs between the
+ * MSW (source operand) and the read-shadow, we must cause a VM-exit.
+ */
+ if ( (fGstHostMask & X86_CR0_PE)
+ && (*pu16NewMsw & X86_CR0_PE)
+ && !(fReadShadow & X86_CR0_PE))
+ fIntercept = true;
+
+ /*
+ * If CR0.MP, CR0.EM or CR0.TS is owned by the host, and the corresponding
+ * bits differ between the MSW (source operand) and the read-shadow, we must
+ * cause a VM-exit.
+ */
+ uint32_t fGstHostLmswMask = fGstHostMask & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
+ if ((fReadShadow & fGstHostLmswMask) != (*pu16NewMsw & fGstHostLmswMask))
+ fIntercept = true;
+
+ if (fIntercept)
+ {
+ Log2(("lmsw: Guest intercept -> VM-exit\n"));
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_MOV_CRX;
+ ExitInfo.cbInstr = cbInstr;
+
+ bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR);
+ if (fMemOperand)
+ {
+ Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst));
+ ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
+ }
+
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, *pu16NewMsw);
+
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ /*
+ * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the
+ * CR0 guest/host mask must be left unmodified.
+ *
+ * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
+ */
+ fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
+ *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (*pu16NewMsw & ~fGstHostLmswMask);
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to CLTS.
+ *
+ * @returns Strict VBox status code.
+ * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a
+ * VM-exit but must not modify the guest CR0.TS bit.
+ * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a
+ * VM-exit and modification to the guest CR0.TS bit is allowed (subject to
+ * CR0 fixed bits in VMX operation).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPU pVCpu, uint8_t cbInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ uint32_t const fGstHostMask = pVmcs->u64Cr0Mask.u;
+ uint32_t const fReadShadow = pVmcs->u64Cr0ReadShadow.u;
+
+ /*
+ * If CR0.TS is owned by the host:
+ * - If CR0.TS is set in the read-shadow, we must cause a VM-exit.
+ * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the
+ * CLTS instruction completes without clearing CR0.TS.
+ *
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ if (fGstHostMask & X86_CR0_TS)
+ {
+ if (fReadShadow & X86_CR0_TS)
+ {
+ Log2(("clts: Guest intercept -> VM-exit\n"));
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_MOV_CRX;
+ ExitInfo.cbInstr = cbInstr;
+
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_CLTS);
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ return VINF_VMX_MODIFIES_BEHAVIOR;
+ }
+
+ /*
+ * If CR0.TS is not owned by the host, the CLTS instructions operates normally
+ * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation).
+ */
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg'
+ * (CR0/CR4 write).
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param iCrReg The control register (either CR0 or CR4).
+ * @param uGuestCrX The current guest CR0/CR4.
+ * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated
+ * if no VM-exit is caused.
+ * @param iGReg The general register from which the CR0/CR4 value is
+ * being loaded.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPU pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg,
+ uint8_t cbInstr)
+{
+ Assert(puNewCrX);
+ Assert(iCrReg == 0 || iCrReg == 4);
+
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ uint64_t uGuestCrX;
+ uint64_t fGstHostMask;
+ uint64_t fReadShadow;
+ if (iCrReg == 0)
+ {
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
+ uGuestCrX = pVCpu->cpum.GstCtx.cr0;
+ fGstHostMask = pVmcs->u64Cr0Mask.u;
+ fReadShadow = pVmcs->u64Cr0ReadShadow.u;
+ }
+ else
+ {
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
+ uGuestCrX = pVCpu->cpum.GstCtx.cr4;
+ fGstHostMask = pVmcs->u64Cr4Mask.u;
+ fReadShadow = pVmcs->u64Cr4ReadShadow.u;
+ }
+
+ /*
+ * For any CR0/CR4 bit owned by the host (in the CR0/CR4 guest/host mask), if the
+ * corresponding bits differ between the source operand and the read-shadow,
+ * we must cause a VM-exit.
+ *
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ if ((fReadShadow & fGstHostMask) != (*puNewCrX & fGstHostMask))
+ {
+ Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg));
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_MOV_CRX;
+ ExitInfo.cbInstr = cbInstr;
+
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ /*
+ * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host
+ * must not be modified the instruction.
+ *
+ * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
+ */
+ *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask);
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read).
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param iGReg The general register to which the CR3 value is being stored.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPU pVCpu, uint8_t iGReg, uint8_t cbInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
+
+ /*
+ * If the CR3-store exiting control is set, we must cause a VM-exit.
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT)
+ {
+ Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n"));
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_MOV_CRX;
+ ExitInfo.cbInstr = cbInstr;
+
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write).
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uNewCr3 The new CR3 value.
+ * @param iGReg The general register from which the CR3 value is being
+ * loaded.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPU pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * If the CR3-load exiting control is set and the new CR3 value does not
+ * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
+ *
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT)
+ {
+ uint32_t uCr3TargetCount = pVmcs->u32Cr3TargetCount;
+ Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT);
+
+ for (uint32_t idxCr3Target = 0; idxCr3Target < uCr3TargetCount; idxCr3Target++)
+ {
+ uint64_t const uCr3TargetValue = iemVmxVmcsGetCr3TargetValue(pVmcs, idxCr3Target);
+ if (uNewCr3 != uCr3TargetValue)
+ {
+ Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n"));
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_MOV_CRX;
+ ExitInfo.cbInstr = cbInstr;
+
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+ }
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read).
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param iGReg The general register to which the CR8 value is being stored.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPU pVCpu, uint8_t iGReg, uint8_t cbInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * If the CR8-store exiting control is set, we must cause a VM-exit.
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT)
+ {
+ Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n"));
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_MOV_CRX;
+ ExitInfo.cbInstr = cbInstr;
+
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write).
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param iGReg The general register from which the CR8 value is being
+ * loaded.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPU pVCpu, uint8_t iGReg, uint8_t cbInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * If the CR8-load exiting control is set, we must cause a VM-exit.
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT)
+ {
+ Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n"));
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_MOV_CRX;
+ ExitInfo.cbInstr = cbInstr;
+
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov
+ * GReg,DRx' (DRx read).
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or
+ * VMXINSTRID_MOV_FROM_DRX).
+ * @param iDrReg The debug register being accessed.
+ * @param iGReg The general register to/from which the DRx value is being
+ * store/loaded.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPU pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg,
+ uint8_t cbInstr)
+{
+ Assert(iDrReg <= 7);
+ Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX);
+
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
+ {
+ uint32_t const uDirection = uInstrId == VMXINSTRID_MOV_TO_DRX ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE
+ : VMX_EXIT_QUAL_DRX_DIRECTION_READ;
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_MOV_DRX;
+ ExitInfo.cbInstr = cbInstr;
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION, uDirection)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg);
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT).
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or
+ * VMXINSTRID_IO_OUT).
+ * @param u16Port The I/O port being accessed.
+ * @param fImm Whether the I/O port was encoded using an immediate operand
+ * or the implicit DX register.
+ * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPU pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, bool fImm, uint8_t cbAccess,
+ uint8_t cbInstr)
+{
+ Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT);
+ Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
+
+ bool const fIntercept = iemVmxIsIoInterceptSet(pVCpu, u16Port, cbAccess);
+ if (fIntercept)
+ {
+ uint32_t const uDirection = uInstrId == VMXINSTRID_IO_IN ? VMX_EXIT_QUAL_IO_DIRECTION_IN
+ : VMX_EXIT_QUAL_IO_DIRECTION_OUT;
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_IO_INSTR;
+ ExitInfo.cbInstr = cbInstr;
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS).
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or
+ * VMXINSTRID_IO_OUTS).
+ * @param u16Port The I/O port being accessed.
+ * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
+ * @param fRep Whether the instruction has a REP prefix or not.
+ * @param ExitInstrInfo The VM-exit instruction info. field.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPU pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess, bool fRep,
+ VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr)
+{
+ Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS);
+ Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
+ Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT);
+ Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2);
+ Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES);
+
+ bool const fIntercept = iemVmxIsIoInterceptSet(pVCpu, u16Port, cbAccess);
+ if (fIntercept)
+ {
+ /*
+ * Figure out the guest-linear address and the direction bit (INS/OUTS).
+ */
+ /** @todo r=ramshankar: Is there something in IEM that already does this? */
+ static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
+ uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg;
+ uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize;
+ uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize];
+
+ uint32_t uDirection;
+ uint64_t uGuestLinearAddr;
+ if (uInstrId == VMXINSTRID_IO_INS)
+ {
+ uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN;
+ uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask);
+ }
+ else
+ {
+ uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT;
+ uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask);
+ }
+
+ /*
+ * If the segment is ununsable, the guest-linear address in undefined.
+ * We shall clear it for consistency.
+ *
+ * See Intel spec. 27.2.1 "Basic VM-Exit Information".
+ */
+ if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable)
+ uGuestLinearAddr = 0;
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_IO_INSTR;
+ ExitInfo.cbInstr = cbInstr;
+ ExitInfo.InstrInfo = ExitInstrInfo;
+ ExitInfo.u64GuestLinearAddr = uGuestLinearAddr;
+ ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, VMX_EXIT_QUAL_IO_ENCODING_DX)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to MWAIT.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fMonitorHwArmed Whether the address-range monitor hardware is armed.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPU pVCpu, bool fMonitorHwArmed, uint8_t cbInstr)
+{
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_MWAIT;
+ ExitInfo.cbInstr = cbInstr;
+ ExitInfo.u64Qual = fMonitorHwArmed;
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to PAUSE.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPU pVCpu, uint8_t cbInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the
+ * "PAUSE-loop exiting" control.
+ *
+ * The PLE-Gap is the maximum number of TSC ticks between two successive executions of
+ * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount
+ * of TSC ticks the guest is allowed to execute in a pause loop before we must cause
+ * a VM-exit.
+ *
+ * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting".
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ bool fIntercept = false;
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
+ fIntercept = true;
+ else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
+ && pVCpu->iem.s.uCpl == 0)
+ {
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
+
+ /*
+ * A previous-PAUSE-tick value of 0 is used to identify the first time
+ * execution of a PAUSE instruction after VM-entry at CPL 0. We must
+ * consider this to be the first execution of PAUSE in a loop according
+ * to the Intel.
+ *
+ * All subsequent records for the previous-PAUSE-tick we ensure that it
+ * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0.
+ */
+ uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick;
+ uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick;
+ uint64_t const uTick = TMCpuTickGet(pVCpu);
+ uint32_t const uPleGap = pVmcs->u32PleGap;
+ uint32_t const uPleWindow = pVmcs->u32PleWindow;
+ if ( *puPrevPauseTick == 0
+ || uTick - *puPrevPauseTick > uPleGap)
+ *puFirstPauseLoopTick = uTick;
+ else if (uTick - *puFirstPauseLoopTick > uPleWindow)
+ fIntercept = true;
+
+ *puPrevPauseTick = uTick | 1;
+ }
+
+ if (fIntercept)
+ {
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = VMX_EXIT_PAUSE;
+ ExitInfo.cbInstr = cbInstr;
+ return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to task switches.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param enmTaskSwitch The cause of the task switch.
+ * @param SelNewTss The selector of the new TSS.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPU pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr)
+{
+ /*
+ * Task-switch VM-exits are unconditional and provide the VM-exit qualification.
+ *
+ * If the cause of the task switch is due to execution of CALL, IRET or the JMP
+ * instruction or delivery of the exception generated by one of these instructions
+ * lead to a task switch through a task gate in the IDT, we need to provide the
+ * VM-exit instruction length. Any other means of invoking a task switch VM-exit
+ * leaves the VM-exit instruction length field undefined.
+ *
+ * See Intel spec. 25.2 "Other Causes Of VM Exits".
+ * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
+ */
+ Assert(cbInstr <= 15);
+
+ uint8_t uType;
+ switch (enmTaskSwitch)
+ {
+ case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break;
+ case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break;
+ case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break;
+ case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break;
+ IEM_NOT_REACHED_DEFAULT_CASE_RET();
+ }
+
+ uint64_t const uExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType);
+ iemVmxVmcsSetExitQual(pVCpu, uExitQual);
+ iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
+ return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH);
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to expiring of the preemption timer.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPU pVCpu)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /* Check if the guest has enabled VMX-preemption timers in the first place. */
+ if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
+ {
+ /*
+ * Calculate the current VMX-preemption timer value.
+ * Only if the value has reached zero, we cause the VM-exit.
+ */
+ uint32_t uPreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
+ if (!uPreemptTimer)
+ {
+ /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */
+ if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)
+ pVmcs->u32PreemptTimer = 0;
+
+ /* Clear the force-flag indicating the VMX-preemption timer no longer active. */
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
+
+ /* Cause the VMX-preemption timer VM-exit. The VM-exit qualification MBZ. */
+ return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER);
+ }
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to external interrupts.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uVector The external interrupt vector (pass 0 if the interrupt
+ * is still pending since we typically won't know the
+ * vector).
+ * @param fIntPending Whether the external interrupt is pending or
+ * acknowledged in the interrupt controller.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPU pVCpu, uint8_t uVector, bool fIntPending)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(fIntPending || uVector == 0);
+
+ /* The VM-exit is subject to "External interrupt exiting" is being set. */
+ if (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)
+ {
+ if (fIntPending)
+ {
+ /*
+ * If the interrupt is pending and we don't need to acknowledge the
+ * interrupt on VM-exit, cause the VM-exit immediately.
+ *
+ * See Intel spec 25.2 "Other Causes Of VM Exits".
+ */
+ if (!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT))
+ return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT);
+
+ /*
+ * If the interrupt is pending and we -do- need to acknowledge the interrupt
+ * on VM-exit, postpone VM-exit till after the interrupt controller has been
+ * acknowledged that the interrupt has been consumed.
+ */
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+ }
+
+ /*
+ * If the interrupt is no longer pending (i.e. it has been acknowledged) and the
+ * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are
+ * all set, we cause the VM-exit now. We need to record the external interrupt that
+ * just occurred in the VM-exit interruption information field.
+ *
+ * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
+ */
+ if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
+ {
+ bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
+ uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
+ | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT)
+ | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
+ | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
+ iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
+ return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT);
+ }
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to startup-IPIs (SIPI).
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uVector The SIPI vector.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitStartupIpi(PVMCPU pVCpu, uint8_t uVector)
+{
+ iemVmxVmcsSetExitQual(pVCpu, uVector);
+ return iemVmxVmexit(pVCpu, VMX_EXIT_SIPI);
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to init-IPIs (INIT).
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitInitIpi(PVMCPU pVCpu)
+{
+ return iemVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL);
+}
+
+
+/**
+ * VMX VM-exit handler for interrupt-window VM-exits.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitIntWindow(PVMCPU pVCpu)
+{
+ return iemVmxVmexit(pVCpu, VMX_EXIT_INT_WINDOW);
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to delivery of an event.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uVector The interrupt / exception vector.
+ * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX).
+ * @param uErrCode The error code associated with the event.
+ * @param uCr2 The CR2 value in case of a \#PF exception.
+ * @param cbInstr The instruction length in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitEvent(PVMCPU pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2,
+ uint8_t cbInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * If the event is being injected as part of VM-entry, it isn't subject to event
+ * intercepts in the nested-guest. However, secondary exceptions that occur during
+ * injection of any event -are- subject to event interception.
+ *
+ * See Intel spec. 26.5.1.2 "VM Exits During Event Injection".
+ */
+ if (!pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents)
+ {
+ /* Update the IDT-vectoring event in the VMCS as the source of the upcoming event. */
+ uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags);
+ bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
+ uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector)
+ | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType)
+ | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid)
+ | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1);
+ iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo);
+ iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode);
+
+ pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents = true;
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+ }
+
+ /*
+ * We are injecting an external interrupt, check if we need to cause a VM-exit now.
+ * If not, the caller will continue delivery of the external interrupt as it would
+ * normally.
+ */
+ if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT)
+ {
+ Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVmcs->u32RoIdtVectoringInfo));
+ return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */);
+ }
+
+ /*
+ * Evaluate intercepts for hardware exceptions including #BP, #DB, #OF
+ * generated by INT3, INT1 (ICEBP) and INTO respectively.
+ */
+ Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT));
+ bool fIntercept = false;
+ bool fIsHwXcpt = false;
+ if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
+ || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
+ {
+ fIsHwXcpt = true;
+ /* NMIs have a dedicated VM-execution control for causing VM-exits. */
+ if (uVector == X86_XCPT_NMI)
+ fIntercept = RT_BOOL(pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT);
+ else
+ {
+ /* Page-faults are subject to masking using its error code. */
+ uint32_t fXcptBitmap = pVmcs->u32XcptBitmap;
+ if (uVector == X86_XCPT_PF)
+ {
+ uint32_t const fXcptPFMask = pVmcs->u32XcptPFMask;
+ uint32_t const fXcptPFMatch = pVmcs->u32XcptPFMatch;
+ if ((uErrCode & fXcptPFMask) != fXcptPFMatch)
+ fXcptBitmap ^= RT_BIT(X86_XCPT_PF);
+ }
+
+ /* Consult the exception bitmap for all hardware exceptions (except NMI). */
+ if (fXcptBitmap & RT_BIT(uVector))
+ fIntercept = true;
+ }
+ }
+ /* else: Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */
+
+ /*
+ * Now that we've determined whether the software interrupt or hardware exception
+ * causes a VM-exit, we need to construct the relevant VM-exit information and
+ * cause the VM-exit.
+ */
+ if (fIntercept)
+ {
+ Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT));
+
+ /* Construct the rest of the event related information fields and cause the VM-exit. */
+ uint64_t uExitQual = 0;
+ if (fIsHwXcpt)
+ {
+ if (uVector == X86_XCPT_PF)
+ {
+ Assert(fFlags & IEM_XCPT_FLAGS_CR2);
+ uExitQual = uCr2;
+ }
+ else if (uVector == X86_XCPT_DB)
+ {
+ IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR6);
+ uExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK;
+ }
+ }
+
+ uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
+ bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
+ uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags);
+ uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
+ | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType)
+ | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid)
+ | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
+ | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
+ iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
+ iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode);
+ iemVmxVmcsSetExitQual(pVCpu, uExitQual);
+
+ /*
+ * For VM exits due to software exceptions (those generated by INT3 or INTO) or privileged
+ * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
+ * length.
+ */
+ if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
+ && (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
+ iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
+ else
+ iemVmxVmcsSetExitInstrLen(pVCpu, 0);
+
+ return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI);
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * VMX VM-exit handler for VM-exits due to a triple fault.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitTripleFault(PVMCPU pVCpu)
+{
+ return iemVmxVmexit(pVCpu, VMX_EXIT_TRIPLE_FAULT);
+}
+
+
+/**
+ * VMX VM-exit handler for APIC-accesses.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offAccess The offset of the register being accessed.
+ * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or
+ * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION).
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPU pVCpu, uint16_t offAccess, uint32_t fAccess)
+{
+ Assert((fAccess & IEM_ACCESS_TYPE_READ) || (fAccess & IEM_ACCESS_TYPE_WRITE) || (fAccess & IEM_ACCESS_INSTRUCTION));
+
+ VMXAPICACCESS enmAccess;
+ bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL);
+ if (fInEventDelivery)
+ enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
+ else if (fAccess & IEM_ACCESS_INSTRUCTION)
+ enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
+ else if (fAccess & IEM_ACCESS_TYPE_WRITE)
+ enmAccess = VMXAPICACCESS_LINEAR_WRITE;
+ else
+ enmAccess = VMXAPICACCESS_LINEAR_WRITE;
+
+ uint64_t const uExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
+ | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
+ iemVmxVmcsSetExitQual(pVCpu, uExitQual);
+ return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS);
+}
+
+
+/**
+ * VMX VM-exit handler for APIC-write VM-exits.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offApic The write to the virtual-APIC page offset that caused this
+ * VM-exit.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPU pVCpu, uint16_t offApic)
+{
+ Assert(offApic < XAPIC_OFF_END + 4);
+
+ /* Write only bits 11:0 of the APIC offset into the VM-exit qualification field. */
+ offApic &= UINT16_C(0xfff);
+ iemVmxVmcsSetExitQual(pVCpu, offApic);
+ return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE);
+}
+
+
+/**
+ * VMX VM-exit handler for virtualized-EOIs.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmexitVirtEoi(PVMCPU pVCpu, uint8_t uVector)
+{
+ iemVmxVmcsSetExitQual(pVCpu, uVector);
+ return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI);
+}
+
+
+/**
+ * Sets virtual-APIC write emulation as pending.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offApic The offset in the virtual-APIC page that was written.
+ */
+DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPU pVCpu, uint16_t offApic)
+{
+ Assert(offApic < XAPIC_OFF_END + 4);
+
+ /*
+ * Record the currently updated APIC offset, as we need this later for figuring
+ * out whether to perform TPR, EOI or self-IPI virtualization as well as well
+ * as for supplying the exit qualification when causing an APIC-write VM-exit.
+ */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic;
+
+ /*
+ * Signal that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI
+ * virtualization or APIC-write emulation).
+ */
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
+}
+
+
+/**
+ * Clears any pending virtual-APIC write emulation.
+ *
+ * @returns The virtual-APIC offset that was written before clearing it.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPU pVCpu)
+{
+ uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite;
+ pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0;
+ Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
+ return offVirtApicWrite;
+}
+
+
+/**
+ * Reads a 32-bit register from the virtual-APIC page at the given offset.
+ *
+ * @returns The register from the virtual-APIC page.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offReg The offset of the register being read.
+ */
+DECLINLINE(uint32_t) iemVmxVirtApicReadRaw32(PVMCPU pVCpu, uint16_t offReg)
+{
+ Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
+ uint8_t const *pbVirtApic = (const uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
+ uint32_t const uReg = *(const uint32_t *)(pbVirtApic + offReg);
+ return uReg;
+}
+
+
+/**
+ * Reads a 64-bit register from the virtual-APIC page at the given offset.
+ *
+ * @returns The register from the virtual-APIC page.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offReg The offset of the register being read.
+ */
+DECLINLINE(uint64_t) iemVmxVirtApicReadRaw64(PVMCPU pVCpu, uint16_t offReg)
+{
+ Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
+ uint8_t const *pbVirtApic = (const uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
+ uint64_t const uReg = *(const uint64_t *)(pbVirtApic + offReg);
+ return uReg;
+}
+
+
+/**
+ * Writes a 32-bit register to the virtual-APIC page at the given offset.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offReg The offset of the register being written.
+ * @param uReg The register value to write.
+ */
+DECLINLINE(void) iemVmxVirtApicWriteRaw32(PVMCPU pVCpu, uint16_t offReg, uint32_t uReg)
+{
+ Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
+ uint8_t *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
+ *(uint32_t *)(pbVirtApic + offReg) = uReg;
+}
+
+
+/**
+ * Writes a 64-bit register to the virtual-APIC page at the given offset.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offReg The offset of the register being written.
+ * @param uReg The register value to write.
+ */
+DECLINLINE(void) iemVmxVirtApicWriteRaw64(PVMCPU pVCpu, uint16_t offReg, uint64_t uReg)
+{
+ Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
+ uint8_t *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
+ *(uint64_t *)(pbVirtApic + offReg) = uReg;
+}
+
+
+/**
+ * Sets the vector in a virtual-APIC 256-bit sparse register.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offReg The offset of the 256-bit spare register.
+ * @param uVector The vector to set.
+ *
+ * @remarks This is based on our APIC device code.
+ */
+DECLINLINE(void) iemVmxVirtApicSetVector(PVMCPU pVCpu, uint16_t offReg, uint8_t uVector)
+{
+ Assert(offReg == XAPIC_OFF_ISR0 || offReg == XAPIC_OFF_TMR0 || offReg == XAPIC_OFF_IRR0);
+ uint8_t *pbBitmap = ((uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)) + offReg;
+ uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
+ uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
+ ASMAtomicBitSet(pbBitmap + offVector, idxVectorBit);
+}
+
+
+/**
+ * Clears the vector in a virtual-APIC 256-bit sparse register.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offReg The offset of the 256-bit spare register.
+ * @param uVector The vector to clear.
+ *
+ * @remarks This is based on our APIC device code.
+ */
+DECLINLINE(void) iemVmxVirtApicClearVector(PVMCPU pVCpu, uint16_t offReg, uint8_t uVector)
+{
+ Assert(offReg == XAPIC_OFF_ISR0 || offReg == XAPIC_OFF_TMR0 || offReg == XAPIC_OFF_IRR0);
+ uint8_t *pbBitmap = ((uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)) + offReg;
+ uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
+ uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
+ ASMAtomicBitClear(pbBitmap + offVector, idxVectorBit);
+}
+
+
+/**
+ * Checks if a memory access to the APIC-access page must causes an APIC-access
+ * VM-exit.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offAccess The offset of the register being accessed.
+ * @param cbAccess The size of the access in bytes.
+ * @param fAccess The type of access (must be IEM_ACCESS_TYPE_READ or
+ * IEM_ACCESS_TYPE_WRITE).
+ *
+ * @remarks This must not be used for MSR-based APIC-access page accesses!
+ * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead.
+ */
+IEM_STATIC bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPU pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(fAccess == IEM_ACCESS_TYPE_READ || fAccess == IEM_ACCESS_TYPE_WRITE);
+
+ /*
+ * We must cause a VM-exit if any of the following are true:
+ * - TPR shadowing isn't active.
+ * - The access size exceeds 32-bits.
+ * - The access is not contained within low 4 bytes of a 16-byte aligned offset.
+ *
+ * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
+ * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized".
+ */
+ if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
+ || cbAccess > sizeof(uint32_t)
+ || ((offAccess + cbAccess - 1) & 0xc)
+ || offAccess >= XAPIC_OFF_END + 4)
+ return true;
+
+ /*
+ * If the access is part of an operation where we have already
+ * virtualized a virtual-APIC write, we must cause a VM-exit.
+ */
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
+ return true;
+
+ /*
+ * Check write accesses to the APIC-access page that cause VM-exits.
+ */
+ if (fAccess & IEM_ACCESS_TYPE_WRITE)
+ {
+ if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
+ {
+ /*
+ * With APIC-register virtualization, a write access to any of the
+ * following registers are virtualized. Accessing any other register
+ * causes a VM-exit.
+ */
+ uint16_t const offAlignedAccess = offAccess & 0xfffc;
+ switch (offAlignedAccess)
+ {
+ case XAPIC_OFF_ID:
+ case XAPIC_OFF_TPR:
+ case XAPIC_OFF_EOI:
+ case XAPIC_OFF_LDR:
+ case XAPIC_OFF_DFR:
+ case XAPIC_OFF_SVR:
+ case XAPIC_OFF_ESR:
+ case XAPIC_OFF_ICR_LO:
+ case XAPIC_OFF_ICR_HI:
+ case XAPIC_OFF_LVT_TIMER:
+ case XAPIC_OFF_LVT_THERMAL:
+ case XAPIC_OFF_LVT_PERF:
+ case XAPIC_OFF_LVT_LINT0:
+ case XAPIC_OFF_LVT_LINT1:
+ case XAPIC_OFF_LVT_ERROR:
+ case XAPIC_OFF_TIMER_ICR:
+ case XAPIC_OFF_TIMER_DCR:
+ break;
+ default:
+ return true;
+ }
+ }
+ else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
+ {
+ /*
+ * With virtual-interrupt delivery, a write access to any of the
+ * following registers are virtualized. Accessing any other register
+ * causes a VM-exit.
+ *
+ * Note! The specification does not allow writing to offsets in-between
+ * these registers (e.g. TPR + 1 byte) unlike read accesses.
+ */
+ switch (offAccess)
+ {
+ case XAPIC_OFF_TPR:
+ case XAPIC_OFF_EOI:
+ case XAPIC_OFF_ICR_LO:
+ break;
+ default:
+ return true;
+ }
+ }
+ else
+ {
+ /*
+ * Without APIC-register virtualization or virtual-interrupt delivery,
+ * only TPR accesses are virtualized.
+ */
+ if (offAccess == XAPIC_OFF_TPR)
+ { /* likely */ }
+ else
+ return true;
+ }
+ }
+ else
+ {
+ /*
+ * Check read accesses to the APIC-access page that cause VM-exits.
+ */
+ if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
+ {
+ /*
+ * With APIC-register virtualization, a read access to any of the
+ * following registers are virtualized. Accessing any other register
+ * causes a VM-exit.
+ */
+ uint16_t const offAlignedAccess = offAccess & 0xfffc;
+ switch (offAlignedAccess)
+ {
+ /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */
+ case XAPIC_OFF_ID:
+ case XAPIC_OFF_VERSION:
+ case XAPIC_OFF_TPR:
+ case XAPIC_OFF_EOI:
+ case XAPIC_OFF_LDR:
+ case XAPIC_OFF_DFR:
+ case XAPIC_OFF_SVR:
+ case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
+ case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
+ case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
+ case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
+ case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
+ case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
+ case XAPIC_OFF_ESR:
+ case XAPIC_OFF_ICR_LO:
+ case XAPIC_OFF_ICR_HI:
+ case XAPIC_OFF_LVT_TIMER:
+ case XAPIC_OFF_LVT_THERMAL:
+ case XAPIC_OFF_LVT_PERF:
+ case XAPIC_OFF_LVT_LINT0:
+ case XAPIC_OFF_LVT_LINT1:
+ case XAPIC_OFF_LVT_ERROR:
+ case XAPIC_OFF_TIMER_ICR:
+ case XAPIC_OFF_TIMER_DCR:
+ break;
+ default:
+ return true;
+ }
+ }
+ else
+ {
+ /* Without APIC-register virtualization, only TPR accesses are virtualized. */
+ if (offAccess == XAPIC_OFF_TPR)
+ { /* likely */ }
+ else
+ return true;
+ }
+ }
+
+ /* The APIC-access is virtualized, does not cause a VM-exit. */
+ return false;
+}
+
+
+/**
+ * Virtualizes a memory-based APIC-access where the address is not used to access
+ * memory.
+ *
+ * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause
+ * page-faults but do not use the address to access memory.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pGCPhysAccess Pointer to the guest-physical address used.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPU pVCpu, PRTGCPHYS pGCPhysAccess)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
+ Assert(pGCPhysAccess);
+
+ RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)PAGE_OFFSET_MASK;
+ RTGCPHYS const GCPhysApic = pVmcs->u64AddrApicAccess.u;
+ Assert(!(GCPhysApic & PAGE_OFFSET_MASK));
+
+ if (GCPhysAccess == GCPhysApic)
+ {
+ uint16_t const offAccess = *pGCPhysAccess & PAGE_OFFSET_MASK;
+ uint32_t const fAccess = IEM_ACCESS_TYPE_READ;
+ uint16_t const cbAccess = 1;
+ bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
+ if (fIntercept)
+ return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
+
+ *pGCPhysAccess = GCPhysApic | offAccess;
+ return VINF_VMX_MODIFIES_BEHAVIOR;
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * Virtualizes a memory-based APIC-access.
+ *
+ * @returns VBox strict status code.
+ * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized.
+ * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offAccess The offset of the register being accessed (within the
+ * APIC-access page).
+ * @param cbAccess The size of the access in bytes.
+ * @param pvData Pointer to the data being written or where to store the data
+ * being read.
+ * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or
+ * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION).
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPU pVCpu, uint16_t offAccess, size_t cbAccess, void *pvData,
+ uint32_t fAccess)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS); NOREF(pVmcs);
+ Assert(pvData);
+ Assert( (fAccess & IEM_ACCESS_TYPE_READ)
+ || (fAccess & IEM_ACCESS_TYPE_WRITE)
+ || (fAccess & IEM_ACCESS_INSTRUCTION));
+
+ bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
+ if (fIntercept)
+ return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
+
+ if (fAccess & IEM_ACCESS_TYPE_WRITE)
+ {
+ /*
+ * A write access to the APIC-access page that is virtualized (rather than
+ * causing a VM-exit) writes data to the virtual-APIC page.
+ */
+ uint32_t const u32Data = *(uint32_t *)pvData;
+ iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data);
+
+ /*
+ * Record the currently updated APIC offset, as we need this later for figuring
+ * out whether to perform TPR, EOI or self-IPI virtualization as well as well
+ * as for supplying the exit qualification when causing an APIC-write VM-exit.
+ *
+ * After completion of the current operation, we need to perform TPR virtualization,
+ * EOI virtualization or APIC-write VM-exit depending on which register was written.
+ *
+ * The current operation may be a REP-prefixed string instruction, execution of any
+ * other instruction, or delivery of an event through the IDT.
+ *
+ * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be
+ * performed now but later after completion of the current operation.
+ *
+ * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
+ */
+ iemVmxVirtApicSetPendingWrite(pVCpu, offAccess);
+ }
+ else
+ {
+ /*
+ * A read access from the APIC-access page that is virtualized (rather than
+ * causing a VM-exit) returns data from the virtual-APIC page.
+ *
+ * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
+ */
+ Assert(cbAccess <= 4);
+ Assert(offAccess < XAPIC_OFF_END + 4);
+ static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff };
+
+ uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess);
+ u32Data &= s_auAccessSizeMasks[cbAccess];
+ *(uint32_t *)pvData = u32Data;
+ }
+
+ return VINF_VMX_MODIFIES_BEHAVIOR;
+}
+
+
+/**
+ * Virtualizes an MSR-based APIC read access.
+ *
+ * @returns VBox strict status code.
+ * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized.
+ * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be
+ * handled by the x2APIC device.
+ * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
+ * not within the range of valid MSRs, caller must raise \#GP(0).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param idMsr The x2APIC MSR being read.
+ * @param pu64Value Where to store the read x2APIC MSR value (only valid when
+ * VINF_VMX_MODIFIES_BEHAVIOR is returned).
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPU pVCpu, uint32_t idMsr, uint64_t *pu64Value)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
+ Assert(pu64Value);
+
+ if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
+ {
+ /*
+ * Intel has different ideas in the x2APIC spec. vs the VT-x spec. as to
+ * what the end of the valid x2APIC MSR range is. Hence the use of different
+ * macros here.
+ *
+ * See Intel spec. 10.12.1.2 "x2APIC Register Address Space".
+ * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
+ */
+ if ( idMsr >= VMX_V_VIRT_APIC_MSR_START
+ && idMsr <= VMX_V_VIRT_APIC_MSR_END)
+ {
+ uint16_t const offReg = (idMsr & 0xff) << 4;
+ uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
+ *pu64Value = u64Value;
+ return VINF_VMX_MODIFIES_BEHAVIOR;
+ }
+ return VERR_OUT_OF_RANGE;
+ }
+
+ if (idMsr == MSR_IA32_X2APIC_TPR)
+ {
+ uint16_t const offReg = (idMsr & 0xff) << 4;
+ uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
+ *pu64Value = u64Value;
+ return VINF_VMX_MODIFIES_BEHAVIOR;
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * Virtualizes an MSR-based APIC write access.
+ *
+ * @returns VBox strict status code.
+ * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized.
+ * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
+ * not within the range of valid MSRs, caller must raise \#GP(0).
+ * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param idMsr The x2APIC MSR being written.
+ * @param u64Value The value of the x2APIC MSR being written.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPU pVCpu, uint32_t idMsr, uint64_t u64Value)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * Check if the access is to be virtualized.
+ * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
+ */
+ if ( idMsr == MSR_IA32_X2APIC_TPR
+ || ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
+ && ( idMsr == MSR_IA32_X2APIC_EOI
+ || idMsr == MSR_IA32_X2APIC_SELF_IPI)))
+ {
+ /* Validate the MSR write depending on the register. */
+ switch (idMsr)
+ {
+ case MSR_IA32_X2APIC_TPR:
+ case MSR_IA32_X2APIC_SELF_IPI:
+ {
+ if (u64Value & UINT64_C(0xffffffffffffff00))
+ return VERR_OUT_OF_RANGE;
+ break;
+ }
+ case MSR_IA32_X2APIC_EOI:
+ {
+ if (u64Value != 0)
+ return VERR_OUT_OF_RANGE;
+ break;
+ }
+ }
+
+ /* Write the MSR to the virtual-APIC page. */
+ uint16_t const offReg = (idMsr & 0xff) << 4;
+ iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value);
+
+ /*
+ * Record the currently updated APIC offset, as we need this later for figuring
+ * out whether to perform TPR, EOI or self-IPI virtualization as well as well
+ * as for supplying the exit qualification when causing an APIC-write VM-exit.
+ */
+ iemVmxVirtApicSetPendingWrite(pVCpu, offReg);
+
+ return VINF_VMX_MODIFIES_BEHAVIOR;
+ }
+
+ return VINF_VMX_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * Finds the most significant set bit in a virtual-APIC 256-bit sparse register.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCES when the highest set bit is found.
+ * @retval VERR_NOT_FOUND when no bit is set.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param offReg The offset of the APIC 256-bit sparse register.
+ * @param pidxHighestBit Where to store the highest bit (most significant bit)
+ * set in the register. Only valid when VINF_SUCCESS is
+ * returned.
+ *
+ * @remarks The format of the 256-bit sparse register here mirrors that found in
+ * real APIC hardware.
+ */
+static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPU pVCpu, uint16_t offReg, uint8_t *pidxHighestBit)
+{
+ Assert(offReg < XAPIC_OFF_END + 4);
+ Assert(pidxHighestBit);
+
+ /*
+ * There are 8 contiguous fragments (of 16-bytes each) in the sparse register.
+ * However, in each fragment only the first 4 bytes are used.
+ */
+ uint8_t const cFrags = 8;
+ for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--)
+ {
+ uint16_t const offFrag = iFrag * 16;
+ uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag);
+ if (!u32Frag)
+ continue;
+
+ unsigned idxHighestBit = ASMBitLastSetU32(u32Frag);
+ Assert(idxHighestBit > 0);
+ --idxHighestBit;
+ Assert(idxHighestBit <= UINT8_MAX);
+ *pidxHighestBit = idxHighestBit;
+ return VINF_SUCCESS;
+ }
+ return VERR_NOT_FOUND;
+}
+
+
+/**
+ * Evaluates pending virtual interrupts.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxEvalPendingVirtIntrs(PVMCPU pVCpu)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
+
+ if (!(pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
+ {
+ uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
+ uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR);
+
+ if ((uRvi >> 4) > (uPpr >> 4))
+ {
+ Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signaling pending interrupt\n", uRvi, uPpr));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
+ }
+ else
+ Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr));
+ }
+}
+
+
+/**
+ * Performs PPR virtualization.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxPprVirtualization(PVMCPU pVCpu)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
+ Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
+
+ /*
+ * PPR virtualization is caused in response to a VM-entry, TPR-virtualization,
+ * or EOI-virtualization.
+ *
+ * See Intel spec. 29.1.3 "PPR Virtualization".
+ */
+ uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
+ uint32_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
+
+ uint32_t uPpr;
+ if (((uTpr >> 4) & 0xf) >= ((uSvi >> 4) & 0xf))
+ uPpr = uTpr & 0xff;
+ else
+ uPpr = uSvi & 0xf0;
+
+ Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr));
+ iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr);
+}
+
+
+/**
+ * Performs VMX TPR virtualization.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxTprVirtualization(PVMCPU pVCpu)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
+
+ /*
+ * We should have already performed the virtual-APIC write to the TPR offset
+ * in the virtual-APIC page. We now perform TPR virtualization.
+ *
+ * See Intel spec. 29.1.2 "TPR Virtualization".
+ */
+ if (!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
+ {
+ uint32_t const uTprThreshold = pVmcs->u32TprThreshold;
+ uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
+
+ /*
+ * If the VTPR falls below the TPR threshold, we must cause a VM-exit.
+ * See Intel spec. 29.1.2 "TPR Virtualization".
+ */
+ if (((uTpr >> 4) & 0xf) < uTprThreshold)
+ {
+ Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold));
+ return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD);
+ }
+ }
+ else
+ {
+ iemVmxPprVirtualization(pVCpu);
+ iemVmxEvalPendingVirtIntrs(pVCpu);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks whether an EOI write for the given interrupt vector causes a VM-exit or
+ * not.
+ *
+ * @returns @c true if the EOI write is intercepted, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uVector The interrupt that was acknowledged using an EOI.
+ */
+IEM_STATIC bool iemVmxIsEoiInterceptSet(PVMCPU pVCpu, uint8_t uVector)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
+
+ if (uVector < 64)
+ return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector));
+ if (uVector < 128)
+ return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector));
+ if (uVector < 192)
+ return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector));
+ return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector));
+}
+
+
+/**
+ * Performs EOI virtualization.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPU pVCpu)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
+
+ /*
+ * Clear the interrupt guest-interrupt as no longer in-service (ISR)
+ * and get the next guest-interrupt that's in-service (if any).
+ *
+ * See Intel spec. 29.1.4 "EOI Virtualization".
+ */
+ uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
+ uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
+ Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi));
+
+ uint8_t uVector = uSvi;
+ iemVmxVirtApicClearVector(pVCpu, XAPIC_OFF_ISR0, uVector);
+
+ uVector = 0;
+ iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector);
+
+ if (uVector)
+ Log2(("eoi_virt: next interrupt %#x\n", uVector));
+ else
+ Log2(("eoi_virt: no interrupt pending in ISR\n"));
+
+ /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */
+ pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector);
+
+ iemVmxPprVirtualization(pVCpu);
+ if (iemVmxIsEoiInterceptSet(pVCpu, uVector))
+ return iemVmxVmexitVirtEoi(pVCpu, uVector);
+ iemVmxEvalPendingVirtIntrs(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Performs self-IPI virtualization.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPU pVCpu)
+{
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
+
+ /*
+ * We should have already performed the virtual-APIC write to the self-IPI offset
+ * in the virtual-APIC page. We now perform self-IPI virtualization.
+ *
+ * See Intel spec. 29.1.5 "Self-IPI Virtualization".
+ */
+ uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO);
+ Log2(("self_ipi_virt: uVector=%#x\n", uVector));
+ iemVmxVirtApicSetVector(pVCpu, XAPIC_OFF_IRR0, uVector);
+ uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
+ uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
+ if (uVector > uRvi)
+ pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi);
+ iemVmxEvalPendingVirtIntrs(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Performs VMX APIC-write emulation.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPU pVCpu)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /*
+ * Perform APIC-write emulation based on the virtual-APIC register written.
+ * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
+ */
+ uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu);
+ VBOXSTRICTRC rcStrict;
+ switch (offApicWrite)
+ {
+ case XAPIC_OFF_TPR:
+ {
+ /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */
+ uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
+ uTpr &= UINT32_C(0x000000ff);
+ iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
+ Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr));
+ rcStrict = iemVmxTprVirtualization(pVCpu);
+ break;
+ }
+
+ case XAPIC_OFF_EOI:
+ {
+ if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
+ {
+ /* Clear VEOI and perform EOI virtualization. */
+ iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0);
+ Log2(("iemVmxApicWriteEmulation: EOI write\n"));
+ rcStrict = iemVmxEoiVirtualization(pVCpu);
+ }
+ else
+ rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
+ break;
+ }
+
+ case XAPIC_OFF_ICR_LO:
+ {
+ if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
+ {
+ /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */
+ uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
+ uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700);
+ uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0);
+ if ( !(uIcrLo & fIcrLoMb0)
+ && (uIcrLo & fIcrLoMb1))
+ {
+ Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff)));
+ rcStrict = iemVmxSelfIpiVirtualization(pVCpu);
+ }
+ else
+ rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
+ }
+ else
+ rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
+ break;
+ }
+
+ case XAPIC_OFF_ICR_HI:
+ {
+ /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */
+ uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI);
+ uIcrHi &= UINT32_C(0xff000000);
+ iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi);
+ rcStrict = VINF_SUCCESS;
+ break;
+ }
+
+ default:
+ {
+ /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */
+ rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
+ break;
+ }
+ }
+
+ return rcStrict;
+}
+
+
+/**
+ * Checks guest control registers, debug registers and MSRs as part of VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * Guest Control Registers, Debug Registers, and MSRs.
+ * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char *const pszFailure = "VM-exit";
+ bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
+
+ /* CR0 reserved bits. */
+ {
+ /* CR0 MB1 bits. */
+ uint64_t u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
+ Assert(!(u64Cr0Fixed0 & (X86_CR0_NW | X86_CR0_CD)));
+ if (fUnrestrictedGuest)
+ u64Cr0Fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
+ if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) != u64Cr0Fixed0)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
+
+ /* CR0 MBZ bits. */
+ uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
+ if (pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
+
+ /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
+ if ( !fUnrestrictedGuest
+ && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
+ && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
+ }
+
+ /* CR4 reserved bits. */
+ {
+ /* CR4 MB1 bits. */
+ uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
+ if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) != u64Cr4Fixed0)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
+
+ /* CR4 MBZ bits. */
+ uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
+ if (pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
+ }
+
+ /* DEBUGCTL MSR. */
+ if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
+ && (pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
+
+ /* 64-bit CPU checks. */
+ bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ if (fGstInLongMode)
+ {
+ /* PAE must be set. */
+ if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
+ && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
+ }
+ else
+ {
+ /* PCIDE should not be set. */
+ if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
+ }
+
+ /* CR3. */
+ if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
+
+ /* DR7. */
+ if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
+ && (pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
+
+ /* SYSENTER ESP and SYSENTER EIP. */
+ if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
+ && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
+ }
+
+ /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
+ Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
+
+ /* PAT MSR. */
+ if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
+ && !CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
+
+ /* EFER MSR. */
+ uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
+ if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
+ && (pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
+
+ bool const fGstLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_BIT_LMA);
+ bool const fGstLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_BIT_LME);
+ if ( fGstInLongMode == fGstLma
+ && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
+ || fGstLma == fGstLme))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
+
+ /* We don't support IA32_BNDCFGS MSR yet. */
+ Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks guest segment registers, LDTR and TR as part of VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckGuestSegRegs(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * Segment registers.
+ * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char *const pszFailure = "VM-exit";
+ bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
+ bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
+ bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
+
+ /* Selectors. */
+ if ( !fGstInV86Mode
+ && !fUnrestrictedGuest
+ && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
+
+ for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
+ {
+ CPUMSELREG SelReg;
+ int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ { /* likely */ }
+ else
+ return rc;
+
+ /*
+ * Virtual-8086 mode checks.
+ */
+ if (fGstInV86Mode)
+ {
+ /* Base address. */
+ if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+
+ /* Limit. */
+ if (SelReg.u32Limit == 0xffff)
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+
+ /* Attribute. */
+ if (SelReg.Attr.u == 0xf3)
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+
+ /* We're done; move to checking the next segment. */
+ continue;
+ }
+
+ /* Checks done by 64-bit CPUs. */
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ /* Base address. */
+ if ( iSegReg == X86_SREG_FS
+ || iSegReg == X86_SREG_GS)
+ {
+ if (X86_IS_CANONICAL(SelReg.u64Base))
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+ }
+ else if (iSegReg == X86_SREG_CS)
+ {
+ if (!RT_HI_U32(SelReg.u64Base))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
+ }
+ else
+ {
+ if ( SelReg.Attr.n.u1Unusable
+ || !RT_HI_U32(SelReg.u64Base))
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+ }
+ }
+
+ /*
+ * Checks outside Virtual-8086 mode.
+ */
+ uint8_t const uSegType = SelReg.Attr.n.u4Type;
+ uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
+ uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
+ uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
+ uint8_t const fPresent = SelReg.Attr.n.u1Present;
+ uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
+ uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
+ uint8_t const fSegLong = SelReg.Attr.n.u1Long;
+
+ /* Code or usable segment. */
+ if ( iSegReg == X86_SREG_CS
+ || fUsable)
+ {
+ /* Reserved bits (bits 31:17 and bits 11:8). */
+ if (!(SelReg.Attr.u & 0xfffe0f00))
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+
+ /* Descriptor type. */
+ if (fCodeDataSeg)
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+
+ /* Present. */
+ if (fPresent)
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+
+ /* Granularity. */
+ if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
+ && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+ }
+
+ if (iSegReg == X86_SREG_CS)
+ {
+ /* Segment Type and DPL. */
+ if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
+ && fUnrestrictedGuest)
+ {
+ if (uDpl == 0)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
+ }
+ else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
+ || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
+ {
+ X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
+ if (uDpl == AttrSs.n.u2Dpl)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
+ }
+ else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
+ == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
+ {
+ X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
+ if (uDpl <= AttrSs.n.u2Dpl)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
+ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
+
+ /* Def/Big. */
+ if ( fGstInLongMode
+ && fSegLong)
+ {
+ if (uDefBig == 0)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
+ }
+ }
+ else if (iSegReg == X86_SREG_SS)
+ {
+ /* Segment Type. */
+ if ( !fUsable
+ || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
+ || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
+
+ /* DPL. */
+ if (fUnrestrictedGuest)
+ {
+ if (uDpl == (SelReg.Sel & X86_SEL_RPL))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
+ }
+ X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
+ if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
+ || (pVmcs->u64GuestCr0.u & X86_CR0_PE))
+ {
+ if (uDpl == 0)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
+ }
+ }
+ else
+ {
+ /* DS, ES, FS, GS. */
+ if (fUsable)
+ {
+ /* Segment type. */
+ if (uSegType & X86_SEL_TYPE_ACCESSED)
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+
+ if ( !(uSegType & X86_SEL_TYPE_CODE)
+ || (uSegType & X86_SEL_TYPE_READ))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
+
+ /* DPL. */
+ if ( !fUnrestrictedGuest
+ && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
+ {
+ if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
+ { /* likely */ }
+ else
+ {
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+ }
+ }
+ }
+ }
+
+ /*
+ * LDTR.
+ */
+ {
+ CPUMSELREG Ldtr;
+ Ldtr.Sel = pVmcs->GuestLdtr;
+ Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
+ Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
+ Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
+
+ if (!Ldtr.Attr.n.u1Unusable)
+ {
+ /* Selector. */
+ if (!(Ldtr.Sel & X86_SEL_LDT))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
+
+ /* Base. */
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ if (X86_IS_CANONICAL(Ldtr.u64Base))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
+ }
+
+ /* Attributes. */
+ /* Reserved bits (bits 31:17 and bits 11:8). */
+ if (!(Ldtr.Attr.u & 0xfffe0f00))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
+
+ if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
+
+ if (!Ldtr.Attr.n.u1DescType)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
+
+ if (Ldtr.Attr.n.u1Present)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
+
+ if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
+ && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
+ }
+ }
+
+ /*
+ * TR.
+ */
+ {
+ CPUMSELREG Tr;
+ Tr.Sel = pVmcs->GuestTr;
+ Tr.u32Limit = pVmcs->u32GuestTrLimit;
+ Tr.u64Base = pVmcs->u64GuestTrBase.u;
+ Tr.Attr.u = pVmcs->u32GuestTrAttr;
+
+ /* Selector. */
+ if (!(Tr.Sel & X86_SEL_LDT))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
+
+ /* Base. */
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ if (X86_IS_CANONICAL(Tr.u64Base))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
+ }
+
+ /* Attributes. */
+ /* Reserved bits (bits 31:17 and bits 11:8). */
+ if (!(Tr.Attr.u & 0xfffe0f00))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
+
+ if (!Tr.Attr.n.u1Unusable)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
+
+ if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
+ || ( !fGstInLongMode
+ && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
+
+ if (!Tr.Attr.n.u1DescType)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
+
+ if (Tr.Attr.n.u1Present)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
+
+ if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
+ && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
+ }
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks guest GDTR and IDTR as part of VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckGuestGdtrIdtr(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * GDTR and IDTR.
+ * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char *const pszFailure = "VM-exit";
+
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ /* Base. */
+ if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
+
+ if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
+ }
+
+ /* Limit. */
+ if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
+
+ if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks guest RIP and RFLAGS as part of VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckGuestRipRFlags(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * RIP and RFLAGS.
+ * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char *const pszFailure = "VM-exit";
+ bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
+
+ /* RIP. */
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
+ if ( !fGstInLongMode
+ || !AttrCs.n.u1Long)
+ {
+ if (!RT_HI_U32(pVmcs->u64GuestRip.u))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
+ }
+
+ if ( fGstInLongMode
+ && AttrCs.n.u1Long)
+ {
+ Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
+ if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
+ && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
+ }
+ }
+
+ /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
+ uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
+ : pVmcs->u64GuestRFlags.s.Lo;
+ if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
+ && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
+
+ if ( fGstInLongMode
+ || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
+ {
+ if (!(uGuestRFlags & X86_EFL_VM))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
+ }
+
+ if ( VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo)
+ && VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
+ {
+ if (uGuestRFlags & X86_EFL_IF)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
+ }
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks guest non-register state as part of VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckGuestNonRegState(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * Guest non-register state.
+ * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
+ */
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char *const pszFailure = "VM-exit";
+
+ /*
+ * Activity state.
+ */
+ uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
+ uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
+ if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
+
+ X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
+ if ( !AttrSs.n.u2Dpl
+ || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
+
+ if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
+ || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
+ {
+ if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
+ }
+
+ if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
+ {
+ uint8_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
+ uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
+ AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
+ switch (pVmcs->u32GuestActivityState)
+ {
+ case VMX_VMCS_GUEST_ACTIVITY_HLT:
+ {
+ if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
+ || uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI
+ || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
+ && ( uVector == X86_XCPT_DB
+ || uVector == X86_XCPT_MC))
+ || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
+ && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
+ break;
+ }
+
+ case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
+ {
+ if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI
+ || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
+ && uVector == X86_XCPT_MC))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
+ break;
+ }
+
+ case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
+ default:
+ break;
+ }
+ }
+
+ /*
+ * Interruptibility state.
+ */
+ if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
+
+ if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
+ != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
+
+ if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
+ || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
+
+ if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
+ {
+ uint8_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
+ if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
+ {
+ if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
+ }
+ else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
+ {
+ if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
+ { /* likely */ }
+ else
+ {
+ /*
+ * We don't support injecting NMIs when blocking-by-STI would be in effect.
+ * We update the VM-exit qualification only when blocking-by-STI is set
+ * without blocking-by-MovSS being set. Although in practise it does not
+ * make much difference since the order of checks are implementation defined.
+ */
+ if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
+ iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
+ }
+
+ if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
+ || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
+ }
+ }
+
+ /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
+ if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
+
+ /* We don't support SGX yet. So enclave-interruption must not be set. */
+ if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
+
+ /*
+ * Pending debug exceptions.
+ */
+ uint64_t const uPendingDbgXcpt = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
+ ? pVmcs->u64GuestPendingDbgXcpt.u
+ : pVmcs->u64GuestPendingDbgXcpt.s.Lo;
+ if (!(uPendingDbgXcpt & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
+
+ if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
+ || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
+ {
+ if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
+ && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
+ && !(uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
+
+ if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
+ || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
+ && (uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
+ }
+
+ /* We don't support RTM (Real-time Transactional Memory) yet. */
+ if (uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_RTM)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
+
+ /*
+ * VMCS link pointer.
+ */
+ if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
+ {
+ RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
+ /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
+ if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
+ { /* likely */ }
+ else
+ {
+ iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
+ }
+
+ /* Validate the address. */
+ if ( (GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
+ || (GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
+ {
+ iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
+ }
+
+ /* Read the VMCS-link pointer from guest memory. */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs));
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs),
+ GCPhysShadowVmcs, VMX_V_VMCS_SIZE);
+ if (RT_FAILURE(rc))
+ {
+ iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys);
+ }
+
+ /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
+ if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
+ { /* likely */ }
+ else
+ {
+ iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
+ }
+
+ /* Verify the shadow bit is set if VMCS shadowing is enabled . */
+ if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
+ || pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.fIsShadowVmcs)
+ { /* likely */ }
+ else
+ {
+ iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
+ }
+
+ /* Finally update our cache of the guest physical address of the shadow VMCS. */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
+ }
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks if the PDPTEs referenced by the nested-guest CR3 are valid as part of
+ * VM-entry.
+ *
+ * @returns @c true if all PDPTEs are valid, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ * @param pVmcs Pointer to the virtual VMCS.
+ */
+IEM_STATIC int iemVmxVmentryCheckGuestPdptesForCr3(PVMCPU pVCpu, const char *pszInstr, PVMXVVMCS pVmcs)
+{
+ /*
+ * Check PDPTEs.
+ * See Intel spec. 4.4.1 "PDPTE Registers".
+ */
+ uint64_t const uGuestCr3 = pVmcs->u64GuestCr3.u & X86_CR3_PAE_PAGE_MASK;
+ const char *const pszFailure = "VM-exit";
+
+ X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES];
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uGuestCr3, sizeof(aPdptes));
+ if (RT_SUCCESS(rc))
+ {
+ for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++)
+ {
+ if ( !(aPdptes[iPdpte].u & X86_PDPE_P)
+ || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK))
+ { /* likely */ }
+ else
+ {
+ iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
+ VMXVDIAG const enmDiag = iemVmxGetDiagVmentryPdpteRsvd(iPdpte);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+ }
+ }
+ else
+ {
+ iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpteCr3ReadPhys);
+ }
+
+ NOREF(pszFailure);
+ NOREF(pszInstr);
+ return rc;
+}
+
+
+/**
+ * Checks guest PDPTEs as part of VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckGuestPdptes(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * Guest PDPTEs.
+ * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
+ */
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
+
+ /* Check PDPTes if the VM-entry is to a guest using PAE paging. */
+ int rc;
+ if ( !fGstInLongMode
+ && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
+ && (pVmcs->u64GuestCr0.u & X86_CR0_PG))
+ {
+ /*
+ * We don't support nested-paging for nested-guests yet.
+ *
+ * Without nested-paging for nested-guests, PDPTEs in the VMCS are not used,
+ * rather we need to check the PDPTEs referenced by the guest CR3.
+ */
+ rc = iemVmxVmentryCheckGuestPdptesForCr3(pVCpu, pszInstr, pVmcs);
+ }
+ else
+ rc = VINF_SUCCESS;
+ return rc;
+}
+
+
+/**
+ * Checks guest-state as part of VM-entry.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckGuestState(PVMCPU pVCpu, const char *pszInstr)
+{
+ int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ return iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
+ }
+ }
+ }
+ }
+ return rc;
+}
+
+
+/**
+ * Checks host-state as part of VM-entry.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckHostState(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * Host Control Registers and MSRs.
+ * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char * const pszFailure = "VMFail";
+
+ /* CR0 reserved bits. */
+ {
+ /* CR0 MB1 bits. */
+ uint64_t const u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
+ if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) != u64Cr0Fixed0)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
+
+ /* CR0 MBZ bits. */
+ uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
+ if (pVmcs->u64HostCr0.u & ~u64Cr0Fixed1)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
+ }
+
+ /* CR4 reserved bits. */
+ {
+ /* CR4 MB1 bits. */
+ uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
+ if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) != u64Cr4Fixed0)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
+
+ /* CR4 MBZ bits. */
+ uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
+ if (pVmcs->u64HostCr4.u & ~u64Cr4Fixed1)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
+ }
+
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ /* CR3 reserved bits. */
+ if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
+
+ /* SYSENTER ESP and SYSENTER EIP. */
+ if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
+ && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
+ }
+
+ /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
+ Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
+
+ /* PAT MSR. */
+ if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
+ || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
+
+ /* EFER MSR. */
+ uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
+ if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
+ || !(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
+
+ bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
+ bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA);
+ bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME);
+ if ( fHostInLongMode == fHostLma
+ && fHostInLongMode == fHostLme)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
+
+ /*
+ * Host Segment and Descriptor-Table Registers.
+ * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
+ */
+ /* Selector RPL and TI. */
+ if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
+ && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
+ && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
+ && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
+ && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
+ && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
+ && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
+
+ /* CS and TR selectors cannot be 0. */
+ if ( pVmcs->HostCs
+ && pVmcs->HostTr)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
+
+ /* SS cannot be 0 if 32-bit host. */
+ if ( fHostInLongMode
+ || pVmcs->HostSs)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
+
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ /* FS, GS, GDTR, IDTR, TR base address. */
+ if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
+ && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
+ && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
+ && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
+ && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
+ }
+
+ /*
+ * Host address-space size for 64-bit CPUs.
+ * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
+ */
+ bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
+
+ /* Logical processor in IA-32e mode. */
+ if (fCpuInLongMode)
+ {
+ if (fHostInLongMode)
+ {
+ /* PAE must be set. */
+ if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
+
+ /* RIP must be canonical. */
+ if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
+ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
+ }
+ else
+ {
+ /* Logical processor is outside IA-32e mode. */
+ if ( !fGstInLongMode
+ && !fHostInLongMode)
+ {
+ /* PCIDE should not be set. */
+ if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
+
+ /* The high 32-bits of RIP MBZ. */
+ if (!pVmcs->u64HostRip.s.Hi)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
+ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
+ }
+ }
+ else
+ {
+ /* Host address-space size for 32-bit CPUs. */
+ if ( !fGstInLongMode
+ && !fHostInLongMode)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
+ }
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks VM-entry controls fields as part of VM-entry.
+ * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckEntryCtls(PVMCPU pVCpu, const char *pszInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char * const pszFailure = "VMFail";
+
+ /* VM-entry controls. */
+ VMXCTLSMSR const EntryCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls;
+ if (~pVmcs->u32EntryCtls & EntryCtls.n.allowed0)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
+
+ if (pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
+
+ /* Event injection. */
+ uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
+ if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
+ {
+ /* Type and vector. */
+ uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
+ uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
+ uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
+ if ( !uRsvd
+ && HMVmxIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
+ && HMVmxIsEntryIntInfoVectorValid(uVector, uType))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
+
+ /* Exception error code. */
+ if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
+ {
+ /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
+ if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
+ || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
+
+ /* Exceptions that provide an error code. */
+ if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
+ && ( uVector == X86_XCPT_DF
+ || uVector == X86_XCPT_TS
+ || uVector == X86_XCPT_NP
+ || uVector == X86_XCPT_SS
+ || uVector == X86_XCPT_GP
+ || uVector == X86_XCPT_PF
+ || uVector == X86_XCPT_AC))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
+
+ /* Exception error-code reserved bits. */
+ if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
+
+ /* Injecting a software interrupt, software exception or privileged software exception. */
+ if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
+ || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
+ || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
+ {
+ /* Instruction length must be in the range 0-15. */
+ if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
+
+ /* Instruction length of 0 is allowed only when its CPU feature is present. */
+ if ( pVmcs->u32EntryInstrLen == 0
+ && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
+ }
+ }
+ }
+
+ /* VM-entry MSR-load count and VM-entry MSR-load area address. */
+ if (pVmcs->u32EntryMsrLoadCount)
+ {
+ if ( (pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
+ || (pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
+ }
+
+ Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
+ Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks VM-exit controls fields as part of VM-entry.
+ * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryCheckExitCtls(PVMCPU pVCpu, const char *pszInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char * const pszFailure = "VMFail";
+
+ /* VM-exit controls. */
+ VMXCTLSMSR const ExitCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls;
+ if (~pVmcs->u32ExitCtls & ExitCtls.n.allowed0)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
+
+ if (pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
+
+ /* Save preemption timer without activating it. */
+ if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
+ && (pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
+
+ /* VM-exit MSR-store count and VM-exit MSR-store area address. */
+ if (pVmcs->u32ExitMsrStoreCount)
+ {
+ if ( (pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
+ || (pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
+ }
+
+ /* VM-exit MSR-load count and VM-exit MSR-load area address. */
+ if (pVmcs->u32ExitMsrLoadCount)
+ {
+ if ( (pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
+ || (pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
+ }
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks VM-execution controls fields as part of VM-entry.
+ * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ *
+ * @remarks This may update secondary-processor based VM-execution control fields
+ * in the current VMCS if necessary.
+ */
+IEM_STATIC int iemVmxVmentryCheckExecCtls(PVMCPU pVCpu, const char *pszInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char * const pszFailure = "VMFail";
+
+ /* Pin-based VM-execution controls. */
+ {
+ VMXCTLSMSR const PinCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls;
+ if (~pVmcs->u32PinCtls & PinCtls.n.allowed0)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
+
+ if (pVmcs->u32PinCtls & ~PinCtls.n.allowed1)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
+ }
+
+ /* Processor-based VM-execution controls. */
+ {
+ VMXCTLSMSR const ProcCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls;
+ if (~pVmcs->u32ProcCtls & ProcCtls.n.allowed0)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
+
+ if (pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
+ }
+
+ /* Secondary processor-based VM-execution controls. */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
+ {
+ VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2;
+ if (~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
+
+ if (pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
+ }
+ else
+ Assert(!pVmcs->u32ProcCtls2);
+
+ /* CR3-target count. */
+ if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
+
+ /* I/O bitmaps physical addresses. */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
+ {
+ if ( (pVmcs->u64AddrIoBitmapA.u & X86_PAGE_4K_OFFSET_MASK)
+ || (pVmcs->u64AddrIoBitmapA.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapA.u))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
+
+ if ( (pVmcs->u64AddrIoBitmapB.u & X86_PAGE_4K_OFFSET_MASK)
+ || (pVmcs->u64AddrIoBitmapB.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapB.u))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
+ }
+
+ /* MSR bitmap physical address. */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ {
+ RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
+ if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
+ || (GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
+
+ /* Read the MSR bitmap. */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap));
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap),
+ GCPhysMsrBitmap, VMX_V_MSR_BITMAP_SIZE);
+ if (RT_FAILURE(rc))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys);
+ }
+
+ /* TPR shadow related controls. */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
+ {
+ /* Virtual-APIC page physical address. */
+ RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
+ if ( (GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
+ || (GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
+
+ /* Read the Virtual-APIC page. */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage),
+ GCPhysVirtApic, VMX_V_VIRT_APIC_PAGES);
+ if (RT_FAILURE(rc))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys);
+
+ /* TPR threshold without virtual-interrupt delivery. */
+ if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
+ && (pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
+
+ /* TPR threshold and VTPR. */
+ uint8_t const *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
+ uint8_t const u8VTpr = *(pbVirtApic + XAPIC_OFF_TPR);
+ if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
+ && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
+ && RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) > ((u8VTpr >> 4) & UINT32_C(0xf)) /* Bits 4:7 */)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
+ }
+ else
+ {
+ if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
+ && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
+ && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
+ { /* likely */ }
+ else
+ {
+ if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
+ if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
+ Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
+ }
+ }
+
+ /* NMI exiting and virtual-NMIs. */
+ if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
+ && (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
+
+ /* Virtual-NMIs and NMI-window exiting. */
+ if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
+ && (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
+
+ /* Virtualize APIC accesses. */
+ if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
+ {
+ /* APIC-access physical address. */
+ RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
+ if ( (GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
+ || (GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
+
+ /*
+ * Disallow APIC-access page and virtual-APIC page from being the same address.
+ * Note! This is not an Intel requirement, but one imposed by our implementation.
+ */
+ /** @todo r=ramshankar: This is done primarily to simplify recursion scenarios while
+ * redirecting accesses between the APIC-access page and the virtual-APIC
+ * page. If any nested hypervisor requires this, we can implement it later. */
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
+ {
+ RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
+ if (GCPhysVirtApic == GCPhysApicAccess)
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic);
+ }
+
+ /*
+ * Register the handler for the APIC-access page.
+ *
+ * We don't deregister the APIC-access page handler during the VM-exit as a different
+ * nested-VCPU might be using the same guest-physical address for its APIC-access page.
+ *
+ * We leave the page registered until the first access that happens outside VMX non-root
+ * mode. Guest software is allowed to access structures such as the APIC-access page
+ * only when no logical processor with a current VMCS references it in VMX non-root mode,
+ * otherwise it can lead to unpredictable behavior including guest triple-faults.
+ *
+ * See Intel spec. 24.11.4 "Software Access to Related Structures".
+ */
+ int rc = PGMHandlerPhysicalRegister(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess, GCPhysApicAccess,
+ pVCpu->iem.s.hVmxApicAccessPage, NIL_RTR3PTR /* pvUserR3 */,
+ NIL_RTR0PTR /* pvUserR0 */, NIL_RTRCPTR /* pvUserRC */, NULL /* pszDesc */);
+ if (RT_FAILURE(rc))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg);
+ }
+
+ /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
+ if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
+ && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
+
+ /* Virtual-interrupt delivery requires external interrupt exiting. */
+ if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
+ && !(pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
+
+ /* VPID. */
+ if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
+ || pVmcs->u16Vpid != 0)
+ { /* likely */ }
+ else
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
+
+ Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
+ Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)); /* We don't support EPT yet. */
+ Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
+ Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)); /* We don't support Unrestricted-guests yet. */
+ Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
+ Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_VE)); /* We don't support EPT-violation #VE yet. */
+ Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)); /* We don't support Pause-loop exiting yet. */
+
+ /* VMCS shadowing. */
+ if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
+ {
+ /* VMREAD-bitmap physical address. */
+ RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
+ if ( ( GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
+ || ( GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
+
+ /* VMWRITE-bitmap physical address. */
+ RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
+ if ( ( GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
+ || ( GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
+
+ /* Read the VMREAD-bitmap. */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap));
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap),
+ GCPhysVmreadBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
+ if (RT_FAILURE(rc))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys);
+
+ /* Read the VMWRITE-bitmap. */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap));
+ rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap),
+ GCPhysVmwriteBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
+ if (RT_FAILURE(rc))
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys);
+ }
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Loads the guest control registers, debug register and some MSRs as part of
+ * VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPU pVCpu)
+{
+ /*
+ * Load guest control registers, debug registers and MSRs.
+ * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_CR0_IGNORE_MASK)
+ | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_CR0_IGNORE_MASK);
+ CPUMSetGuestCR0(pVCpu, uGstCr0);
+ CPUMSetGuestCR4(pVCpu, pVmcs->u64GuestCr4.u);
+ pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
+
+ if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
+ pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_DR7_MBZ_MASK) | VMX_ENTRY_DR7_MB1_MASK;
+
+ pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
+ pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
+ pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
+
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
+ {
+ /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
+
+ /* EFER MSR. */
+ if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
+ {
+ bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
+ bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
+ uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
+ if (fGstInLongMode)
+ {
+ /* If the nested-guest is in long mode, LMA and LME are both set. */
+ Assert(fGstPaging);
+ pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
+ }
+ else
+ {
+ /*
+ * If the nested-guest is outside long mode:
+ * - With paging: LMA is cleared, LME is cleared.
+ * - Without paging: LMA is cleared, LME is left unmodified.
+ */
+ uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
+ pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
+ }
+ }
+ /* else: see below. */
+ }
+
+ /* PAT MSR. */
+ if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
+ pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
+
+ /* EFER MSR. */
+ if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
+ pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
+
+ /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
+ Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
+
+ /* We don't support IA32_BNDCFGS MSR yet. */
+ Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
+
+ /* Nothing to do for SMBASE register - We don't support SMM yet. */
+}
+
+
+/**
+ * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxVmentryLoadGuestSegRegs(PVMCPU pVCpu)
+{
+ /*
+ * Load guest segment registers, GDTR, IDTR, LDTR and TR.
+ * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
+ */
+ /* CS, SS, ES, DS, FS, GS. */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
+ {
+ PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
+ CPUMSELREG VmcsSelReg;
+ int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
+ AssertRC(rc); NOREF(rc);
+ if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ pGstSelReg->Sel = VmcsSelReg.Sel;
+ pGstSelReg->ValidSel = VmcsSelReg.Sel;
+ pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
+ pGstSelReg->u64Base = VmcsSelReg.u64Base;
+ pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
+ pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
+ }
+ else
+ {
+ pGstSelReg->Sel = VmcsSelReg.Sel;
+ pGstSelReg->ValidSel = VmcsSelReg.Sel;
+ pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
+ switch (iSegReg)
+ {
+ case X86_SREG_CS:
+ pGstSelReg->u64Base = VmcsSelReg.u64Base;
+ pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
+ pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
+ break;
+
+ case X86_SREG_SS:
+ pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
+ pGstSelReg->u32Limit = 0;
+ pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
+ break;
+
+ case X86_SREG_ES:
+ case X86_SREG_DS:
+ pGstSelReg->u64Base = 0;
+ pGstSelReg->u32Limit = 0;
+ pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
+ break;
+
+ case X86_SREG_FS:
+ case X86_SREG_GS:
+ pGstSelReg->u64Base = VmcsSelReg.u64Base;
+ pGstSelReg->u32Limit = 0;
+ pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
+ break;
+ }
+ Assert(pGstSelReg->Attr.n.u1Unusable);
+ }
+ }
+
+ /* LDTR. */
+ pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
+ pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
+ pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
+ if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
+ {
+ pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
+ pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
+ pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
+ pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
+ pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
+ }
+
+ /* TR. */
+ Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
+ pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
+ pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
+ pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
+ pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
+ pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
+
+ /* GDTR. */
+ pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
+ pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
+
+ /* IDTR. */
+ pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
+ pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
+}
+
+
+/**
+ * Loads the guest MSRs from the VM-entry auto-load MSRs as part of VM-entry.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryLoadGuestAutoMsrs(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * Load guest MSRs.
+ * See Intel spec. 26.4 "Loading MSRs".
+ */
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ const char *const pszFailure = "VM-exit";
+
+ /*
+ * The VM-entry MSR-load area address need not be a valid guest-physical address if the
+ * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
+ * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
+ */
+ uint32_t const cMsrs = pVmcs->u32EntryMsrLoadCount;
+ if (!cMsrs)
+ return VINF_SUCCESS;
+
+ /*
+ * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
+ * exceeded including possibly raising #MC exceptions during VMX transition. Our
+ * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
+ */
+ bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
+ if (fIsMsrCountValid)
+ { /* likely */ }
+ else
+ {
+ iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
+ }
+
+ RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrEntryMsrLoad.u;
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea),
+ GCPhysAutoMsrArea, cMsrs * sizeof(VMXAUTOMSR));
+ if (RT_SUCCESS(rc))
+ {
+ PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea);
+ Assert(pMsr);
+ for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
+ {
+ if ( !pMsr->u32Reserved
+ && pMsr->u32Msr != MSR_K8_FS_BASE
+ && pMsr->u32Msr != MSR_K8_GS_BASE
+ && pMsr->u32Msr != MSR_K6_EFER
+ && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
+ && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
+ {
+ VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
+ if (rcStrict == VINF_SUCCESS)
+ continue;
+
+ /*
+ * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
+ * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
+ * recording the MSR index in the VM-exit qualification (as per the Intel spec.) and indicated
+ * further by our own, specific diagnostic code. Later, we can try implement handling of the
+ * MSR in ring-0 if possible, or come up with a better, generic solution.
+ */
+ iemVmxVmcsSetExitQual(pVCpu, idxMsr);
+ VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
+ ? kVmxVDiag_Vmentry_MsrLoadRing3
+ : kVmxVDiag_Vmentry_MsrLoad;
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
+ }
+ else
+ {
+ iemVmxVmcsSetExitQual(pVCpu, idxMsr);
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
+ }
+ }
+ }
+ else
+ {
+ AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysAutoMsrArea, rc));
+ IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys);
+ }
+
+ NOREF(pszInstr);
+ NOREF(pszFailure);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Loads the guest-state non-register state as part of VM-entry.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks This must be called only after loading the nested-guest register state
+ * (especially nested-guest RIP).
+ */
+IEM_STATIC void iemVmxVmentryLoadGuestNonRegState(PVMCPU pVCpu)
+{
+ /*
+ * Load guest non-register state.
+ * See Intel spec. 26.6 "Special Features of VM Entry"
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ bool const fEntryVectoring = HMVmxIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */);
+ if (!fEntryVectoring)
+ {
+ if (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
+ EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
+ else
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
+
+ /* SMI blocking is irrelevant. We don't support SMIs yet. */
+ }
+ else
+ {
+ /* When the VM-entry is not vectoring, there is no blocking by STI or Mov-SS. */
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+ }
+
+ /* NMI blocking. */
+ if ( (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
+ && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
+
+ /* Loading PDPTEs will be taken care when we switch modes. We don't support EPT yet. */
+ Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
+
+ /* VPID is irrelevant. We don't support VPID yet. */
+
+ /* Clear address-range monitoring. */
+ EMMonitorWaitClear(pVCpu);
+}
+
+
+/**
+ * Loads the guest-state as part of VM-entry.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ *
+ * @remarks This must be done after all the necessary steps prior to loading of
+ * guest-state (e.g. checking various VMCS state).
+ */
+IEM_STATIC int iemVmxVmentryLoadGuestState(PVMCPU pVCpu, const char *pszInstr)
+{
+ iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
+ iemVmxVmentryLoadGuestSegRegs(pVCpu);
+
+ /*
+ * Load guest RIP, RSP and RFLAGS.
+ * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
+ pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
+ pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
+
+ /* Initialize the PAUSE-loop controls as part of VM-entry. */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0;
+ pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0;
+
+ iemVmxVmentryLoadGuestNonRegState(pVCpu);
+
+ NOREF(pszInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Returns whether there are is a pending debug exception on VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC bool iemVmxVmentryIsPendingDebugXcpt(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * Pending debug exceptions.
+ * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpt.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS
+ | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP));
+ if (fPendingDbgXcpt)
+ {
+ uint8_t uEntryIntInfoType;
+ bool const fEntryVectoring = HMVmxIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType);
+ if (fEntryVectoring)
+ {
+ switch (uEntryIntInfoType)
+ {
+ case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
+ case VMX_ENTRY_INT_INFO_TYPE_NMI:
+ case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
+ case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
+ fPendingDbgXcpt = false;
+ break;
+
+ case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
+ {
+ /*
+ * Whether the pending debug exception for software exceptions other than
+ * #BP and #OF is delivered after injecting the exception or is discard
+ * is CPU implementation specific. We will discard them (easier).
+ */
+ uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
+ if ( uVector != X86_XCPT_BP
+ && uVector != X86_XCPT_OF)
+ fPendingDbgXcpt = false;
+ RT_FALL_THRU();
+ }
+ case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
+ {
+ if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
+ fPendingDbgXcpt = false;
+ break;
+ }
+ }
+ }
+ else
+ {
+ /*
+ * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the
+ * pending debug exception is held pending or is discarded is CPU implementation
+ * specific. We will discard them (easier).
+ */
+ if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
+ fPendingDbgXcpt = false;
+
+ /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */
+ if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT))
+ fPendingDbgXcpt = false;
+ }
+ }
+
+ NOREF(pszInstr);
+ return fPendingDbgXcpt;
+}
+
+
+/**
+ * Set up the monitor-trap flag (MTF).
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC void iemVmxVmentrySetupMtf(PVMCPU pVCpu, const char *pszInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
+ {
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
+ Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr));
+ }
+ else
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
+ NOREF(pszInstr);
+}
+
+
+/**
+ * Set up the VMX-preemption timer.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC void iemVmxVmentrySetupPreemptTimer(PVMCPU pVCpu, const char *pszInstr)
+{
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
+ {
+ uint64_t const uVmentryTick = TMCpuTickGetNoCheck(pVCpu);
+ pVCpu->cpum.GstCtx.hwvirt.vmx.uVmentryTick = uVmentryTick;
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
+
+ Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uVmentryTick));
+ }
+ else
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
+
+ NOREF(pszInstr);
+}
+
+
+/**
+ * Injects an event using TRPM given a VM-entry interruption info. and related
+ * fields.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uEntryIntInfo The VM-entry interruption info.
+ * @param uErrCode The error code associated with the event if any.
+ * @param cbInstr The VM-entry instruction length (for software
+ * interrupts and software exceptions). Pass 0
+ * otherwise.
+ * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event.
+ */
+IEM_STATIC int iemVmxVmentryInjectTrpmEvent(PVMCPU pVCpu, uint32_t uEntryIntInfo, uint32_t uErrCode, uint32_t cbInstr,
+ RTGCUINTPTR GCPtrFaultAddress)
+{
+ Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
+
+ uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
+ uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo);
+ bool const fErrCodeValid = VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo);
+
+ TRPMEVENT enmTrapType;
+ switch (uType)
+ {
+ case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
+ enmTrapType = TRPM_HARDWARE_INT;
+ break;
+
+ case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
+ enmTrapType = TRPM_SOFTWARE_INT;
+ break;
+
+ case VMX_ENTRY_INT_INFO_TYPE_NMI:
+ case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT: /* ICEBP. */
+ case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT: /* #BP and #OF */
+ case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
+ enmTrapType = TRPM_TRAP;
+ break;
+
+ default:
+ /* Shouldn't really happen. */
+ AssertMsgFailedReturn(("Invalid trap type %#x\n", uType), VERR_VMX_IPE_4);
+ break;
+ }
+
+ int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
+ AssertRCReturn(rc, rc);
+
+ if (fErrCodeValid)
+ TRPMSetErrorCode(pVCpu, uErrCode);
+
+ if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
+ && uVector == X86_XCPT_PF)
+ TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress);
+ else if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
+ || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
+ || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
+ {
+ AssertMsg( uType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
+ || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
+ ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uType));
+ TRPMSetInstrLength(pVCpu, cbInstr);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Performs event injection (if any) as part of VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pszInstr The VMX instruction name (for logging purposes).
+ */
+IEM_STATIC int iemVmxVmentryInjectEvent(PVMCPU pVCpu, const char *pszInstr)
+{
+ /*
+ * Inject events.
+ * The event that is going to be made pending for injection is not subject to VMX intercepts,
+ * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
+ * of the current event -are- subject to intercepts, hence this flag will be flipped during
+ * the actually delivery of this event.
+ *
+ * See Intel spec. 26.5 "Event Injection".
+ */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ uint32_t const uEntryIntInfo = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->u32EntryIntInfo;
+ bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo);
+
+ pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents = !fEntryIntInfoValid;
+ if (fEntryIntInfoValid)
+ {
+ uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
+ if (uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
+ {
+ Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
+ return VINF_SUCCESS;
+ }
+
+ return iemVmxVmentryInjectTrpmEvent(pVCpu, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
+ pVCpu->cpum.GstCtx.cr2);
+ }
+
+ /*
+ * Inject any pending guest debug exception.
+ * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept.
+ * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
+ */
+ bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr);
+ if (fPendingDbgXcpt)
+ {
+ uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
+ return iemVmxVmentryInjectTrpmEvent(pVCpu, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen,
+ 0 /* GCPtrFaultAddress */);
+ }
+
+ NOREF(pszInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Initializes all read-only VMCS fields as part of VM-entry.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+IEM_STATIC void iemVmxVmentryInitReadOnlyFields(PVMCPU pVCpu)
+{
+ /*
+ * Any VMCS field which we do not establish on every VM-exit but may potentially
+ * be used on the VM-exit path of a nested hypervisor -and- is not explicitly
+ * specified to be undefined needs to be initialized here.
+ *
+ * Thus, it is especially important to clear the VM-exit qualification field
+ * since it must be zero for VM-exits where it is not used. Similarly, the
+ * VM-exit interruption information field's valid bit needs to be cleared for
+ * the same reasons.
+ */
+ PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+
+ /* 16-bit (none currently). */
+ /* 32-bit. */
+ pVmcs->u32RoVmInstrError = 0;
+ pVmcs->u32RoExitReason = 0;
+ pVmcs->u32RoExitIntInfo = 0;
+ pVmcs->u32RoExitIntErrCode = 0;
+ pVmcs->u32RoIdtVectoringInfo = 0;
+ pVmcs->u32RoIdtVectoringErrCode = 0;
+ pVmcs->u32RoExitInstrLen = 0;
+ pVmcs->u32RoExitInstrInfo = 0;
+
+ /* 64-bit. */
+ pVmcs->u64RoGuestPhysAddr.u = 0;
+
+ /* Natural-width. */
+ pVmcs->u64RoExitQual.u = 0;
+ pVmcs->u64RoIoRcx.u = 0;
+ pVmcs->u64RoIoRsi.u = 0;
+ pVmcs->u64RoIoRdi.u = 0;
+ pVmcs->u64RoIoRip.u = 0;
+ pVmcs->u64RoGuestLinearAddr.u = 0;
+}
+
+
+/**
+ * VMLAUNCH/VMRESUME instruction execution worker.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
+ * VMXINSTRID_VMRESUME).
+ *
+ * @remarks Common VMX instruction checks are already expected to by the caller,
+ * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPU pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId)
+{
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
+ RT_NOREF3(pVCpu, cbInstr, uInstrId);
+ return VINF_EM_RAW_EMULATE_INSTR;
+# else
+ Assert( uInstrId == VMXINSTRID_VMLAUNCH
+ || uInstrId == VMXINSTRID_VMRESUME);
+ const char *pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
+
+ /* Nested-guest intercept. */
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr);
+
+ Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
+
+ /* CPL. */
+ if (pVCpu->iem.s.uCpl == 0)
+ { /* likely */ }
+ else
+ {
+ Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Current VMCS valid. */
+ if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
+ { /* likely */ }
+ else
+ {
+ Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /** @todo Distinguish block-by-MOV-SS from block-by-STI. Currently we
+ * use block-by-STI here which is not quite correct. */
+ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
+ && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
+ {
+ Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ if (uInstrId == VMXINSTRID_VMLAUNCH)
+ {
+ /* VMLAUNCH with non-clear VMCS. */
+ if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_STATE_CLEAR)
+ { /* likely */ }
+ else
+ {
+ Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ }
+ else
+ {
+ /* VMRESUME with non-launched VMCS. */
+ if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_STATE_LAUNCHED)
+ { /* likely */ }
+ else
+ {
+ Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ }
+
+ /*
+ * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
+ * while entering VMX non-root mode. We do some of this while checking VM-execution
+ * controls. The guest hypervisor should not make assumptions and cannot expect
+ * predictable behavior if changes to these structures are made in guest memory while
+ * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot
+ * modify them anyway as we cache them in host memory. We are trade memory for speed here.
+ *
+ * See Intel spec. 24.11.4 "Software Access to Related Structures".
+ */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
+ Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
+ int rc = iemVmxVmentryCheckExecCtls(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ rc = iemVmxVmentryCheckExitCtls(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ rc = iemVmxVmentryCheckEntryCtls(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ /* Initialize read-only VMCS fields before VM-entry since we don't update all of them for every VM-exit. */
+ iemVmxVmentryInitReadOnlyFields(pVCpu);
+
+ /*
+ * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state.
+ * So we save the the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on
+ * VM-exit when required.
+ * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State"
+ */
+ iemVmxVmentrySaveNmiBlockingFF(pVCpu);
+
+ rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
+ if (RT_SUCCESS(rc))
+ {
+ Assert(rc != VINF_CPUM_R3_MSR_WRITE);
+
+ /* VMLAUNCH instruction must update the VMCS launch state. */
+ if (uInstrId == VMXINSTRID_VMLAUNCH)
+ pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = VMX_V_VMCS_STATE_LAUNCHED;
+
+ /* Perform the VMX transition (PGM updates). */
+ VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ { /* likely */ }
+ else if (RT_SUCCESS(rcStrict))
+ {
+ Log3(("%s: iemVmxWorldSwitch returns %Rrc -> Setting passup status\n", pszInstr,
+ VBOXSTRICTRC_VAL(rcStrict)));
+ rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
+ }
+ else
+ {
+ Log3(("%s: iemVmxWorldSwitch failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /* We've now entered nested-guest execution. */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
+
+ /*
+ * The priority of potential VM-exits during VM-entry is important.
+ * The priorities of VM-exits and events are listed from highest
+ * to lowest as follows:
+ *
+ * 1. Event injection.
+ * 2. Trap on task-switch (T flag set in TSS).
+ * 3. TPR below threshold / APIC-write.
+ * 4. SMI, INIT.
+ * 5. MTF exit.
+ * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions.
+ * 7. VMX-preemption timer.
+ * 9. NMI-window exit.
+ * 10. NMI injection.
+ * 11. Interrupt-window exit.
+ * 12. Virtual-interrupt injection.
+ * 13. Interrupt injection.
+ * 14. Process next instruction (fetch, decode, execute).
+ */
+
+ /* Setup the VMX-preemption timer. */
+ iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr);
+
+ /* Setup monitor-trap flag. */
+ iemVmxVmentrySetupMtf(pVCpu, pszInstr);
+
+ /* Now that we've switched page tables, we can go ahead and inject any event. */
+ rcStrict = iemVmxVmentryInjectEvent(pVCpu, pszInstr);
+ if (RT_SUCCESS(rcStrict))
+ {
+ /* Reschedule to IEM-only execution of the nested-guest or return VINF_SUCCESS. */
+ IEM_VMX_R3_EXECPOLICY_IEM_ALL_ENABLE_RET(pVCpu, pszInstr, VINF_SUCCESS);
+ }
+
+ Log(("%s: VM-entry event injection failed. rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED);
+ }
+ }
+ return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED);
+ }
+
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ }
+ }
+
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+# endif
+}
+
+
+/**
+ * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
+ * (causes a VM-exit) or not.
+ *
+ * @returns @c true if the instruction is intercepted, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or
+ * VMX_EXIT_WRMSR).
+ * @param idMsr The MSR.
+ */
+IEM_STATIC bool iemVmxIsRdmsrWrmsrInterceptSet(PVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr)
+{
+ Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
+ Assert( uExitReason == VMX_EXIT_RDMSR
+ || uExitReason == VMX_EXIT_WRMSR);
+
+ /* Consult the MSR bitmap if the feature is supported. */
+ PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ Assert(pVmcs);
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ {
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap));
+ if (uExitReason == VMX_EXIT_RDMSR)
+ {
+ VMXMSREXITREAD enmRead;
+ int rc = HMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), idMsr, &enmRead,
+ NULL /* penmWrite */);
+ AssertRC(rc);
+ if (enmRead == VMXMSREXIT_INTERCEPT_READ)
+ return true;
+ }
+ else
+ {
+ VMXMSREXITWRITE enmWrite;
+ int rc = HMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), idMsr, NULL /* penmRead */,
+ &enmWrite);
+ AssertRC(rc);
+ if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
+ return true;
+ }
+ return false;
+ }
+
+ /* Without MSR bitmaps, all MSR accesses are intercepted. */
+ return true;
+}
+
+
+/**
+ * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field is
+ * intercepted (causes a VM-exit) or not.
+ *
+ * @returns @c true if the instruction is intercepted, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param u64FieldEnc The VMCS field encoding.
+ * @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or
+ * VMX_EXIT_VMREAD).
+ */
+IEM_STATIC bool iemVmxIsVmreadVmwriteInterceptSet(PVMCPU pVCpu, uint32_t uExitReason, uint64_t u64FieldEnc)
+{
+ Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
+ Assert( uExitReason == VMX_EXIT_VMREAD
+ || uExitReason == VMX_EXIT_VMWRITE);
+
+ /* Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted. */
+ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing)
+ return true;
+
+ /*
+ * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE is intercepted.
+ * This excludes any reserved bits in the valid parts of the field encoding (i.e. bit 12).
+ */
+ if (u64FieldEnc & VMX_VMCS_ENC_RSVD_MASK)
+ return true;
+
+ /* Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not. */
+ uint32_t u32FieldEnc = RT_LO_U32(u64FieldEnc);
+ Assert(u32FieldEnc >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap));
+ uint8_t const *pbBitmap = uExitReason == VMX_EXIT_VMREAD
+ ? (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap)
+ : (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap);
+ pbBitmap += (u32FieldEnc >> 3);
+ if (*pbBitmap & RT_BIT(u32FieldEnc & 7))
+ return true;
+
+ return false;
+}
+
+
+/**
+ * VMREAD common (memory/register) instruction execution worker
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param pu64Dst Where to write the VMCS value (only updated when
+ * VINF_SUCCESS is returned).
+ * @param u64FieldEnc The VMCS field encoding.
+ * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
+ * be NULL.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmreadCommon(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc,
+ PCVMXVEXITINFO pExitInfo)
+{
+ /* Nested-guest intercept. */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && iemVmxIsVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64FieldEnc))
+ {
+ if (pExitInfo)
+ return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
+ return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
+ }
+
+ /* CPL. */
+ if (pVCpu->iem.s.uCpl == 0)
+ { /* likely */ }
+ else
+ {
+ Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* VMCS pointer in root mode. */
+ if ( IEM_VMX_IS_ROOT_MODE(pVCpu)
+ && !IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
+ {
+ Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* VMCS-link pointer in non-root mode. */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && !IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
+ {
+ Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Supported VMCS field. */
+ if (iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc))
+ { /* likely */ }
+ else
+ {
+ Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Setup reading from the current or shadow VMCS.
+ */
+ uint8_t *pbVmcs;
+ if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ else
+ pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
+ Assert(pbVmcs);
+
+ VMXVMCSFIELDENC FieldEnc;
+ FieldEnc.u = u64FieldEnc;
+ uint8_t const uWidth = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_WIDTH);
+ uint8_t const uType = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_TYPE);
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_INDEX);
+ AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ Assert(offField < VMX_V_VMCS_SIZE);
+
+ /*
+ * Read the VMCS component based on the field's effective width.
+ *
+ * The effective width is 64-bit fields adjusted to 32-bits if the access-type
+ * indicates high bits (little endian).
+ *
+ * Note! The caller is responsible to trim the result and update registers
+ * or memory locations are required. Here we just zero-extend to the largest
+ * type (i.e. 64-bits).
+ */
+ uint8_t *pbField = pbVmcs + offField;
+ uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u);
+ switch (uEffWidth)
+ {
+ case VMX_VMCS_ENC_WIDTH_64BIT:
+ case VMX_VMCS_ENC_WIDTH_NATURAL: *pu64Dst = *(uint64_t *)pbField; break;
+ case VMX_VMCS_ENC_WIDTH_32BIT: *pu64Dst = *(uint32_t *)pbField; break;
+ case VMX_VMCS_ENC_WIDTH_16BIT: *pu64Dst = *(uint16_t *)pbField; break;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VMREAD (64-bit register) instruction execution worker.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param pu64Dst Where to store the VMCS field's value.
+ * @param u64FieldEnc The VMCS field encoding.
+ * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
+ * be NULL.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg64(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc,
+ PCVMXVEXITINFO pExitInfo)
+{
+ VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64FieldEnc, pExitInfo);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemVmxVmreadSuccess(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+}
+
+
+/**
+ * VMREAD (32-bit register) instruction execution worker.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param pu32Dst Where to store the VMCS field's value.
+ * @param u32FieldEnc The VMCS field encoding.
+ * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
+ * be NULL.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg32(PVMCPU pVCpu, uint8_t cbInstr, uint32_t *pu32Dst, uint64_t u32FieldEnc,
+ PCVMXVEXITINFO pExitInfo)
+{
+ uint64_t u64Dst;
+ VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32FieldEnc, pExitInfo);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ *pu32Dst = u64Dst;
+ iemVmxVmreadSuccess(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+}
+
+
+/**
+ * VMREAD (memory) instruction execution worker.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param iEffSeg The effective segment register to use with @a u64Val.
+ * Pass UINT8_MAX if it is a register access.
+ * @param enmEffAddrMode The effective addressing mode (only used with memory
+ * operand).
+ * @param GCPtrDst The guest linear address to store the VMCS field's
+ * value.
+ * @param u64FieldEnc The VMCS field encoding.
+ * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
+ * be NULL.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmreadMem(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode,
+ RTGCPTR GCPtrDst, uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo)
+{
+ uint64_t u64Dst;
+ VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64FieldEnc, pExitInfo);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /*
+ * Write the VMCS field's value to the location specified in guest-memory.
+ *
+ * The pointer size depends on the address size (address-size prefix allowed).
+ * The operand size depends on IA-32e mode (operand-size prefix not allowed).
+ */
+ static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
+ Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks));
+ GCPtrDst &= s_auAddrSizeMasks[enmEffAddrMode];
+
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
+ else
+ rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ iemVmxVmreadSuccess(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
+ return rcStrict;
+ }
+
+ Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+}
+
+
+/**
+ * VMWRITE instruction execution worker.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param iEffSeg The effective segment register to use with @a u64Val.
+ * Pass UINT8_MAX if it is a register access.
+ * @param enmEffAddrMode The effective addressing mode (only used with memory
+ * operand).
+ * @param u64Val The value to write (or guest linear address to the
+ * value), @a iEffSeg will indicate if it's a memory
+ * operand.
+ * @param u64FieldEnc The VMCS field encoding.
+ * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
+ * be NULL.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmwrite(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode, uint64_t u64Val,
+ uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo)
+{
+ /* Nested-guest intercept. */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && iemVmxIsVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64FieldEnc))
+ {
+ if (pExitInfo)
+ return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
+ return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
+ }
+
+ /* CPL. */
+ if (pVCpu->iem.s.uCpl == 0)
+ { /* likely */ }
+ else
+ {
+ Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* VMCS pointer in root mode. */
+ if ( IEM_VMX_IS_ROOT_MODE(pVCpu)
+ && !IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
+ {
+ Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* VMCS-link pointer in non-root mode. */
+ if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
+ && !IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
+ {
+ Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* If the VMWRITE instruction references memory, access the specified memory operand. */
+ bool const fIsRegOperand = iEffSeg == UINT8_MAX;
+ if (!fIsRegOperand)
+ {
+ static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
+ Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks));
+ RTGCPTR const GCPtrVal = u64Val & s_auAddrSizeMasks[enmEffAddrMode];
+
+ /* Read the value from the specified guest memory location. */
+ VBOXSTRICTRC rcStrict;
+ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
+ rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
+ else
+ {
+ uint32_t u32Val;
+ rcStrict = iemMemFetchDataU32(pVCpu, &u32Val, iEffSeg, GCPtrVal);
+ u64Val = u32Val;
+ }
+ if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
+ {
+ Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
+ return rcStrict;
+ }
+ }
+ else
+ Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
+
+ /* Supported VMCS field. */
+ if (iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc))
+ { /* likely */ }
+ else
+ {
+ Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Read-only VMCS field. */
+ bool const fIsFieldReadOnly = HMVmxIsVmcsFieldReadOnly(u64FieldEnc);
+ if ( fIsFieldReadOnly
+ && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
+ {
+ Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64FieldEnc));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Setup writing to the current or shadow VMCS.
+ */
+ uint8_t *pbVmcs;
+ if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
+ else
+ pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
+ Assert(pbVmcs);
+
+ VMXVMCSFIELDENC FieldEnc;
+ FieldEnc.u = u64FieldEnc;
+ uint8_t const uWidth = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_WIDTH);
+ uint8_t const uType = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_TYPE);
+ uint8_t const uWidthType = (uWidth << 2) | uType;
+ uint8_t const uIndex = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_INDEX);
+ AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2);
+ uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
+ Assert(offField < VMX_V_VMCS_SIZE);
+
+ /*
+ * Write the VMCS component based on the field's effective width.
+ *
+ * The effective width is 64-bit fields adjusted to 32-bits if the access-type
+ * indicates high bits (little endian).
+ */
+ uint8_t *pbField = pbVmcs + offField;
+ uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u);
+ switch (uEffWidth)
+ {
+ case VMX_VMCS_ENC_WIDTH_64BIT:
+ case VMX_VMCS_ENC_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
+ case VMX_VMCS_ENC_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
+ case VMX_VMCS_ENC_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
+ }
+
+ iemVmxVmSucceed(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VMCLEAR instruction execution worker.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
+ * @param GCPtrVmcs The linear address of the VMCS pointer.
+ * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
+ * be NULL.
+ *
+ * @remarks Common VMX instruction checks are already expected to by the caller,
+ * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
+ PCVMXVEXITINFO pExitInfo)
+{
+ /* Nested-guest intercept. */
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ if (pExitInfo)
+ return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
+ return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
+ }
+
+ Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
+
+ /* CPL. */
+ if (pVCpu->iem.s.uCpl == 0)
+ { /* likely */ }
+ else
+ {
+ Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Get the VMCS pointer from the location specified by the source memory operand. */
+ RTGCPHYS GCPhysVmcs;
+ VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
+ if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
+ {
+ Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
+ return rcStrict;
+ }
+
+ /* VMCS pointer alignment. */
+ if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
+ {
+ Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* VMCS physical-address width limits. */
+ if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ {
+ Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* VMCS is not the VMXON region. */
+ if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
+ {
+ Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
+ restriction imposed by our implementation. */
+ if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
+ {
+ Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * VMCLEAR allows committing and clearing any valid VMCS pointer.
+ *
+ * If the current VMCS is the one being cleared, set its state to 'clear' and commit
+ * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
+ * to 'clear'.
+ */
+ uint8_t const fVmcsStateClear = VMX_V_VMCS_STATE_CLEAR;
+ if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu)
+ && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
+ {
+ Assert(GCPhysVmcs != NIL_RTGCPHYS); /* Paranoia. */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = fVmcsStateClear;
+ iemVmxCommitCurrentVmcsToMemory(pVCpu);
+ Assert(!IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
+ }
+ else
+ {
+ AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsStateClear));
+ rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState),
+ (const void *)&fVmcsStateClear, sizeof(fVmcsStateClear));
+ if (RT_FAILURE(rcStrict))
+ return rcStrict;
+ }
+
+ iemVmxVmSucceed(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VMPTRST instruction execution worker.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
+ * @param GCPtrVmcs The linear address of where to store the current VMCS
+ * pointer.
+ * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
+ * be NULL.
+ *
+ * @remarks Common VMX instruction checks are already expected to by the caller,
+ * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
+ PCVMXVEXITINFO pExitInfo)
+{
+ /* Nested-guest intercept. */
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ if (pExitInfo)
+ return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
+ return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
+ }
+
+ Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
+
+ /* CPL. */
+ if (pVCpu->iem.s.uCpl == 0)
+ { /* likely */ }
+ else
+ {
+ Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Set the VMCS pointer to the location specified by the destination memory operand. */
+ AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
+ VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ {
+ iemVmxVmSucceed(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return rcStrict;
+ }
+
+ Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
+ return rcStrict;
+}
+
+
+/**
+ * VMPTRLD instruction execution worker.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param GCPtrVmcs The linear address of the current VMCS pointer.
+ * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
+ * be NULL.
+ *
+ * @remarks Common VMX instruction checks are already expected to by the caller,
+ * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
+ PCVMXVEXITINFO pExitInfo)
+{
+ /* Nested-guest intercept. */
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ if (pExitInfo)
+ return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
+ return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
+ }
+
+ Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
+
+ /* CPL. */
+ if (pVCpu->iem.s.uCpl == 0)
+ { /* likely */ }
+ else
+ {
+ Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Get the VMCS pointer from the location specified by the source memory operand. */
+ RTGCPHYS GCPhysVmcs;
+ VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
+ if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
+ {
+ Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
+ return rcStrict;
+ }
+
+ /* VMCS pointer alignment. */
+ if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
+ {
+ Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* VMCS physical-address width limits. */
+ if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ {
+ Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* VMCS is not the VMXON region. */
+ if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
+ {
+ Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
+ restriction imposed by our implementation. */
+ if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
+ {
+ Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Read just the VMCS revision from the VMCS. */
+ VMXVMCSREVID VmcsRevId;
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
+ if (RT_FAILURE(rc))
+ {
+ Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys;
+ return rc;
+ }
+
+ /*
+ * Verify the VMCS revision specified by the guest matches what we reported to the guest.
+ * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported.
+ */
+ if ( VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID
+ || ( VmcsRevId.n.fIsShadowVmcs
+ && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
+ {
+ if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
+ {
+ Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n",
+ VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush
+ * the cache of an existing, current VMCS back to guest memory before loading a new,
+ * different current VMCS.
+ */
+ bool fLoadVmcsFromMem;
+ if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
+ {
+ if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
+ {
+ iemVmxCommitCurrentVmcsToMemory(pVCpu);
+ Assert(!IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
+ fLoadVmcsFromMem = true;
+ }
+ else
+ fLoadVmcsFromMem = false;
+ }
+ else
+ fLoadVmcsFromMem = true;
+
+ if (fLoadVmcsFromMem)
+ {
+ /* Finally, cache the new VMCS from guest memory and mark it as the current VMCS. */
+ rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), GCPhysVmcs,
+ sizeof(VMXVVMCS));
+ if (RT_FAILURE(rc))
+ {
+ Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
+ return rc;
+ }
+ IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
+ }
+
+ Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
+ iemVmxVmSucceed(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VMXON instruction execution worker.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The instruction length in bytes.
+ * @param iEffSeg The effective segment register to use with @a
+ * GCPtrVmxon.
+ * @param GCPtrVmxon The linear address of the VMXON pointer.
+ * @param pExitInfo Pointer to the VM-exit instruction information struct.
+ * Optional, can be NULL.
+ *
+ * @remarks Common VMX instruction checks are already expected to by the caller,
+ * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
+ */
+IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmxon,
+ PCVMXVEXITINFO pExitInfo)
+{
+ if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
+ {
+ /* CPL. */
+ if (pVCpu->iem.s.uCpl == 0)
+ { /* likely */ }
+ else
+ {
+ Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* A20M (A20 Masked) mode. */
+ if (PGMPhysIsA20Enabled(pVCpu))
+ { /* likely */ }
+ else
+ {
+ Log(("vmxon: A20M mode -> #GP(0)\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* CR0. */
+ {
+ /* CR0 MB1 bits. */
+ uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
+ if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) != uCr0Fixed0)
+ {
+ Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* CR0 MBZ bits. */
+ uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
+ if (pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1)
+ {
+ Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+
+ /* CR4. */
+ {
+ /* CR4 MB1 bits. */
+ uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
+ if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) != uCr4Fixed0)
+ {
+ Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* CR4 MBZ bits. */
+ uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
+ if (pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1)
+ {
+ Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+ }
+
+ /* Feature control MSR's LOCK and VMXON bits. */
+ uint64_t const uMsrFeatCtl = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64FeatCtrl;
+ if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
+ != (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
+ {
+ Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Get the VMXON pointer from the location specified by the source memory operand. */
+ RTGCPHYS GCPhysVmxon;
+ VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
+ if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
+ {
+ Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
+ return rcStrict;
+ }
+
+ /* VMXON region pointer alignment. */
+ if (GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK)
+ {
+ Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* VMXON physical-address width limits. */
+ if (GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
+ {
+ Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
+ restriction imposed by our implementation. */
+ if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
+ {
+ Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Read the VMCS revision ID from the VMXON region. */
+ VMXVMCSREVID VmcsRevId;
+ int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
+ if (RT_FAILURE(rc))
+ {
+ Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
+ return rc;
+ }
+
+ /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
+ if (RT_UNLIKELY(VmcsRevId.u != VMX_V_VMCS_REVISION_ID))
+ {
+ /* Revision ID mismatch. */
+ if (!VmcsRevId.n.fIsShadowVmcs)
+ {
+ Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
+ VmcsRevId.n.u31RevisionId));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Shadow VMCS disallowed. */
+ Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
+ iemVmxVmFailInvalid(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Record that we're in VMX operation, block INIT, block and disable A20M.
+ */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
+ IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
+ pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
+
+ /* Clear address-range monitoring. */
+ EMMonitorWaitClear(pVCpu);
+ /** @todo NSTVMX: Intel PT. */
+
+ iemVmxVmSucceed(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+ else if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ /* Nested-guest intercept. */
+ if (pExitInfo)
+ return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
+ return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
+ }
+
+ Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
+
+ /* CPL. */
+ if (pVCpu->iem.s.uCpl > 0)
+ {
+ Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* VMXON when already in VMX root mode. */
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'VMXOFF'.
+ *
+ * @remarks Common VMX instruction checks are already expected to by the caller,
+ * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
+{
+ /* Nested-guest intercept. */
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
+
+ /* CPL. */
+ if (pVCpu->iem.s.uCpl == 0)
+ { /* likely */ }
+ else
+ {
+ Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
+ pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ /* Dual monitor treatment of SMIs and SMM. */
+ uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
+ if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID)
+ {
+ iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+ }
+
+ /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
+ pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
+ Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
+
+ if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
+ { /** @todo NSTVMX: Unblock SMI. */ }
+
+ EMMonitorWaitClear(pVCpu);
+ /** @todo NSTVMX: Unblock and enable A20M. */
+
+ iemVmxVmSucceed(pVCpu);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'VMXON'.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
+{
+ return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements 'VMLAUNCH'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
+{
+ return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH);
+}
+
+
+/**
+ * Implements 'VMRESUME'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_vmresume)
+{
+ return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME);
+}
+
+
+/**
+ * Implements 'VMPTRLD'.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
+{
+ return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements 'VMPTRST'.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
+{
+ return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements 'VMCLEAR'.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
+{
+ return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements 'VMWRITE' register.
+ */
+IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64FieldEnc)
+{
+ return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, IEMMODE_64BIT /* N/A */, u64Val, u64FieldEnc,
+ NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements 'VMWRITE' memory.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrVal, uint32_t, u64FieldEnc)
+{
+ return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrVal, u64FieldEnc, NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements 'VMREAD' register (64-bit).
+ */
+IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64FieldEnc)
+{
+ return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64FieldEnc, NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements 'VMREAD' register (32-bit).
+ */
+IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32FieldEnc)
+{
+ return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32FieldEnc, NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements 'VMREAD' memory, 64-bit register.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrDst, uint32_t, u64FieldEnc)
+{
+ return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrDst, u64FieldEnc, NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements 'VMREAD' memory, 32-bit register.
+ */
+IEM_CIMPL_DEF_4(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrDst, uint32_t, u32FieldEnc)
+{
+ return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrDst, u32FieldEnc, NULL /* pExitInfo */);
+}
+
+
+/**
+ * Implements VMX's implementation of PAUSE.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_vmx_pause)
+{
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ {
+ VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr);
+ if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
+ return rcStrict;
+ }
+
+ /*
+ * Outside VMX non-root operation or if the PAUSE instruction does not cause
+ * a VM-exit, the instruction operates normally.
+ */
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
+
+
+/**
+ * Implements 'VMCALL'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_vmcall)
+{
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ /* Nested-guest intercept. */
+ if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
+ return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
+#endif
+
+ /* Join forces with vmmcall. */
+ return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
+}
+