summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
commitf8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch)
tree26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h
parentInitial commit. (diff)
downloadvirtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.tar.xz
virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.zip
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h')
-rw-r--r--src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h4862
1 files changed, 4862 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h b/src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h
new file mode 100644
index 00000000..844306d4
--- /dev/null
+++ b/src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h
@@ -0,0 +1,4862 @@
+/* $Id: NEMAllNativeTemplate-win.cpp.h $ */
+/** @file
+ * NEM - Native execution manager, Windows code template ring-0/3.
+ */
+
+/*
+ * Copyright (C) 2018-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** Copy back a segment from hyper-V. */
+#define NEM_WIN_COPY_BACK_SEG(a_Dst, a_Src) \
+ do { \
+ (a_Dst).u64Base = (a_Src).Base; \
+ (a_Dst).u32Limit = (a_Src).Limit; \
+ (a_Dst).ValidSel = (a_Dst).Sel = (a_Src).Selector; \
+ (a_Dst).Attr.u = (a_Src).Attributes; \
+ (a_Dst).fFlags = CPUMSELREG_FLAGS_VALID; \
+ } while (0)
+
+/** @def NEMWIN_ASSERT_MSG_REG_VAL
+ * Asserts the correctness of a register value in a message/context.
+ */
+#if 0
+# define NEMWIN_NEED_GET_REGISTER
+# if defined(IN_RING0) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
+# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, a_Expr, a_Msg) \
+ do { \
+ HV_REGISTER_VALUE TmpVal; \
+ nemHCWinGetRegister(a_pVCpu, a_pGVCpu, a_enmReg, &TmpVal); \
+ AssertMsg(a_Expr, a_Msg); \
+ } while (0)
+# else
+# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, a_Expr, a_Msg) \
+ do { \
+ WHV_REGISTER_VALUE TmpVal; \
+ nemR3WinGetRegister(a_pVCpu, a_enmReg, &TmpVal); \
+ AssertMsg(a_Expr, a_Msg); \
+ } while (0)
+# endif
+#else
+# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, a_Expr, a_Msg) do { } while (0)
+#endif
+
+/** @def NEMWIN_ASSERT_MSG_REG_VAL
+ * Asserts the correctness of a 64-bit register value in a message/context.
+ */
+#define NEMWIN_ASSERT_MSG_REG_VAL64(a_pVCpu, a_pGVCpu, a_enmReg, a_u64Val) \
+ NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, (a_u64Val) == TmpVal.Reg64, \
+ (#a_u64Val "=%#RX64, expected %#RX64\n", (a_u64Val), TmpVal.Reg64))
+/** @def NEMWIN_ASSERT_MSG_REG_VAL
+ * Asserts the correctness of a segment register value in a message/context.
+ */
+#define NEMWIN_ASSERT_MSG_REG_SEG(a_pVCpu, a_pGVCpu, a_enmReg, a_SReg) \
+ NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, \
+ (a_SReg).Base == TmpVal.Segment.Base \
+ && (a_SReg).Limit == TmpVal.Segment.Limit \
+ && (a_SReg).Selector == TmpVal.Segment.Selector \
+ && (a_SReg).Attributes == TmpVal.Segment.Attributes, \
+ ( #a_SReg "=%#RX16 {%#RX64 LB %#RX32,%#RX16} expected %#RX16 {%#RX64 LB %#RX32,%#RX16}\n", \
+ (a_SReg).Selector, (a_SReg).Base, (a_SReg).Limit, (a_SReg).Attributes, \
+ TmpVal.Segment.Selector, TmpVal.Segment.Base, TmpVal.Segment.Limit, TmpVal.Segment.Attributes))
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+/** NEM_WIN_PAGE_STATE_XXX names. */
+NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
+
+/** HV_INTERCEPT_ACCESS_TYPE names. */
+static const char * const g_apszHvInterceptAccessTypes[4] = { "read", "write", "exec", "!undefined!" };
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
+ uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged);
+
+
+
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+
+/**
+ * Wrapper around VMMR0_DO_NEM_MAP_PAGES for a single page.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the caller.
+ * @param GCPhysSrc The source page. Does not need to be page aligned.
+ * @param GCPhysDst The destination page. Same as @a GCPhysSrc except for
+ * when A20 is disabled.
+ * @param fFlags HV_MAP_GPA_XXX.
+ */
+DECLINLINE(int) nemHCWinHypercallMapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fFlags)
+{
+#ifdef IN_RING0
+ /** @todo optimize further, caller generally has the physical address. */
+ PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
+ AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
+ return nemR0WinMapPages(pGVM, pVM, &pGVM->aCpus[pVCpu->idCpu],
+ GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
+ GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
+ 1, fFlags);
+#else
+ pVCpu->nem.s.Hypercall.MapPages.GCPhysSrc = GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
+ pVCpu->nem.s.Hypercall.MapPages.GCPhysDst = GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
+ pVCpu->nem.s.Hypercall.MapPages.cPages = 1;
+ pVCpu->nem.s.Hypercall.MapPages.fFlags = fFlags;
+ return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_MAP_PAGES, 0, NULL);
+#endif
+}
+
+
+/**
+ * Wrapper around VMMR0_DO_NEM_UNMAP_PAGES for a single page.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the caller.
+ * @param GCPhys The page to unmap. Does not need to be page aligned.
+ */
+DECLINLINE(int) nemHCWinHypercallUnmapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
+{
+# ifdef IN_RING0
+ PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
+ AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
+ return nemR0WinUnmapPages(pGVM, &pGVM->aCpus[pVCpu->idCpu], GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, 1);
+# else
+ pVCpu->nem.s.Hypercall.UnmapPages.GCPhys = GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
+ pVCpu->nem.s.Hypercall.UnmapPages.cPages = 1;
+ return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_UNMAP_PAGES, 0, NULL);
+# endif
+}
+
+#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
+#ifndef IN_RING0
+
+NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVM pVM, PVMCPU pVCpu)
+{
+# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
+# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
+ if (pVM->nem.s.fUseRing0Runloop)
+# endif
+ {
+ int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPORT_STATE, 0, NULL);
+ AssertLogRelRCReturn(rc, rc);
+ return rc;
+ }
+# endif
+# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
+
+ /*
+ * The following is very similar to what nemR0WinExportState() does.
+ */
+ WHV_REGISTER_NAME aenmNames[128];
+ WHV_REGISTER_VALUE aValues[128];
+
+ uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
+ if ( !fWhat
+ && pVCpu->nem.s.fCurrentInterruptWindows == pVCpu->nem.s.fDesiredInterruptWindows)
+ return VINF_SUCCESS;
+ uintptr_t iReg = 0;
+
+# define ADD_REG64(a_enmName, a_uValue) do { \
+ aenmNames[iReg] = (a_enmName); \
+ aValues[iReg].Reg128.High64 = 0; \
+ aValues[iReg].Reg64 = (a_uValue); \
+ iReg++; \
+ } while (0)
+# define ADD_REG128(a_enmName, a_uValueLo, a_uValueHi) do { \
+ aenmNames[iReg] = (a_enmName); \
+ aValues[iReg].Reg128.Low64 = (a_uValueLo); \
+ aValues[iReg].Reg128.High64 = (a_uValueHi); \
+ iReg++; \
+ } while (0)
+
+ /* GPRs */
+ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_RAX)
+ ADD_REG64(WHvX64RegisterRax, pVCpu->cpum.GstCtx.rax);
+ if (fWhat & CPUMCTX_EXTRN_RCX)
+ ADD_REG64(WHvX64RegisterRcx, pVCpu->cpum.GstCtx.rcx);
+ if (fWhat & CPUMCTX_EXTRN_RDX)
+ ADD_REG64(WHvX64RegisterRdx, pVCpu->cpum.GstCtx.rdx);
+ if (fWhat & CPUMCTX_EXTRN_RBX)
+ ADD_REG64(WHvX64RegisterRbx, pVCpu->cpum.GstCtx.rbx);
+ if (fWhat & CPUMCTX_EXTRN_RSP)
+ ADD_REG64(WHvX64RegisterRsp, pVCpu->cpum.GstCtx.rsp);
+ if (fWhat & CPUMCTX_EXTRN_RBP)
+ ADD_REG64(WHvX64RegisterRbp, pVCpu->cpum.GstCtx.rbp);
+ if (fWhat & CPUMCTX_EXTRN_RSI)
+ ADD_REG64(WHvX64RegisterRsi, pVCpu->cpum.GstCtx.rsi);
+ if (fWhat & CPUMCTX_EXTRN_RDI)
+ ADD_REG64(WHvX64RegisterRdi, pVCpu->cpum.GstCtx.rdi);
+ if (fWhat & CPUMCTX_EXTRN_R8_R15)
+ {
+ ADD_REG64(WHvX64RegisterR8, pVCpu->cpum.GstCtx.r8);
+ ADD_REG64(WHvX64RegisterR9, pVCpu->cpum.GstCtx.r9);
+ ADD_REG64(WHvX64RegisterR10, pVCpu->cpum.GstCtx.r10);
+ ADD_REG64(WHvX64RegisterR11, pVCpu->cpum.GstCtx.r11);
+ ADD_REG64(WHvX64RegisterR12, pVCpu->cpum.GstCtx.r12);
+ ADD_REG64(WHvX64RegisterR13, pVCpu->cpum.GstCtx.r13);
+ ADD_REG64(WHvX64RegisterR14, pVCpu->cpum.GstCtx.r14);
+ ADD_REG64(WHvX64RegisterR15, pVCpu->cpum.GstCtx.r15);
+ }
+ }
+
+ /* RIP & Flags */
+ if (fWhat & CPUMCTX_EXTRN_RIP)
+ ADD_REG64(WHvX64RegisterRip, pVCpu->cpum.GstCtx.rip);
+ if (fWhat & CPUMCTX_EXTRN_RFLAGS)
+ ADD_REG64(WHvX64RegisterRflags, pVCpu->cpum.GstCtx.rflags.u);
+
+ /* Segments */
+# define ADD_SEG(a_enmName, a_SReg) \
+ do { \
+ aenmNames[iReg] = a_enmName; \
+ aValues[iReg].Segment.Base = (a_SReg).u64Base; \
+ aValues[iReg].Segment.Limit = (a_SReg).u32Limit; \
+ aValues[iReg].Segment.Selector = (a_SReg).Sel; \
+ aValues[iReg].Segment.Attributes = (a_SReg).Attr.u; \
+ iReg++; \
+ } while (0)
+ if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_ES)
+ ADD_SEG(WHvX64RegisterEs, pVCpu->cpum.GstCtx.es);
+ if (fWhat & CPUMCTX_EXTRN_CS)
+ ADD_SEG(WHvX64RegisterCs, pVCpu->cpum.GstCtx.cs);
+ if (fWhat & CPUMCTX_EXTRN_SS)
+ ADD_SEG(WHvX64RegisterSs, pVCpu->cpum.GstCtx.ss);
+ if (fWhat & CPUMCTX_EXTRN_DS)
+ ADD_SEG(WHvX64RegisterDs, pVCpu->cpum.GstCtx.ds);
+ if (fWhat & CPUMCTX_EXTRN_FS)
+ ADD_SEG(WHvX64RegisterFs, pVCpu->cpum.GstCtx.fs);
+ if (fWhat & CPUMCTX_EXTRN_GS)
+ ADD_SEG(WHvX64RegisterGs, pVCpu->cpum.GstCtx.gs);
+ }
+
+ /* Descriptor tables & task segment. */
+ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_LDTR)
+ ADD_SEG(WHvX64RegisterLdtr, pVCpu->cpum.GstCtx.ldtr);
+ if (fWhat & CPUMCTX_EXTRN_TR)
+ ADD_SEG(WHvX64RegisterTr, pVCpu->cpum.GstCtx.tr);
+ if (fWhat & CPUMCTX_EXTRN_IDTR)
+ {
+ aenmNames[iReg] = WHvX64RegisterIdtr;
+ aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.idtr.cbIdt;
+ aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.idtr.pIdt;
+ iReg++;
+ }
+ if (fWhat & CPUMCTX_EXTRN_GDTR)
+ {
+ aenmNames[iReg] = WHvX64RegisterGdtr;
+ aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
+ aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.gdtr.pGdt;
+ iReg++;
+ }
+ }
+
+ /* Control registers. */
+ if (fWhat & CPUMCTX_EXTRN_CR_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_CR0)
+ ADD_REG64(WHvX64RegisterCr0, pVCpu->cpum.GstCtx.cr0);
+ if (fWhat & CPUMCTX_EXTRN_CR2)
+ ADD_REG64(WHvX64RegisterCr2, pVCpu->cpum.GstCtx.cr2);
+ if (fWhat & CPUMCTX_EXTRN_CR3)
+ ADD_REG64(WHvX64RegisterCr3, pVCpu->cpum.GstCtx.cr3);
+ if (fWhat & CPUMCTX_EXTRN_CR4)
+ ADD_REG64(WHvX64RegisterCr4, pVCpu->cpum.GstCtx.cr4);
+ }
+ if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
+ ADD_REG64(WHvX64RegisterCr8, CPUMGetGuestCR8(pVCpu));
+
+ /* Debug registers. */
+/** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */
+ if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
+ {
+ ADD_REG64(WHvX64RegisterDr0, pVCpu->cpum.GstCtx.dr[0]); // CPUMGetHyperDR0(pVCpu));
+ ADD_REG64(WHvX64RegisterDr1, pVCpu->cpum.GstCtx.dr[1]); // CPUMGetHyperDR1(pVCpu));
+ ADD_REG64(WHvX64RegisterDr2, pVCpu->cpum.GstCtx.dr[2]); // CPUMGetHyperDR2(pVCpu));
+ ADD_REG64(WHvX64RegisterDr3, pVCpu->cpum.GstCtx.dr[3]); // CPUMGetHyperDR3(pVCpu));
+ }
+ if (fWhat & CPUMCTX_EXTRN_DR6)
+ ADD_REG64(WHvX64RegisterDr6, pVCpu->cpum.GstCtx.dr[6]); // CPUMGetHyperDR6(pVCpu));
+ if (fWhat & CPUMCTX_EXTRN_DR7)
+ ADD_REG64(WHvX64RegisterDr7, pVCpu->cpum.GstCtx.dr[7]); // CPUMGetHyperDR7(pVCpu));
+
+ /* Floating point state. */
+ if (fWhat & CPUMCTX_EXTRN_X87)
+ {
+ ADD_REG128(WHvX64RegisterFpMmx0, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[1]);
+ ADD_REG128(WHvX64RegisterFpMmx1, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[1]);
+ ADD_REG128(WHvX64RegisterFpMmx2, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[1]);
+ ADD_REG128(WHvX64RegisterFpMmx3, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[1]);
+ ADD_REG128(WHvX64RegisterFpMmx4, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[1]);
+ ADD_REG128(WHvX64RegisterFpMmx5, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[1]);
+ ADD_REG128(WHvX64RegisterFpMmx6, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[1]);
+ ADD_REG128(WHvX64RegisterFpMmx7, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[1]);
+
+ aenmNames[iReg] = WHvX64RegisterFpControlStatus;
+ aValues[iReg].FpControlStatus.FpControl = pVCpu->cpum.GstCtx.pXStateR3->x87.FCW;
+ aValues[iReg].FpControlStatus.FpStatus = pVCpu->cpum.GstCtx.pXStateR3->x87.FSW;
+ aValues[iReg].FpControlStatus.FpTag = pVCpu->cpum.GstCtx.pXStateR3->x87.FTW;
+ aValues[iReg].FpControlStatus.Reserved = pVCpu->cpum.GstCtx.pXStateR3->x87.FTW >> 8;
+ aValues[iReg].FpControlStatus.LastFpOp = pVCpu->cpum.GstCtx.pXStateR3->x87.FOP;
+ aValues[iReg].FpControlStatus.LastFpRip = (pVCpu->cpum.GstCtx.pXStateR3->x87.FPUIP)
+ | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.CS << 32)
+ | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd1 << 48);
+ iReg++;
+
+ aenmNames[iReg] = WHvX64RegisterXmmControlStatus;
+ aValues[iReg].XmmControlStatus.LastFpRdp = (pVCpu->cpum.GstCtx.pXStateR3->x87.FPUDP)
+ | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.DS << 32)
+ | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd2 << 48);
+ aValues[iReg].XmmControlStatus.XmmStatusControl = pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR;
+ aValues[iReg].XmmControlStatus.XmmStatusControlMask = pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */
+ iReg++;
+ }
+
+ /* Vector state. */
+ if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
+ {
+ ADD_REG128(WHvX64RegisterXmm0, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm1, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm2, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm3, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm4, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm5, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm6, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm7, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm8, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm9, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Hi);
+ ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Hi);
+ }
+
+ /* MSRs */
+ // WHvX64RegisterTsc - don't touch
+ if (fWhat & CPUMCTX_EXTRN_EFER)
+ ADD_REG64(WHvX64RegisterEfer, pVCpu->cpum.GstCtx.msrEFER);
+ if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ ADD_REG64(WHvX64RegisterKernelGsBase, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
+ if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ {
+ ADD_REG64(WHvX64RegisterSysenterCs, pVCpu->cpum.GstCtx.SysEnter.cs);
+ ADD_REG64(WHvX64RegisterSysenterEip, pVCpu->cpum.GstCtx.SysEnter.eip);
+ ADD_REG64(WHvX64RegisterSysenterEsp, pVCpu->cpum.GstCtx.SysEnter.esp);
+ }
+ if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ {
+ ADD_REG64(WHvX64RegisterStar, pVCpu->cpum.GstCtx.msrSTAR);
+ ADD_REG64(WHvX64RegisterLstar, pVCpu->cpum.GstCtx.msrLSTAR);
+ ADD_REG64(WHvX64RegisterCstar, pVCpu->cpum.GstCtx.msrCSTAR);
+ ADD_REG64(WHvX64RegisterSfmask, pVCpu->cpum.GstCtx.msrSFMASK);
+ }
+ if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
+ {
+ ADD_REG64(WHvX64RegisterApicBase, APICGetBaseMsrNoCheck(pVCpu));
+ ADD_REG64(WHvX64RegisterPat, pVCpu->cpum.GstCtx.msrPAT);
+#if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */
+ ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu));
+#endif
+ PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
+ ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000);
+ ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000);
+ ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux);
+#if 0 /** @todo these registers aren't available? Might explain something.. .*/
+ const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM);
+ if (enmCpuVendor != CPUMCPUVENDOR_AMD)
+ {
+ ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable);
+ ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu));
+ }
+#endif
+ }
+
+ /* event injection (clear it). */
+ if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)
+ ADD_REG64(WHvRegisterPendingInterruption, 0);
+
+ /* Interruptibility state. This can get a little complicated since we get
+ half of the state via HV_X64_VP_EXECUTION_STATE. */
+ if ( (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
+ == (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI) )
+ {
+ ADD_REG64(WHvRegisterInterruptState, 0);
+ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
+ && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
+ aValues[iReg - 1].InterruptState.InterruptShadow = 1;
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ aValues[iReg - 1].InterruptState.NmiMasked = 1;
+ }
+ else if (fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT)
+ {
+ if ( pVCpu->nem.s.fLastInterruptShadow
+ || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
+ && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip))
+ {
+ ADD_REG64(WHvRegisterInterruptState, 0);
+ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
+ && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
+ aValues[iReg - 1].InterruptState.InterruptShadow = 1;
+ /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */
+ //if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ // aValues[iReg - 1].InterruptState.NmiMasked = 1;
+ }
+ }
+ else
+ Assert(!(fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI));
+
+ /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */
+ uint8_t const fDesiredIntWin = pVCpu->nem.s.fDesiredInterruptWindows;
+ if ( fDesiredIntWin
+ || pVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin)
+ {
+ pVCpu->nem.s.fCurrentInterruptWindows = pVCpu->nem.s.fDesiredInterruptWindows;
+ ADD_REG64(WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin);
+ Assert(aValues[iReg - 1].DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI));
+ Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR));
+ Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptPriority == (fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT);
+ }
+
+ /// @todo WHvRegisterPendingEvent
+
+ /*
+ * Set the registers.
+ */
+ Assert(iReg < RT_ELEMENTS(aValues));
+ Assert(iReg < RT_ELEMENTS(aenmNames));
+# ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
+ Log12(("Calling WHvSetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
+ pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues));
+# endif
+ HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues);
+ if (SUCCEEDED(hrc))
+ {
+ pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM;
+ return VINF_SUCCESS;
+ }
+ AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
+ pVM->nem.s.hPartition, pVCpu->idCpu, iReg,
+ hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
+ return VERR_INTERNAL_ERROR;
+
+# undef ADD_REG64
+# undef ADD_REG128
+# undef ADD_SEG
+
+# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
+}
+
+
+NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVM pVM, PVMCPU pVCpu, uint64_t fWhat)
+{
+# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
+# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
+ if (pVM->nem.s.fUseRing0Runloop)
+# endif
+ {
+ /* See NEMR0ImportState */
+ int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_IMPORT_STATE, fWhat, NULL);
+ if (RT_SUCCESS(rc))
+ return rc;
+ if (rc == VERR_NEM_FLUSH_TLB)
+ return PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /*fGlobal*/);
+ AssertLogRelRCReturn(rc, rc);
+ return rc;
+ }
+# endif
+# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
+ WHV_REGISTER_NAME aenmNames[128];
+
+ fWhat &= pVCpu->cpum.GstCtx.fExtrn;
+ uintptr_t iReg = 0;
+
+ /* GPRs */
+ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_RAX)
+ aenmNames[iReg++] = WHvX64RegisterRax;
+ if (fWhat & CPUMCTX_EXTRN_RCX)
+ aenmNames[iReg++] = WHvX64RegisterRcx;
+ if (fWhat & CPUMCTX_EXTRN_RDX)
+ aenmNames[iReg++] = WHvX64RegisterRdx;
+ if (fWhat & CPUMCTX_EXTRN_RBX)
+ aenmNames[iReg++] = WHvX64RegisterRbx;
+ if (fWhat & CPUMCTX_EXTRN_RSP)
+ aenmNames[iReg++] = WHvX64RegisterRsp;
+ if (fWhat & CPUMCTX_EXTRN_RBP)
+ aenmNames[iReg++] = WHvX64RegisterRbp;
+ if (fWhat & CPUMCTX_EXTRN_RSI)
+ aenmNames[iReg++] = WHvX64RegisterRsi;
+ if (fWhat & CPUMCTX_EXTRN_RDI)
+ aenmNames[iReg++] = WHvX64RegisterRdi;
+ if (fWhat & CPUMCTX_EXTRN_R8_R15)
+ {
+ aenmNames[iReg++] = WHvX64RegisterR8;
+ aenmNames[iReg++] = WHvX64RegisterR9;
+ aenmNames[iReg++] = WHvX64RegisterR10;
+ aenmNames[iReg++] = WHvX64RegisterR11;
+ aenmNames[iReg++] = WHvX64RegisterR12;
+ aenmNames[iReg++] = WHvX64RegisterR13;
+ aenmNames[iReg++] = WHvX64RegisterR14;
+ aenmNames[iReg++] = WHvX64RegisterR15;
+ }
+ }
+
+ /* RIP & Flags */
+ if (fWhat & CPUMCTX_EXTRN_RIP)
+ aenmNames[iReg++] = WHvX64RegisterRip;
+ if (fWhat & CPUMCTX_EXTRN_RFLAGS)
+ aenmNames[iReg++] = WHvX64RegisterRflags;
+
+ /* Segments */
+ if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_ES)
+ aenmNames[iReg++] = WHvX64RegisterEs;
+ if (fWhat & CPUMCTX_EXTRN_CS)
+ aenmNames[iReg++] = WHvX64RegisterCs;
+ if (fWhat & CPUMCTX_EXTRN_SS)
+ aenmNames[iReg++] = WHvX64RegisterSs;
+ if (fWhat & CPUMCTX_EXTRN_DS)
+ aenmNames[iReg++] = WHvX64RegisterDs;
+ if (fWhat & CPUMCTX_EXTRN_FS)
+ aenmNames[iReg++] = WHvX64RegisterFs;
+ if (fWhat & CPUMCTX_EXTRN_GS)
+ aenmNames[iReg++] = WHvX64RegisterGs;
+ }
+
+ /* Descriptor tables. */
+ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_LDTR)
+ aenmNames[iReg++] = WHvX64RegisterLdtr;
+ if (fWhat & CPUMCTX_EXTRN_TR)
+ aenmNames[iReg++] = WHvX64RegisterTr;
+ if (fWhat & CPUMCTX_EXTRN_IDTR)
+ aenmNames[iReg++] = WHvX64RegisterIdtr;
+ if (fWhat & CPUMCTX_EXTRN_GDTR)
+ aenmNames[iReg++] = WHvX64RegisterGdtr;
+ }
+
+ /* Control registers. */
+ if (fWhat & CPUMCTX_EXTRN_CR_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_CR0)
+ aenmNames[iReg++] = WHvX64RegisterCr0;
+ if (fWhat & CPUMCTX_EXTRN_CR2)
+ aenmNames[iReg++] = WHvX64RegisterCr2;
+ if (fWhat & CPUMCTX_EXTRN_CR3)
+ aenmNames[iReg++] = WHvX64RegisterCr3;
+ if (fWhat & CPUMCTX_EXTRN_CR4)
+ aenmNames[iReg++] = WHvX64RegisterCr4;
+ }
+ if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
+ aenmNames[iReg++] = WHvX64RegisterCr8;
+
+ /* Debug registers. */
+ if (fWhat & CPUMCTX_EXTRN_DR7)
+ aenmNames[iReg++] = WHvX64RegisterDr7;
+ if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
+ {
+ if (!(fWhat & CPUMCTX_EXTRN_DR7) && (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_DR7))
+ {
+ fWhat |= CPUMCTX_EXTRN_DR7;
+ aenmNames[iReg++] = WHvX64RegisterDr7;
+ }
+ aenmNames[iReg++] = WHvX64RegisterDr0;
+ aenmNames[iReg++] = WHvX64RegisterDr1;
+ aenmNames[iReg++] = WHvX64RegisterDr2;
+ aenmNames[iReg++] = WHvX64RegisterDr3;
+ }
+ if (fWhat & CPUMCTX_EXTRN_DR6)
+ aenmNames[iReg++] = WHvX64RegisterDr6;
+
+ /* Floating point state. */
+ if (fWhat & CPUMCTX_EXTRN_X87)
+ {
+ aenmNames[iReg++] = WHvX64RegisterFpMmx0;
+ aenmNames[iReg++] = WHvX64RegisterFpMmx1;
+ aenmNames[iReg++] = WHvX64RegisterFpMmx2;
+ aenmNames[iReg++] = WHvX64RegisterFpMmx3;
+ aenmNames[iReg++] = WHvX64RegisterFpMmx4;
+ aenmNames[iReg++] = WHvX64RegisterFpMmx5;
+ aenmNames[iReg++] = WHvX64RegisterFpMmx6;
+ aenmNames[iReg++] = WHvX64RegisterFpMmx7;
+ aenmNames[iReg++] = WHvX64RegisterFpControlStatus;
+ }
+ if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
+ aenmNames[iReg++] = WHvX64RegisterXmmControlStatus;
+
+ /* Vector state. */
+ if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
+ {
+ aenmNames[iReg++] = WHvX64RegisterXmm0;
+ aenmNames[iReg++] = WHvX64RegisterXmm1;
+ aenmNames[iReg++] = WHvX64RegisterXmm2;
+ aenmNames[iReg++] = WHvX64RegisterXmm3;
+ aenmNames[iReg++] = WHvX64RegisterXmm4;
+ aenmNames[iReg++] = WHvX64RegisterXmm5;
+ aenmNames[iReg++] = WHvX64RegisterXmm6;
+ aenmNames[iReg++] = WHvX64RegisterXmm7;
+ aenmNames[iReg++] = WHvX64RegisterXmm8;
+ aenmNames[iReg++] = WHvX64RegisterXmm9;
+ aenmNames[iReg++] = WHvX64RegisterXmm10;
+ aenmNames[iReg++] = WHvX64RegisterXmm11;
+ aenmNames[iReg++] = WHvX64RegisterXmm12;
+ aenmNames[iReg++] = WHvX64RegisterXmm13;
+ aenmNames[iReg++] = WHvX64RegisterXmm14;
+ aenmNames[iReg++] = WHvX64RegisterXmm15;
+ }
+
+ /* MSRs */
+ // WHvX64RegisterTsc - don't touch
+ if (fWhat & CPUMCTX_EXTRN_EFER)
+ aenmNames[iReg++] = WHvX64RegisterEfer;
+ if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ aenmNames[iReg++] = WHvX64RegisterKernelGsBase;
+ if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ {
+ aenmNames[iReg++] = WHvX64RegisterSysenterCs;
+ aenmNames[iReg++] = WHvX64RegisterSysenterEip;
+ aenmNames[iReg++] = WHvX64RegisterSysenterEsp;
+ }
+ if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ {
+ aenmNames[iReg++] = WHvX64RegisterStar;
+ aenmNames[iReg++] = WHvX64RegisterLstar;
+ aenmNames[iReg++] = WHvX64RegisterCstar;
+ aenmNames[iReg++] = WHvX64RegisterSfmask;
+ }
+
+//#ifdef LOG_ENABLED
+// const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM);
+//#endif
+ if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
+ {
+ aenmNames[iReg++] = WHvX64RegisterApicBase; /// @todo APIC BASE
+ aenmNames[iReg++] = WHvX64RegisterPat;
+#if 0 /*def LOG_ENABLED*/ /** @todo Check if WHvX64RegisterMsrMtrrCap works... */
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrCap;
+#endif
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrDefType;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix64k00000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16k80000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16kA0000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC0000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC8000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD0000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD8000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE0000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE8000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF0000;
+ aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF8000;
+ aenmNames[iReg++] = WHvX64RegisterTscAux;
+ /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
+//#ifdef LOG_ENABLED
+// if (enmCpuVendor != CPUMCPUVENDOR_AMD)
+// aenmNames[iReg++] = HvX64RegisterIa32FeatureControl;
+//#endif
+ }
+
+ /* Interruptibility. */
+ if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
+ {
+ aenmNames[iReg++] = WHvRegisterInterruptState;
+ aenmNames[iReg++] = WHvX64RegisterRip;
+ }
+
+ /* event injection */
+ aenmNames[iReg++] = WHvRegisterPendingInterruption;
+ aenmNames[iReg++] = WHvRegisterPendingEvent0; /** @todo renamed to WHvRegisterPendingEvent */
+
+ size_t const cRegs = iReg;
+ Assert(cRegs < RT_ELEMENTS(aenmNames));
+
+ /*
+ * Get the registers.
+ */
+ WHV_REGISTER_VALUE aValues[128];
+ RT_ZERO(aValues);
+ Assert(RT_ELEMENTS(aValues) >= cRegs);
+ Assert(RT_ELEMENTS(aenmNames) >= cRegs);
+# ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
+ Log12(("Calling WHvGetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
+ pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues));
+# endif
+ HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, (uint32_t)cRegs, aValues);
+ AssertLogRelMsgReturn(SUCCEEDED(hrc),
+ ("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
+ pVM->nem.s.hPartition, pVCpu->idCpu, cRegs, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
+ , VERR_NEM_GET_REGISTERS_FAILED);
+
+ iReg = 0;
+# define GET_REG64(a_DstVar, a_enmName) do { \
+ Assert(aenmNames[iReg] == (a_enmName)); \
+ (a_DstVar) = aValues[iReg].Reg64; \
+ iReg++; \
+ } while (0)
+# define GET_REG64_LOG7(a_DstVar, a_enmName, a_szLogName) do { \
+ Assert(aenmNames[iReg] == (a_enmName)); \
+ if ((a_DstVar) != aValues[iReg].Reg64) \
+ Log7(("NEM/%u: " a_szLogName " changed %RX64 -> %RX64\n", pVCpu->idCpu, (a_DstVar), aValues[iReg].Reg64)); \
+ (a_DstVar) = aValues[iReg].Reg64; \
+ iReg++; \
+ } while (0)
+# define GET_REG128(a_DstVarLo, a_DstVarHi, a_enmName) do { \
+ Assert(aenmNames[iReg] == a_enmName); \
+ (a_DstVarLo) = aValues[iReg].Reg128.Low64; \
+ (a_DstVarHi) = aValues[iReg].Reg128.High64; \
+ iReg++; \
+ } while (0)
+# define GET_SEG(a_SReg, a_enmName) do { \
+ Assert(aenmNames[iReg] == (a_enmName)); \
+ NEM_WIN_COPY_BACK_SEG(a_SReg, aValues[iReg].Segment); \
+ iReg++; \
+ } while (0)
+
+ /* GPRs */
+ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_RAX)
+ GET_REG64(pVCpu->cpum.GstCtx.rax, WHvX64RegisterRax);
+ if (fWhat & CPUMCTX_EXTRN_RCX)
+ GET_REG64(pVCpu->cpum.GstCtx.rcx, WHvX64RegisterRcx);
+ if (fWhat & CPUMCTX_EXTRN_RDX)
+ GET_REG64(pVCpu->cpum.GstCtx.rdx, WHvX64RegisterRdx);
+ if (fWhat & CPUMCTX_EXTRN_RBX)
+ GET_REG64(pVCpu->cpum.GstCtx.rbx, WHvX64RegisterRbx);
+ if (fWhat & CPUMCTX_EXTRN_RSP)
+ GET_REG64(pVCpu->cpum.GstCtx.rsp, WHvX64RegisterRsp);
+ if (fWhat & CPUMCTX_EXTRN_RBP)
+ GET_REG64(pVCpu->cpum.GstCtx.rbp, WHvX64RegisterRbp);
+ if (fWhat & CPUMCTX_EXTRN_RSI)
+ GET_REG64(pVCpu->cpum.GstCtx.rsi, WHvX64RegisterRsi);
+ if (fWhat & CPUMCTX_EXTRN_RDI)
+ GET_REG64(pVCpu->cpum.GstCtx.rdi, WHvX64RegisterRdi);
+ if (fWhat & CPUMCTX_EXTRN_R8_R15)
+ {
+ GET_REG64(pVCpu->cpum.GstCtx.r8, WHvX64RegisterR8);
+ GET_REG64(pVCpu->cpum.GstCtx.r9, WHvX64RegisterR9);
+ GET_REG64(pVCpu->cpum.GstCtx.r10, WHvX64RegisterR10);
+ GET_REG64(pVCpu->cpum.GstCtx.r11, WHvX64RegisterR11);
+ GET_REG64(pVCpu->cpum.GstCtx.r12, WHvX64RegisterR12);
+ GET_REG64(pVCpu->cpum.GstCtx.r13, WHvX64RegisterR13);
+ GET_REG64(pVCpu->cpum.GstCtx.r14, WHvX64RegisterR14);
+ GET_REG64(pVCpu->cpum.GstCtx.r15, WHvX64RegisterR15);
+ }
+ }
+
+ /* RIP & Flags */
+ if (fWhat & CPUMCTX_EXTRN_RIP)
+ GET_REG64(pVCpu->cpum.GstCtx.rip, WHvX64RegisterRip);
+ if (fWhat & CPUMCTX_EXTRN_RFLAGS)
+ GET_REG64(pVCpu->cpum.GstCtx.rflags.u, WHvX64RegisterRflags);
+
+ /* Segments */
+ if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_ES)
+ GET_SEG(pVCpu->cpum.GstCtx.es, WHvX64RegisterEs);
+ if (fWhat & CPUMCTX_EXTRN_CS)
+ GET_SEG(pVCpu->cpum.GstCtx.cs, WHvX64RegisterCs);
+ if (fWhat & CPUMCTX_EXTRN_SS)
+ GET_SEG(pVCpu->cpum.GstCtx.ss, WHvX64RegisterSs);
+ if (fWhat & CPUMCTX_EXTRN_DS)
+ GET_SEG(pVCpu->cpum.GstCtx.ds, WHvX64RegisterDs);
+ if (fWhat & CPUMCTX_EXTRN_FS)
+ GET_SEG(pVCpu->cpum.GstCtx.fs, WHvX64RegisterFs);
+ if (fWhat & CPUMCTX_EXTRN_GS)
+ GET_SEG(pVCpu->cpum.GstCtx.gs, WHvX64RegisterGs);
+ }
+
+ /* Descriptor tables and the task segment. */
+ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_LDTR)
+ GET_SEG(pVCpu->cpum.GstCtx.ldtr, WHvX64RegisterLdtr);
+
+ if (fWhat & CPUMCTX_EXTRN_TR)
+ {
+ /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
+ avoid to trigger sanity assertions around the code, always fix this. */
+ GET_SEG(pVCpu->cpum.GstCtx.tr, WHvX64RegisterTr);
+ switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
+ {
+ case X86_SEL_TYPE_SYS_386_TSS_BUSY:
+ case X86_SEL_TYPE_SYS_286_TSS_BUSY:
+ break;
+ case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
+ pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
+ break;
+ case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
+ pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
+ break;
+ }
+ }
+ if (fWhat & CPUMCTX_EXTRN_IDTR)
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterIdtr);
+ pVCpu->cpum.GstCtx.idtr.cbIdt = aValues[iReg].Table.Limit;
+ pVCpu->cpum.GstCtx.idtr.pIdt = aValues[iReg].Table.Base;
+ iReg++;
+ }
+ if (fWhat & CPUMCTX_EXTRN_GDTR)
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterGdtr);
+ pVCpu->cpum.GstCtx.gdtr.cbGdt = aValues[iReg].Table.Limit;
+ pVCpu->cpum.GstCtx.gdtr.pGdt = aValues[iReg].Table.Base;
+ iReg++;
+ }
+ }
+
+ /* Control registers. */
+ bool fMaybeChangedMode = false;
+ bool fUpdateCr3 = false;
+ if (fWhat & CPUMCTX_EXTRN_CR_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_CR0)
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterCr0);
+ if (pVCpu->cpum.GstCtx.cr0 != aValues[iReg].Reg64)
+ {
+ CPUMSetGuestCR0(pVCpu, aValues[iReg].Reg64);
+ fMaybeChangedMode = true;
+ }
+ iReg++;
+ }
+ if (fWhat & CPUMCTX_EXTRN_CR2)
+ GET_REG64(pVCpu->cpum.GstCtx.cr2, WHvX64RegisterCr2);
+ if (fWhat & CPUMCTX_EXTRN_CR3)
+ {
+ if (pVCpu->cpum.GstCtx.cr3 != aValues[iReg].Reg64)
+ {
+ CPUMSetGuestCR3(pVCpu, aValues[iReg].Reg64);
+ fUpdateCr3 = true;
+ }
+ iReg++;
+ }
+ if (fWhat & CPUMCTX_EXTRN_CR4)
+ {
+ if (pVCpu->cpum.GstCtx.cr4 != aValues[iReg].Reg64)
+ {
+ CPUMSetGuestCR4(pVCpu, aValues[iReg].Reg64);
+ fMaybeChangedMode = true;
+ }
+ iReg++;
+ }
+ }
+ if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterCr8);
+ APICSetTpr(pVCpu, (uint8_t)aValues[iReg].Reg64 << 4);
+ iReg++;
+ }
+
+ /* Debug registers. */
+ if (fWhat & CPUMCTX_EXTRN_DR7)
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterDr7);
+ if (pVCpu->cpum.GstCtx.dr[7] != aValues[iReg].Reg64)
+ CPUMSetGuestDR7(pVCpu, aValues[iReg].Reg64);
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
+ iReg++;
+ }
+ if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterDr0);
+ Assert(aenmNames[iReg+3] == WHvX64RegisterDr3);
+ if (pVCpu->cpum.GstCtx.dr[0] != aValues[iReg].Reg64)
+ CPUMSetGuestDR0(pVCpu, aValues[iReg].Reg64);
+ iReg++;
+ if (pVCpu->cpum.GstCtx.dr[1] != aValues[iReg].Reg64)
+ CPUMSetGuestDR1(pVCpu, aValues[iReg].Reg64);
+ iReg++;
+ if (pVCpu->cpum.GstCtx.dr[2] != aValues[iReg].Reg64)
+ CPUMSetGuestDR2(pVCpu, aValues[iReg].Reg64);
+ iReg++;
+ if (pVCpu->cpum.GstCtx.dr[3] != aValues[iReg].Reg64)
+ CPUMSetGuestDR3(pVCpu, aValues[iReg].Reg64);
+ iReg++;
+ }
+ if (fWhat & CPUMCTX_EXTRN_DR6)
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterDr6);
+ if (pVCpu->cpum.GstCtx.dr[6] != aValues[iReg].Reg64)
+ CPUMSetGuestDR6(pVCpu, aValues[iReg].Reg64);
+ iReg++;
+ }
+
+ /* Floating point state. */
+ if (fWhat & CPUMCTX_EXTRN_X87)
+ {
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[1], WHvX64RegisterFpMmx0);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[1], WHvX64RegisterFpMmx1);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[1], WHvX64RegisterFpMmx2);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[1], WHvX64RegisterFpMmx3);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[1], WHvX64RegisterFpMmx4);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[1], WHvX64RegisterFpMmx5);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[1], WHvX64RegisterFpMmx6);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[1], WHvX64RegisterFpMmx7);
+
+ Assert(aenmNames[iReg] == WHvX64RegisterFpControlStatus);
+ pVCpu->cpum.GstCtx.pXStateR3->x87.FCW = aValues[iReg].FpControlStatus.FpControl;
+ pVCpu->cpum.GstCtx.pXStateR3->x87.FSW = aValues[iReg].FpControlStatus.FpStatus;
+ pVCpu->cpum.GstCtx.pXStateR3->x87.FTW = aValues[iReg].FpControlStatus.FpTag
+ /*| (aValues[iReg].FpControlStatus.Reserved << 8)*/;
+ pVCpu->cpum.GstCtx.pXStateR3->x87.FOP = aValues[iReg].FpControlStatus.LastFpOp;
+ pVCpu->cpum.GstCtx.pXStateR3->x87.FPUIP = (uint32_t)aValues[iReg].FpControlStatus.LastFpRip;
+ pVCpu->cpum.GstCtx.pXStateR3->x87.CS = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 32);
+ pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd1 = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 48);
+ iReg++;
+ }
+
+ if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterXmmControlStatus);
+ if (fWhat & CPUMCTX_EXTRN_X87)
+ {
+ pVCpu->cpum.GstCtx.pXStateR3->x87.FPUDP = (uint32_t)aValues[iReg].XmmControlStatus.LastFpRdp;
+ pVCpu->cpum.GstCtx.pXStateR3->x87.DS = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 32);
+ pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd2 = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 48);
+ }
+ pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR = aValues[iReg].XmmControlStatus.XmmStatusControl;
+ pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR_MASK = aValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */
+ iReg++;
+ }
+
+ /* Vector state. */
+ if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
+ {
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Hi, WHvX64RegisterXmm0);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Hi, WHvX64RegisterXmm1);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Hi, WHvX64RegisterXmm2);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Hi, WHvX64RegisterXmm3);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Hi, WHvX64RegisterXmm4);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Hi, WHvX64RegisterXmm5);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Hi, WHvX64RegisterXmm6);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Hi, WHvX64RegisterXmm7);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Hi, WHvX64RegisterXmm8);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Hi, WHvX64RegisterXmm9);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Hi, WHvX64RegisterXmm10);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Hi, WHvX64RegisterXmm11);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Hi, WHvX64RegisterXmm12);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Hi, WHvX64RegisterXmm13);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Hi, WHvX64RegisterXmm14);
+ GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Hi, WHvX64RegisterXmm15);
+ }
+
+ /* MSRs */
+ // WHvX64RegisterTsc - don't touch
+ if (fWhat & CPUMCTX_EXTRN_EFER)
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterEfer);
+ if (aValues[iReg].Reg64 != pVCpu->cpum.GstCtx.msrEFER)
+ {
+ Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, aValues[iReg].Reg64));
+ if ((aValues[iReg].Reg64 ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
+ PGMNotifyNxeChanged(pVCpu, RT_BOOL(aValues[iReg].Reg64 & MSR_K6_EFER_NXE));
+ pVCpu->cpum.GstCtx.msrEFER = aValues[iReg].Reg64;
+ fMaybeChangedMode = true;
+ }
+ iReg++;
+ }
+ if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrKERNELGSBASE, WHvX64RegisterKernelGsBase, "MSR KERNEL_GS_BASE");
+ if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ {
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.cs, WHvX64RegisterSysenterCs, "MSR SYSENTER.CS");
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.eip, WHvX64RegisterSysenterEip, "MSR SYSENTER.EIP");
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.esp, WHvX64RegisterSysenterEsp, "MSR SYSENTER.ESP");
+ }
+ if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ {
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSTAR, WHvX64RegisterStar, "MSR STAR");
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrLSTAR, WHvX64RegisterLstar, "MSR LSTAR");
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrCSTAR, WHvX64RegisterCstar, "MSR CSTAR");
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSFMASK, WHvX64RegisterSfmask, "MSR SFMASK");
+ }
+ if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
+ {
+ Assert(aenmNames[iReg] == WHvX64RegisterApicBase);
+ const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu);
+ if (aValues[iReg].Reg64 != uOldBase)
+ {
+ Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
+ pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase));
+ int rc2 = APICSetBaseMsr(pVCpu, aValues[iReg].Reg64);
+ AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", rc2, aValues[iReg].Reg64));
+ }
+ iReg++;
+
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterPat, "MSR PAT");
+#if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
+ GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterMsrMtrrCap);
+#endif
+ PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000");
+ GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000");
+ GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX");
+ /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
+ }
+
+ /* Interruptibility. */
+ if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
+ {
+ Assert(aenmNames[iReg] == WHvRegisterInterruptState);
+ Assert(aenmNames[iReg + 1] == WHvX64RegisterRip);
+
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
+ {
+ pVCpu->nem.s.fLastInterruptShadow = aValues[iReg].InterruptState.InterruptShadow;
+ if (aValues[iReg].InterruptState.InterruptShadow)
+ EMSetInhibitInterruptsPC(pVCpu, aValues[iReg + 1].Reg64);
+ else
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+ }
+
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
+ {
+ if (aValues[iReg].InterruptState.NmiMasked)
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
+ else
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
+ }
+
+ fWhat |= CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
+ iReg += 2;
+ }
+
+ /* Event injection. */
+ /// @todo WHvRegisterPendingInterruption
+ Assert(aenmNames[iReg] == WHvRegisterPendingInterruption);
+ if (aValues[iReg].PendingInterruption.InterruptionPending)
+ {
+ Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n",
+ aValues[iReg].PendingInterruption.InterruptionType, aValues[iReg].PendingInterruption.InterruptionVector,
+ aValues[iReg].PendingInterruption.DeliverErrorCode, aValues[iReg].PendingInterruption.ErrorCode,
+ aValues[iReg].PendingInterruption.InstructionLength, aValues[iReg].PendingInterruption.NestedEvent));
+ AssertMsg((aValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0,
+ ("%#RX64\n", aValues[iReg].PendingInterruption.AsUINT64));
+ }
+
+ /// @todo WHvRegisterPendingEvent0 (renamed to WHvRegisterPendingEvent).
+
+ /* Almost done, just update extrn flags and maybe change PGM mode. */
+ pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
+ if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+
+ /* Typical. */
+ if (!fMaybeChangedMode && !fUpdateCr3)
+ return VINF_SUCCESS;
+
+ /*
+ * Slow.
+ */
+ if (fMaybeChangedMode)
+ {
+ int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
+ AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
+ }
+
+ if (fUpdateCr3)
+ {
+ int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
+ AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
+ }
+
+ return VINF_SUCCESS;
+# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
+}
+
+#endif /* !IN_RING0 */
+
+
+/**
+ * Interface for importing state on demand (used by IEM).
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context CPU structure.
+ * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
+ */
+VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
+{
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
+
+#ifdef IN_RING0
+# ifdef NEM_WIN_WITH_RING0_RUNLOOP
+ /** @todo improve and secure this translation */
+ PGVM pGVM = GVMMR0ByHandle(pVCpu->pVMR0->hSelf);
+ AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
+ VMCPUID idCpu = pVCpu->idCpu;
+ ASMCompilerBarrier();
+ AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
+
+ return nemR0WinImportState(pGVM, &pGVM->aCpus[idCpu], &pVCpu->cpum.GstCtx, fWhat, true /*fCanUpdateCr3*/);
+# else
+ RT_NOREF(pVCpu, fWhat);
+ return VERR_NOT_IMPLEMENTED;
+# endif
+#else
+ return nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
+#endif
+}
+
+
+/**
+ * Query the CPU tick counter and optionally the TSC_AUX MSR value.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context CPU structure.
+ * @param pcTicks Where to return the CPU tick count.
+ * @param puAux Where to return the TSC_AUX register value.
+ */
+VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPU pVCpu, uint64_t *pcTicks, uint32_t *puAux)
+{
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
+
+#ifdef IN_RING3
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
+ AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
+
+# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
+# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
+ if (pVM->nem.s.fUseRing0Runloop)
+# endif
+ {
+ /* Call ring-0 and get the values. */
+ int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_QUERY_CPU_TICK, 0, NULL);
+ AssertLogRelRCReturn(rc, rc);
+ *pcTicks = pVCpu->nem.s.Hypercall.QueryCpuTick.cTicks;
+ if (puAux)
+ *puAux = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX
+ ? pVCpu->nem.s.Hypercall.QueryCpuTick.uAux : CPUMGetGuestTscAux(pVCpu);
+ return VINF_SUCCESS;
+ }
+# endif
+# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
+ /* Call the offical API. */
+ WHV_REGISTER_NAME aenmNames[2] = { WHvX64RegisterTsc, WHvX64RegisterTscAux };
+ WHV_REGISTER_VALUE aValues[2] = { {0, 0}, {0, 0} };
+ Assert(RT_ELEMENTS(aenmNames) == RT_ELEMENTS(aValues));
+ HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, 2, aValues);
+ AssertLogRelMsgReturn(SUCCEEDED(hrc),
+ ("WHvGetVirtualProcessorRegisters(%p, %u,{tsc,tsc_aux},2,) -> %Rhrc (Last=%#x/%u)\n",
+ pVM->nem.s.hPartition, pVCpu->idCpu, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
+ , VERR_NEM_GET_REGISTERS_FAILED);
+ *pcTicks = aValues[0].Reg64;
+ if (puAux)
+ *pcTicks = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX ? aValues[0].Reg64 : CPUMGetGuestTscAux(pVCpu);
+ return VINF_SUCCESS;
+# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
+#else /* IN_RING0 */
+# ifdef NEM_WIN_WITH_RING0_RUNLOOP
+ /** @todo improve and secure this translation */
+ PGVM pGVM = GVMMR0ByHandle(pVCpu->pVMR0->hSelf);
+ AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
+ VMCPUID idCpu = pVCpu->idCpu;
+ ASMCompilerBarrier();
+ AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
+
+ int rc = nemR0WinQueryCpuTick(pGVM, &pGVM->aCpus[idCpu], pcTicks, puAux);
+ if (RT_SUCCESS(rc) && puAux && !(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX))
+ *puAux = CPUMGetGuestTscAux(pVCpu);
+ return rc;
+# else
+ RT_NOREF(pVCpu, pcTicks, puAux);
+ return VERR_NOT_IMPLEMENTED;
+# endif
+#endif /* IN_RING0 */
+}
+
+
+/**
+ * Resumes CPU clock (TSC) on all virtual CPUs.
+ *
+ * This is called by TM when the VM is started, restored, resumed or similar.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context CPU structure of the calling EMT.
+ * @param uPausedTscValue The TSC value at the time of pausing.
+ */
+VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVM pVM, PVMCPU pVCpu, uint64_t uPausedTscValue)
+{
+#ifdef IN_RING0
+# ifdef NEM_WIN_WITH_RING0_RUNLOOP
+ /** @todo improve and secure this translation */
+ PGVM pGVM = GVMMR0ByHandle(pVM->hSelf);
+ AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
+ VMCPUID idCpu = pVCpu->idCpu;
+ ASMCompilerBarrier();
+ AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
+
+ return nemR0WinResumeCpuTickOnAll(pGVM, &pGVM->aCpus[idCpu], uPausedTscValue);
+# else
+ RT_NOREF(pVM, pVCpu, uPausedTscValue);
+ return VERR_NOT_IMPLEMENTED;
+# endif
+#else /* IN_RING3 */
+ VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
+ AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
+
+# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
+# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
+ if (pVM->nem.s.fUseRing0Runloop)
+# endif
+ {
+ /* Call ring-0 and do it all there. */
+ return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_RESUME_CPU_TICK_ON_ALL, uPausedTscValue, NULL);
+ }
+# endif
+# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
+ /*
+ * Call the offical API to do the job.
+ */
+ if (pVM->cCpus > 1)
+ RTThreadYield(); /* Try decrease the chance that we get rescheduled in the middle. */
+
+ /* Start with the first CPU. */
+ WHV_REGISTER_NAME enmName = WHvX64RegisterTsc;
+ WHV_REGISTER_VALUE Value = {0, 0};
+ Value.Reg64 = uPausedTscValue;
+ uint64_t const uFirstTsc = ASMReadTSC();
+ HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, 0 /*iCpu*/, &enmName, 1, &Value);
+ AssertLogRelMsgReturn(SUCCEEDED(hrc),
+ ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64) -> %Rhrc (Last=%#x/%u)\n",
+ pVM->nem.s.hPartition, uPausedTscValue, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
+ , VERR_NEM_SET_TSC);
+
+ /* Do the other CPUs, adjusting for elapsed TSC and keeping finger crossed
+ that we don't introduce too much drift here. */
+ for (VMCPUID iCpu = 1; iCpu < pVM->cCpus; iCpu++)
+ {
+ Assert(enmName == WHvX64RegisterTsc);
+ const uint64_t offDelta = (ASMReadTSC() - uFirstTsc);
+ Value.Reg64 = uPausedTscValue + offDelta;
+ HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, iCpu, &enmName, 1, &Value);
+ AssertLogRelMsgReturn(SUCCEEDED(hrc),
+ ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64 + %#RX64) -> %Rhrc (Last=%#x/%u)\n",
+ pVM->nem.s.hPartition, iCpu, uPausedTscValue, offDelta, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
+ , VERR_NEM_SET_TSC);
+ }
+
+ return VINF_SUCCESS;
+# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
+#endif /* IN_RING3 */
+}
+
+#ifdef NEMWIN_NEED_GET_REGISTER
+# if defined(IN_RING0) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
+/** Worker for assertion macro. */
+NEM_TMPL_STATIC int nemHCWinGetRegister(PVMCPU pVCpu, PGVMCPU pGVCpu, uint32_t enmReg, HV_REGISTER_VALUE *pRetValue)
+{
+ RT_ZERO(*pRetValue);
+# ifdef IN_RING3
+ RT_NOREF(pVCpu, pGVCpu, enmReg);
+ return VERR_NOT_IMPLEMENTED;
+# else
+ NOREF(pVCpu);
+
+ /*
+ * Hypercall parameters.
+ */
+ HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage;
+ AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
+ AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API);
+
+ pInput->PartitionId = pGVCpu->pGVM->nem.s.idHvPartition;
+ pInput->VpIndex = pGVCpu->idCpu;
+ pInput->fFlags = 0;
+ pInput->Names[0] = (HV_REGISTER_NAME)enmReg;
+
+ size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[1]), 32);
+ HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput);
+ RT_BZERO(paValues, sizeof(paValues[0]) * 1);
+
+ /*
+ * Make the hypercall and copy out the value.
+ */
+ uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 1),
+ pGVCpu->nem.s.HypercallData.HCPhysPage,
+ pGVCpu->nem.s.HypercallData.HCPhysPage + cbInput);
+ AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(1), ("uResult=%RX64 cRegs=%#x\n", uResult, 1),
+ VERR_NEM_GET_REGISTERS_FAILED);
+
+ *pRetValue = paValues[0];
+ return VINF_SUCCESS;
+# endif
+}
+# else
+/** Worker for assertion macro. */
+NEM_TMPL_STATIC int nemR3WinGetRegister(PVMCPU a_pVCpu, uint32_t a_enmReg, WHV_REGISTER_VALUE pValue)
+{
+ RT_ZERO(*pRetValue);
+ RT_NOREF(pVCpu, pGVCpu, enmReg);
+ return VERR_NOT_IMPLEMENTED;
+}
+# endif
+#endif
+
+
+#ifdef LOG_ENABLED
+/**
+ * Get the virtual processor running status.
+ */
+DECLINLINE(VID_PROCESSOR_STATUS) nemHCWinCpuGetRunningStatus(PVMCPU pVCpu)
+{
+# ifdef IN_RING0
+ NOREF(pVCpu);
+ return VidProcessorStatusUndefined;
+# else
+ RTERRVARS Saved;
+ RTErrVarsSave(&Saved);
+
+ /*
+ * This API is disabled in release builds, it seems. On build 17101 it requires
+ * the following patch to be enabled (windbg): eb vid+12180 0f 84 98 00 00 00
+ */
+ VID_PROCESSOR_STATUS enmCpuStatus = VidProcessorStatusUndefined;
+ NTSTATUS rcNt = g_pfnVidGetVirtualProcessorRunningStatus(pVCpu->pVMR3->nem.s.hPartitionDevice, pVCpu->idCpu, &enmCpuStatus);
+ AssertRC(rcNt);
+
+ RTErrVarsRestore(&Saved);
+ return enmCpuStatus;
+# endif
+}
+#endif /* LOG_ENABLED */
+
+
+#if defined(NEM_WIN_USE_OUR_OWN_RUN_API) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
+# ifdef IN_RING3 /* hopefully not needed in ring-0, as we'd need KTHREADs and KeAlertThread. */
+/**
+ * Our own WHvCancelRunVirtualProcessor that can later be moved to ring-0.
+ *
+ * This is an experiment only.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ */
+NEM_TMPL_STATIC int nemHCWinCancelRunVirtualProcessor(PVM pVM, PVMCPU pVCpu)
+{
+ /*
+ * Work the state.
+ *
+ * From the looks of things, we should let the EMT call VidStopVirtualProcessor.
+ * So, we just need to modify the state and kick the EMT if it's waiting on
+ * messages. For the latter we use QueueUserAPC / KeAlterThread.
+ */
+ for (;;)
+ {
+ VMCPUSTATE enmState = VMCPU_GET_STATE(pVCpu);
+ switch (enmState)
+ {
+ case VMCPUSTATE_STARTED_EXEC_NEM:
+ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM))
+ {
+ DBGFTRACE_CUSTOM(pVM, "VMCPUSTATE_STARTED_EXEC_NEM -> CANCELED");
+ Log8(("nemHCWinCancelRunVirtualProcessor: Switched %u to canceled state\n", pVCpu->idCpu));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelChangedState);
+ return VINF_SUCCESS;
+ }
+ break;
+
+ case VMCPUSTATE_STARTED_EXEC_NEM_WAIT:
+ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM_WAIT))
+ {
+ DBGFTRACE_CUSTOM(pVM, "VMCPUSTATE_STARTED_EXEC_NEM_WAIT -> CANCELED");
+# ifdef IN_RING0
+ NTSTATUS rcNt = KeAlertThread(??);
+ DBGFTRACE_CUSTOM(pVM, "KeAlertThread -> %#x", rcNt);
+# else
+ NTSTATUS rcNt = NtAlertThread(pVCpu->nem.s.hNativeThreadHandle);
+ DBGFTRACE_CUSTOM(pVM, "NtAlertThread -> %#x", rcNt);
+# endif
+ Log8(("nemHCWinCancelRunVirtualProcessor: Alerted %u: %#x\n", pVCpu->idCpu, rcNt));
+ Assert(rcNt == STATUS_SUCCESS);
+ if (NT_SUCCESS(rcNt))
+ {
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelAlertedThread);
+ return VINF_SUCCESS;
+ }
+ AssertLogRelMsgFailedReturn(("NtAlertThread failed: %#x\n", rcNt), RTErrConvertFromNtStatus(rcNt));
+ }
+ break;
+
+ default:
+ return VINF_SUCCESS;
+ }
+
+ ASMNopPause();
+ RT_NOREF(pVM);
+ }
+}
+# endif /* IN_RING3 */
+#endif /* NEM_WIN_USE_OUR_OWN_RUN_API || NEM_WIN_WITH_RING0_RUNLOOP */
+
+
+#ifdef LOG_ENABLED
+/**
+ * Logs the current CPU state.
+ */
+NEM_TMPL_STATIC void nemHCWinLogState(PVM pVM, PVMCPU pVCpu)
+{
+ if (LogIs3Enabled())
+ {
+# if 0 // def IN_RING3 - causes lazy state import assertions all over CPUM.
+ char szRegs[4096];
+ DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
+ "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
+ "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
+ "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
+ "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
+ "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
+ "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
+ "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
+ "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
+ "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
+ "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
+ "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
+ "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
+ "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
+ "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
+ "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
+ "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
+ " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
+ " efer=%016VR{efer}\n"
+ " pat=%016VR{pat}\n"
+ " sf_mask=%016VR{sf_mask}\n"
+ "krnl_gs_base=%016VR{krnl_gs_base}\n"
+ " lstar=%016VR{lstar}\n"
+ " star=%016VR{star} cstar=%016VR{cstar}\n"
+ "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
+ );
+
+ char szInstr[256];
+ DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
+ DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
+ szInstr, sizeof(szInstr), NULL);
+ Log3(("%s%s\n", szRegs, szInstr));
+# else
+ /** @todo stat logging in ring-0 */
+ RT_NOREF(pVM, pVCpu);
+# endif
+ }
+}
+#endif /* LOG_ENABLED */
+
+
+/** Macro used by nemHCWinExecStateToLogStr and nemR3WinExecStateToLogStr. */
+#define SWITCH_IT(a_szPrefix) \
+ do \
+ switch (u)\
+ { \
+ case 0x00: return a_szPrefix ""; \
+ case 0x01: return a_szPrefix ",Pnd"; \
+ case 0x02: return a_szPrefix ",Dbg"; \
+ case 0x03: return a_szPrefix ",Pnd,Dbg"; \
+ case 0x04: return a_szPrefix ",Shw"; \
+ case 0x05: return a_szPrefix ",Pnd,Shw"; \
+ case 0x06: return a_szPrefix ",Shw,Dbg"; \
+ case 0x07: return a_szPrefix ",Pnd,Shw,Dbg"; \
+ default: AssertFailedReturn("WTF?"); \
+ } \
+ while (0)
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Translates the execution stat bitfield into a short log string, VID version.
+ *
+ * @returns Read-only log string.
+ * @param pMsgHdr The header which state to summarize.
+ */
+static const char *nemHCWinExecStateToLogStr(HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr)
+{
+ unsigned u = (unsigned)pMsgHdr->ExecutionState.InterruptionPending
+ | ((unsigned)pMsgHdr->ExecutionState.DebugActive << 1)
+ | ((unsigned)pMsgHdr->ExecutionState.InterruptShadow << 2);
+ if (pMsgHdr->ExecutionState.EferLma)
+ SWITCH_IT("LM");
+ else if (pMsgHdr->ExecutionState.Cr0Pe)
+ SWITCH_IT("PM");
+ else
+ SWITCH_IT("RM");
+}
+#elif defined(IN_RING3)
+/**
+ * Translates the execution stat bitfield into a short log string, WinHv version.
+ *
+ * @returns Read-only log string.
+ * @param pExitCtx The exit context which state to summarize.
+ */
+static const char *nemR3WinExecStateToLogStr(WHV_VP_EXIT_CONTEXT const *pExitCtx)
+{
+ unsigned u = (unsigned)pExitCtx->ExecutionState.InterruptionPending
+ | ((unsigned)pExitCtx->ExecutionState.DebugActive << 1)
+ | ((unsigned)pExitCtx->ExecutionState.InterruptShadow << 2);
+ if (pExitCtx->ExecutionState.EferLma)
+ SWITCH_IT("LM");
+ else if (pExitCtx->ExecutionState.Cr0Pe)
+ SWITCH_IT("PM");
+ else
+ SWITCH_IT("RM");
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+#undef SWITCH_IT
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Advances the guest RIP and clear EFLAGS.RF, VID version.
+ *
+ * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pExitCtx The exit context.
+ * @param cbMinInstr The minimum instruction length, or 1 if not unknown.
+ */
+DECLINLINE(void)
+nemHCWinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr, uint8_t cbMinInstr)
+{
+ Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
+
+ /* Advance the RIP. */
+ Assert(pMsgHdr->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr);
+ pVCpu->cpum.GstCtx.rip += pMsgHdr->InstructionLength;
+ pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
+
+ /* Update interrupt inhibition. */
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ { /* likely */ }
+ else if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+}
+#elif defined(IN_RING3)
+/**
+ * Advances the guest RIP and clear EFLAGS.RF, WinHv version.
+ *
+ * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pExitCtx The exit context.
+ * @param cbMinInstr The minimum instruction length, or 1 if not unknown.
+ */
+DECLINLINE(void) nemR3WinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx, uint8_t cbMinInstr)
+{
+ Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
+
+ /* Advance the RIP. */
+ Assert(pExitCtx->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr);
+ pVCpu->cpum.GstCtx.rip += pExitCtx->InstructionLength;
+ pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
+
+ /* Update interrupt inhibition. */
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ { /* likely */ }
+ else if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+
+NEM_TMPL_STATIC DECLCALLBACK(int)
+nemHCWinUnmapOnePageCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
+{
+ RT_NOREF_PV(pvUser);
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
+ AssertRC(rc);
+ if (RT_SUCCESS(rc))
+#else
+ RT_NOREF_PV(pVCpu);
+ HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
+ if (SUCCEEDED(hrc))
+#endif
+ {
+ Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
+ *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
+ }
+ else
+ {
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
+#else
+ LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
+ GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
+ RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
+#endif
+ *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
+ }
+ if (pVM->nem.s.cMappedPages > 0)
+ ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
+ * and nemHCWinHandleMemoryAccessPageCheckerCallback.
+ */
+typedef struct NEMHCWINHMACPCCSTATE
+{
+ /** Input: Write access. */
+ bool fWriteAccess;
+ /** Output: Set if we did something. */
+ bool fDidSomething;
+ /** Output: Set it we should resume. */
+ bool fCanResume;
+} NEMHCWINHMACPCCSTATE;
+
+/**
+ * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
+ * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
+ * NEMHCWINHMACPCCSTATE structure. }
+ */
+NEM_TMPL_STATIC DECLCALLBACK(int)
+nemHCWinHandleMemoryAccessPageCheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
+{
+ NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser;
+ pState->fDidSomething = false;
+ pState->fCanResume = false;
+
+ /* If A20 is disabled, we may need to make another query on the masked
+ page to get the correct protection information. */
+ uint8_t u2State = pInfo->u2NemState;
+ RTGCPHYS GCPhysSrc;
+ if ( pVM->nem.s.fA20Enabled
+ || !NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
+ GCPhysSrc = GCPhys;
+ else
+ {
+ GCPhysSrc = GCPhys & ~(RTGCPHYS)RT_BIT_32(20);
+ PGMPHYSNEMPAGEINFO Info2;
+ int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhysSrc, pState->fWriteAccess, &Info2, NULL, NULL);
+ AssertRCReturn(rc, rc);
+
+ *pInfo = Info2;
+ pInfo->u2NemState = u2State;
+ }
+
+ /*
+ * Consolidate current page state with actual page protection and access type.
+ * We don't really consider downgrades here, as they shouldn't happen.
+ */
+#ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ /** @todo Someone at microsoft please explain:
+ * I'm not sure WTF was going on, but I ended up in a loop if I remapped a
+ * readonly page as writable (unmap, then map again). Specifically, this was an
+ * issue with the big VRAM mapping at 0xe0000000 when booing DSL 4.4.1. So, in
+ * a hope to work around that we no longer pre-map anything, just unmap stuff
+ * and do it lazily here. And here we will first unmap, restart, and then remap
+ * with new protection or backing.
+ */
+#endif
+ int rc;
+ switch (u2State)
+ {
+ case NEM_WIN_PAGE_STATE_UNMAPPED:
+ case NEM_WIN_PAGE_STATE_NOT_SET:
+ if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
+ {
+ Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
+ return VINF_SUCCESS;
+ }
+
+ /* Don't bother remapping it if it's a write request to a non-writable page. */
+ if ( pState->fWriteAccess
+ && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
+ {
+ Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
+ return VINF_SUCCESS;
+ }
+
+ /* Map the page. */
+ rc = nemHCNativeSetPhysPage(pVM,
+ pVCpu,
+ GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
+ GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
+ pInfo->fNemProt,
+ &u2State,
+ true /*fBackingState*/);
+ pInfo->u2NemState = u2State;
+ Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
+ GCPhys, g_apszPageStates[u2State], rc));
+ pState->fDidSomething = true;
+ pState->fCanResume = true;
+ return rc;
+
+ case NEM_WIN_PAGE_STATE_READABLE:
+ if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
+ && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
+ {
+ Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
+ return VINF_SUCCESS;
+ }
+
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ /* Upgrade page to writable. */
+/** @todo test this*/
+ if ( (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
+ && pState->fWriteAccess)
+ {
+ rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhys,
+ HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
+ | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
+ AssertRC(rc);
+ if (RT_SUCCESS(rc))
+ {
+ pInfo->u2NemState = NEM_WIN_PAGE_STATE_WRITABLE;
+ pState->fDidSomething = true;
+ pState->fCanResume = true;
+ Log5(("NEM GPA write-upgrade/exit: %RGp (was %s, cMappedPages=%u)\n",
+ GCPhys, g_apszPageStates[u2State], pVM->nem.s.cMappedPages));
+ }
+ }
+ else
+ {
+ /* Need to emulate the acces. */
+ AssertBreak(pInfo->fNemProt != NEM_PAGE_PROT_NONE); /* There should be no downgrades. */
+ rc = VINF_SUCCESS;
+ }
+ return rc;
+#else
+ break;
+#endif
+
+ case NEM_WIN_PAGE_STATE_WRITABLE:
+ if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
+ {
+ if (pInfo->u2OldNemState == NEM_WIN_PAGE_STATE_WRITABLE)
+ Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys));
+ else
+ {
+ pState->fCanResume = true;
+ Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n",
+ GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State]));
+ }
+ return VINF_SUCCESS;
+ }
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ AssertFailed(); /* There should be no downgrades. */
+#endif
+ break;
+
+ default:
+ AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
+ }
+
+ /*
+ * Unmap and restart the instruction.
+ * If this fails, which it does every so often, just unmap everything for now.
+ */
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
+ AssertRC(rc);
+ if (RT_SUCCESS(rc))
+#else
+ /** @todo figure out whether we mess up the state or if it's WHv. */
+ HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
+ if (SUCCEEDED(hrc))
+#endif
+ {
+ pState->fDidSomething = true;
+ pState->fCanResume = true;
+ pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
+ uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages));
+ return VINF_SUCCESS;
+ }
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhys, rc));
+ return rc;
+#else
+ LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
+ GCPhys, g_apszPageStates[u2State], hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue(),
+ pVM->nem.s.cMappedPages));
+
+ PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinUnmapOnePageCallback, NULL);
+ Log(("nemHCWinHandleMemoryAccessPageCheckerCallback: Unmapped all (cMappedPages=%u)\n", pVM->nem.s.cMappedPages));
+
+ pState->fDidSomething = true;
+ pState->fCanResume = true;
+ pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
+ return VINF_SUCCESS;
+#endif
+}
+
+
+
+#if defined(IN_RING0) && defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API)
+/**
+ * Wrapper around nemR0WinImportState that converts VERR_NEM_FLUSH_TLB
+ * into informational status codes and logs+asserts statuses.
+ *
+ * @returns VBox strict status code.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param pGVCpu The global (ring-0) per CPU structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param fWhat What to import.
+ * @param pszCaller Who is doing the importing.
+ */
+DECLINLINE(VBOXSTRICTRC) nemR0WinImportStateStrict(PGVM pGVM, PGVMCPU pGVCpu, PVMCPU pVCpu, uint64_t fWhat, const char *pszCaller)
+{
+ int rc = nemR0WinImportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx, fWhat, true /*fCanUpdateCr3*/);
+ if (RT_SUCCESS(rc))
+ {
+ Assert(rc == VINF_SUCCESS);
+ return VINF_SUCCESS;
+ }
+
+ if (rc == VERR_NEM_FLUSH_TLB)
+ {
+ Log4(("%s/%u: nemR0WinImportState -> %Rrc\n", pszCaller, pGVCpu->idCpu, -rc));
+ return -rc;
+ }
+ RT_NOREF(pszCaller);
+ AssertMsgFailedReturn(("%s/%u: nemR0WinImportState failed: %Rrc\n", pszCaller, pGVCpu->idCpu, rc), rc);
+}
+#endif /* IN_RING0 && NEM_WIN_TEMPLATE_MODE_OWN_RUN_API*/
+
+#if defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3)
+/**
+ * Wrapper around nemR0WinImportStateStrict and nemHCWinCopyStateFromHyperV.
+ *
+ * Unlike the wrapped APIs, this checks whether it's necessary.
+ *
+ * @returns VBox strict status code.
+ * @param pGVM The global (ring-0) VM structure.
+ * @param pGVCpu The global (ring-0) per CPU structure.
+ * @param fWhat What to import.
+ * @param pszCaller Who is doing the importing.
+ */
+DECLINLINE(VBOXSTRICTRC) nemHCWinImportStateIfNeededStrict(PVMCPU pVCpu, PGVMCPU pGVCpu, uint64_t fWhat, const char *pszCaller)
+{
+ if (pVCpu->cpum.GstCtx.fExtrn & fWhat)
+ {
+# ifdef IN_RING0
+ return nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, fWhat, pszCaller);
+# else
+ RT_NOREF(pGVCpu, pszCaller);
+ int rc = nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
+ AssertRCReturn(rc, rc);
+# endif
+ }
+ return VINF_SUCCESS;
+}
+#endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API || IN_RING3 */
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Copies register state from the X64 intercept message header.
+ *
+ * ASSUMES no state copied yet.
+ *
+ * @param pVCpu The cross context per CPU structure.
+ * @param pHdr The X64 intercept message header.
+ * @sa nemR3WinCopyStateFromX64Header
+ */
+DECLINLINE(void) nemHCWinCopyStateFromX64Header(PVMCPU pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pHdr)
+{
+ Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
+ == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pHdr->CsSegment);
+ pVCpu->cpum.GstCtx.rip = pHdr->Rip;
+ pVCpu->cpum.GstCtx.rflags.u = pHdr->Rflags;
+
+ pVCpu->nem.s.fLastInterruptShadow = pHdr->ExecutionState.InterruptShadow;
+ if (!pHdr->ExecutionState.InterruptShadow)
+ {
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ { /* likely */ }
+ else
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+ }
+ else
+ EMSetInhibitInterruptsPC(pVCpu, pHdr->Rip);
+
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
+}
+#elif defined(IN_RING3)
+/**
+ * Copies register state from the (common) exit context.
+ *
+ * ASSUMES no state copied yet.
+ *
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExitCtx The common exit context.
+ * @sa nemHCWinCopyStateFromX64Header
+ */
+DECLINLINE(void) nemR3WinCopyStateFromX64Header(PVMCPU pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx)
+{
+ Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
+ == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pExitCtx->Cs);
+ pVCpu->cpum.GstCtx.rip = pExitCtx->Rip;
+ pVCpu->cpum.GstCtx.rflags.u = pExitCtx->Rflags;
+
+ pVCpu->nem.s.fLastInterruptShadow = pExitCtx->ExecutionState.InterruptShadow;
+ if (!pExitCtx->ExecutionState.InterruptShadow)
+ {
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ { /* likely */ }
+ else
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+ }
+ else
+ EMSetInhibitInterruptsPC(pVCpu, pExitCtx->Rip);
+
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Deals with memory intercept message.
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pMsg The message.
+ * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
+ * @sa nemR3WinHandleExitMemory
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC
+nemHCWinHandleMessageMemory(PVM pVM, PVMCPU pVCpu, HV_X64_MEMORY_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
+{
+ uint64_t const uHostTsc = ASMReadTSC();
+ Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
+ || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
+ || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
+
+ /*
+ * Whatever we do, we must clear pending event injection upon resume.
+ */
+ if (pMsg->Header.ExecutionState.InterruptionPending)
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
+
+# if 0 /* Experiment: 20K -> 34K exit/s. */
+ if ( pMsg->Header.ExecutionState.EferLma
+ && pMsg->Header.CsSegment.Long
+ && pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
+ {
+ if ( pMsg->Header.Rip - (uint64_t)0xf65a < (uint64_t)(0xf662 - 0xf65a)
+ && pMsg->InstructionBytes[0] == 0x89
+ && pMsg->InstructionBytes[1] == 0x03)
+ {
+ pVCpu->cpum.GstCtx.rip = pMsg->Header.Rip + 2;
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RIP;
+ AssertMsg(pMsg->Header.InstructionLength == 2, ("%#x\n", pMsg->Header.InstructionLength));
+ //Log(("%RX64 msg:\n%.80Rhxd\n", pVCpu->cpum.GstCtx.rip, pMsg));
+ return VINF_SUCCESS;
+ }
+ }
+# endif
+
+ /*
+ * Ask PGM for information about the given GCPhys. We need to check if we're
+ * out of sync first.
+ */
+ NEMHCWINHMACPCCSTATE State = { pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE, false, false };
+ PGMPHYSNEMPAGEINFO Info;
+ int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pMsg->GuestPhysicalAddress, State.fWriteAccess, &Info,
+ nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
+ if (RT_SUCCESS(rc))
+ {
+ if (Info.fNemProt & ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
+ ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
+ {
+ if (State.fCanResume)
+ {
+ Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
+ Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
+ State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
+ pMsg->Header.Rip + pMsg->Header.CsSegment.Base, uHostTsc);
+ return VINF_SUCCESS;
+ }
+ }
+ Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
+ Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
+ State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
+ }
+ else
+ Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->GuestPhysicalAddress, rc, State.fDidSomething ? " modified-backing" : "",
+ g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
+
+ /*
+ * Emulate the memory access, either access handler or special memory.
+ */
+ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
+ pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
+ pMsg->Header.Rip + pMsg->Header.CsSegment.Base, uHostTsc);
+ nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
+ VBOXSTRICTRC rcStrict;
+# ifdef IN_RING0
+ rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu,
+ NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES, "MemExit");
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+# else
+ rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
+ AssertRCReturn(rc, rc);
+ NOREF(pGVCpu);
+# endif
+
+ if (pMsg->Reserved1)
+ Log(("MemExit/Reserved1=%#x\n", pMsg->Reserved1));
+ if (pMsg->Header.ExecutionState.Reserved0 || pMsg->Header.ExecutionState.Reserved1)
+ Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pMsg->Header.ExecutionState.Reserved0, pMsg->Header.ExecutionState.Reserved1));
+
+ if (!pExitRec)
+ {
+ //if (pMsg->InstructionByteCount > 0)
+ // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
+ if (pMsg->InstructionByteCount > 0)
+ rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pMsg->Header.Rip,
+ pMsg->InstructionBytes, pMsg->InstructionByteCount);
+ else
+ rcStrict = IEMExecOne(pVCpu);
+ /** @todo do we need to do anything wrt debugging here? */
+ }
+ else
+ {
+ /* Frequent access or probing. */
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ }
+ return rcStrict;
+}
+#elif defined(IN_RING3)
+/**
+ * Deals with memory access exits (WHvRunVpExitReasonMemoryAccess).
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExit The VM exit information to handle.
+ * @sa nemHCWinHandleMessageMemory
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC
+nemR3WinHandleExitMemory(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
+{
+ uint64_t const uHostTsc = ASMReadTSC();
+ Assert(pExit->MemoryAccess.AccessInfo.AccessType != 3);
+
+ /*
+ * Whatever we do, we must clear pending event injection upon resume.
+ */
+ if (pExit->VpContext.ExecutionState.InterruptionPending)
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
+
+ /*
+ * Ask PGM for information about the given GCPhys. We need to check if we're
+ * out of sync first.
+ */
+ NEMHCWINHMACPCCSTATE State = { pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite, false, false };
+ PGMPHYSNEMPAGEINFO Info;
+ int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pExit->MemoryAccess.Gpa, State.fWriteAccess, &Info,
+ nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
+ if (RT_SUCCESS(rc))
+ {
+ if (Info.fNemProt & ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
+ ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
+ {
+ if (State.fCanResume)
+ {
+ Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
+ Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
+ State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
+ return VINF_SUCCESS;
+ }
+ }
+ Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
+ Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
+ State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
+ }
+ else
+ Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->MemoryAccess.Gpa, rc, State.fDidSomething ? " modified-backing" : "",
+ g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
+
+ /*
+ * Emulate the memory access, either access handler or special memory.
+ */
+ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
+ pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
+ AssertRCReturn(rc, rc);
+ if (pExit->VpContext.ExecutionState.Reserved0 || pExit->VpContext.ExecutionState.Reserved1)
+ Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pExit->VpContext.ExecutionState.Reserved0, pExit->VpContext.ExecutionState.Reserved1));
+
+ VBOXSTRICTRC rcStrict;
+ if (!pExitRec)
+ {
+ //if (pMsg->InstructionByteCount > 0)
+ // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
+ if (pExit->MemoryAccess.InstructionByteCount > 0)
+ rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pExit->VpContext.Rip,
+ pExit->MemoryAccess.InstructionBytes, pExit->MemoryAccess.InstructionByteCount);
+ else
+ rcStrict = IEMExecOne(pVCpu);
+ /** @todo do we need to do anything wrt debugging here? */
+ }
+ else
+ {
+ /* Frequent access or probing. */
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ }
+ return rcStrict;
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Deals with I/O port intercept message.
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pMsg The message.
+ * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC
+nemHCWinHandleMessageIoPort(PVM pVM, PVMCPU pVCpu, HV_X64_IO_PORT_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
+{
+ /*
+ * Assert message sanity.
+ */
+ Assert( pMsg->AccessInfo.AccessSize == 1
+ || pMsg->AccessInfo.AccessSize == 2
+ || pMsg->AccessInfo.AccessSize == 4);
+ Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
+ || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
+ NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
+ if (pMsg->AccessInfo.StringOp)
+ {
+ NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterDs, pMsg->DsSegment);
+ NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterEs, pMsg->EsSegment);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRcx, pMsg->Rcx);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRsi, pMsg->Rsi);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdi, pMsg->Rdi);
+ }
+
+ /*
+ * Whatever we do, we must clear pending event injection upon resume.
+ */
+ if (pMsg->Header.ExecutionState.InterruptionPending)
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
+
+ /*
+ * Add history first to avoid two paths doing EMHistoryExec calls.
+ */
+ VBOXSTRICTRC rcStrict;
+ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
+ !pMsg->AccessInfo.StringOp
+ ? ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ))
+ : ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)),
+ pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
+ if (!pExitRec)
+ {
+ if (!pMsg->AccessInfo.StringOp)
+ {
+ /*
+ * Simple port I/O.
+ */
+ static uint32_t const s_fAndMask[8] =
+ { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
+ uint32_t const fAndMask = s_fAndMask[pMsg->AccessInfo.AccessSize];
+
+ nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
+ if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
+ {
+ rcStrict = IOMIOPortWrite(pVM, pVCpu, pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize);
+ Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
+ if (IOM_SUCCESS(rcStrict))
+ nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 1);
+# ifdef IN_RING0
+ else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
+ && !pVCpu->cpum.GstCtx.rflags.Bits.u1TF
+ /** @todo check for debug breakpoints */ )
+ return EMRZSetPendingIoPortWrite(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
+ pMsg->AccessInfo.AccessSize, (uint32_t)pMsg->Rax & fAndMask);
+# endif
+ else
+ {
+ pVCpu->cpum.GstCtx.rax = pMsg->Rax;
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
+ }
+ }
+ else
+ {
+ uint32_t uValue = 0;
+ rcStrict = IOMIOPortRead(pVM, pVCpu, pMsg->PortNumber, &uValue, pMsg->AccessInfo.AccessSize);
+ Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->PortNumber, pMsg->AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
+ if (IOM_SUCCESS(rcStrict))
+ {
+ if (pMsg->AccessInfo.AccessSize != 4)
+ pVCpu->cpum.GstCtx.rax = (pMsg->Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
+ else
+ pVCpu->cpum.GstCtx.rax = uValue;
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
+ Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pMsg->Rax, pVCpu->cpum.GstCtx.rax));
+ nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 1);
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.rax = pMsg->Rax;
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
+# ifdef IN_RING0
+ if ( rcStrict == VINF_IOM_R3_IOPORT_READ
+ && !pVCpu->cpum.GstCtx.rflags.Bits.u1TF
+ /** @todo check for debug breakpoints */ )
+ return EMRZSetPendingIoPortRead(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
+ pMsg->AccessInfo.AccessSize);
+# endif
+ }
+ }
+ }
+ else
+ {
+ /*
+ * String port I/O.
+ */
+ /** @todo Someone at Microsoft please explain how we can get the address mode
+ * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
+ * getting the default mode, it can always be overridden by a prefix. This
+ * forces us to interpret the instruction from opcodes, which is suboptimal.
+ * Both AMD-V and VT-x includes the address size in the exit info, at least on
+ * CPUs that are reasonably new.
+ *
+ * Of course, it's possible this is an undocumented and we just need to do some
+ * experiments to figure out how it's communicated. Alternatively, we can scan
+ * the opcode bytes for possible evil prefixes.
+ */
+ nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
+ pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
+ | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pMsg->EsSegment);
+ pVCpu->cpum.GstCtx.rax = pMsg->Rax;
+ pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
+ pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
+ pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
+# ifdef IN_RING0
+ rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+# else
+ int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
+ AssertRCReturn(rc, rc);
+ RT_NOREF(pGVCpu);
+# endif
+
+ Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->AccessInfo.RepPrefix ? "REP " : "",
+ pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUTS" : "INS",
+ pMsg->PortNumber, pMsg->AccessInfo.AccessSize ));
+ rcStrict = IEMExecOne(pVCpu);
+ }
+ if (IOM_SUCCESS(rcStrict))
+ {
+ /*
+ * Do debug checks.
+ */
+ if ( pMsg->Header.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
+ || (pMsg->Header.Rflags & X86_EFL_TF)
+ || DBGFBpIsHwIoArmed(pVM) )
+ {
+ /** @todo Debugging. */
+ }
+ }
+ return rcStrict;
+ }
+
+ /*
+ * Frequent exit or something needing probing.
+ * Get state and call EMHistoryExec.
+ */
+ nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
+ if (!pMsg->AccessInfo.StringOp)
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
+ else
+ {
+ pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
+ | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pMsg->EsSegment);
+ pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
+ pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
+ pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
+ }
+ pVCpu->cpum.GstCtx.rax = pMsg->Rax;
+
+# ifdef IN_RING0
+ rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+# else
+ int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
+ AssertRCReturn(rc, rc);
+ RT_NOREF(pGVCpu);
+# endif
+
+ Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->AccessInfo.RepPrefix ? "REP " : "",
+ pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUT" : "IN",
+ pMsg->AccessInfo.StringOp ? "S" : "",
+ pMsg->PortNumber, pMsg->AccessInfo.AccessSize));
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ return rcStrict;
+}
+#elif defined(IN_RING3)
+/**
+ * Deals with I/O port access exits (WHvRunVpExitReasonX64IoPortAccess).
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExit The VM exit information to handle.
+ * @sa nemHCWinHandleMessageIoPort
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitIoPort(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
+{
+ Assert( pExit->IoPortAccess.AccessInfo.AccessSize == 1
+ || pExit->IoPortAccess.AccessInfo.AccessSize == 2
+ || pExit->IoPortAccess.AccessInfo.AccessSize == 4);
+
+ /*
+ * Whatever we do, we must clear pending event injection upon resume.
+ */
+ if (pExit->VpContext.ExecutionState.InterruptionPending)
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
+
+ /*
+ * Add history first to avoid two paths doing EMHistoryExec calls.
+ */
+ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
+ !pExit->IoPortAccess.AccessInfo.StringOp
+ ? ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ))
+ : ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
+ if (!pExitRec)
+ {
+ VBOXSTRICTRC rcStrict;
+ if (!pExit->IoPortAccess.AccessInfo.StringOp)
+ {
+ /*
+ * Simple port I/O.
+ */
+ static uint32_t const s_fAndMask[8] =
+ { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
+ uint32_t const fAndMask = s_fAndMask[pExit->IoPortAccess.AccessInfo.AccessSize];
+ if (pExit->IoPortAccess.AccessInfo.IsWrite)
+ {
+ rcStrict = IOMIOPortWrite(pVM, pVCpu, pExit->IoPortAccess.PortNumber,
+ (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
+ pExit->IoPortAccess.AccessInfo.AccessSize);
+ Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->IoPortAccess.PortNumber, (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
+ pExit->IoPortAccess.AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
+ if (IOM_SUCCESS(rcStrict))
+ {
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
+ }
+ }
+ else
+ {
+ uint32_t uValue = 0;
+ rcStrict = IOMIOPortRead(pVM, pVCpu, pExit->IoPortAccess.PortNumber, &uValue,
+ pExit->IoPortAccess.AccessInfo.AccessSize);
+ Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
+ if (IOM_SUCCESS(rcStrict))
+ {
+ if (pExit->IoPortAccess.AccessInfo.AccessSize != 4)
+ pVCpu->cpum.GstCtx.rax = (pExit->IoPortAccess.Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
+ else
+ pVCpu->cpum.GstCtx.rax = uValue;
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
+ Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pExit->IoPortAccess.Rax, pVCpu->cpum.GstCtx.rax));
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
+ }
+ }
+ }
+ else
+ {
+ /*
+ * String port I/O.
+ */
+ /** @todo Someone at Microsoft please explain how we can get the address mode
+ * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
+ * getting the default mode, it can always be overridden by a prefix. This
+ * forces us to interpret the instruction from opcodes, which is suboptimal.
+ * Both AMD-V and VT-x includes the address size in the exit info, at least on
+ * CPUs that are reasonably new.
+ *
+ * Of course, it's possible this is an undocumented and we just need to do some
+ * experiments to figure out how it's communicated. Alternatively, we can scan
+ * the opcode bytes for possible evil prefixes.
+ */
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
+ | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
+ pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
+ pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
+ pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
+ pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
+ int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
+ AssertRCReturn(rc, rc);
+
+ Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
+ pExit->IoPortAccess.AccessInfo.IsWrite ? "OUTS" : "INS",
+ pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize ));
+ rcStrict = IEMExecOne(pVCpu);
+ }
+ if (IOM_SUCCESS(rcStrict))
+ {
+ /*
+ * Do debug checks.
+ */
+ if ( pExit->VpContext.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
+ || (pExit->VpContext.Rflags & X86_EFL_TF)
+ || DBGFBpIsHwIoArmed(pVM) )
+ {
+ /** @todo Debugging. */
+ }
+ }
+ return rcStrict;
+ }
+
+ /*
+ * Frequent exit or something needing probing.
+ * Get state and call EMHistoryExec.
+ */
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ if (!pExit->IoPortAccess.AccessInfo.StringOp)
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
+ else
+ {
+ pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
+ | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
+ pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
+ pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
+ pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
+ }
+ pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
+ int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
+ AssertRCReturn(rc, rc);
+ Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
+ pExit->IoPortAccess.AccessInfo.IsWrite ? "OUT" : "IN",
+ pExit->IoPortAccess.AccessInfo.StringOp ? "S" : "",
+ pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize));
+ VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ return rcStrict;
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Deals with interrupt window message.
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pMsg The message.
+ * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
+ * @sa nemR3WinHandleExitInterruptWindow
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC
+nemHCWinHandleMessageInterruptWindow(PVM pVM, PVMCPU pVCpu, HV_X64_INTERRUPT_WINDOW_MESSAGE const *pMsg, PGVMCPU pGVCpu)
+{
+ /*
+ * Assert message sanity.
+ */
+ Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE
+ || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ // READ & WRITE are probably not used here
+ || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
+ AssertMsg(pMsg->Type == HvX64PendingInterrupt || pMsg->Type == HvX64PendingNmi, ("%#x\n", pMsg->Type));
+
+ /*
+ * Just copy the state we've got and handle it in the loop for now.
+ */
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
+ pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
+
+ nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
+ Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->Type, RT_BOOL(pMsg->Header.Rflags & X86_EFL_IF), pMsg->Header.ExecutionState.InterruptShadow));
+
+ /** @todo call nemHCWinHandleInterruptFF */
+ RT_NOREF(pVM, pGVCpu);
+ return VINF_SUCCESS;
+}
+#elif defined(IN_RING3)
+/**
+ * Deals with interrupt window exits (WHvRunVpExitReasonX64InterruptWindow).
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExit The VM exit information to handle.
+ * @sa nemHCWinHandleMessageInterruptWindow
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitInterruptWindow(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
+{
+ /*
+ * Assert message sanity.
+ */
+ AssertMsg( pExit->InterruptWindow.DeliverableType == WHvX64PendingInterrupt
+ || pExit->InterruptWindow.DeliverableType == WHvX64PendingNmi,
+ ("%#x\n", pExit->InterruptWindow.DeliverableType));
+
+ /*
+ * Just copy the state we've got and handle it in the loop for now.
+ */
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
+
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->InterruptWindow.DeliverableType, RT_BOOL(pExit->VpContext.Rflags & X86_EFL_IF),
+ pExit->VpContext.ExecutionState.InterruptShadow));
+
+ /** @todo call nemHCWinHandleInterruptFF */
+ RT_NOREF(pVM);
+ return VINF_SUCCESS;
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Deals with CPUID intercept message.
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pMsg The message.
+ * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
+ * @sa nemR3WinHandleExitCpuId
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageCpuId(PVM pVM, PVMCPU pVCpu, HV_X64_CPUID_INTERCEPT_MESSAGE const *pMsg,
+ PGVMCPU pGVCpu)
+{
+ /* Check message register value sanity. */
+ NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRcx, pMsg->Rcx);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdx, pMsg->Rdx);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRbx, pMsg->Rbx);
+
+ /* Do exit history. */
+ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID),
+ pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
+ if (!pExitRec)
+ {
+ /*
+ * Soak up state and execute the instruction.
+ *
+ * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
+ * function and make everyone use it.
+ */
+ /** @todo Combine implementations into IEMExecDecodedCpuId as this will
+ * only get weirder with nested VT-x and AMD-V support. */
+ nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
+
+ /* Copy in the low register values (top is always cleared). */
+ pVCpu->cpum.GstCtx.rax = (uint32_t)pMsg->Rax;
+ pVCpu->cpum.GstCtx.rcx = (uint32_t)pMsg->Rcx;
+ pVCpu->cpum.GstCtx.rdx = (uint32_t)pMsg->Rdx;
+ pVCpu->cpum.GstCtx.rbx = (uint32_t)pMsg->Rbx;
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
+
+ /* Get the correct values. */
+ CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
+ &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
+
+ Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->Rax, pMsg->Rcx, pMsg->Rdx, pMsg->Rbx,
+ pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx,
+ pMsg->DefaultResultRax, pMsg->DefaultResultRcx, pMsg->DefaultResultRdx, pMsg->DefaultResultRbx));
+
+ /* Move RIP and we're done. */
+ nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
+
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Frequent exit or something needing probing.
+ * Get state and call EMHistoryExec.
+ */
+ nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
+ pVCpu->cpum.GstCtx.rax = pMsg->Rax;
+ pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
+ pVCpu->cpum.GstCtx.rdx = pMsg->Rdx;
+ pVCpu->cpum.GstCtx.rbx = pMsg->Rbx;
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
+ Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->Rax, pMsg->Rcx, pMsg->Rdx, pMsg->Rbx,
+ pMsg->DefaultResultRax, pMsg->DefaultResultRcx, pMsg->DefaultResultRdx, pMsg->DefaultResultRbx));
+# ifdef IN_RING0
+ VBOXSTRICTRC rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "CpuIdExit");
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ RT_NOREF(pVM);
+# else
+ int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
+ AssertRCReturn(rc, rc);
+ RT_NOREF(pGVCpu);
+# endif
+ VBOXSTRICTRC rcStrictExec = EMHistoryExec(pVCpu, pExitRec, 0);
+ Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ VBOXSTRICTRC_VAL(rcStrictExec), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ return rcStrictExec;
+}
+#elif defined(IN_RING3)
+/**
+ * Deals with CPUID exits (WHvRunVpExitReasonX64Cpuid).
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExit The VM exit information to handle.
+ * @sa nemHCWinHandleMessageCpuId
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC
+nemR3WinHandleExitCpuId(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
+{
+ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
+ if (!pExitRec)
+ {
+ /*
+ * Soak up state and execute the instruction.
+ *
+ * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
+ * function and make everyone use it.
+ */
+ /** @todo Combine implementations into IEMExecDecodedCpuId as this will
+ * only get weirder with nested VT-x and AMD-V support. */
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+
+ /* Copy in the low register values (top is always cleared). */
+ pVCpu->cpum.GstCtx.rax = (uint32_t)pExit->CpuidAccess.Rax;
+ pVCpu->cpum.GstCtx.rcx = (uint32_t)pExit->CpuidAccess.Rcx;
+ pVCpu->cpum.GstCtx.rdx = (uint32_t)pExit->CpuidAccess.Rdx;
+ pVCpu->cpum.GstCtx.rbx = (uint32_t)pExit->CpuidAccess.Rbx;
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
+
+ /* Get the correct values. */
+ CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
+ &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
+
+ Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
+ pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx,
+ pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
+
+ /* Move RIP and we're done. */
+ nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
+
+ RT_NOREF_PV(pVM);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Frequent exit or something needing probing.
+ * Get state and call EMHistoryExec.
+ */
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ pVCpu->cpum.GstCtx.rax = pExit->CpuidAccess.Rax;
+ pVCpu->cpum.GstCtx.rcx = pExit->CpuidAccess.Rcx;
+ pVCpu->cpum.GstCtx.rdx = pExit->CpuidAccess.Rdx;
+ pVCpu->cpum.GstCtx.rbx = pExit->CpuidAccess.Rbx;
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
+ Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
+ pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
+ int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
+ AssertRCReturn(rc, rc);
+ VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ return rcStrict;
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Deals with MSR intercept message.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pMsg The message.
+ * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
+ * @sa nemR3WinHandleExitMsr
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageMsr(PVMCPU pVCpu, HV_X64_MSR_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
+{
+ /*
+ * A wee bit of sanity first.
+ */
+ Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
+ || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
+ NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdx, pMsg->Rdx);
+
+ /*
+ * Check CPL as that's common to both RDMSR and WRMSR.
+ */
+ VBOXSTRICTRC rcStrict;
+ if (pMsg->Header.ExecutionState.Cpl == 0)
+ {
+ /*
+ * Get all the MSR state. Since we're getting EFER, we also need to
+ * get CR0, CR4 and CR3.
+ */
+ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
+ pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
+ pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
+
+ nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
+ rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
+ (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK)
+ | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
+ | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
+ "MSRs");
+ if (rcStrict == VINF_SUCCESS)
+ {
+ if (!pExitRec)
+ {
+ /*
+ * Handle writes.
+ */
+ if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
+ {
+ rcStrict = CPUMSetGuestMsr(pVCpu, pMsg->MsrNumber, RT_MAKE_U64((uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx));
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
+ if (rcStrict == VINF_SUCCESS)
+ {
+ nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
+ return VINF_SUCCESS;
+ }
+# ifndef IN_RING3
+ /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
+ if (rcStrict == VERR_CPUM_RAISE_GP_0)
+ rcStrict = VINF_CPUM_R3_MSR_WRITE;
+ return rcStrict;
+# else
+ LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
+# endif
+ }
+ /*
+ * Handle reads.
+ */
+ else
+ {
+ uint64_t uValue = 0;
+ rcStrict = CPUMQueryGuestMsr(pVCpu, pMsg->MsrNumber, &uValue);
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.rax = (uint32_t)uValue;
+ pVCpu->cpum.GstCtx.rdx = uValue >> 32;
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
+ nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
+ return VINF_SUCCESS;
+ }
+# ifndef IN_RING3
+ /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
+ if (rcStrict == VERR_CPUM_RAISE_GP_0)
+ rcStrict = VINF_CPUM_R3_MSR_READ;
+ return rcStrict;
+# else
+ LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
+# endif
+ }
+ }
+ else
+ {
+ /*
+ * Handle frequent exit or something needing probing.
+ */
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "WR" : "RD", pMsg->MsrNumber));
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ return rcStrict;
+ }
+ }
+ else
+ {
+ LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "WR" : "RD",
+ pMsg->MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
+ return rcStrict;
+ }
+ }
+ else if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx ));
+ else
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber));
+
+ /*
+ * If we get down here, we're supposed to #GP(0).
+ */
+ rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
+ if (rcStrict == VINF_SUCCESS)
+ {
+ rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ rcStrict = VINF_SUCCESS;
+ else if (rcStrict != VINF_SUCCESS)
+ Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ return rcStrict;
+}
+#elif defined(IN_RING3)
+/**
+ * Deals with MSR access exits (WHvRunVpExitReasonX64MsrAccess).
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExit The VM exit information to handle.
+ * @sa nemHCWinHandleMessageMsr
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitMsr(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
+{
+ /*
+ * Check CPL as that's common to both RDMSR and WRMSR.
+ */
+ VBOXSTRICTRC rcStrict;
+ if (pExit->VpContext.ExecutionState.Cpl == 0)
+ {
+ /*
+ * Get all the MSR state. Since we're getting EFER, we also need to
+ * get CR0, CR4 and CR3.
+ */
+ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
+ pExit->MsrAccess.AccessInfo.IsWrite
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL,
+ (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK)
+ | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
+ | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
+ "MSRs");
+ if (rcStrict == VINF_SUCCESS)
+ {
+ if (!pExitRec)
+ {
+ /*
+ * Handle writes.
+ */
+ if (pExit->MsrAccess.AccessInfo.IsWrite)
+ {
+ rcStrict = CPUMSetGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber,
+ RT_MAKE_U64((uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx));
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
+ (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
+ if (rcStrict == VINF_SUCCESS)
+ {
+ nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
+ return VINF_SUCCESS;
+ }
+ LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n", pVCpu->idCpu,
+ pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx,
+ VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ /*
+ * Handle reads.
+ */
+ else
+ {
+ uint64_t uValue = 0;
+ rcStrict = CPUMQueryGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber, &uValue);
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu,
+ pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->MsrAccess.MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pVCpu->cpum.GstCtx.rax = (uint32_t)uValue;
+ pVCpu->cpum.GstCtx.rdx = uValue >> 32;
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
+ nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
+ return VINF_SUCCESS;
+ }
+ LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
+ uValue, VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ }
+ else
+ {
+ /*
+ * Handle frequent exit or something needing probing.
+ */
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber));
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ return rcStrict;
+ }
+ }
+ else
+ {
+ LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
+ return rcStrict;
+ }
+ }
+ else if (pExit->MsrAccess.AccessInfo.IsWrite)
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
+ pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx ));
+ else
+ Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
+ pExit->MsrAccess.MsrNumber));
+
+ /*
+ * If we get down here, we're supposed to #GP(0).
+ */
+ rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL,
+ NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
+ if (rcStrict == VINF_SUCCESS)
+ {
+ rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ rcStrict = VINF_SUCCESS;
+ else if (rcStrict != VINF_SUCCESS)
+ Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+
+ RT_NOREF_PV(pVM);
+ return rcStrict;
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+/**
+ * Worker for nemHCWinHandleMessageException & nemR3WinHandleExitException that
+ * checks if the given opcodes are of interest at all.
+ *
+ * @returns true if interesting, false if not.
+ * @param cbOpcodes Number of opcode bytes available.
+ * @param pbOpcodes The opcode bytes.
+ * @param f64BitMode Whether we're in 64-bit mode.
+ */
+DECLINLINE(bool) nemHcWinIsInterestingUndefinedOpcode(uint8_t cbOpcodes, uint8_t const *pbOpcodes, bool f64BitMode)
+{
+ /*
+ * Currently only interested in VMCALL and VMMCALL.
+ */
+ while (cbOpcodes >= 3)
+ {
+ switch (pbOpcodes[0])
+ {
+ case 0x0f:
+ switch (pbOpcodes[1])
+ {
+ case 0x01:
+ switch (pbOpcodes[2])
+ {
+ case 0xc1: /* 0f 01 c1 VMCALL */
+ return true;
+ case 0xd9: /* 0f 01 d9 VMMCALL */
+ return true;
+ default:
+ break;
+ }
+ break;
+ }
+ break;
+
+ default:
+ return false;
+
+ /* prefixes */
+ case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
+ case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
+ if (!f64BitMode)
+ return false;
+ RT_FALL_THRU();
+ case X86_OP_PRF_CS:
+ case X86_OP_PRF_SS:
+ case X86_OP_PRF_DS:
+ case X86_OP_PRF_ES:
+ case X86_OP_PRF_FS:
+ case X86_OP_PRF_GS:
+ case X86_OP_PRF_SIZE_OP:
+ case X86_OP_PRF_SIZE_ADDR:
+ case X86_OP_PRF_LOCK:
+ case X86_OP_PRF_REPZ:
+ case X86_OP_PRF_REPNZ:
+ cbOpcodes--;
+ pbOpcodes++;
+ continue;
+ }
+ break;
+ }
+ return false;
+}
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Copies state included in a exception intercept message.
+ *
+ * @param pVCpu The cross context per CPU structure.
+ * @param pMsg The message.
+ * @param fClearXcpt Clear pending exception.
+ */
+DECLINLINE(void)
+nemHCWinCopyStateFromExceptionMessage(PVMCPU pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg, bool fClearXcpt)
+{
+ nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
+ pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_GPRS_MASK | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_DS
+ | (fClearXcpt ? CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT : 0) );
+ pVCpu->cpum.GstCtx.rax = pMsg->Rax;
+ pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
+ pVCpu->cpum.GstCtx.rdx = pMsg->Rdx;
+ pVCpu->cpum.GstCtx.rbx = pMsg->Rbx;
+ pVCpu->cpum.GstCtx.rsp = pMsg->Rsp;
+ pVCpu->cpum.GstCtx.rbp = pMsg->Rbp;
+ pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
+ pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
+ pVCpu->cpum.GstCtx.r8 = pMsg->R8;
+ pVCpu->cpum.GstCtx.r9 = pMsg->R9;
+ pVCpu->cpum.GstCtx.r10 = pMsg->R10;
+ pVCpu->cpum.GstCtx.r11 = pMsg->R11;
+ pVCpu->cpum.GstCtx.r12 = pMsg->R12;
+ pVCpu->cpum.GstCtx.r13 = pMsg->R13;
+ pVCpu->cpum.GstCtx.r14 = pMsg->R14;
+ pVCpu->cpum.GstCtx.r15 = pMsg->R15;
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
+ NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ss, pMsg->SsSegment);
+}
+#elif defined(IN_RING3)
+/**
+ * Copies state included in a exception intercept exit.
+ *
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExit The VM exit information.
+ * @param fClearXcpt Clear pending exception.
+ */
+DECLINLINE(void) nemR3WinCopyStateFromExceptionMessage(PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, bool fClearXcpt)
+{
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ if (fClearXcpt)
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Deals with exception intercept message (HvMessageTypeX64ExceptionIntercept).
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pMsg The message.
+ * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
+ * @sa nemR3WinHandleExitMsr
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC
+nemHCWinHandleMessageException(PVMCPU pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
+{
+ /*
+ * Assert sanity.
+ */
+ Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
+ || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
+ || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
+ NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
+ NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterDs, pMsg->DsSegment);
+ NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterSs, pMsg->SsSegment);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRcx, pMsg->Rcx);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdx, pMsg->Rdx);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRbx, pMsg->Rbx);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRsp, pMsg->Rsp);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRbp, pMsg->Rbp);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRsi, pMsg->Rsi);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdi, pMsg->Rdi);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR8, pMsg->R8);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR9, pMsg->R9);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR10, pMsg->R10);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR11, pMsg->R11);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR12, pMsg->R12);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR13, pMsg->R13);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR14, pMsg->R14);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR15, pMsg->R15);
+
+ /*
+ * Get most of the register state since we'll end up making IEM inject the
+ * event. The exception isn't normally flaged as a pending event, so duh.
+ *
+ * Note! We can optimize this later with event injection.
+ */
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
+ pMsg->ExceptionVector, pMsg->ErrorCode, pMsg->ExceptionParameter));
+ nemHCWinCopyStateFromExceptionMessage(pVCpu, pMsg, true /*fClearXcpt*/);
+ uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
+ if (pMsg->ExceptionVector == X86_XCPT_DB)
+ fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
+ VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, fWhat, "Xcpt");
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Handle the intercept.
+ */
+ TRPMEVENT enmEvtType = TRPM_TRAP;
+ switch (pMsg->ExceptionVector)
+ {
+ /*
+ * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
+ * and need to turn them over to GIM.
+ *
+ * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
+ * #UD for handling non-native hypercall instructions. (IEM will
+ * decode both and let the GIM provider decide whether to accept it.)
+ */
+ case X86_XCPT_UD:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD),
+ pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
+
+ if (nemHcWinIsInterestingUndefinedOpcode(pMsg->InstructionByteCount, pMsg->InstructionBytes,
+ pMsg->Header.ExecutionState.EferLma && pMsg->Header.CsSegment.Long ))
+ {
+ rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pMsg->Header.Rip,
+ pMsg->InstructionBytes, pMsg->InstructionByteCount);
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
+ nemHCWinExecStateToLogStr(&pMsg->Header), VBOXSTRICTRC_VAL(rcStrict) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
+ return rcStrict;
+ }
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
+ pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->InstructionByteCount, pMsg->InstructionBytes ));
+ break;
+
+ /*
+ * Filter debug exceptions.
+ */
+ case X86_XCPT_DB:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB),
+ pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header) ));
+ break;
+
+ case X86_XCPT_BP:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP),
+ pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
+ pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->Header.InstructionLength));
+ enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
+ break;
+
+ /* This shouldn't happen. */
+ default:
+ AssertLogRelMsgFailedReturn(("ExceptionVector=%#x\n", pMsg->ExceptionVector), VERR_IEM_IPE_6);
+ }
+
+ /*
+ * Inject it.
+ */
+ rcStrict = IEMInjectTrap(pVCpu, pMsg->ExceptionVector, enmEvtType, pMsg->ErrorCode,
+ pMsg->ExceptionParameter /*??*/, pMsg->Header.InstructionLength);
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
+ pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
+ nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->ExceptionVector, VBOXSTRICTRC_VAL(rcStrict) ));
+ return rcStrict;
+}
+#elif defined(IN_RING3)
+/**
+ * Deals with MSR access exits (WHvRunVpExitReasonException).
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExit The VM exit information to handle.
+ * @sa nemR3WinHandleExitException
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitException(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
+{
+ /*
+ * Get most of the register state since we'll end up making IEM inject the
+ * event. The exception isn't normally flaged as a pending event, so duh.
+ *
+ * Note! We can optimize this later with event injection.
+ */
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType,
+ pExit->VpException.ErrorCode, pExit->VpException.ExceptionParameter ));
+ nemR3WinCopyStateFromExceptionMessage(pVCpu, pExit, true /*fClearXcpt*/);
+ uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
+ if (pExit->VpException.ExceptionType == X86_XCPT_DB)
+ fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
+ VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL, fWhat, "Xcpt");
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+
+ /*
+ * Handle the intercept.
+ */
+ TRPMEVENT enmEvtType = TRPM_TRAP;
+ switch (pExit->VpException.ExceptionType)
+ {
+ /*
+ * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
+ * and need to turn them over to GIM.
+ *
+ * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
+ * #UD for handling non-native hypercall instructions. (IEM will
+ * decode both and let the GIM provider decide whether to accept it.)
+ */
+ case X86_XCPT_UD:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
+ if (nemHcWinIsInterestingUndefinedOpcode(pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes,
+ pExit->VpContext.ExecutionState.EferLma && pExit->VpContext.Cs.Long ))
+ {
+ rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pExit->VpContext.Rip,
+ pExit->VpException.InstructionBytes,
+ pExit->VpException.InstructionByteCount);
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
+ nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
+ return rcStrict;
+ }
+
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu,
+ pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
+ pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes ));
+ break;
+
+ /*
+ * Filter debug exceptions.
+ */
+ case X86_XCPT_DB:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext) ));
+ break;
+
+ case X86_XCPT_BP:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.InstructionLength));
+ enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
+ break;
+
+ /* This shouldn't happen. */
+ default:
+ AssertLogRelMsgFailedReturn(("ExceptionType=%#x\n", pExit->VpException.ExceptionType), VERR_IEM_IPE_6);
+ }
+
+ /*
+ * Inject it.
+ */
+ rcStrict = IEMInjectTrap(pVCpu, pExit->VpException.ExceptionType, enmEvtType, pExit->VpException.ErrorCode,
+ pExit->VpException.ExceptionParameter /*??*/, pExit->VpContext.InstructionLength);
+ Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
+ pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
+ nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType, VBOXSTRICTRC_VAL(rcStrict) ));
+
+ RT_NOREF_PV(pVM);
+ return rcStrict;
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Deals with unrecoverable exception (triple fault).
+ *
+ * Seen WRMSR 0x201 (IA32_MTRR_PHYSMASK0) writes from grub / debian9 ending up
+ * here too. So we'll leave it to IEM to decide.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pMsgHdr The message header.
+ * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
+ * @sa nemR3WinHandleExitUnrecoverableException
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC
+nemHCWinHandleMessageUnrecoverableException(PVMCPU pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr, PGVMCPU pGVCpu)
+{
+ /* Check message register value sanity. */
+ NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsgHdr->CsSegment);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsgHdr->Rip);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsgHdr->Rflags);
+ NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsgHdr->Cr8);
+
+# if 0
+ /*
+ * Just copy the state we've got and handle it in the loop for now.
+ */
+ nemHCWinCopyStateFromX64Header(pVCpu, pMsgHdr);
+ Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n",
+ pVCpu->idCpu, pMsgHdr->CsSegment.Selector, pMsgHdr->Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsgHdr->Rflags));
+ return VINF_EM_TRIPLE_FAULT;
+# else
+ /*
+ * Let IEM decide whether this is really it.
+ */
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION),
+ pMsgHdr->Rip + pMsgHdr->CsSegment.Base, ASMReadTSC());
+ nemHCWinCopyStateFromX64Header(pVCpu, pMsgHdr);
+ VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
+ NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
+ if (rcStrict == VINF_SUCCESS)
+ {
+ rcStrict = IEMExecOne(pVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
+ pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags ));
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
+ return VINF_SUCCESS;
+ }
+ if (rcStrict == VINF_EM_TRIPLE_FAULT)
+ Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
+ pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
+ else
+ Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
+ pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ else
+ Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
+ pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
+ return rcStrict;
+# endif
+}
+#elif defined(IN_RING3)
+/**
+ * Deals with MSR access exits (WHvRunVpExitReasonUnrecoverableException).
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExit The VM exit information to handle.
+ * @sa nemHCWinHandleMessageUnrecoverableException
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitUnrecoverableException(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
+{
+# if 0
+ /*
+ * Just copy the state we've got and handle it in the loop for now.
+ */
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
+ RT_NOREF_PV(pVM);
+ return VINF_EM_TRIPLE_FAULT;
+# else
+ /*
+ * Let IEM decide whether this is really it.
+ */
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
+ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
+ VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL,
+ NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
+ if (rcStrict == VINF_SUCCESS)
+ {
+ rcStrict = IEMExecOne(pVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
+ return VINF_SUCCESS;
+ }
+ if (rcStrict == VINF_EM_TRIPLE_FAULT)
+ Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
+ else
+ Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ else
+ Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
+ pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
+ RT_NOREF_PV(pVM);
+ return rcStrict;
+# endif
+
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Handles messages (VM exits).
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pMappingHeader The message slot mapping.
+ * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
+ * @sa nemR3WinHandleExit
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC
+nemHCWinHandleMessage(PVM pVM, PVMCPU pVCpu, VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader, PGVMCPU pGVCpu)
+{
+ if (pMappingHeader->enmVidMsgType == VidMessageHypervisorMessage)
+ {
+ AssertMsg(pMappingHeader->cbMessage == HV_MESSAGE_SIZE, ("%#x\n", pMappingHeader->cbMessage));
+ HV_MESSAGE const *pMsg = (HV_MESSAGE const *)(pMappingHeader + 1);
+ switch (pMsg->Header.MessageType)
+ {
+ case HvMessageTypeUnmappedGpa:
+ Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
+ return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pGVCpu);
+
+ case HvMessageTypeGpaIntercept:
+ Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemIntercept);
+ return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pGVCpu);
+
+ case HvMessageTypeX64IoPortIntercept:
+ Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64IoPortIntercept));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
+ return nemHCWinHandleMessageIoPort(pVM, pVCpu, &pMsg->X64IoPortIntercept, pGVCpu);
+
+ case HvMessageTypeX64Halt:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
+ pMsg->X64InterceptHeader.Rip + pMsg->X64InterceptHeader.CsSegment.Base, ASMReadTSC());
+ Log4(("HaltExit\n"));
+ return VINF_EM_HALT;
+
+ case HvMessageTypeX64InterruptWindow:
+ Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterruptWindow));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
+ return nemHCWinHandleMessageInterruptWindow(pVM, pVCpu, &pMsg->X64InterruptWindow, pGVCpu);
+
+ case HvMessageTypeX64CpuidIntercept:
+ Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64CpuIdIntercept));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
+ return nemHCWinHandleMessageCpuId(pVM, pVCpu, &pMsg->X64CpuIdIntercept, pGVCpu);
+
+ case HvMessageTypeX64MsrIntercept:
+ Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64MsrIntercept));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
+ return nemHCWinHandleMessageMsr(pVCpu, &pMsg->X64MsrIntercept, pGVCpu);
+
+ case HvMessageTypeX64ExceptionIntercept:
+ Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64ExceptionIntercept));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
+ return nemHCWinHandleMessageException(pVCpu, &pMsg->X64ExceptionIntercept, pGVCpu);
+
+ case HvMessageTypeUnrecoverableException:
+ Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterceptHeader));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
+ return nemHCWinHandleMessageUnrecoverableException(pVCpu, &pMsg->X64InterceptHeader, pGVCpu);
+
+ case HvMessageTypeInvalidVpRegisterValue:
+ case HvMessageTypeUnsupportedFeature:
+ case HvMessageTypeTlbPageSizeMismatch:
+ LogRel(("Unimplemented msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
+ AssertLogRelMsgFailedReturn(("Message type %#x not implemented!\n%.32Rhxd\n", pMsg->Header.MessageType, pMsg),
+ VERR_NEM_IPE_3);
+
+ case HvMessageTypeX64ApicEoi:
+ case HvMessageTypeX64LegacyFpError:
+ case HvMessageTypeX64RegisterIntercept:
+ case HvMessageTypeApicEoi:
+ case HvMessageTypeFerrAsserted:
+ case HvMessageTypeEventLogBufferComplete:
+ case HvMessageTimerExpired:
+ LogRel(("Unexpected msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
+ AssertLogRelMsgFailedReturn(("Unexpected message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
+ VERR_NEM_IPE_3);
+
+ default:
+ LogRel(("Unknown msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
+ AssertLogRelMsgFailedReturn(("Unknown message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
+ VERR_NEM_IPE_3);
+ }
+ }
+ else
+ AssertLogRelMsgFailedReturn(("Unexpected VID message type on CPU #%u: %#x LB %u\n",
+ pVCpu->idCpu, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage),
+ VERR_NEM_IPE_4);
+}
+#elif defined(IN_RING3)
+/**
+ * Handles VM exits.
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pExit The VM exit information to handle.
+ * @sa nemHCWinHandleMessage
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExit(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
+{
+ switch (pExit->ExitReason)
+ {
+ case WHvRunVpExitReasonMemoryAccess:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
+ return nemR3WinHandleExitMemory(pVM, pVCpu, pExit);
+
+ case WHvRunVpExitReasonX64IoPortAccess:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
+ return nemR3WinHandleExitIoPort(pVM, pVCpu, pExit);
+
+ case WHvRunVpExitReasonX64Halt:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
+ pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
+ Log4(("HaltExit\n"));
+ return VINF_EM_HALT;
+
+ case WHvRunVpExitReasonCanceled:
+ return VINF_SUCCESS;
+
+ case WHvRunVpExitReasonX64InterruptWindow:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
+ return nemR3WinHandleExitInterruptWindow(pVM, pVCpu, pExit);
+
+ case WHvRunVpExitReasonX64Cpuid:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
+ return nemR3WinHandleExitCpuId(pVM, pVCpu, pExit);
+
+ case WHvRunVpExitReasonX64MsrAccess:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
+ return nemR3WinHandleExitMsr(pVM, pVCpu, pExit);
+
+ case WHvRunVpExitReasonException:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
+ return nemR3WinHandleExitException(pVM, pVCpu, pExit);
+
+ case WHvRunVpExitReasonUnrecoverableException:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
+ return nemR3WinHandleExitUnrecoverableException(pVM, pVCpu, pExit);
+
+ case WHvRunVpExitReasonUnsupportedFeature:
+ case WHvRunVpExitReasonInvalidVpRegisterValue:
+ LogRel(("Unimplemented exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
+ AssertLogRelMsgFailedReturn(("Unexpected exit on CPU #%u: %#x\n%.32Rhxd\n",
+ pVCpu->idCpu, pExit->ExitReason, pExit), VERR_NEM_IPE_3);
+
+ /* Undesired exits: */
+ case WHvRunVpExitReasonNone:
+ default:
+ LogRel(("Unknown exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
+ AssertLogRelMsgFailedReturn(("Unknown exit on CPU #%u: %#x!\n", pVCpu->idCpu, pExit->ExitReason), VERR_NEM_IPE_3);
+ }
+}
+#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+
+#ifdef IN_RING0
+/**
+ * Perform an I/O control operation on the partition handle (VID.SYS),
+ * restarting on alert-like behaviour.
+ *
+ * @returns NT status code.
+ * @param pGVM The ring-0 VM structure.
+ * @param pGVCpu The ring-0 CPU structure.
+ * @param pVCpu The calling cross context CPU structure.
+ * @param fFlags The wait flags.
+ * @param cMillies The timeout in milliseconds
+ */
+static NTSTATUS nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(PGVM pGVM, PGVMCPU pGVCpu, PVMCPU pVCpu,
+ uint32_t fFlags, uint32_t cMillies)
+{
+ pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
+ pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = fFlags;
+ pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
+ NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
+ &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
+ pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.cbInput,
+ NULL, 0);
+ if (rcNt == STATUS_SUCCESS)
+ { /* likely */ }
+ /*
+ * Generally, if we get down here, we have been interrupted between ACK'ing
+ * a message and waiting for the next due to a NtAlertThread call. So, we
+ * should stop ACK'ing the previous message and get on waiting on the next.
+ * See similar stuff in nemHCWinRunGC().
+ */
+ else if ( rcNt == STATUS_TIMEOUT
+ || rcNt == STATUS_ALERTED /* just in case */
+ || rcNt == STATUS_KERNEL_APC /* just in case */
+ || rcNt == STATUS_USER_APC /* just in case */)
+ {
+ DBGFTRACE_CUSTOM(pVCpu->CTX_SUFF(pVM), "IoCtlMessageSlotHandleAndGetNextRestart/1 %#x (f=%#x)", rcNt, fFlags);
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPendingAlerts);
+ Assert(fFlags & VID_MSHAGN_F_GET_NEXT_MESSAGE);
+
+ pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pVCpu->idCpu;
+ pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = fFlags & ~VID_MSHAGN_F_HANDLE_MESSAGE;
+ pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
+ rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
+ &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
+ pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.cbInput,
+ NULL, 0);
+ DBGFTRACE_CUSTOM(pVCpu->CTX_SUFF(pVM), "IoCtlMessageSlotHandleAndGetNextRestart/2 %#x", rcNt);
+ }
+ return rcNt;
+}
+
+#endif /* IN_RING0 */
+
+
+#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+/**
+ * Worker for nemHCWinRunGC that stops the execution on the way out.
+ *
+ * The CPU was running the last time we checked, no there are no messages that
+ * needs being marked handled/whatever. Caller checks this.
+ *
+ * @returns rcStrict on success, error status on failure.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param rcStrict The nemHCWinRunGC return status. This is a little
+ * bit unnecessary, except in internal error cases,
+ * since we won't need to stop the CPU if we took an
+ * exit.
+ * @param pMappingHeader The message slot mapping.
+ * @param pGVM The global (ring-0) VM structure (NULL in r3).
+ * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinStopCpu(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict,
+ VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader,
+ PGVM pGVM, PGVMCPU pGVCpu)
+{
+# ifdef DBGFTRACE_ENABLED
+ HV_MESSAGE const volatile *pMsgForTrace = (HV_MESSAGE const volatile *)(pMappingHeader + 1);
+# endif
+
+ /*
+ * Try stopping the processor. If we're lucky we manage to do this before it
+ * does another VM exit.
+ */
+ DBGFTRACE_CUSTOM(pVM, "nemStop#0");
+# ifdef IN_RING0
+ pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
+ NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStopVirtualProcessor.uFunction,
+ &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
+ NULL, 0);
+ if (NT_SUCCESS(rcNt))
+ {
+ DBGFTRACE_CUSTOM(pVM, "nemStop#0: okay (%#x)", rcNt);
+ Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
+ return rcStrict;
+ }
+# else
+ BOOL fRet = VidStopVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu);
+ if (fRet)
+ {
+ DBGFTRACE_CUSTOM(pVM, "nemStop#0: okay");
+ Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
+ return rcStrict;
+ }
+ RT_NOREF(pGVM, pGVCpu);
+# endif
+
+ /*
+ * Dang. The CPU stopped by itself and we got a couple of message to deal with.
+ */
+# ifdef IN_RING0
+ DBGFTRACE_CUSTOM(pVM, "nemStop#0: pending (%#x)", rcNt);
+ AssertLogRelMsgReturn(rcNt == ERROR_VID_STOP_PENDING, ("rcNt=%#x\n", rcNt),
+ RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
+# else
+ DWORD dwErr = RTNtLastErrorValue();
+ DBGFTRACE_CUSTOM(pVM, "nemStop#0: pending (%#x)", dwErr);
+ AssertLogRelMsgReturn(dwErr == ERROR_VID_STOP_PENDING, ("dwErr=%#u (%#x)\n", dwErr, dwErr),
+ RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
+# endif
+ Log8(("nemHCWinStopCpu: Stopping CPU #%u pending...\n", pVCpu->idCpu));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPending);
+
+ /*
+ * First message: Exit or similar, sometimes VidMessageStopRequestComplete.
+ * Note! We can safely ASSUME that rcStrict isn't an important information one.
+ */
+# ifdef IN_RING0
+ rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pGVM, pGVCpu, pVCpu, VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
+ DBGFTRACE_CUSTOM(pVM, "nemStop#1: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage,
+ pMsgForTrace->Header.MessageType);
+ AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
+ ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
+ RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
+# else
+ BOOL fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
+ VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
+ DBGFTRACE_CUSTOM(pVM, "nemStop#1: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
+ pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
+ AssertLogRelMsgReturn(fWait, ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
+ RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
+# endif
+
+ VID_MESSAGE_TYPE enmVidMsgType = pMappingHeader->enmVidMsgType;
+ if (enmVidMsgType != VidMessageStopRequestComplete)
+ {
+ VBOXSTRICTRC rcStrict2 = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, pGVCpu);
+ if (rcStrict2 != VINF_SUCCESS && RT_SUCCESS(rcStrict))
+ rcStrict = rcStrict2;
+ DBGFTRACE_CUSTOM(pVM, "nemStop#1: handled %#x -> %d", pMsgForTrace->Header.MessageType, VBOXSTRICTRC_VAL(rcStrict));
+
+ /*
+ * Mark it as handled and get the stop request completed message, then mark
+ * that as handled too. CPU is back into fully stopped stated then.
+ */
+# ifdef IN_RING0
+ rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pGVM, pGVCpu, pVCpu,
+ VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE,
+ 30000 /*ms*/);
+ DBGFTRACE_CUSTOM(pVM, "nemStop#2: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage,
+ pMsgForTrace->Header.MessageType);
+ AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
+ ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
+ RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
+# else
+ fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
+ VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
+ DBGFTRACE_CUSTOM(pVM, "nemStop#2: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
+ pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
+ AssertLogRelMsgReturn(fWait, ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
+ RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
+# endif
+
+ /* It should be a stop request completed message. */
+ enmVidMsgType = pMappingHeader->enmVidMsgType;
+ AssertLogRelMsgReturn(enmVidMsgType == VidMessageStopRequestComplete,
+ ("Unexpected 2nd message following ERROR_VID_STOP_PENDING: %#x LB %#x\n",
+ enmVidMsgType, pMappingHeader->cbMessage),
+ RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
+
+ /*
+ * Mark the VidMessageStopRequestComplete message as handled.
+ */
+# ifdef IN_RING0
+ rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pGVM, pGVCpu, pVCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
+ DBGFTRACE_CUSTOM(pVM, "nemStop#3: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType,
+ pMsgForTrace->Header.MessageType, pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
+ AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
+ ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
+ RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
+# else
+ fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
+ DBGFTRACE_CUSTOM(pVM, "nemStop#3: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
+ pMsgForTrace->Header.MessageType, pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
+ AssertLogRelMsgReturn(fWait, ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
+ RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
+# endif
+ Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ else
+ {
+ /** @todo I'm not so sure about this now... */
+ DBGFTRACE_CUSTOM(pVM, "nemStop#9: %#x %#x %#x", pMappingHeader->enmVidMsgType,
+ pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPendingOdd);
+ Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc) - 1st VidMessageSlotHandleAndGetNext got VidMessageStopRequestComplete.\n",
+ VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ return rcStrict;
+}
+#endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+#if defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3)
+
+/**
+ * Deals with pending interrupt related force flags, may inject interrupt.
+ *
+ * @returns VBox strict status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pGVCpu The global (ring-0) per CPU structure.
+ * @param pfInterruptWindows Where to return interrupt window flags.
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleInterruptFF(PVM pVM, PVMCPU pVCpu, PGVMCPU pGVCpu, uint8_t *pfInterruptWindows)
+{
+ Assert(!TRPMHasTrap(pVCpu));
+ RT_NOREF_PV(pVM);
+
+ /*
+ * First update APIC. We ASSUME this won't need TPR/CR8.
+ */
+ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
+ {
+ APICUpdatePendingInterrupts(pVCpu);
+ if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
+ | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * We don't currently implement SMIs.
+ */
+ AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
+
+ /*
+ * Check if we've got the minimum of state required for deciding whether we
+ * can inject interrupts and NMIs. If we don't have it, get all we might require
+ * for injection via IEM.
+ */
+ bool const fPendingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI);
+ uint64_t fNeedExtrn = CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
+ | (fPendingNmi ? CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI : 0);
+ if (pVCpu->cpum.GstCtx.fExtrn & fNeedExtrn)
+ {
+ VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
+ NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "IntFF");
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ }
+ bool const fInhibitInterrupts = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
+ && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip;
+
+ /*
+ * NMI? Try deliver it first.
+ */
+ if (fPendingNmi)
+ {
+ if ( !fInhibitInterrupts
+ && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ {
+ VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
+ NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
+ if (rcStrict == VINF_SUCCESS)
+ {
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
+ rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_NMI, TRPM_HARDWARE_INT, 0, 0, 0);
+ Log8(("Injected NMI on %u (%d)\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ return rcStrict;
+ }
+ *pfInterruptWindows |= NEM_WIN_INTW_F_NMI;
+ Log8(("NMI window pending on %u\n", pVCpu->idCpu));
+ }
+
+ /*
+ * APIC or PIC interrupt?
+ */
+ if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
+ {
+ if ( !fInhibitInterrupts
+ && pVCpu->cpum.GstCtx.rflags.Bits.u1IF)
+ {
+ AssertCompile(NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT & CPUMCTX_EXTRN_APIC_TPR);
+ VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
+ NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
+ if (rcStrict == VINF_SUCCESS)
+ {
+ uint8_t bInterrupt;
+ int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
+ if (RT_SUCCESS(rc))
+ {
+ rcStrict = IEMInjectTrap(pVCpu, bInterrupt, TRPM_HARDWARE_INT, 0, 0, 0);
+ Log8(("Injected interrupt %#x on %u (%d)\n", bInterrupt, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
+ {
+ *pfInterruptWindows |= (bInterrupt >> 4 /*??*/) << NEM_WIN_INTW_F_PRIO_SHIFT;
+ Log8(("VERR_APIC_INTR_MASKED_BY_TPR: *pfInterruptWindows=%#x\n", *pfInterruptWindows));
+ }
+ else
+ Log8(("PDMGetInterrupt failed -> %d\n", rc));
+ }
+ return rcStrict;
+ }
+ *pfInterruptWindows |= NEM_WIN_INTW_F_REGULAR;
+ Log8(("Interrupt window pending on %u\n", pVCpu->idCpu));
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Inner NEM runloop for windows.
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context per CPU structure.
+ * @param pGVM The ring-0 VM structure (NULL in ring-3).
+ * @param pGVCpu The ring-0 per CPU structure (NULL in ring-3).
+ */
+NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinRunGC(PVM pVM, PVMCPU pVCpu, PGVM pGVM, PGVMCPU pGVCpu)
+{
+ LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags));
+# ifdef LOG_ENABLED
+ if (LogIs3Enabled())
+ nemHCWinLogState(pVM, pVCpu);
+# endif
+# ifdef IN_RING0
+ Assert(pVCpu->idCpu == pGVCpu->idCpu);
+# endif
+
+ /*
+ * Try switch to NEM runloop state.
+ */
+ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
+ { /* likely */ }
+ else
+ {
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
+ LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * The run loop.
+ *
+ * Current approach to state updating to use the sledgehammer and sync
+ * everything every time. This will be optimized later.
+ */
+# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+ VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader = (VID_MESSAGE_MAPPING_HEADER volatile *)pVCpu->nem.s.pvMsgSlotMapping;
+# endif
+ const bool fSingleStepping = DBGFIsStepping(pVCpu);
+// const uint32_t fCheckVmFFs = !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK
+// : VM_FF_HP_R0_PRE_HM_STEP_MASK;
+// const uint32_t fCheckCpuFFs = !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK;
+ VBOXSTRICTRC rcStrict = VINF_SUCCESS;
+ for (unsigned iLoop = 0;; iLoop++)
+ {
+# ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ /*
+ * Hack alert!
+ */
+ uint32_t const cMappedPages = pVM->nem.s.cMappedPages;
+ if (cMappedPages >= 4000)
+ {
+ PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinWHvUnmapOnePageCallback, NULL);
+ Log(("nemHCWinRunGC: Unmapped all; cMappedPages=%u -> %u\n", cMappedPages, pVM->nem.s.cMappedPages));
+ }
+# endif
+
+ /*
+ * Pending interrupts or such? Need to check and deal with this prior
+ * to the state syncing.
+ */
+ pVCpu->nem.s.fDesiredInterruptWindows = 0;
+ if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
+ | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
+ {
+# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+ /* Make sure the CPU isn't executing. */
+ if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
+ {
+ pVCpu->nem.s.fHandleAndGetFlags = 0;
+ rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader, pGVM, pGVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ { /* likely */ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: nemHCWinStopCpu -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
+ break;
+ }
+ }
+# endif
+
+ /* Try inject interrupt. */
+ rcStrict = nemHCWinHandleInterruptFF(pVM, pVCpu, pGVCpu, &pVCpu->nem.s.fDesiredInterruptWindows);
+ if (rcStrict == VINF_SUCCESS)
+ { /* likely */ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: nemHCWinHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
+ break;
+ }
+ }
+
+ /*
+ * Ensure that hyper-V has the whole state.
+ * (We always update the interrupt windows settings when active as hyper-V seems
+ * to forget about it after an exit.)
+ */
+ if ( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK))
+ != (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK)
+ || ( ( pVCpu->nem.s.fDesiredInterruptWindows
+ || pVCpu->nem.s.fCurrentInterruptWindows != pVCpu->nem.s.fDesiredInterruptWindows)
+# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+ && pVCpu->nem.s.fHandleAndGetFlags != VID_MSHAGN_F_GET_NEXT_MESSAGE /* not running */
+# endif
+ )
+ )
+ {
+# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+ AssertMsg(pVCpu->nem.s.fHandleAndGetFlags != VID_MSHAGN_F_GET_NEXT_MESSAGE /* not running */,
+ ("%#x fExtrn=%#RX64 (%#RX64) fDesiredInterruptWindows=%d fCurrentInterruptWindows=%#x vs %#x\n",
+ pVCpu->nem.s.fHandleAndGetFlags, pVCpu->cpum.GstCtx.fExtrn, ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK),
+ pVCpu->nem.s.fDesiredInterruptWindows, pVCpu->nem.s.fCurrentInterruptWindows, pVCpu->nem.s.fDesiredInterruptWindows));
+# endif
+# ifdef IN_RING0
+ int rc2 = nemR0WinExportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx);
+# else
+ int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu);
+ RT_NOREF(pGVM, pGVCpu);
+# endif
+ AssertRCReturn(rc2, rc2);
+ }
+
+ /*
+ * Poll timers and run for a bit.
+ *
+ * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
+ * so we take the time of the next timer event and uses that as a deadline.
+ * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
+ */
+ /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
+ * the whole polling job when timers have changed... */
+ uint64_t offDeltaIgnored;
+ uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
+ if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
+ && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
+ {
+# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+ if (pVCpu->nem.s.fHandleAndGetFlags)
+ { /* Very likely that the CPU does NOT need starting (pending msg, running). */ }
+ else
+ {
+# ifdef IN_RING0
+ pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
+ NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStartVirtualProcessor.uFunction,
+ &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
+ NULL, 0);
+ LogFlow(("NEM/%u: IoCtlStartVirtualProcessor -> %#x\n", pVCpu->idCpu, rcNt));
+ AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("VidStartVirtualProcessor failed for CPU #%u: %#x\n", pGVCpu->idCpu, rcNt),
+ VERR_NEM_IPE_5);
+# else
+ AssertLogRelMsgReturn(g_pfnVidStartVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu),
+ ("VidStartVirtualProcessor failed for CPU #%u: %u (%#x, rcNt=%#x)\n",
+ pVCpu->idCpu, RTNtLastErrorValue(), RTNtLastErrorValue(), RTNtLastStatusValue()),
+ VERR_NEM_IPE_5);
+# endif
+ pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
+ }
+# endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
+
+ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
+ {
+# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+ uint64_t const nsNow = RTTimeNanoTS();
+ int64_t const cNsNextTimerEvt = nsNow - nsNextTimerEvt;
+ uint32_t cMsWait;
+ if (cNsNextTimerEvt < 100000 /* ns */)
+ cMsWait = 0;
+ else if ((uint64_t)cNsNextTimerEvt < RT_NS_1SEC)
+ {
+ if ((uint32_t)cNsNextTimerEvt < 2*RT_NS_1MS)
+ cMsWait = 1;
+ else
+ cMsWait = ((uint32_t)cNsNextTimerEvt - 100000 /*ns*/) / RT_NS_1MS;
+ }
+ else
+ cMsWait = RT_MS_1SEC;
+# ifdef IN_RING0
+ pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
+ pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = pVCpu->nem.s.fHandleAndGetFlags;
+ pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMsWait;
+ NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
+ &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
+ pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.cbInput,
+ NULL, 0);
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
+ if (rcNt == STATUS_SUCCESS)
+# else
+ BOOL fRet = VidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
+ pVCpu->nem.s.fHandleAndGetFlags, cMsWait);
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
+ if (fRet)
+# endif
+# else
+ WHV_RUN_VP_EXIT_CONTEXT ExitReason;
+ RT_ZERO(ExitReason);
+ HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
+ if (SUCCEEDED(hrc))
+# endif
+ {
+ /*
+ * Deal with the message.
+ */
+# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+ rcStrict = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, pGVCpu);
+ pVCpu->nem.s.fHandleAndGetFlags |= VID_MSHAGN_F_HANDLE_MESSAGE;
+# else
+ rcStrict = nemR3WinHandleExit(pVM, pVCpu, &ExitReason);
+# endif
+ if (rcStrict == VINF_SUCCESS)
+ { /* hopefully likely */ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: nemHCWinHandleMessage -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
+ break;
+ }
+ }
+ else
+ {
+# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+
+ /* VID.SYS merges STATUS_ALERTED and STATUS_USER_APC into STATUS_TIMEOUT,
+ so after NtAlertThread we end up here with a STATUS_TIMEOUT. And yeah,
+ the error code conversion is into WAIT_XXX, i.e. NT status codes. */
+# ifndef IN_RING0
+ DWORD rcNt = GetLastError();
+# endif
+ LogFlow(("NEM/%u: VidMessageSlotHandleAndGetNext -> %#x\n", pVCpu->idCpu, rcNt));
+ AssertLogRelMsgReturn( rcNt == STATUS_TIMEOUT
+ || rcNt == STATUS_ALERTED /* just in case */
+ || rcNt == STATUS_USER_APC /* ditto */
+ || rcNt == STATUS_KERNEL_APC /* ditto */
+ , ("VidMessageSlotHandleAndGetNext failed for CPU #%u: %#x (%u)\n",
+ pVCpu->idCpu, rcNt, rcNt),
+ VERR_NEM_IPE_0);
+ pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatGetMsgTimeout);
+# else
+ AssertLogRelMsgFailedReturn(("WHvRunVirtualProcessor failed for CPU #%u: %#x (%u)\n",
+ pVCpu->idCpu, hrc, GetLastError()),
+ VERR_NEM_IPE_0);
+# endif
+ }
+
+ /*
+ * If no relevant FFs are pending, loop.
+ */
+ if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
+ && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
+ continue;
+
+ /** @todo Try handle pending flags, not just return to EM loops. Take care
+ * not to set important RCs here unless we've handled a message. */
+ LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
+ pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
+ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
+ }
+ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
+ }
+ break;
+ } /* the run loop */
+
+
+ /*
+ * If the CPU is running, make sure to stop it before we try sync back the
+ * state and return to EM. We don't sync back the whole state if we can help it.
+ */
+# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
+ if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
+ {
+ pVCpu->nem.s.fHandleAndGetFlags = 0;
+ rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader, pGVM, pGVCpu);
+ }
+# endif
+
+ if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
+
+ if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
+ {
+ /* Try anticipate what we might need. */
+ uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
+ if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
+ || RT_FAILURE(rcStrict))
+ fImport = CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
+# ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
+ else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
+ || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
+ fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
+ else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
+ fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
+# endif
+ else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
+ | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
+ fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
+
+ if (pVCpu->cpum.GstCtx.fExtrn & fImport)
+ {
+# ifdef IN_RING0
+ int rc2 = nemR0WinImportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT,
+ true /*fCanUpdateCr3*/);
+ if (RT_SUCCESS(rc2))
+ pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
+ else if (rc2 == VERR_NEM_FLUSH_TLB)
+ {
+ pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
+ if (rcStrict == VINF_SUCCESS || rcStrict == -rc2)
+ rcStrict = -rc2;
+ else
+ {
+ pVCpu->nem.s.rcPending = -rc2;
+ LogFlow(("NEM/%u: rcPending=%Rrc (rcStrict=%Rrc)\n", pVCpu->idCpu, rc2, VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ }
+# else
+ int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
+ if (RT_SUCCESS(rc2))
+ pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
+# endif
+ else if (RT_SUCCESS(rcStrict))
+ rcStrict = rc2;
+ if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
+ }
+ else
+ {
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
+ }
+ }
+ else
+ {
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+ }
+
+ LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
+ return rcStrict;
+}
+
+#endif /* defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3) */
+
+/**
+ * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
+ */
+NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
+ PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
+{
+ /* We'll just unmap the memory. */
+ if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
+ {
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
+ AssertRC(rc);
+ if (RT_SUCCESS(rc))
+#else
+ HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
+ if (SUCCEEDED(hrc))
+#endif
+ {
+ uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
+ pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
+ }
+ else
+ {
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
+ return rc;
+#else
+ LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
+ GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
+ return VERR_NEM_IPE_2;
+#endif
+ }
+ }
+ RT_NOREF(pVCpu, pvUser);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
+ *
+ * @returns The PGMPhysNemQueryPageInfo result.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param GCPhys The page to unmap.
+ */
+NEM_TMPL_STATIC int nemHCWinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
+{
+ PGMPHYSNEMPAGEINFO Info;
+ return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
+ nemHCWinUnsetForA20CheckerCallback, NULL);
+}
+
+
+void nemHCNativeNotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
+{
+ Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
+ NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
+}
+
+
+void nemHCNativeNotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
+ int fRestoreAsRAM, bool fRestoreAsRAM2)
+{
+ Log5(("nemHCNativeNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d fRestoreAsRAM=%d fRestoreAsRAM2=%d\n",
+ GCPhys, cb, enmKind, fRestoreAsRAM, fRestoreAsRAM2));
+ NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb); NOREF(fRestoreAsRAM); NOREF(fRestoreAsRAM2);
+}
+
+
+void nemHCNativeNotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
+ RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
+{
+ Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
+ GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
+ NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
+}
+
+
+/**
+ * Worker that maps pages into Hyper-V.
+ *
+ * This is used by the PGM physical page notifications as well as the memory
+ * access VMEXIT handlers.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ * @param GCPhysSrc The source page address.
+ * @param GCPhysDst The hyper-V destination page. This may differ from
+ * GCPhysSrc when A20 is disabled.
+ * @param fPageProt NEM_PAGE_PROT_XXX.
+ * @param pu2State Our page state (input/output).
+ * @param fBackingChanged Set if the page backing is being changed.
+ * @thread EMT(pVCpu)
+ */
+NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
+ uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
+{
+#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ /*
+ * When using the hypercalls instead of the ring-3 APIs, we don't need to
+ * unmap memory before modifying it. We still want to track the state though,
+ * since unmap will fail when called an unmapped page and we don't want to redo
+ * upgrades/downgrades.
+ */
+ uint8_t const u2OldState = *pu2State;
+ int rc;
+ if (fPageProt == NEM_PAGE_PROT_NONE)
+ {
+ if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
+ {
+ rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
+ if (RT_SUCCESS(rc))
+ {
+ *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
+ uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
+ }
+ else
+ AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
+ }
+ else
+ rc = VINF_SUCCESS;
+ }
+ else if (fPageProt & NEM_PAGE_PROT_WRITE)
+ {
+ if (u2OldState != NEM_WIN_PAGE_STATE_WRITABLE || fBackingChanged)
+ {
+ rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
+ HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
+ | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
+ if (RT_SUCCESS(rc))
+ {
+ *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
+ uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
+ ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
+ Log5(("NEM GPA writable/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
+ NOREF(cMappedPages);
+ }
+ else
+ AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
+ }
+ else
+ rc = VINF_SUCCESS;
+ }
+ else
+ {
+ if (u2OldState != NEM_WIN_PAGE_STATE_READABLE || fBackingChanged)
+ {
+ rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
+ HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
+ if (RT_SUCCESS(rc))
+ {
+ *pu2State = NEM_WIN_PAGE_STATE_READABLE;
+ uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
+ ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
+ Log5(("NEM GPA read+exec/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
+ NOREF(cMappedPages);
+ }
+ else
+ AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
+ }
+ else
+ rc = VINF_SUCCESS;
+ }
+
+ return VINF_SUCCESS;
+
+#else
+ /*
+ * Looks like we need to unmap a page before we can change the backing
+ * or even modify the protection. This is going to be *REALLY* efficient.
+ * PGM lends us two bits to keep track of the state here.
+ */
+ uint8_t const u2OldState = *pu2State;
+ uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE
+ : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED;
+ if ( fBackingChanged
+ || u2NewState != u2OldState)
+ {
+ if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
+ {
+# ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
+ AssertRC(rc);
+ if (RT_SUCCESS(rc))
+ {
+ *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
+ uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
+ {
+ Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
+ GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
+ return VINF_SUCCESS;
+ }
+ }
+ else
+ {
+ LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
+ return rc;
+ }
+# else
+ HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE);
+ if (SUCCEEDED(hrc))
+ {
+ *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
+ uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
+ {
+ Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
+ GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
+ return VINF_SUCCESS;
+ }
+ }
+ else
+ {
+ LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
+ GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
+ return VERR_NEM_INIT_FAILED;
+ }
+# endif
+ }
+ }
+
+ /*
+ * Writeable mapping?
+ */
+ if (fPageProt & NEM_PAGE_PROT_WRITE)
+ {
+# ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
+ HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
+ | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
+ AssertRC(rc);
+ if (RT_SUCCESS(rc))
+ {
+ *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
+ uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
+ GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
+ return VINF_SUCCESS;
+ }
+ LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
+ return rc;
+# else
+ void *pvPage;
+ int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
+ if (RT_SUCCESS(rc))
+ {
+ HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE,
+ WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite);
+ if (SUCCEEDED(hrc))
+ {
+ *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
+ uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
+ GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
+ return VINF_SUCCESS;
+ }
+ LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
+ GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
+ return VERR_NEM_INIT_FAILED;
+ }
+ LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
+ return rc;
+# endif
+ }
+
+ if (fPageProt & NEM_PAGE_PROT_READ)
+ {
+# ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
+ int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
+ HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
+ AssertRC(rc);
+ if (RT_SUCCESS(rc))
+ {
+ *pu2State = NEM_WIN_PAGE_STATE_READABLE;
+ uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
+ GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
+ return VINF_SUCCESS;
+ }
+ LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
+ return rc;
+# else
+ const void *pvPage;
+ int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
+ if (RT_SUCCESS(rc))
+ {
+ HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE,
+ WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
+ if (SUCCEEDED(hrc))
+ {
+ *pu2State = NEM_WIN_PAGE_STATE_READABLE;
+ uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
+ GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
+ return VINF_SUCCESS;
+ }
+ LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
+ GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
+ return VERR_NEM_INIT_FAILED;
+ }
+ LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
+ return rc;
+# endif
+ }
+
+ /* We already unmapped it above. */
+ *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
+ return VINF_SUCCESS;
+#endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
+}
+
+
+NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVM pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
+{
+ if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED)
+ {
+ Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst));
+ *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
+ return VINF_SUCCESS;
+ }
+
+#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
+ AssertRC(rc);
+ if (RT_SUCCESS(rc))
+ {
+ uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ Log5(("NEM GPA unmapped/just: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[*pu2State], cMappedPages));
+ *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
+ return VINF_SUCCESS;
+ }
+ LogRel(("nemHCJustUnmapPageFromHyperV/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
+ return rc;
+#else
+ HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
+ if (SUCCEEDED(hrc))
+ {
+ uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
+ *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
+ Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages));
+ return VINF_SUCCESS;
+ }
+ LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n",
+ GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
+ return VERR_NEM_IPE_6;
+#endif
+}
+
+
+int nemHCNativeNotifyPhysPageAllocated(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
+ PGMPAGETYPE enmType, uint8_t *pu2State)
+{
+ Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
+ GCPhys, HCPhys, fPageProt, enmType, *pu2State));
+ RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
+
+ int rc;
+#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if ( pVM->nem.s.fA20Enabled
+ || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
+ rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
+ else
+ {
+ /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
+ rc = nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
+ if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys) && RT_SUCCESS(rc))
+ rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
+
+ }
+#else
+ RT_NOREF_PV(fPageProt);
+ if ( pVM->nem.s.fA20Enabled
+ || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
+ rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
+ else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
+ rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
+ else
+ rc = VINF_SUCCESS; /* ignore since we've got the alias page at this address. */
+#endif
+ return rc;
+}
+
+
+void nemHCNativeNotifyPhysPageProtChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
+ PGMPAGETYPE enmType, uint8_t *pu2State)
+{
+ Log5(("nemHCNativeNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
+ GCPhys, HCPhys, fPageProt, enmType, *pu2State));
+ RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
+
+#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if ( pVM->nem.s.fA20Enabled
+ || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
+ nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
+ else
+ {
+ /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
+ nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
+ if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
+ nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
+ }
+#else
+ RT_NOREF_PV(fPageProt);
+ if ( pVM->nem.s.fA20Enabled
+ || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
+ nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
+ else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
+ nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
+ /* else: ignore since we've got the alias page at this address. */
+#endif
+}
+
+
+void nemHCNativeNotifyPhysPageChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
+ uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
+{
+ Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
+ GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
+ RT_NOREF_PV(HCPhysPrev); RT_NOREF_PV(HCPhysNew); RT_NOREF_PV(enmType);
+
+#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if ( pVM->nem.s.fA20Enabled
+ || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
+ nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
+ else
+ {
+ /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
+ nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
+ if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
+ nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
+ }
+#else
+ RT_NOREF_PV(fPageProt);
+ if ( pVM->nem.s.fA20Enabled
+ || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
+ nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
+ else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
+ nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
+ /* else: ignore since we've got the alias page at this address. */
+#endif
+}
+