summaryrefslogtreecommitdiffstats
path: root/src/recompiler/cutils.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
commitf8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch)
tree26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/recompiler/cutils.c
parentInitial commit. (diff)
downloadvirtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.tar.xz
virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.zip
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/recompiler/cutils.c')
-rw-r--r--src/recompiler/cutils.c752
1 files changed, 752 insertions, 0 deletions
diff --git a/src/recompiler/cutils.c b/src/recompiler/cutils.c
new file mode 100644
index 00000000..5fbf70bd
--- /dev/null
+++ b/src/recompiler/cutils.c
@@ -0,0 +1,752 @@
+/*
+ * Simple C functions to supplement the C library
+ *
+ * Copyright (c) 2006 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include "qemu-common.h"
+#include "host-utils.h"
+
+#ifdef VBOX
+# include "osdep.h"
+
+
+static inline int toupper(int ch) {
+ if ( (unsigned int)(ch - 'a') < 26u )
+ ch += 'A' - 'a';
+ return ch;
+}
+
+/* Quick sort from OpenSolaris:
+ http://src.opensolaris.org/source/raw/onnv/onnv-gate/usr/src/common/util/qsort.c */
+/*
+ * choose a median of 3 values
+ *
+ * note: cstyle specifically prohibits nested conditional operators
+ * but this is the only way to do the median of 3 function in-line
+ */
+#define med3(a, b, c) (cmp((a), (b)) < 0) \
+ ? ((cmp((b), (c)) < 0) ? (b) : (cmp((a), (c)) < 0) ? (c) : (a)) \
+ : ((cmp((b), (c)) > 0) ? (b) : (cmp((a), (c)) > 0) ? (c) : (a))
+
+#define THRESH_L 5 /* threshold for insertion sort */
+#define THRESH_M3 20 /* threshold for median of 3 */
+#define THRESH_M9 50 /* threshold for median of 9 */
+
+typedef struct {
+ char *b_lim;
+ size_t nrec;
+} stk_t;
+
+/*
+ * The following swap functions should not create a stack frame
+ * the SPARC call / return instruction will be executed
+ * but the a save / restore will not be executed
+ * which means we won't do a window turn with the spill / fill overhead
+ * verify this by examining the assembly code
+ */
+
+/* ARGSUSED */
+static void
+swapp32(uint32_t *r1, uint32_t *r2, size_t cnt)
+{
+ uint32_t temp;
+
+ temp = *r1;
+ *r1++ = *r2;
+ *r2++ = temp;
+}
+
+/* ARGSUSED */
+static void
+swapp64(uint64_t *r1, uint64_t *r2, size_t cnt)
+{
+ uint64_t temp;
+
+ temp = *r1;
+ *r1++ = *r2;
+ *r2++ = temp;
+}
+
+static void
+swapi(uint32_t *r1, uint32_t *r2, size_t cnt)
+{
+ uint32_t temp;
+
+ /* character by character */
+ while (cnt--) {
+ temp = *r1;
+ *r1++ = *r2;
+ *r2++ = temp;
+ }
+}
+
+static void
+swapb(char *r1, char *r2, size_t cnt)
+{
+ char temp;
+
+ /* character by character */
+ while (cnt--) {
+ temp = *r1;
+ *r1++ = *r2;
+ *r2++ = temp;
+ }
+}
+
+/*
+ * qsort() is a general purpose, in-place sorting routine using a
+ * user provided call back function for comparisons. This implementation
+ * utilizes a ternary quicksort algorithm, and cuts over to an
+ * insertion sort for partitions involving fewer than THRESH_L records.
+ *
+ * Potential User Errors
+ * There is no return value from qsort, this function has no method
+ * of alerting the user that a sort did not work or could not work.
+ * We do not print an error message or exit the process or thread,
+ * Even if we can detect an error, We CANNOT silently return without
+ * sorting the data, if we did so the user could never be sure the
+ * sort completed successfully.
+ * It is possible we could change the return value of sort from void
+ * to int and return success or some error codes, but this gets into
+ * standards and compatibility issues.
+ *
+ * Examples of qsort parameter errors might be
+ * 1) record size (rsiz) equal to 0
+ * qsort will loop and never return.
+ * 2) record size (rsiz) less than 0
+ * rsiz is unsigned, so a negative value is insanely large
+ * 3) number of records (nrec) is 0
+ * This is legal - qsort will return without examining any records
+ * 4) number of records (nrec) is less than 0
+ * nrec is unsigned, so a negative value is insanely large.
+ * 5) nrec * rsiz > memory allocation for sort array
+ * a segment violation may occur
+ * corruption of other memory may occur
+ * 6) The base address of the sort array is invalid
+ * a segment violation may occur
+ * corruption of other memory may occur
+ * 7) The user call back function is invalid
+ * we may get alignment errors or segment violations
+ * we may jump into never-never land
+ *
+ * Some less obvious errors might be
+ * 8) The user compare function is not comparing correctly
+ * 9) The user compare function modifies the data records
+ */
+
+void
+qemu_qsort(
+ void *basep,
+ size_t nrec,
+ size_t rsiz,
+ int (*cmp)(const void *, const void *))
+{
+ size_t i; /* temporary variable */
+
+ /* variables used by swap */
+ void (*swapf)(char *, char *, size_t);
+ size_t loops;
+
+ /* variables used by sort */
+ stk_t stack[8 * sizeof (nrec) + 1];
+ stk_t *sp;
+ char *b_lim; /* bottom limit */
+ char *b_dup; /* bottom duplicate */
+ char *b_par; /* bottom partition */
+ char *t_lim; /* top limit */
+ char *t_dup; /* top duplicate */
+ char *t_par; /* top partition */
+ char *m1, *m2, *m3; /* median pointers */
+ uintptr_t d_bytelength; /* byte length of duplicate records */
+ int b_nrec;
+ int t_nrec;
+ int cv; /* results of compare (bottom / top) */
+
+ /*
+ * choose a swap function based on alignment and size
+ *
+ * The qsort function sorts an array of fixed length records.
+ * We have very limited knowledge about the data record itself.
+ * It may be that the data record is in the array we are sorting
+ * or it may be that the array contains pointers or indexes to
+ * the actual data record and all that we are sorting is the indexes.
+ *
+ * The following decision will choose an optimal swap function
+ * based on the size and alignment of the data records
+ * swapp64 will swap 64 bit pointers
+ * swapp32 will swap 32 bit pointers
+ * swapi will swap an array of 32 bit integers
+ * swapb will swap an array of 8 bit characters
+ *
+ * swapi and swapb will also require the variable loops to be set
+ * to control the length of the array being swapped
+ */
+ if ((((uintptr_t)basep & (sizeof (uint64_t) - 1)) == 0) &&
+ (rsiz == sizeof (uint64_t))) {
+ loops = 1;
+ swapf = (void (*)(char *, char *, size_t))swapp64;
+ } else if ((((uintptr_t)basep & (sizeof (uint32_t) - 1)) == 0) &&
+ (rsiz == sizeof (uint32_t))) {
+ loops = 1;
+ swapf = (void (*)(char *, char *, size_t))swapp32;
+ } else if ((((uintptr_t)basep & (sizeof (uint32_t) - 1)) == 0) &&
+ ((rsiz & (sizeof (uint32_t) - 1)) == 0)) {
+ loops = rsiz / sizeof (int);
+ swapf = (void (*)(char *, char *, size_t))swapi;
+ } else {
+ loops = rsiz;
+ swapf = swapb;
+ }
+
+ /*
+ * qsort is a partitioning sort
+ *
+ * the stack is the bookkeeping mechanism to keep track of all
+ * the partitions.
+ *
+ * each sort pass takes one partition and sorts it into two partitions.
+ * at the top of the loop we simply take the partition on the top
+ * of the stack and sort it. See the comments at the bottom
+ * of the loop regarding which partitions to add in what order.
+ *
+ * initially put the whole partition on the stack
+ */
+ sp = stack;
+ sp->b_lim = (char *)basep;
+ sp->nrec = nrec;
+ sp++;
+ while (sp > stack) {
+ sp--;
+ b_lim = sp->b_lim;
+ nrec = sp->nrec;
+
+ /*
+ * a linear insertion sort i faster than a qsort for
+ * very small number of records (THRESH_L)
+ *
+ * if number records < threshold use linear insertion sort
+ *
+ * this also handles the special case where the partition
+ * 0 or 1 records length.
+ */
+ if (nrec < THRESH_L) {
+ /*
+ * Linear insertion sort
+ */
+ t_par = b_lim;
+ for (i = 1; i < nrec; i++) {
+ t_par += rsiz;
+ b_par = t_par;
+ while (b_par > b_lim) {
+ b_par -= rsiz;
+ if ((*cmp)(b_par, b_par + rsiz) <= 0) {
+ break;
+ }
+ (*swapf)(b_par, b_par + rsiz, loops);
+ }
+ }
+
+ /*
+ * a linear insertion sort will put all records
+ * in their final position and will not create
+ * subpartitions.
+ *
+ * therefore when the insertion sort is complete
+ * just go to the top of the loop and get the
+ * next partition to sort.
+ */
+ continue;
+ }
+
+ /* quicksort */
+
+ /*
+ * choose a pivot record
+ *
+ * Ideally the pivot record will divide the partition
+ * into two equal parts. however we have to balance the
+ * work involved in selecting the pivot record with the
+ * expected benefit.
+ *
+ * The choice of pivot record depends on the number of
+ * records in the partition
+ *
+ * for small partitions (nrec < THRESH_M3)
+ * we just select the record in the middle of the partition
+ *
+ * if (nrec >= THRESH_M3 && nrec < THRESH_M9)
+ * we select three values and choose the median of 3
+ *
+ * if (nrec >= THRESH_M9)
+ * then we use an approximate median of 9
+ * 9 records are selected and grouped in 3 groups of 3
+ * the median of each of these 3 groups is fed into another
+ * median of 3 decision.
+ *
+ * Each median of 3 decision is 2 or 3 compares,
+ * so median of 9 costs between 8 and 12 compares.
+ *
+ * i is byte distance between two consecutive samples
+ * m2 will point to the pivot record
+ */
+ if (nrec < THRESH_M3) {
+ m2 = b_lim + (nrec / 2) * rsiz;
+ } else if (nrec < THRESH_M9) {
+ /* use median of 3 */
+ i = ((nrec - 1) / 2) * rsiz;
+ m2 = med3(b_lim, b_lim + i, b_lim + 2 * i);
+ } else {
+ /* approx median of 9 */
+ i = ((nrec - 1) / 8) * rsiz;
+ m1 = med3(b_lim, b_lim + i, b_lim + 2 * i);
+ m2 = med3(b_lim + 3 * i, b_lim + 4 * i, b_lim + 5 * i);
+ m3 = med3(b_lim + 6 * i, b_lim + 7 * i, b_lim + 8 * i);
+ m2 = med3(m1, m2, m3);
+ }
+
+ /*
+ * quick sort partitioning
+ *
+ * The partition limits are defined by bottom and top pointers
+ * b_lim and t_lim.
+ *
+ * qsort uses a fairly standard method of moving the
+ * partitioning pointers, b_par and t_par, to the middle of
+ * the partition and exchanging records that are in the
+ * wrong part of the partition.
+ *
+ * Two enhancements have been made to the basic algorithm.
+ * One for handling duplicate records and one to minimize
+ * the number of swaps.
+ *
+ * Two duplicate records pointers are (b_dup and t_dup) are
+ * initially set to b_lim and t_lim. Each time a record
+ * whose sort key value is equal to the pivot record is found
+ * it will be swapped with the record pointed to by
+ * b_dup or t_dup and the duplicate pointer will be
+ * incremented toward the center.
+ * When partitioning is complete, all the duplicate records
+ * will have been collected at the upper and lower limits of
+ * the partition and can easily be moved adjacent to the
+ * pivot record.
+ *
+ * The second optimization is to minimize the number of swaps.
+ * The pointer m2 points to the pivot record.
+ * During partitioning, if m2 is ever equal to the partitioning
+ * pointers, b_par or t_par, then b_par or t_par just moves
+ * onto the next record without doing a compare.
+ * If as a result of duplicate record detection,
+ * b_dup or t_dup is ever equal to m2,
+ * then m2 is changed to point to the duplicate record and
+ * b_dup or t_dup is incremented with out swapping records.
+ *
+ * When partitioning is done, we may not have the same pivot
+ * record that we started with, but we will have one with
+ * an equal sort key.
+ */
+ b_dup = b_par = b_lim;
+ t_dup = t_par = t_lim = b_lim + rsiz * (nrec - 1);
+ for (;;) {
+
+ /* move bottom pointer up */
+ for (; b_par <= t_par; b_par += rsiz) {
+ if (b_par == m2) {
+ continue;
+ }
+ cv = cmp(b_par, m2);
+ if (cv > 0) {
+ break;
+ }
+ if (cv == 0) {
+ if (b_dup == m2) {
+ m2 = b_par;
+ } else if (b_dup != b_par) {
+ (*swapf)(b_dup, b_par, loops);
+ }
+ b_dup += rsiz;
+ }
+ }
+
+ /* move top pointer down */
+ for (; b_par < t_par; t_par -= rsiz) {
+ if (t_par == m2) {
+ continue;
+ }
+ cv = cmp(t_par, m2);
+ if (cv < 0) {
+ break;
+ }
+ if (cv == 0) {
+ if (t_dup == m2) {
+ m2 = t_par;
+ } else if (t_dup != t_par) {
+ (*swapf)(t_dup, t_par, loops);
+ }
+ t_dup -= rsiz;
+ }
+ }
+
+ /* break if we are done partitioning */
+ if (b_par >= t_par) {
+ break;
+ }
+
+ /* exchange records at upper and lower break points */
+ (*swapf)(b_par, t_par, loops);
+ b_par += rsiz;
+ t_par -= rsiz;
+ }
+
+ /*
+ * partitioning is now complete
+ *
+ * there are two termination conditions from the partitioning
+ * loop above. Either b_par or t_par have crossed or
+ * they are equal.
+ *
+ * we need to swap the pivot record to its final position
+ * m2 could be in either the upper or lower partitions
+ * or it could already be in its final position
+ */
+ /*
+ * R[b_par] > R[m2]
+ * R[t_par] < R[m2]
+ */
+ if (t_par < b_par) {
+ if (m2 < t_par) {
+ (*swapf)(m2, t_par, loops);
+ m2 = b_par = t_par;
+ } else if (m2 > b_par) {
+ (*swapf)(m2, b_par, loops);
+ m2 = t_par = b_par;
+ } else {
+ b_par = t_par = m2;
+ }
+ } else {
+ if (m2 < t_par) {
+ t_par = b_par = t_par - rsiz;
+ }
+ if (m2 != b_par) {
+ (*swapf)(m2, b_par, loops);
+ }
+ m2 = t_par;
+ }
+
+ /*
+ * move bottom duplicates next to pivot
+ * optimized to eliminate overlap
+ */
+ d_bytelength = b_dup - b_lim;
+ if (b_par - b_dup < d_bytelength) {
+ b_dup = b_lim + (b_par - b_dup);
+ }
+ while (b_dup > b_lim) {
+ b_dup -= rsiz;
+ b_par -= rsiz;
+ (*swapf)(b_dup, b_par, loops);
+ }
+ b_par = m2 - d_bytelength;
+
+ /*
+ * move top duplicates next to pivot
+ */
+ d_bytelength = t_lim - t_dup;
+ if (t_dup - t_par < d_bytelength) {
+ t_dup = t_lim - (t_dup - t_par);
+ }
+ while (t_dup < t_lim) {
+ t_dup += rsiz;
+ t_par += rsiz;
+ (*swapf)(t_dup, t_par, loops);
+ }
+ t_par = m2 + d_bytelength;
+
+ /*
+ * when a qsort pass completes there are three partitions
+ * 1) the lower contains all records less than pivot
+ * 2) the upper contains all records greater than pivot
+ * 3) the pivot partition contains all record equal to pivot
+ *
+ * all records in the pivot partition are in their final
+ * position and do not need to be accounted for by the stack
+ *
+ * when adding partitions to the stack
+ * it is important to add the largest partition first
+ * to prevent stack overflow.
+ *
+ * calculate number of unsorted records in top and bottom
+ * push resulting partitions on stack
+ */
+ b_nrec = (b_par - b_lim) / rsiz;
+ t_nrec = (t_lim - t_par) / rsiz;
+ if (b_nrec < t_nrec) {
+ sp->b_lim = t_par + rsiz;
+ sp->nrec = t_nrec;
+ sp++;
+ sp->b_lim = b_lim;
+ sp->nrec = b_nrec;
+ sp++;
+ } else {
+ sp->b_lim = b_lim;
+ sp->nrec = b_nrec;
+ sp++;
+ sp->b_lim = t_par + rsiz;
+ sp->nrec = t_nrec;
+ sp++;
+ }
+ }
+}
+
+#endif /* VBOX */
+
+void pstrcpy(char *buf, int buf_size, const char *str)
+{
+ int c;
+ char *q = buf;
+
+ if (buf_size <= 0)
+ return;
+
+ for(;;) {
+ c = *str++;
+ if (c == 0 || q >= buf + buf_size - 1)
+ break;
+ *q++ = c;
+ }
+ *q = '\0';
+}
+
+/* strcat and truncate. */
+char *pstrcat(char *buf, int buf_size, const char *s)
+{
+ int len;
+ len = strlen(buf);
+ if (len < buf_size)
+ pstrcpy(buf + len, buf_size - len, s);
+ return buf;
+}
+
+int strstart(const char *str, const char *val, const char **ptr)
+{
+ const char *p, *q;
+ p = str;
+ q = val;
+ while (*q != '\0') {
+ if (*p != *q)
+ return 0;
+ p++;
+ q++;
+ }
+ if (ptr)
+ *ptr = p;
+ return 1;
+}
+
+int stristart(const char *str, const char *val, const char **ptr)
+{
+ const char *p, *q;
+ p = str;
+ q = val;
+ while (*q != '\0') {
+ if (qemu_toupper(*p) != qemu_toupper(*q))
+ return 0;
+ p++;
+ q++;
+ }
+ if (ptr)
+ *ptr = p;
+ return 1;
+}
+
+/* XXX: use host strnlen if available ? */
+int qemu_strnlen(const char *s, int max_len)
+{
+ int i;
+
+ for(i = 0; i < max_len; i++) {
+ if (s[i] == '\0') {
+ break;
+ }
+ }
+ return i;
+}
+
+#ifndef VBOX
+time_t mktimegm(struct tm *tm)
+{
+ time_t t;
+ int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
+ if (m < 3) {
+ m += 12;
+ y--;
+ }
+ t = 86400 * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
+ y / 400 - 719469);
+ t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
+ return t;
+}
+#endif /* !VBOX */
+
+int qemu_fls(int i)
+{
+ return 32 - clz32(i);
+}
+
+#ifndef VBOX
+
+/*
+ * Make sure data goes on disk, but if possible do not bother to
+ * write out the inode just for timestamp updates.
+ *
+ * Unfortunately even in 2009 many operating systems do not support
+ * fdatasync and have to fall back to fsync.
+ */
+int qemu_fdatasync(int fd)
+{
+#ifdef CONFIG_FDATASYNC
+ return fdatasync(fd);
+#else
+ return fsync(fd);
+#endif
+}
+
+/* io vectors */
+
+void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
+{
+ qiov->iov = qemu_malloc(alloc_hint * sizeof(struct iovec));
+ qiov->niov = 0;
+ qiov->nalloc = alloc_hint;
+ qiov->size = 0;
+}
+
+void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
+{
+ int i;
+
+ qiov->iov = iov;
+ qiov->niov = niov;
+ qiov->nalloc = -1;
+ qiov->size = 0;
+ for (i = 0; i < niov; i++)
+ qiov->size += iov[i].iov_len;
+}
+
+void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
+{
+ assert(qiov->nalloc != -1);
+
+ if (qiov->niov == qiov->nalloc) {
+ qiov->nalloc = 2 * qiov->nalloc + 1;
+ qiov->iov = qemu_realloc(qiov->iov, qiov->nalloc * sizeof(struct iovec));
+ }
+ qiov->iov[qiov->niov].iov_base = base;
+ qiov->iov[qiov->niov].iov_len = len;
+ qiov->size += len;
+ ++qiov->niov;
+}
+
+/*
+ * Copies iovecs from src to the end dst until src is completely copied or the
+ * total size of the copied iovec reaches size. The size of the last copied
+ * iovec is changed in order to fit the specified total size if it isn't a
+ * perfect fit already.
+ */
+void qemu_iovec_concat(QEMUIOVector *dst, QEMUIOVector *src, size_t size)
+{
+ int i;
+ size_t done;
+
+ assert(dst->nalloc != -1);
+
+ done = 0;
+ for (i = 0; (i < src->niov) && (done != size); i++) {
+ if (done + src->iov[i].iov_len > size) {
+ qemu_iovec_add(dst, src->iov[i].iov_base, size - done);
+ break;
+ } else {
+ qemu_iovec_add(dst, src->iov[i].iov_base, src->iov[i].iov_len);
+ }
+ done += src->iov[i].iov_len;
+ }
+}
+
+void qemu_iovec_destroy(QEMUIOVector *qiov)
+{
+ assert(qiov->nalloc != -1);
+
+ qemu_free(qiov->iov);
+}
+
+void qemu_iovec_reset(QEMUIOVector *qiov)
+{
+ assert(qiov->nalloc != -1);
+
+ qiov->niov = 0;
+ qiov->size = 0;
+}
+
+void qemu_iovec_to_buffer(QEMUIOVector *qiov, void *buf)
+{
+ uint8_t *p = (uint8_t *)buf;
+ int i;
+
+ for (i = 0; i < qiov->niov; ++i) {
+ memcpy(p, qiov->iov[i].iov_base, qiov->iov[i].iov_len);
+ p += qiov->iov[i].iov_len;
+ }
+}
+
+void qemu_iovec_from_buffer(QEMUIOVector *qiov, const void *buf, size_t count)
+{
+ const uint8_t *p = (const uint8_t *)buf;
+ size_t copy;
+ int i;
+
+ for (i = 0; i < qiov->niov && count; ++i) {
+ copy = count;
+ if (copy > qiov->iov[i].iov_len)
+ copy = qiov->iov[i].iov_len;
+ memcpy(qiov->iov[i].iov_base, p, copy);
+ p += copy;
+ count -= copy;
+ }
+}
+
+#ifndef _WIN32
+/* Sets a specific flag */
+int fcntl_setfl(int fd, int flag)
+{
+ int flags;
+
+ flags = fcntl(fd, F_GETFL);
+ if (flags == -1)
+ return -errno;
+
+ if (fcntl(fd, F_SETFL, flags | flag) == -1)
+ return -errno;
+
+ return 0;
+}
+#endif
+
+#endif /* !VBOX */
+