diff options
Diffstat (limited to '')
-rw-r--r-- | src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp | 405 |
1 files changed, 405 insertions, 0 deletions
diff --git a/src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp b/src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp new file mode 100644 index 00000000..f46d5e53 --- /dev/null +++ b/src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp @@ -0,0 +1,405 @@ +/* $Id: asn1-ut-time-decode.cpp $ */ +/** @file + * IPRT - ASN.1, UTC TIME and GENERALIZED TIME Types, Decoding. + */ + +/* + * Copyright (C) 2006-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + * + * The contents of this file may alternatively be used under the terms + * of the Common Development and Distribution License Version 1.0 + * (CDDL) only, as it comes in the "COPYING.CDDL" file of the + * VirtualBox OSE distribution, in which case the provisions of the + * CDDL are applicable instead of those of the GPL. + * + * You may elect to license modified versions of this file under the + * terms and conditions of either the GPL or the CDDL or both. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#include "internal/iprt.h" +#include <iprt/asn1.h> + +#include <iprt/alloca.h> +#include <iprt/err.h> +#include <iprt/string.h> +#include <iprt/ctype.h> + +#include <iprt/formats/asn1.h> + + +/** + * Common code for UTCTime and GeneralizedTime converters that normalizes the + * converted time and checks that the input values doesn't change. + * + * @returns IPRT status code. + * @param pCursor The cursor to use when reporting an error. + * @param pThis The time to normalize and check. + * @param pszType The type name. + * @param pszErrorTag The error tag. + */ +static int rtAsn1Time_NormalizeTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszType, const char *pszErrorTag) +{ + int rc; + if ( pThis->Time.u8Month > 0 + && pThis->Time.u8Month <= 12 + && pThis->Time.u8Hour < 24 + && pThis->Time.u8Minute < 60 + && pThis->Time.u8Second <= 60) + { + /* Work around clever rounding error in DER_CFDateToUTCTime() on OS X. This also + supresses any attempt at feeding us leap seconds. If we pass 60 to the + normalization code will move on to the next min/hour/day, which is wrong both + for the OS X issue and for unwanted leap seconds. Leap seconds are not valid + ASN.1 by the by according to the specs available to us. */ + if (pThis->Time.u8Second < 60) + { /* likely */ } + else + pThis->Time.u8Second = 59; + + /* Normalize and move on. */ + RTTIME const TimeCopy = pThis->Time; + if (RTTimeNormalize(&pThis->Time)) + { + if ( TimeCopy.u8MonthDay == pThis->Time.u8MonthDay + && TimeCopy.u8Month == pThis->Time.u8Month + && TimeCopy.i32Year == pThis->Time.i32Year + && TimeCopy.u8Hour == pThis->Time.u8Hour + && TimeCopy.u8Minute == pThis->Time.u8Minute + && TimeCopy.u8Second == pThis->Time.u8Second) + return VINF_SUCCESS; + + rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_MISMATCH, + "%s: Normalized result not the same as %s: '%.*s' / %04u-%02u-%02uT%02u:%02u:%02u vs %04u-%02u-%02uT%02u:%02u:%02u", + pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch, + TimeCopy.i32Year, TimeCopy.u8Month, TimeCopy.u8MonthDay, + TimeCopy.u8Hour, TimeCopy.u8Minute, TimeCopy.u8Second, + pThis->Time.i32Year, pThis->Time.u8Month, pThis->Time.u8MonthDay, + pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second); + } + else + rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_ERROR, + "%s: RTTimeNormalize failed on %s: '%.*s'", + pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); + } + else + rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_BAD_NORMALIZE_INPUT, + "%s: Bad %s values: '%.*s'; mth=%u h=%u min=%u sec=%u", + pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch, + pThis->Time.u8Month, pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second); + return rc; +} + + +/** + * Converts the UTCTime string into an the RTTIME member of RTASN1TIME. + * + * @returns IPRT status code. + * @param pCursor The cursor to use when reporting an error. + * @param pThis The time to parse. + * @param pszErrorTag The error tag. + */ +static int rtAsn1Time_ConvertUTCTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag) +{ + /* + * While the current spec says the seconds field is not optional, this + * restriction was added later on. So, when parsing UTCTime we must deal + * with it being absent. + */ + int rc; + bool fHaveSeconds = pThis->Asn1Core.cb == sizeof("YYMMDDHHMMSSZ") - 1; + if (fHaveSeconds || pThis->Asn1Core.cb == sizeof("YYMMDDHHMMZ") - 1) + { + const char *pachTime = pThis->Asn1Core.uData.pch; + + /* Basic encoding validation. */ + if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */ + && RT_C_IS_DIGIT(pachTime[1]) /* Y */ + && RT_C_IS_DIGIT(pachTime[2]) /* M */ + && RT_C_IS_DIGIT(pachTime[3]) /* M */ + && RT_C_IS_DIGIT(pachTime[4]) /* D */ + && RT_C_IS_DIGIT(pachTime[5]) /* D */ + && RT_C_IS_DIGIT(pachTime[6]) /* H */ + && RT_C_IS_DIGIT(pachTime[7]) /* H */ + && RT_C_IS_DIGIT(pachTime[8]) /* M */ + && RT_C_IS_DIGIT(pachTime[9]) /* M */ + && ( !fHaveSeconds + || ( RT_C_IS_DIGIT(pachTime[10]) /* S */ + && RT_C_IS_DIGIT(pachTime[11]) /* S */ ) ) + && pachTime[fHaveSeconds ? 12 : 10] == 'Z' + ) + { + /* Basic conversion. */ + pThis->Time.i32Year = (pachTime[0] - '0') * 10 + (pachTime[1] - '0'); + pThis->Time.i32Year += pThis->Time.i32Year < 50 ? 2000 : 1900; + pThis->Time.u8Month = (pachTime[2] - '0') * 10 + (pachTime[3] - '0'); + pThis->Time.u8WeekDay = 0; + pThis->Time.u16YearDay = 0; + pThis->Time.u8MonthDay = (pachTime[4] - '0') * 10 + (pachTime[5] - '0'); + pThis->Time.u8Hour = (pachTime[6] - '0') * 10 + (pachTime[7] - '0'); + pThis->Time.u8Minute = (pachTime[8] - '0') * 10 + (pachTime[9] - '0'); + if (fHaveSeconds) + pThis->Time.u8Second = (pachTime[10] - '0') * 10 + (pachTime[11] - '0'); + else + pThis->Time.u8Second = 0; + pThis->Time.u32Nanosecond = 0; + pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC; + pThis->Time.offUTC = 0; + + /* Check the convered data and normalize the time structure. */ + rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "UTCTime", pszErrorTag); + if (RT_SUCCESS(rc)) + return rc; + } + else + rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime encoding: '%.*s'", + pszErrorTag, pThis->Asn1Core.cb, pachTime); + } + else + rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime length: %#x", + pszErrorTag, pThis->Asn1Core.cb); + RT_ZERO(*pThis); + return rc; +} + + +/** + * Converts the fraction part of a generalized time into nanoseconds. + * + * @returns IPRT status code. + * @param pCursor The cursor to use when reporting an error. + * @param pchFraction Pointer to the start of the fraction (dot). + * @param cchFraction The length of the fraction. + * @param pThis The time object we're working on, + * Time.u32Nanoseconds will be update. + * @param pszErrorTag The error tag. + */ +static int rtAsn1Time_ConvertGeneralizedTimeFraction(PRTASN1CURSOR pCursor, const char *pchFraction, uint32_t cchFraction, + PRTASN1TIME pThis, const char *pszErrorTag) +{ + pThis->Time.u32Nanosecond = 0; + + /* + * Check the dot. + */ + if (*pchFraction != '.') + return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, + "%s: Expected GeneralizedTime fraction dot, found: '%c' ('%.*s')", + pszErrorTag, *pchFraction, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); + pchFraction++; + cchFraction--; + if (!cchFraction) + return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, + "%s: No digit following GeneralizedTime fraction dot: '%.*s'", + pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core); + + /* + * Do the conversion. + */ + char chLastDigit; + uint32_t uMult = 100000000; + do + { + char chDigit = chLastDigit = *pchFraction; + if (!RT_C_IS_DIGIT(chDigit)) + return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, + "%s: Bad GeneralizedTime fraction digit: '%.*s'", + pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); + pThis->Time.u32Nanosecond += uMult * (uint32_t)(chDigit - '0'); + + /* Advance */ + cchFraction--; + pchFraction++; + uMult /= 10; + } while (cchFraction > 0 && uMult > 0); + + /* + * Lazy bird: For now, we don't permit higher resolution than we can + * internally represent. Deal with this if it ever becomes an issue. + */ + if (cchFraction > 0) + return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, + "%s: Bad GeneralizedTime fraction too long: '%.*s'", + pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); + if (chLastDigit == '0') + return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, + "%s: Trailing zeros not allowed for GeneralizedTime: '%.*s'", + pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); + return VINF_SUCCESS; +} + + +/** + * Converts the GeneralizedTime string into an the RTTIME member of RTASN1TIME. + * + * @returns IPRT status code. + * @param pCursor The cursor to use when reporting an error. + * @param pThis The time to parse. + * @param pszErrorTag The error tag. + */ +static int rtAsn1Time_ConvertGeneralizedTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag) +{ + int rc; + if (pThis->Asn1Core.cb >= sizeof("YYYYMMDDHHMMSSZ") - 1) + { + const char *pachTime = pThis->Asn1Core.uData.pch; + + /* Basic encoding validation. */ + if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */ + && RT_C_IS_DIGIT(pachTime[1]) /* Y */ + && RT_C_IS_DIGIT(pachTime[2]) /* Y */ + && RT_C_IS_DIGIT(pachTime[3]) /* Y */ + && RT_C_IS_DIGIT(pachTime[4]) /* M */ + && RT_C_IS_DIGIT(pachTime[5]) /* M */ + && RT_C_IS_DIGIT(pachTime[6]) /* D */ + && RT_C_IS_DIGIT(pachTime[7]) /* D */ + && RT_C_IS_DIGIT(pachTime[8]) /* H */ + && RT_C_IS_DIGIT(pachTime[9]) /* H */ + && RT_C_IS_DIGIT(pachTime[10]) /* M */ + && RT_C_IS_DIGIT(pachTime[11]) /* M */ + && RT_C_IS_DIGIT(pachTime[12]) /* S */ /** @todo was this once optional? */ + && RT_C_IS_DIGIT(pachTime[13]) /* S */ + && pachTime[pThis->Asn1Core.cb - 1] == 'Z' + ) + { + /* Basic conversion. */ + pThis->Time.i32Year = 1000 * (pachTime[0] - '0') + + 100 * (pachTime[1] - '0') + + 10 * (pachTime[2] - '0') + + (pachTime[3] - '0'); + pThis->Time.u8Month = (pachTime[4] - '0') * 10 + (pachTime[5] - '0'); + pThis->Time.u8WeekDay = 0; + pThis->Time.u16YearDay = 0; + pThis->Time.u8MonthDay = (pachTime[6] - '0') * 10 + (pachTime[7] - '0'); + pThis->Time.u8Hour = (pachTime[8] - '0') * 10 + (pachTime[9] - '0'); + pThis->Time.u8Minute = (pachTime[10] - '0') * 10 + (pachTime[11] - '0'); + pThis->Time.u8Second = (pachTime[12] - '0') * 10 + (pachTime[13] - '0'); + pThis->Time.u32Nanosecond = 0; + pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC; + pThis->Time.offUTC = 0; + + /* Optional fraction part. */ + rc = VINF_SUCCESS; + uint32_t cchLeft = pThis->Asn1Core.cb - 14 - 1; + if (cchLeft > 0) + rc = rtAsn1Time_ConvertGeneralizedTimeFraction(pCursor, pachTime + 14, cchLeft, pThis, pszErrorTag); + + /* Check the convered data and normalize the time structure. */ + if (RT_SUCCESS(rc)) + { + rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "GeneralizedTime", pszErrorTag); + if (RT_SUCCESS(rc)) + return VINF_SUCCESS; + } + } + else + rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, + "%s: Bad GeneralizedTime encoding: '%.*s'", + pszErrorTag, pThis->Asn1Core.cb, pachTime); + } + else + rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, + "%s: Bad GeneralizedTime length: %#x", + pszErrorTag, pThis->Asn1Core.cb); + RT_ZERO(*pThis); + return rc; +} + + +RTDECL(int) RTAsn1Time_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag) +{ + Assert(!(fFlags & RTASN1CURSOR_GET_F_IMPLICIT)); RT_NOREF_PV(fFlags); + int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag); + if (RT_SUCCESS(rc)) + { + if (pThis->Asn1Core.fClass == (ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE) ) + { + if (pThis->Asn1Core.uTag == ASN1_TAG_UTC_TIME) + { + RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb); + pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable; + pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT; + return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag); + } + + if (pThis->Asn1Core.uTag == ASN1_TAG_GENERALIZED_TIME) + { + RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb); + pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable; + pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT; + return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag); + } + + rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_MISMATCH, "%s: Not UTCTime nor GeneralizedTime: uTag=%#x", + pszErrorTag, pThis->Asn1Core.uTag); + } + else + rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_FLAG_CLASS_MISMATCH, + "%s: Not UTCTime nor GeneralizedTime: fClass=%#x / uTag=%#x", + pszErrorTag, pThis->Asn1Core.fClass, pThis->Asn1Core.uTag); + } + RT_ZERO(*pThis); + return rc; +} + + +RTDECL(int) RTAsn1UtcTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag) +{ + int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag); + if (RT_SUCCESS(rc)) + { + rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_UTC_TIME, + ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE, + fFlags, pszErrorTag, "UTC TIME"); + if (RT_SUCCESS(rc)) + { + RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb); + pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable; + pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT; + return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag); + } + } + RT_ZERO(*pThis); + return rc; +} + + +RTDECL(int) RTAsn1GeneralizedTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag) +{ + int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag); + if (RT_SUCCESS(rc)) + { + rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_GENERALIZED_TIME, + ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE, + fFlags, pszErrorTag, "GENERALIZED TIME"); + if (RT_SUCCESS(rc)) + { + RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb); + pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable; + pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT; + return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag); + } + } + RT_ZERO(*pThis); + return rc; +} + + +/* + * Generate code for the associated collection types. + */ +#define RTASN1TMPL_TEMPLATE_FILE "../common/asn1/asn1-ut-time-template.h" +#include <iprt/asn1-generator-internal-header.h> +#include <iprt/asn1-generator-asn1-decoder.h> + |