summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c664
1 files changed, 664 insertions, 0 deletions
diff --git a/src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c b/src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c
new file mode 100644
index 00000000..0f7889e3
--- /dev/null
+++ b/src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c
@@ -0,0 +1,664 @@
+/* $Id: memobj-r0drv-haiku.c $ */
+/** @file
+ * IPRT - Ring-0 Memory Objects, Haiku.
+ */
+
+/*
+ * Copyright (C) 2012-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ *
+ * The contents of this file may alternatively be used under the terms
+ * of the Common Development and Distribution License Version 1.0
+ * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
+ * VirtualBox OSE distribution, in which case the provisions of the
+ * CDDL are applicable instead of those of the GPL.
+ *
+ * You may elect to license modified versions of this file under the
+ * terms and conditions of either the GPL or the CDDL or both.
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#include "the-haiku-kernel.h"
+
+#include <iprt/memobj.h>
+#include <iprt/mem.h>
+#include <iprt/err.h>
+#include <iprt/assert.h>
+#include <iprt/log.h>
+#include <iprt/param.h>
+#include <iprt/process.h>
+#include "internal/memobj.h"
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+/**
+ * The Haiku version of the memory object structure.
+ */
+typedef struct RTR0MEMOBJHAIKU
+{
+ /** The core structure. */
+ RTR0MEMOBJINTERNAL Core;
+ /** Area identifier */
+ area_id AreaId;
+} RTR0MEMOBJHAIKU, *PRTR0MEMOBJHAIKU;
+
+
+//MALLOC_DEFINE(M_IPRTMOBJ, "iprtmobj", "IPRT - R0MemObj");
+#if 0
+/**
+ * Gets the virtual memory map the specified object is mapped into.
+ *
+ * @returns VM map handle on success, NULL if no map.
+ * @param pMem The memory object.
+ */
+static vm_map_t rtR0MemObjHaikuGetMap(PRTR0MEMOBJINTERNAL pMem)
+{
+ switch (pMem->enmType)
+ {
+ case RTR0MEMOBJTYPE_PAGE:
+ case RTR0MEMOBJTYPE_LOW:
+ case RTR0MEMOBJTYPE_CONT:
+ return kernel_map;
+
+ case RTR0MEMOBJTYPE_PHYS:
+ case RTR0MEMOBJTYPE_PHYS_NC:
+ return NULL; /* pretend these have no mapping atm. */
+
+ case RTR0MEMOBJTYPE_LOCK:
+ return pMem->u.Lock.R0Process == NIL_RTR0PROCESS
+ ? kernel_map
+ : &((struct proc *)pMem->u.Lock.R0Process)->p_vmspace->vm_map;
+
+ case RTR0MEMOBJTYPE_RES_VIRT:
+ return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS
+ ? kernel_map
+ : &((struct proc *)pMem->u.ResVirt.R0Process)->p_vmspace->vm_map;
+
+ case RTR0MEMOBJTYPE_MAPPING:
+ return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS
+ ? kernel_map
+ : &((struct proc *)pMem->u.Mapping.R0Process)->p_vmspace->vm_map;
+
+ default:
+ return NULL;
+ }
+}
+#endif
+
+
+int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
+{
+ PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)pMem;
+ int rc = B_OK;
+
+ switch (pMemHaiku->Core.enmType)
+ {
+ case RTR0MEMOBJTYPE_PAGE:
+ case RTR0MEMOBJTYPE_LOW:
+ case RTR0MEMOBJTYPE_CONT:
+ case RTR0MEMOBJTYPE_MAPPING:
+ case RTR0MEMOBJTYPE_PHYS:
+ case RTR0MEMOBJTYPE_PHYS_NC:
+ {
+ if (pMemHaiku->AreaId > -1)
+ rc = delete_area(pMemHaiku->AreaId);
+
+ AssertMsg(rc == B_OK, ("%#x", rc));
+ break;
+ }
+
+ case RTR0MEMOBJTYPE_LOCK:
+ {
+ team_id team = B_SYSTEM_TEAM;
+
+ if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
+ team = ((team_id)pMemHaiku->Core.u.Lock.R0Process);
+
+ rc = unlock_memory_etc(team, pMemHaiku->Core.pv, pMemHaiku->Core.cb, B_READ_DEVICE);
+ AssertMsg(rc == B_OK, ("%#x", rc));
+ break;
+ }
+
+ case RTR0MEMOBJTYPE_RES_VIRT:
+ {
+ team_id team = B_SYSTEM_TEAM;
+ if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
+ team = ((team_id)pMemHaiku->Core.u.Lock.R0Process);
+
+ rc = vm_unreserve_address_range(team, pMemHaiku->Core.pv, pMemHaiku->Core.cb);
+ AssertMsg(rc == B_OK, ("%#x", rc));
+ break;
+ }
+
+ default:
+ AssertMsgFailed(("enmType=%d\n", pMemHaiku->Core.enmType));
+ return VERR_INTERNAL_ERROR;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+static int rtR0MemObjNativeAllocArea(PPRTR0MEMOBJINTERNAL ppMem, size_t cb,
+ bool fExecutable, RTR0MEMOBJTYPE type, RTHCPHYS PhysHighest, size_t uAlignment)
+{
+ NOREF(fExecutable);
+
+ int rc;
+ void *pvMap = NULL;
+ const char *pszName = NULL;
+ uint32 addressSpec = B_ANY_KERNEL_ADDRESS;
+ uint32 fLock = ~0U;
+ LogFlowFunc(("ppMem=%p cb=%u, fExecutable=%s, type=%08x, PhysHighest=%RX64 uAlignment=%u\n", ppMem,(unsigned)cb,
+ fExecutable ? "true" : "false", type, PhysHighest,(unsigned)uAlignment));
+
+ switch (type)
+ {
+ case RTR0MEMOBJTYPE_PAGE:
+ pszName = "IPRT R0MemObj Alloc";
+ fLock = B_FULL_LOCK;
+ break;
+ case RTR0MEMOBJTYPE_LOW:
+ pszName = "IPRT R0MemObj AllocLow";
+ fLock = B_32_BIT_FULL_LOCK;
+ break;
+ case RTR0MEMOBJTYPE_CONT:
+ pszName = "IPRT R0MemObj AllocCont";
+ fLock = B_32_BIT_CONTIGUOUS;
+ break;
+#if 0
+ case RTR0MEMOBJTYPE_MAPPING:
+ pszName = "IPRT R0MemObj Mapping";
+ fLock = B_FULL_LOCK;
+ break;
+#endif
+ case RTR0MEMOBJTYPE_PHYS:
+ /** @todo alignment */
+ if (uAlignment != PAGE_SIZE)
+ return VERR_NOT_SUPPORTED;
+ /** @todo r=ramshankar: no 'break' here?? */
+ case RTR0MEMOBJTYPE_PHYS_NC:
+ pszName = "IPRT R0MemObj AllocPhys";
+ fLock = (PhysHighest < _4G ? B_LOMEM : B_32_BIT_CONTIGUOUS);
+ break;
+#if 0
+ case RTR0MEMOBJTYPE_LOCK:
+ break;
+#endif
+ default:
+ return VERR_INTERNAL_ERROR;
+ }
+
+ /* Create the object. */
+ PRTR0MEMOBJHAIKU pMemHaiku;
+ pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), type, NULL, cb);
+ if (RT_UNLIKELY(!pMemHaiku))
+ return VERR_NO_MEMORY;
+
+ rc = pMemHaiku->AreaId = create_area(pszName, &pvMap, addressSpec, cb, fLock, B_READ_AREA | B_WRITE_AREA);
+ if (pMemHaiku->AreaId >= 0)
+ {
+ physical_entry physMap[2];
+ pMemHaiku->Core.pv = pvMap; /* store start address */
+ switch (type)
+ {
+ case RTR0MEMOBJTYPE_CONT:
+ rc = get_memory_map(pvMap, cb, physMap, 2);
+ if (rc == B_OK)
+ pMemHaiku->Core.u.Cont.Phys = physMap[0].address;
+ break;
+
+ case RTR0MEMOBJTYPE_PHYS:
+ case RTR0MEMOBJTYPE_PHYS_NC:
+ rc = get_memory_map(pvMap, cb, physMap, 2);
+ if (rc == B_OK)
+ {
+ pMemHaiku->Core.u.Phys.PhysBase = physMap[0].address;
+ pMemHaiku->Core.u.Phys.fAllocated = true;
+ }
+ break;
+
+ default:
+ break;
+ }
+ if (rc >= B_OK)
+ {
+ *ppMem = &pMemHaiku->Core;
+ return VINF_SUCCESS;
+ }
+
+ delete_area(pMemHaiku->AreaId);
+ }
+
+ rtR0MemObjDelete(&pMemHaiku->Core);
+ return RTErrConvertFromHaikuKernReturn(rc);
+}
+
+
+int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
+{
+ return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_PAGE, 0 /* PhysHighest */, 0 /* uAlignment */);
+}
+
+
+int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
+{
+ return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_LOW, 0 /* PhysHighest */, 0 /* uAlignment */);
+}
+
+
+int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
+{
+ return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_CONT, 0 /* PhysHighest */, 0 /* uAlignment */);
+}
+
+int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
+{
+ return rtR0MemObjNativeAllocArea(ppMem, cb, false, RTR0MEMOBJTYPE_PHYS, PhysHighest, uAlignment);
+}
+
+
+int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
+{
+ return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest, PAGE_SIZE);
+}
+
+
+int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
+{
+ AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
+ LogFlowFunc(("ppMem=%p Phys=%08x cb=%u uCachePolicy=%x\n", ppMem, Phys,(unsigned)cb, uCachePolicy));
+
+ /* Create the object. */
+ PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_PHYS, NULL, cb);
+ if (!pMemHaiku)
+ return VERR_NO_MEMORY;
+
+ /* There is no allocation here, it needs to be mapped somewhere first. */
+ pMemHaiku->AreaId = -1;
+ pMemHaiku->Core.u.Phys.fAllocated = false;
+ pMemHaiku->Core.u.Phys.PhysBase = Phys;
+ pMemHaiku->Core.u.Phys.uCachePolicy = uCachePolicy;
+ *ppMem = &pMemHaiku->Core;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Worker locking the memory in either kernel or user maps.
+ *
+ * @returns IPRT status code.
+ * @param ppMem Where to store the allocated memory object.
+ * @param pvStart The starting address.
+ * @param cb The size of the block.
+ * @param fAccess The mapping protection to apply.
+ * @param R0Process The process to map the memory to (use NIL_RTR0PROCESS
+ * for the kernel)
+ * @param fFlags Memory flags (B_READ_DEVICE indicates the memory is
+ * intended to be written from a "device").
+ */
+static int rtR0MemObjNativeLockInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvStart, size_t cb, uint32_t fAccess,
+ RTR0PROCESS R0Process, int fFlags)
+{
+ NOREF(fAccess);
+ int rc;
+ team_id TeamId = B_SYSTEM_TEAM;
+
+ LogFlowFunc(("ppMem=%p pvStart=%p cb=%u fAccess=%x R0Process=%d fFlags=%x\n", ppMem, pvStart, cb, fAccess, R0Process,
+ fFlags));
+
+ /* Create the object. */
+ PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_LOCK, pvStart, cb);
+ if (RT_UNLIKELY(!pMemHaiku))
+ return VERR_NO_MEMORY;
+
+ if (R0Process != NIL_RTR0PROCESS)
+ TeamId = (team_id)R0Process;
+ rc = lock_memory_etc(TeamId, pvStart, cb, fFlags);
+ if (rc == B_OK)
+ {
+ pMemHaiku->AreaId = -1;
+ pMemHaiku->Core.u.Lock.R0Process = R0Process;
+ *ppMem = &pMemHaiku->Core;
+ return VINF_SUCCESS;
+ }
+ rtR0MemObjDelete(&pMemHaiku->Core);
+ return RTErrConvertFromHaikuKernReturn(rc);
+}
+
+
+int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
+{
+ return rtR0MemObjNativeLockInMap(ppMem, (void *)R3Ptr, cb, fAccess, R0Process, B_READ_DEVICE);
+}
+
+
+int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
+{
+ return rtR0MemObjNativeLockInMap(ppMem, pv, cb, fAccess, NIL_RTR0PROCESS, B_READ_DEVICE);
+}
+
+
+#if 0
+/** @todo Reserve address space */
+/**
+ * Worker for the two virtual address space reservers.
+ *
+ * We're leaning on the examples provided by mmap and vm_mmap in vm_mmap.c here.
+ */
+static int rtR0MemObjNativeReserveInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment,
+ RTR0PROCESS R0Process)
+{
+ int rc;
+ team_id TeamId = B_SYSTEM_TEAM;
+
+ LogFlowFunc(("ppMem=%p pvFixed=%p cb=%u uAlignment=%u R0Process=%d\n", ppMem, pvFixed, (unsigned)cb, uAlignment, R0Process));
+
+ if (R0Process != NIL_RTR0PROCESS)
+ team = (team_id)R0Process;
+
+ /* Check that the specified alignment is supported. */
+ if (uAlignment > PAGE_SIZE)
+ return VERR_NOT_SUPPORTED;
+
+ /* Create the object. */
+ PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_RES_VIRT, NULL, cb);
+ if (!pMemHaiku)
+ return VERR_NO_MEMORY;
+
+ /* Ask the kernel to reserve the address range. */
+ //XXX: vm_reserve_address_range ?
+ return VERR_NOT_SUPPORTED;
+}
+#endif
+
+
+int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
+{
+ return VERR_NOT_SUPPORTED;
+}
+
+
+int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
+{
+ return VERR_NOT_SUPPORTED;
+}
+
+
+int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
+ unsigned fProt, size_t offSub, size_t cbSub)
+{
+ PRTR0MEMOBJHAIKU pMemToMapHaiku = (PRTR0MEMOBJHAIKU)pMemToMap;
+ PRTR0MEMOBJHAIKU pMemHaiku;
+ area_id area = -1;
+ void *pvMap = pvFixed;
+ uint32 uAddrSpec = B_EXACT_ADDRESS;
+ uint32 fProtect = 0;
+ int rc = VERR_MAP_FAILED;
+ AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
+ AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
+#if 0
+ /** @todo r=ramshankar: Wrong format specifiers, fix later! */
+ dprintf("%s(%p, %p, %p, %d, %x, %u, %u)\n", __FUNCTION__, ppMem, pMemToMap, pvFixed, uAlignment,
+ fProt, offSub, cbSub);
+#endif
+ /* Check that the specified alignment is supported. */
+ if (uAlignment > PAGE_SIZE)
+ return VERR_NOT_SUPPORTED;
+
+ /* We can't map anything to the first page, sorry. */
+ if (pvFixed == 0)
+ return VERR_NOT_SUPPORTED;
+
+ if (fProt & RTMEM_PROT_READ)
+ fProtect |= B_KERNEL_READ_AREA;
+ if (fProt & RTMEM_PROT_WRITE)
+ fProtect |= B_KERNEL_WRITE_AREA;
+
+ /*
+ * Either the object we map has an area associated with, which we can clone,
+ * or it's a physical address range which we must map.
+ */
+ if (pMemToMapHaiku->AreaId > -1)
+ {
+ if (pvFixed == (void *)-1)
+ uAddrSpec = B_ANY_KERNEL_ADDRESS;
+
+ rc = area = clone_area("IPRT R0MemObj MapKernel", &pvMap, uAddrSpec, fProtect, pMemToMapHaiku->AreaId);
+ LogFlow(("rtR0MemObjNativeMapKernel: clone_area uAddrSpec=%d fProtect=%x AreaId=%d rc=%d\n", uAddrSpec, fProtect,
+ pMemToMapHaiku->AreaId, rc));
+ }
+ else if (pMemToMapHaiku->Core.enmType == RTR0MEMOBJTYPE_PHYS)
+ {
+ /* map_physical_memory() won't let you choose where. */
+ if (pvFixed != (void *)-1)
+ return VERR_NOT_SUPPORTED;
+ uAddrSpec = B_ANY_KERNEL_ADDRESS;
+
+ rc = area = map_physical_memory("IPRT R0MemObj MapKernelPhys", (phys_addr_t)pMemToMapHaiku->Core.u.Phys.PhysBase,
+ pMemToMapHaiku->Core.cb, uAddrSpec, fProtect, &pvMap);
+ }
+ else
+ return VERR_NOT_SUPPORTED;
+
+ if (rc >= B_OK)
+ {
+ /* Create the object. */
+ pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), RTR0MEMOBJTYPE_MAPPING, pvMap,
+ pMemToMapHaiku->Core.cb);
+ if (RT_UNLIKELY(!pMemHaiku))
+ return VERR_NO_MEMORY;
+
+ pMemHaiku->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
+ pMemHaiku->Core.pv = pvMap;
+ pMemHaiku->AreaId = area;
+ *ppMem = &pMemHaiku->Core;
+ return VINF_SUCCESS;
+ }
+ rc = VERR_MAP_FAILED;
+
+ /** @todo finish the implementation. */
+
+ rtR0MemObjDelete(&pMemHaiku->Core);
+ return rc;
+}
+
+
+int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
+ unsigned fProt, RTR0PROCESS R0Process)
+{
+#if 0
+ /*
+ * Check for unsupported stuff.
+ */
+ AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
+ AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
+ if (uAlignment > PAGE_SIZE)
+ return VERR_NOT_SUPPORTED;
+
+ int rc;
+ PRTR0MEMOBJHAIKU pMemToMapHaiku = (PRTR0MEMOBJHAIKU)pMemToMap;
+ struct proc *pProc = (struct proc *)R0Process;
+ struct vm_map *pProcMap = &pProc->p_vmspace->vm_map;
+
+ /* calc protection */
+ vm_prot_t ProtectionFlags = 0;
+ if ((fProt & RTMEM_PROT_NONE) == RTMEM_PROT_NONE)
+ ProtectionFlags = VM_PROT_NONE;
+ if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ)
+ ProtectionFlags |= VM_PROT_READ;
+ if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE)
+ ProtectionFlags |= VM_PROT_WRITE;
+ if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC)
+ ProtectionFlags |= VM_PROT_EXECUTE;
+
+ /* calc mapping address */
+ PROC_LOCK(pProc);
+ vm_offset_t AddrR3 = round_page((vm_offset_t)pProc->p_vmspace->vm_daddr + lim_max(pProc, RLIMIT_DATA));
+ PROC_UNLOCK(pProc);
+
+ /* Insert the object in the map. */
+ rc = vm_map_find(pProcMap, /* Map to insert the object in */
+ NULL, /* Object to map */
+ 0, /* Start offset in the object */
+ &AddrR3, /* Start address IN/OUT */
+ pMemToMap->cb, /* Size of the mapping */
+ TRUE, /* Whether a suitable address should be searched for first */
+ ProtectionFlags, /* protection flags */
+ VM_PROT_ALL, /* Maximum protection flags */
+ 0); /* Copy on write */
+
+ /* Map the memory page by page into the destination map. */
+ if (rc == KERN_SUCCESS)
+ {
+ size_t cPages = pMemToMap->cb >> PAGE_SHIFT;;
+ pmap_t pPhysicalMap = pProcMap->pmap;
+ vm_offset_t AddrR3Dst = AddrR3;
+
+ if ( pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS
+ || pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS_NC
+ || pMemToMap->enmType == RTR0MEMOBJTYPE_PAGE)
+ {
+ /* Mapping physical allocations */
+ Assert(cPages == pMemToMapHaiku->u.Phys.cPages);
+
+ /* Insert the memory page by page into the mapping. */
+ for (uint32_t iPage = 0; iPage < cPages; iPage++)
+ {
+ vm_page_t pPage = pMemToMapHaiku->u.Phys.apPages[iPage];
+
+ MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE);
+ AddrR3Dst += PAGE_SIZE;
+ }
+ }
+ else
+ {
+ /* Mapping cont or low memory types */
+ vm_offset_t AddrToMap = (vm_offset_t)pMemToMap->pv;
+
+ for (uint32_t iPage = 0; iPage < cPages; iPage++)
+ {
+ vm_page_t pPage = PHYS_TO_VM_PAGE(vtophys(AddrToMap));
+
+ MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE);
+ AddrR3Dst += PAGE_SIZE;
+ AddrToMap += PAGE_SIZE;
+ }
+ }
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Create a mapping object for it.
+ */
+ PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU),
+ RTR0MEMOBJTYPE_MAPPING,
+ (void *)AddrR3,
+ pMemToMap->cb);
+ if (pMemHaiku)
+ {
+ Assert((vm_offset_t)pMemHaiku->Core.pv == AddrR3);
+ pMemHaiku->Core.u.Mapping.R0Process = R0Process;
+ *ppMem = &pMemHaiku->Core;
+ return VINF_SUCCESS;
+ }
+
+ rc = vm_map_remove(pProcMap, ((vm_offset_t)AddrR3), ((vm_offset_t)AddrR3) + pMemToMap->cb);
+ AssertMsg(rc == KERN_SUCCESS, ("Deleting mapping failed\n"));
+ }
+#endif
+ return VERR_NOT_SUPPORTED;
+}
+
+
+int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
+{
+ return VERR_NOT_SUPPORTED;
+}
+
+
+RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
+{
+ PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)pMem;
+ status_t rc;
+
+ /** @todo r=ramshankar: Validate objects */
+
+ LogFlow(("rtR0MemObjNativeGetPagePhysAddr: pMem=%p enmType=%x iPage=%u\n", pMem, pMemHaiku->Core.enmType,(unsigned)iPage));
+
+ switch (pMemHaiku->Core.enmType)
+ {
+ case RTR0MEMOBJTYPE_LOCK:
+ {
+ team_id TeamId = B_SYSTEM_TEAM;
+ physical_entry aPhysMap[2];
+ int32 cPhysMap = 2; /** @todo r=ramshankar: why not use RT_ELEMENTS? */
+
+ if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
+ TeamId = (team_id)pMemHaiku->Core.u.Lock.R0Process;
+ void *pb = pMemHaiku->Core.pv + (iPage << PAGE_SHIFT);
+
+ rc = get_memory_map_etc(TeamId, pb, B_PAGE_SIZE, aPhysMap, &cPhysMap);
+ if (rc < B_OK || cPhysMap < 1)
+ return NIL_RTHCPHYS;
+
+ return aPhysMap[0].address;
+ }
+
+#if 0
+ case RTR0MEMOBJTYPE_MAPPING:
+ {
+ vm_offset_t pb = (vm_offset_t)pMemHaiku->Core.pv + (iPage << PAGE_SHIFT);
+
+ if (pMemHaiku->Core.u.Mapping.R0Process != NIL_RTR0PROCESS)
+ {
+ struct proc *pProc = (struct proc *)pMemHaiku->Core.u.Mapping.R0Process;
+ struct vm_map *pProcMap = &pProc->p_vmspace->vm_map;
+ pmap_t pPhysicalMap = pProcMap->pmap;
+
+ return pmap_extract(pPhysicalMap, pb);
+ }
+ return vtophys(pb);
+ }
+#endif
+ case RTR0MEMOBJTYPE_CONT:
+ return pMemHaiku->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
+
+ case RTR0MEMOBJTYPE_PHYS:
+ return pMemHaiku->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
+
+ case RTR0MEMOBJTYPE_LOW:
+ case RTR0MEMOBJTYPE_PAGE:
+ case RTR0MEMOBJTYPE_PHYS_NC:
+ {
+ team_id TeamId = B_SYSTEM_TEAM;
+ physical_entry aPhysMap[2];
+ int32 cPhysMap = 2; /** @todo r=ramshankar: why not use RT_ELEMENTS? */
+
+ void *pb = pMemHaiku->Core.pv + (iPage << PAGE_SHIFT);
+ rc = get_memory_map_etc(TeamId, pb, B_PAGE_SIZE, aPhysMap, &cPhysMap);
+ if (rc < B_OK || cPhysMap < 1)
+ return NIL_RTHCPHYS;
+
+ return aPhysMap[0].address;
+ }
+
+ case RTR0MEMOBJTYPE_RES_VIRT:
+ default:
+ return NIL_RTHCPHYS;
+ }
+}
+