summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h')
-rw-r--r--src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h1431
1 files changed, 1431 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h b/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h
new file mode 100644
index 00000000..b583f376
--- /dev/null
+++ b/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h
@@ -0,0 +1,1431 @@
+/* $Id: IEMAllCImplSvmInstr.cpp.h $ */
+/** @file
+ * IEM - AMD-V (Secure Virtual Machine) instruction implementation.
+ */
+
+/*
+ * Copyright (C) 2011-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+/**
+ * Check the common SVM instruction preconditions.
+ */
+# define IEM_SVM_INSTR_COMMON_CHECKS(a_pVCpu, a_Instr) \
+ do { \
+ if (!CPUMIsGuestSvmEnabled(IEM_GET_CTX(a_pVCpu))) \
+ { \
+ Log((RT_STR(a_Instr) ": EFER.SVME not enabled -> #UD\n")); \
+ return iemRaiseUndefinedOpcode(a_pVCpu); \
+ } \
+ if (IEM_IS_REAL_OR_V86_MODE(a_pVCpu)) \
+ { \
+ Log((RT_STR(a_Instr) ": Real or v8086 mode -> #UD\n")); \
+ return iemRaiseUndefinedOpcode(a_pVCpu); \
+ } \
+ if ((a_pVCpu)->iem.s.uCpl != 0) \
+ { \
+ Log((RT_STR(a_Instr) ": CPL != 0 -> #GP(0)\n")); \
+ return iemRaiseGeneralProtectionFault0(a_pVCpu); \
+ } \
+ } while (0)
+
+
+/**
+ * Converts an IEM exception event type to an SVM event type.
+ *
+ * @returns The SVM event type.
+ * @retval UINT8_MAX if the specified type of event isn't among the set
+ * of recognized IEM event types.
+ *
+ * @param uVector The vector of the event.
+ * @param fIemXcptFlags The IEM exception / interrupt flags.
+ */
+IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags)
+{
+ if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
+ {
+ if (uVector != X86_XCPT_NMI)
+ return SVM_EVENT_EXCEPTION;
+ return SVM_EVENT_NMI;
+ }
+
+ /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */
+ if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
+ return SVM_EVENT_EXCEPTION;
+
+ if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT)
+ return SVM_EVENT_EXTERNAL_IRQ;
+
+ if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
+ return SVM_EVENT_SOFTWARE_INT;
+
+ AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector));
+ return UINT8_MAX;
+}
+
+
+/**
+ * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and IEM internals.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(VBOXSTRICTRC) iemSvmWorldSwitch(PVMCPU pVCpu)
+{
+ /*
+ * Inform PGM about paging mode changes.
+ * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
+ * see comment in iemMemPageTranslateAndCheckAccess().
+ */
+ int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
+# ifdef IN_RING3
+ Assert(rc != VINF_PGM_CHANGE_MODE);
+# endif
+ AssertRCReturn(rc, rc);
+
+ /* Inform CPUM (recompiler), can later be removed. */
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
+
+ /*
+ * Flush the TLB with new CR3. This is required in case the PGM mode change
+ * above doesn't actually change anything.
+ */
+ if (rc == VINF_SUCCESS)
+ {
+ rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true);
+ AssertRCReturn(rc, rc);
+ }
+
+ /* Re-initialize IEM cache/state after the drastic mode switch. */
+ iemReInitExec(pVCpu);
+ return rc;
+}
+
+
+/**
+ * SVM \#VMEXIT handler.
+ *
+ * @returns Strict VBox status code.
+ * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful.
+ * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's
+ * "host state" and a shutdown is required.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitCode The exit code.
+ * @param uExitInfo1 The exit info. 1 field.
+ * @param uExitInfo2 The exit info. 2 field.
+ */
+IEM_STATIC VBOXSTRICTRC iemSvmVmexit(PVMCPU pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2)
+{
+ VBOXSTRICTRC rcStrict;
+ if ( CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))
+ || uExitCode == SVM_EXIT_INVALID)
+ {
+ LogFlow(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n",
+ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uExitCode, uExitInfo1, uExitInfo2));
+
+ /*
+ * Disable the global-interrupt flag to prevent interrupts during the 'atomic' world switch.
+ */
+ CPUMSetGuestGif(&pVCpu->cpum.GstCtx, false);
+
+ /*
+ * Map the nested-guest VMCB from its location in guest memory.
+ * Write exactly what the CPU does on #VMEXIT thereby preserving most other bits in the
+ * guest's VMCB in memory, see @bugref{7243#c113} and related comment on iemSvmVmrun().
+ */
+ PSVMVMCB pVmcbMem;
+ PGMPAGEMAPLOCK PgLockMem;
+ PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
+ rcStrict = iemMemPageMap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, (void **)&pVmcbMem,
+ &PgLockMem);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /*
+ * Notify HM in case the nested-guest was executed using hardware-assisted SVM (which
+ * would have modified some VMCB state) that might need to be restored on #VMEXIT before
+ * writing the VMCB back to guest memory.
+ */
+ HMNotifySvmNstGstVmexit(pVCpu, IEM_GET_CTX(pVCpu));
+
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
+
+ /*
+ * Save the nested-guest state into the VMCB state-save area.
+ */
+ PSVMVMCBSTATESAVE pVmcbMemState = &pVmcbMem->guest;
+ HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, ES, es);
+ HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, CS, cs);
+ HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, SS, ss);
+ HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, DS, ds);
+ pVmcbMemState->GDTR.u32Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
+ pVmcbMemState->GDTR.u64Base = pVCpu->cpum.GstCtx.gdtr.pGdt;
+ pVmcbMemState->IDTR.u32Limit = pVCpu->cpum.GstCtx.idtr.cbIdt;
+ pVmcbMemState->IDTR.u64Base = pVCpu->cpum.GstCtx.idtr.pIdt;
+ pVmcbMemState->u64EFER = pVCpu->cpum.GstCtx.msrEFER;
+ pVmcbMemState->u64CR4 = pVCpu->cpum.GstCtx.cr4;
+ pVmcbMemState->u64CR3 = pVCpu->cpum.GstCtx.cr3;
+ pVmcbMemState->u64CR2 = pVCpu->cpum.GstCtx.cr2;
+ pVmcbMemState->u64CR0 = pVCpu->cpum.GstCtx.cr0;
+ /** @todo Nested paging. */
+ pVmcbMemState->u64RFlags = pVCpu->cpum.GstCtx.rflags.u64;
+ pVmcbMemState->u64RIP = pVCpu->cpum.GstCtx.rip;
+ pVmcbMemState->u64RSP = pVCpu->cpum.GstCtx.rsp;
+ pVmcbMemState->u64RAX = pVCpu->cpum.GstCtx.rax;
+ pVmcbMemState->u64DR7 = pVCpu->cpum.GstCtx.dr[7];
+ pVmcbMemState->u64DR6 = pVCpu->cpum.GstCtx.dr[6];
+ pVmcbMemState->u8CPL = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */
+ Assert(CPUMGetGuestCPL(pVCpu) == pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl);
+ if (CPUMIsGuestSvmNestedPagingEnabled(pVCpu, IEM_GET_CTX(pVCpu)))
+ pVmcbMemState->u64PAT = pVCpu->cpum.GstCtx.msrPAT;
+
+ /*
+ * Save additional state and intercept information.
+ *
+ * - V_IRQ: Tracked using VMCPU_FF_INTERRUPT_NESTED_GUEST force-flag and updated below.
+ * - V_TPR: Updated by iemCImpl_load_CrX or by the physical CPU for hardware-assisted
+ * SVM execution.
+ * - Interrupt shadow: Tracked using VMCPU_FF_INHIBIT_INTERRUPTS and RIP.
+ */
+ PSVMVMCBCTRL pVmcbMemCtrl = &pVmcbMem->ctrl;
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)) /* V_IRQ. */
+ pVmcbMemCtrl->IntCtrl.n.u1VIrqPending = 0;
+ else
+ {
+ Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending);
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
+ }
+
+ pVmcbMemCtrl->IntCtrl.n.u8VTPR = pVmcbCtrl->IntCtrl.n.u8VTPR; /* V_TPR. */
+
+ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) /* Interrupt shadow. */
+ && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
+ {
+ pVmcbMemCtrl->IntShadow.n.u1IntShadow = 1;
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+ LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pVCpu->cpum.GstCtx.rip));
+ }
+ else
+ pVmcbMemCtrl->IntShadow.n.u1IntShadow = 0;
+
+ /*
+ * Save nRIP, instruction length and byte fields.
+ */
+ pVmcbMemCtrl->u64NextRIP = pVmcbCtrl->u64NextRIP;
+ pVmcbMemCtrl->cbInstrFetched = pVmcbCtrl->cbInstrFetched;
+ memcpy(&pVmcbMemCtrl->abInstr[0], &pVmcbCtrl->abInstr[0], sizeof(pVmcbMemCtrl->abInstr));
+
+ /*
+ * Save exit information.
+ */
+ pVmcbMemCtrl->u64ExitCode = uExitCode;
+ pVmcbMemCtrl->u64ExitInfo1 = uExitInfo1;
+ pVmcbMemCtrl->u64ExitInfo2 = uExitInfo2;
+
+ /*
+ * Update the exit interrupt-information field if this #VMEXIT happened as a result
+ * of delivering an event through IEM.
+ *
+ * Don't update the exit interrupt-information field if the event wasn't being injected
+ * through IEM, as it would have been updated by real hardware if the nested-guest was
+ * executed using hardware-assisted SVM.
+ */
+ {
+ uint8_t uExitIntVector;
+ uint32_t uExitIntErr;
+ uint32_t fExitIntFlags;
+ bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr,
+ NULL /* uExitIntCr2 */);
+ if (fRaisingEvent)
+ {
+ pVmcbCtrl->ExitIntInfo.n.u1Valid = 1;
+ pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector;
+ pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags);
+ if (fExitIntFlags & IEM_XCPT_FLAGS_ERR)
+ {
+ pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true;
+ pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr;
+ }
+ }
+ }
+
+ /*
+ * Save the exit interrupt-information field.
+ *
+ * We write the whole field including overwriting reserved bits as it was observed on an
+ * AMD Ryzen 5 Pro 1500 that the CPU does not preserve reserved bits in EXITINTINFO.
+ */
+ pVmcbMemCtrl->ExitIntInfo = pVmcbCtrl->ExitIntInfo;
+
+ /*
+ * Clear event injection.
+ */
+ pVmcbMemCtrl->EventInject.n.u1Valid = 0;
+
+ iemMemPageUnmap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, pVmcbMem, &PgLockMem);
+ }
+
+ /*
+ * Prepare for guest's "host mode" by clearing internal processor state bits.
+ *
+ * We don't need to zero out the state-save area, just the controls should be
+ * sufficient because it has the critical bit of indicating whether we're inside
+ * the nested-guest or not.
+ */
+ memset(pVmcbCtrl, 0, sizeof(*pVmcbCtrl));
+ Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
+
+ /*
+ * Restore the subset of force-flags that were preserved.
+ */
+ if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions)
+ {
+ VMCPU_FF_SET_MASK(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions);
+ pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0;
+ }
+
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /** @todo Nested paging. */
+ /** @todo ASID. */
+
+ /*
+ * Reload the guest's "host state".
+ */
+ CPUMSvmVmExitRestoreHostState(pVCpu, IEM_GET_CTX(pVCpu));
+
+ /*
+ * Update PGM, IEM and others of a world-switch.
+ */
+ rcStrict = iemSvmWorldSwitch(pVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = VINF_SVM_VMEXIT;
+ else if (RT_SUCCESS(rcStrict))
+ {
+ LogFlow(("iemSvmVmexit: Setting passup status from iemSvmWorldSwitch %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ iemSetPassUpStatus(pVCpu, rcStrict);
+ rcStrict = VINF_SVM_VMEXIT;
+ }
+ else
+ LogFlow(("iemSvmVmexit: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ }
+ else
+ {
+ AssertMsgFailed(("iemSvmVmexit: Mapping VMCB at %#RGp failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, VBOXSTRICTRC_VAL(rcStrict)));
+ rcStrict = VERR_SVM_VMEXIT_FAILED;
+ }
+ }
+ else
+ {
+ AssertMsgFailed(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode, uExitInfo1, uExitInfo2));
+ rcStrict = VERR_SVM_IPE_3;
+ }
+
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
+ /* CLGI/STGI may not have been intercepted and thus not executed in IEM. */
+ if ( HMIsEnabled(pVCpu->CTX_SUFF(pVM))
+ && HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM)))
+ return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
+# endif
+ return rcStrict;
+}
+
+
+/**
+ * Performs the operations necessary that are part of the vmrun instruction
+ * execution in the guest.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @retval VINF_SUCCESS successully executed VMRUN and entered nested-guest
+ * code execution.
+ * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT
+ * (SVM_EXIT_INVALID most likely).
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr The length of the VMRUN instruction.
+ * @param GCPhysVmcb Guest physical address of the VMCB to run.
+ */
+IEM_STATIC VBOXSTRICTRC iemSvmVmrun(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPhysVmcb)
+{
+ LogFlow(("iemSvmVmrun\n"));
+
+ /*
+ * Cache the physical address of the VMCB for #VMEXIT exceptions.
+ */
+ pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
+
+ /*
+ * Save the host state.
+ */
+ CPUMSvmVmRunSaveHostState(IEM_GET_CTX(pVCpu), cbInstr);
+
+ /*
+ * Read the guest VMCB.
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ int rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb), GCPhysVmcb, sizeof(SVMVMCB));
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * AMD-V seems to preserve reserved fields and only writes back selected, recognized
+ * fields on #VMEXIT. However, not all reserved bits are preserved (e.g, EXITINTINFO)
+ * but in our implementation we try to preserve as much as we possibly can.
+ *
+ * We could read the entire page here and only write back the relevant fields on
+ * #VMEXIT but since our internal VMCB is also being used by HM during hardware-assisted
+ * SVM execution, it creates a potential for a nested-hypervisor to set bits that are
+ * currently reserved but may be recognized as features bits in future CPUs causing
+ * unexpected & undesired results. Hence, we zero out unrecognized fields here as we
+ * typically enter hardware-assisted SVM soon anyway, see @bugref{7243#c113}.
+ */
+ PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
+ PSVMVMCBSTATESAVE pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->guest;
+
+ RT_ZERO(pVmcbCtrl->u8Reserved0);
+ RT_ZERO(pVmcbCtrl->u8Reserved1);
+ RT_ZERO(pVmcbCtrl->u8Reserved2);
+ RT_ZERO(pVmcbNstGst->u8Reserved0);
+ RT_ZERO(pVmcbNstGst->u8Reserved1);
+ RT_ZERO(pVmcbNstGst->u8Reserved2);
+ RT_ZERO(pVmcbNstGst->u8Reserved3);
+ RT_ZERO(pVmcbNstGst->u8Reserved4);
+ RT_ZERO(pVmcbNstGst->u8Reserved5);
+ pVmcbCtrl->u32Reserved0 = 0;
+ pVmcbCtrl->TLBCtrl.n.u24Reserved = 0;
+ pVmcbCtrl->IntCtrl.n.u6Reserved = 0;
+ pVmcbCtrl->IntCtrl.n.u3Reserved = 0;
+ pVmcbCtrl->IntCtrl.n.u5Reserved = 0;
+ pVmcbCtrl->IntCtrl.n.u24Reserved = 0;
+ pVmcbCtrl->IntShadow.n.u30Reserved = 0;
+ pVmcbCtrl->ExitIntInfo.n.u19Reserved = 0;
+ pVmcbCtrl->NestedPagingCtrl.n.u29Reserved = 0;
+ pVmcbCtrl->EventInject.n.u19Reserved = 0;
+ pVmcbCtrl->LbrVirt.n.u30Reserved = 0;
+
+ /*
+ * Validate guest-state and controls.
+ */
+ /* VMRUN must always be intercepted. */
+ if (!CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_VMRUN))
+ {
+ Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /* Nested paging. */
+ if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
+ && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
+ {
+ Log(("iemSvmVmrun: Nested paging not supported -> Disabling\n"));
+ pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = 0;
+ }
+
+ /* AVIC. */
+ if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
+ && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
+ {
+ Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
+ pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
+ }
+
+ /* Last branch record (LBR) virtualization. */
+ if ( pVmcbCtrl->LbrVirt.n.u1LbrVirt
+ && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
+ {
+ Log(("iemSvmVmrun: LBR virtualization not supported -> Disabling\n"));
+ pVmcbCtrl->LbrVirt.n.u1LbrVirt = 0;
+ }
+
+ /* Virtualized VMSAVE/VMLOAD. */
+ if ( pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload
+ && !pVM->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
+ {
+ Log(("iemSvmVmrun: Virtualized VMSAVE/VMLOAD not supported -> Disabling\n"));
+ pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = 0;
+ }
+
+ /* Virtual GIF. */
+ if ( pVmcbCtrl->IntCtrl.n.u1VGifEnable
+ && !pVM->cpum.ro.GuestFeatures.fSvmVGif)
+ {
+ Log(("iemSvmVmrun: Virtual GIF not supported -> Disabling\n"));
+ pVmcbCtrl->IntCtrl.n.u1VGifEnable = 0;
+ }
+
+ /* Guest ASID. */
+ if (!pVmcbCtrl->TLBCtrl.n.u32ASID)
+ {
+ Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n"));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /* Guest AVIC. */
+ if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
+ && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
+ {
+ Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
+ pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
+ }
+
+ /* Guest Secure Encrypted Virtualization. */
+ if ( ( pVmcbCtrl->NestedPagingCtrl.n.u1Sev
+ || pVmcbCtrl->NestedPagingCtrl.n.u1SevEs)
+ && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
+ {
+ Log(("iemSvmVmrun: SEV not supported -> Disabling\n"));
+ pVmcbCtrl->NestedPagingCtrl.n.u1Sev = 0;
+ pVmcbCtrl->NestedPagingCtrl.n.u1SevEs = 0;
+ }
+
+ /* Flush by ASID. */
+ if ( !pVM->cpum.ro.GuestFeatures.fSvmFlusbByAsid
+ && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_NOTHING
+ && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_ENTIRE)
+ {
+ Log(("iemSvmVmrun: Flush-by-ASID not supported -> #VMEXIT\n"));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /* IO permission bitmap. */
+ RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr;
+ if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK)
+ || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap)
+ || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE)
+ || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1)))
+ {
+ Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /* MSR permission bitmap. */
+ RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr;
+ if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
+ || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap)
+ || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE))
+ {
+ Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /* CR0. */
+ if ( !(pVmcbNstGst->u64CR0 & X86_CR0_CD)
+ && (pVmcbNstGst->u64CR0 & X86_CR0_NW))
+ {
+ Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+ if (pVmcbNstGst->u64CR0 >> 32)
+ {
+ Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+ /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */
+
+ /* DR6 and DR7. */
+ if ( pVmcbNstGst->u64DR6 >> 32
+ || pVmcbNstGst->u64DR7 >> 32)
+ {
+ Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64DR6,
+ pVmcbNstGst->u64DR6));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * PAT (Page Attribute Table) MSR.
+ *
+ * The CPU only validates and loads it when nested-paging is enabled.
+ * See AMD spec. "15.25.4 Nested Paging and VMRUN/#VMEXIT".
+ */
+ if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
+ && !CPUMIsPatMsrValid(pVmcbNstGst->u64PAT))
+ {
+ Log(("iemSvmVmrun: PAT invalid. u64PAT=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64PAT));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Copy the IO permission bitmap into the cache.
+ */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap));
+ rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap), GCPhysIOBitmap,
+ SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
+ if (RT_FAILURE(rc))
+ {
+ Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Copy the MSR permission bitmap into the cache.
+ */
+ Assert(pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap));
+ rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap), GCPhysMsrBitmap,
+ SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
+ if (RT_FAILURE(rc))
+ {
+ Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Copy segments from nested-guest VMCB state to the guest-CPU state.
+ *
+ * We do this here as we need to use the CS attributes and it's easier this way
+ * then using the VMCB format selectors. It doesn't really matter where we copy
+ * the state, we restore the guest-CPU context state on the \#VMEXIT anyway.
+ */
+ HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, ES, es);
+ HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, CS, cs);
+ HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, SS, ss);
+ HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, DS, ds);
+
+ /** @todo Segment attribute overrides by VMRUN. */
+
+ /*
+ * CPL adjustments and overrides.
+ *
+ * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL().
+ * We shall thus adjust both CS.DPL and SS.DPL here.
+ */
+ pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = pVmcbNstGst->u8CPL;
+ if (CPUMIsGuestInV86ModeEx(IEM_GET_CTX(pVCpu)))
+ pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 3;
+ if (CPUMIsGuestInRealModeEx(IEM_GET_CTX(pVCpu)))
+ pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 0;
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
+
+ /*
+ * Continue validating guest-state and controls.
+ *
+ * We pass CR0 as 0 to CPUMIsGuestEferMsrWriteValid() below to skip the illegal
+ * EFER.LME bit transition check. We pass the nested-guest's EFER as both the
+ * old and new EFER value to not have any guest EFER bits influence the new
+ * nested-guest EFER.
+ */
+ uint64_t uValidEfer;
+ rc = CPUMIsGuestEferMsrWriteValid(pVM, 0 /* CR0 */, pVmcbNstGst->u64EFER, pVmcbNstGst->u64EFER, &uValidEfer);
+ if (RT_FAILURE(rc))
+ {
+ Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64EFER));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /* Validate paging and CPU mode bits. */
+ bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME);
+ bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode);
+ bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
+ bool const fPaging = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PG);
+ bool const fPae = RT_BOOL(pVmcbNstGst->u64CR4 & X86_CR4_PAE);
+ bool const fProtMode = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PE);
+ bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
+ bool const fLongModeConformCS = pVCpu->cpum.GstCtx.cs.Attr.n.u1Long && pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig;
+ /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */
+ if (fLongModeWithPaging)
+ uValidEfer |= MSR_K6_EFER_LMA;
+ bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA));
+ if ( !fSvm
+ || (!fLongModeSupported && fLongModeActiveOrEnabled)
+ || (fLongModeWithPaging && !fPae)
+ || (fLongModeWithPaging && !fProtMode)
+ || ( fLongModeEnabled
+ && fPaging
+ && fPae
+ && fLongModeConformCS))
+ {
+ Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /*
+ * Preserve the required force-flags.
+ *
+ * We only preserve the force-flags that would affect the execution of the
+ * nested-guest (or the guest).
+ *
+ * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
+ * execution of a subsequent IRET instruction in the guest.
+ *
+ * The remaining FFs (e.g. timers) can stay in place so that we will be able to
+ * generate interrupts that should cause #VMEXITs for the nested-guest.
+ *
+ * VMRUN has implicit GIF (Global Interrupt Flag) handling, we don't need to
+ * preserve VMCPU_FF_INHIBIT_INTERRUPTS.
+ */
+ pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
+
+ /*
+ * Pause filter.
+ */
+ if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilter)
+ {
+ pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = pVmcbCtrl->u16PauseFilterCount;
+ if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilterThreshold)
+ pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold = pVmcbCtrl->u16PauseFilterCount;
+ }
+
+ /*
+ * Interrupt shadow.
+ */
+ if (pVmcbCtrl->IntShadow.n.u1IntShadow)
+ {
+ LogFlow(("iemSvmVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGst->u64RIP));
+ /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
+ EMSetInhibitInterruptsPC(pVCpu, pVmcbNstGst->u64RIP);
+ }
+
+ /*
+ * TLB flush control.
+ * Currently disabled since it's redundant as we unconditionally flush the TLB
+ * in iemSvmWorldSwitch() below.
+ */
+# if 0
+ /** @todo @bugref{7243}: ASID based PGM TLB flushes. */
+ if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE
+ || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
+ || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
+ PGMFlushTLB(pVCpu, pVmcbNstGst->u64CR3, true /* fGlobal */);
+# endif
+
+ /*
+ * Copy the remaining guest state from the VMCB to the guest-CPU context.
+ */
+ pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcbNstGst->GDTR.u32Limit;
+ pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcbNstGst->GDTR.u64Base;
+ pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcbNstGst->IDTR.u32Limit;
+ pVCpu->cpum.GstCtx.idtr.pIdt = pVmcbNstGst->IDTR.u64Base;
+ CPUMSetGuestCR0(pVCpu, pVmcbNstGst->u64CR0);
+ CPUMSetGuestCR4(pVCpu, pVmcbNstGst->u64CR4);
+ pVCpu->cpum.GstCtx.cr3 = pVmcbNstGst->u64CR3;
+ pVCpu->cpum.GstCtx.cr2 = pVmcbNstGst->u64CR2;
+ pVCpu->cpum.GstCtx.dr[6] = pVmcbNstGst->u64DR6;
+ pVCpu->cpum.GstCtx.dr[7] = pVmcbNstGst->u64DR7;
+ pVCpu->cpum.GstCtx.rflags.u64 = pVmcbNstGst->u64RFlags;
+ pVCpu->cpum.GstCtx.rax = pVmcbNstGst->u64RAX;
+ pVCpu->cpum.GstCtx.rsp = pVmcbNstGst->u64RSP;
+ pVCpu->cpum.GstCtx.rip = pVmcbNstGst->u64RIP;
+ CPUMSetGuestEferMsrNoChecks(pVCpu, pVCpu->cpum.GstCtx.msrEFER, uValidEfer);
+ if (pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging)
+ pVCpu->cpum.GstCtx.msrPAT = pVmcbNstGst->u64PAT;
+
+ /* Mask DR6, DR7 bits mandatory set/clear bits. */
+ pVCpu->cpum.GstCtx.dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
+ pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_RA1_MASK;
+ pVCpu->cpum.GstCtx.dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
+ pVCpu->cpum.GstCtx.dr[7] |= X86_DR7_RA1_MASK;
+
+ /*
+ * Check for pending virtual interrupts.
+ */
+ if (pVmcbCtrl->IntCtrl.n.u1VIrqPending)
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
+ else
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
+
+ /*
+ * Update PGM, IEM and others of a world-switch.
+ */
+ VBOXSTRICTRC rcStrict = iemSvmWorldSwitch(pVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ { /* likely */ }
+ else if (RT_SUCCESS(rcStrict))
+ {
+ LogFlow(("iemSvmVmrun: iemSvmWorldSwitch returned %Rrc, setting passup status\n", VBOXSTRICTRC_VAL(rcStrict)));
+ rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
+ }
+ else
+ {
+ LogFlow(("iemSvmVmrun: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /*
+ * Set the global-interrupt flag to allow interrupts in the guest.
+ */
+ CPUMSetGuestGif(&pVCpu->cpum.GstCtx, true);
+
+ /*
+ * Event injection.
+ */
+ PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject;
+ pVCpu->cpum.GstCtx.hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid;
+ if (pEventInject->n.u1Valid)
+ {
+ uint8_t const uVector = pEventInject->n.u8Vector;
+ TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject);
+ uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0;
+
+ /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */
+ if (RT_UNLIKELY(enmType == TRPM_32BIT_HACK))
+ {
+ Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+ if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION)
+ {
+ if ( uVector == X86_XCPT_NMI
+ || uVector > X86_XCPT_LAST)
+ {
+ Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+ if ( uVector == X86_XCPT_BR
+ && CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
+ {
+ Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n"));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+ /** @todo any others? */
+ }
+
+ /*
+ * Invalidate the exit interrupt-information field here. This field is fully updated
+ * on #VMEXIT as events other than the one below can also cause intercepts during
+ * their injection (e.g. exceptions).
+ */
+ pVmcbCtrl->ExitIntInfo.n.u1Valid = 0;
+
+ /*
+ * Clear the event injection valid bit here. While the AMD spec. mentions that the CPU
+ * clears this bit from the VMCB unconditionally on #VMEXIT, internally the CPU could be
+ * clearing it at any time, most likely before/after injecting the event. Since VirtualBox
+ * doesn't have any virtual-CPU internal representation of this bit, we clear/update the
+ * VMCB here. This also has the added benefit that we avoid the risk of injecting the event
+ * twice if we fallback to executing the nested-guest using hardware-assisted SVM after
+ * injecting the event through IEM here.
+ */
+ pVmcbCtrl->EventInject.n.u1Valid = 0;
+
+ /** @todo NRIP: Software interrupts can only be pushed properly if we support
+ * NRIP for the nested-guest to calculate the instruction length
+ * below. */
+ LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 vec=%#x type=%d uErr=%u cr2=%#RX64 cr3=%#RX64 efer=%#RX64\n",
+ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uVector, enmType, uErrorCode, pVCpu->cpum.GstCtx.cr2,
+ pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.msrEFER));
+
+ /*
+ * We shall not inject the event here right away. There may be paging mode related updates
+ * as a result of the world-switch above that are yet to be honored. Instead flag the event
+ * as pending for injection.
+ */
+ TRPMAssertTrap(pVCpu, uVector, enmType);
+ if (pEventInject->n.u1ErrorCodeValid)
+ TRPMSetErrorCode(pVCpu, uErrorCode);
+ if ( enmType == TRPM_TRAP
+ && uVector == X86_XCPT_PF)
+ TRPMSetFaultAddress(pVCpu, pVCpu->cpum.GstCtx.cr2);
+ }
+ else
+ LogFlow(("iemSvmVmrun: Entering nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n",
+ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3,
+ pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER, pVCpu->cpum.GstCtx.rflags.u64));
+
+ LogFlow(("iemSvmVmrun: returns %d\n", VBOXSTRICTRC_VAL(rcStrict)));
+
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
+ /* If CLGI/STGI isn't intercepted we force IEM-only nested-guest execution here. */
+ if ( HMIsEnabled(pVM)
+ && HMIsSvmVGifActive(pVM))
+ return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
+# endif
+
+ return rcStrict;
+ }
+
+ /* Shouldn't really happen as the caller should've validated the physical address already. */
+ Log(("iemSvmVmrun: Failed to read nested-guest VMCB at %#RGp (rc=%Rrc) -> #VMEXIT\n", GCPhysVmcb, rc));
+ return rc;
+}
+
+
+/**
+ * Checks if the event intercepts and performs the \#VMEXIT if the corresponding
+ * intercept is active.
+ *
+ * @returns Strict VBox status code.
+ * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
+ * we're not executing a nested-guest.
+ * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
+ * successfully.
+ * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
+ * failed and a shutdown needs to be initiated for the geust.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param u8Vector The interrupt or exception vector.
+ * @param fFlags The exception flags (see IEM_XCPT_FLAGS_XXX).
+ * @param uErr The error-code associated with the exception.
+ * @param uCr2 The CR2 value in case of a \#PF exception.
+ */
+IEM_STATIC VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPU pVCpu, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2)
+{
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
+
+ /*
+ * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts".
+ *
+ * - NMI intercepts have their own exit code and do not cause SVM_EXIT_XCPT_2 #VMEXITs.
+ * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts
+ * even when they use a vector in the range 0 to 31.
+ * - ICEBP should not trigger #DB intercept, but its own intercept.
+ * - For #PF exceptions, its intercept is checked before CR2 is written by the exception.
+ */
+ /* Check NMI intercept */
+ if ( u8Vector == X86_XCPT_NMI
+ && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
+ && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI))
+ {
+ Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n"));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /* Check ICEBP intercept. */
+ if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
+ && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP))
+ {
+ Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n"));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ /* Check CPU exception intercepts. */
+ if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
+ && IEM_SVM_IS_XCPT_INTERCEPT_SET(pVCpu, u8Vector))
+ {
+ Assert(u8Vector <= X86_XCPT_LAST);
+ uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0;
+ uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0;
+ if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists
+ && u8Vector == X86_XCPT_PF
+ && !(uErr & X86_TRAP_PF_ID))
+ {
+ PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
+# ifdef IEM_WITH_CODE_TLB
+ uint8_t const *pbInstrBuf = pVCpu->iem.s.pbInstrBuf;
+ uint8_t const cbInstrBuf = pVCpu->iem.s.cbInstrBuf;
+ pVmcbCtrl->cbInstrFetched = RT_MIN(cbInstrBuf, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
+ if ( pbInstrBuf
+ && cbInstrBuf > 0)
+ memcpy(&pVmcbCtrl->abInstr[0], pbInstrBuf, pVmcbCtrl->cbInstrFetched);
+# else
+ uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode;
+ pVmcbCtrl->cbInstrFetched = RT_MIN(cbOpcode, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
+ if (cbOpcode > 0)
+ memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[0], pVmcbCtrl->cbInstrFetched);
+# endif
+ }
+ if (u8Vector == X86_XCPT_BR)
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x "
+ "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl.u32InterceptXcpt,
+ u8Vector, uExitInfo1, uExitInfo2));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XCPT_0 + u8Vector, uExitInfo1, uExitInfo2);
+ }
+
+ /* Check software interrupt (INTn) intercepts. */
+ if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
+ | IEM_XCPT_FLAGS_BP_INSTR
+ | IEM_XCPT_FLAGS_ICEBP_INSTR
+ | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
+ && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN))
+ {
+ uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? u8Vector : 0;
+ Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */);
+ }
+
+ return VINF_SVM_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the
+ * corresponding intercept is active.
+ *
+ * @returns Strict VBox status code.
+ * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
+ * we're not executing a nested-guest.
+ * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
+ * successfully.
+ * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
+ * failed and a shutdown needs to be initiated for the geust.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param u16Port The IO port being accessed.
+ * @param enmIoType The type of IO access.
+ * @param cbReg The IO operand size in bytes.
+ * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
+ * @param iEffSeg The effective segment number.
+ * @param fRep Whether this is a repeating IO instruction (REP prefix).
+ * @param fStrIo Whether this is a string IO instruction.
+ * @param cbInstr The length of the IO instruction in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPU pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
+ uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr)
+{
+ Assert(IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT));
+ Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
+ Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
+
+ Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port));
+
+ SVMIOIOEXITINFO IoExitInfo;
+ void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
+ bool const fIntercept = HMIsSvmIoInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep,
+ fStrIo, &IoExitInfo);
+ if (fIntercept)
+ {
+ Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) -> #VMEXIT\n", u16Port, u16Port));
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ return iemSvmVmexit(pVCpu, SVM_EXIT_IOIO, IoExitInfo.u, pVCpu->cpum.GstCtx.rip + cbInstr);
+ }
+
+ /** @todo remove later (for debugging as VirtualBox always traps all IO
+ * intercepts). */
+ AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
+ return VINF_SVM_INTERCEPT_NOT_ACTIVE;
+}
+
+
+/**
+ * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the
+ * corresponding intercept is active.
+ *
+ * @returns Strict VBox status code.
+ * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not
+ * specify interception of the accessed MSR @a idMsr.
+ * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
+ * successfully.
+ * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
+ * failed and a shutdown needs to be initiated for the geust.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param idMsr The MSR being accessed in the nested-guest.
+ * @param fWrite Whether this is an MSR write access, @c false implies an
+ * MSR read.
+ * @param cbInstr The length of the MSR read/write instruction in bytes.
+ */
+IEM_STATIC VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPU pVCpu, uint32_t idMsr, bool fWrite)
+{
+ /*
+ * Check if any MSRs are being intercepted.
+ */
+ Assert(CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_MSR_PROT));
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
+
+ uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ;
+
+ /*
+ * Get the byte and bit offset of the permission bits corresponding to the MSR.
+ */
+ uint16_t offMsrpm;
+ uint8_t uMsrpmBit;
+ int rc = HMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
+ if (RT_SUCCESS(rc))
+ {
+ Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
+ Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
+ if (fWrite)
+ ++uMsrpmBit;
+
+ /*
+ * Check if the bit is set, if so, trigger a #VMEXIT.
+ */
+ uint8_t *pbMsrpm = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
+ pbMsrpm += offMsrpm;
+ if (*pbMsrpm & RT_BIT(uMsrpmBit))
+ {
+ IEM_SVM_UPDATE_NRIP(pVCpu);
+ return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
+ }
+ }
+ else
+ {
+ /*
+ * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (guest hypervisor) deal with it.
+ */
+ Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite));
+ return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
+ }
+ return VINF_SVM_INTERCEPT_NOT_ACTIVE;
+}
+
+
+
+/**
+ * Implements 'VMRUN'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_vmrun)
+{
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
+ RT_NOREF2(pVCpu, cbInstr);
+ return VINF_EM_RAW_EMULATE_INSTR;
+# else
+ LogFlow(("iemCImpl_vmrun\n"));
+ IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun);
+
+ /** @todo Check effective address size using address size prefix. */
+ RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
+ if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
+ {
+ Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
+ {
+ Log(("vmrun: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, cbInstr, GCPhysVmcb);
+ if (rcStrict == VERR_SVM_VMEXIT_FAILED)
+ {
+ Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
+ rcStrict = VINF_EM_TRIPLE_FAULT;
+ }
+ return rcStrict;
+# endif
+}
+
+
+/**
+ * Implements 'VMLOAD'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_vmload)
+{
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
+ RT_NOREF2(pVCpu, cbInstr);
+ return VINF_EM_RAW_EMULATE_INSTR;
+# else
+ LogFlow(("iemCImpl_vmload\n"));
+ IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
+
+ /** @todo Check effective address size using address size prefix. */
+ RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
+ if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
+ {
+ Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
+ {
+ Log(("vmload: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ SVMVMCBSTATESAVE VmcbNstGst;
+ VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest),
+ sizeof(SVMVMCBSTATESAVE));
+ if (rcStrict == VINF_SUCCESS)
+ {
+ LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
+ HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs);
+ HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs);
+ HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr);
+ HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr);
+
+ pVCpu->cpum.GstCtx.msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase;
+ pVCpu->cpum.GstCtx.msrSTAR = VmcbNstGst.u64STAR;
+ pVCpu->cpum.GstCtx.msrLSTAR = VmcbNstGst.u64LSTAR;
+ pVCpu->cpum.GstCtx.msrCSTAR = VmcbNstGst.u64CSTAR;
+ pVCpu->cpum.GstCtx.msrSFMASK = VmcbNstGst.u64SFMASK;
+
+ pVCpu->cpum.GstCtx.SysEnter.cs = VmcbNstGst.u64SysEnterCS;
+ pVCpu->cpum.GstCtx.SysEnter.esp = VmcbNstGst.u64SysEnterESP;
+ pVCpu->cpum.GstCtx.SysEnter.eip = VmcbNstGst.u64SysEnterEIP;
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ return rcStrict;
+# endif
+}
+
+
+/**
+ * Implements 'VMSAVE'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_vmsave)
+{
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
+ RT_NOREF2(pVCpu, cbInstr);
+ return VINF_EM_RAW_EMULATE_INSTR;
+# else
+ LogFlow(("iemCImpl_vmsave\n"));
+ IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
+
+ /** @todo Check effective address size using address size prefix. */
+ RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
+ if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
+ || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
+ {
+ Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
+ return iemRaiseGeneralProtectionFault0(pVCpu);
+ }
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
+ {
+ Log(("vmsave: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ SVMVMCBSTATESAVE VmcbNstGst;
+ VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest),
+ sizeof(SVMVMCBSTATESAVE));
+ if (rcStrict == VINF_SUCCESS)
+ {
+ LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR
+ | CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS);
+
+ HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs);
+ HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs);
+ HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr);
+ HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr);
+
+ VmcbNstGst.u64KernelGSBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
+ VmcbNstGst.u64STAR = pVCpu->cpum.GstCtx.msrSTAR;
+ VmcbNstGst.u64LSTAR = pVCpu->cpum.GstCtx.msrLSTAR;
+ VmcbNstGst.u64CSTAR = pVCpu->cpum.GstCtx.msrCSTAR;
+ VmcbNstGst.u64SFMASK = pVCpu->cpum.GstCtx.msrSFMASK;
+
+ VmcbNstGst.u64SysEnterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
+ VmcbNstGst.u64SysEnterESP = pVCpu->cpum.GstCtx.SysEnter.esp;
+ VmcbNstGst.u64SysEnterEIP = pVCpu->cpum.GstCtx.SysEnter.eip;
+
+ rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest), &VmcbNstGst,
+ sizeof(SVMVMCBSTATESAVE));
+ if (rcStrict == VINF_SUCCESS)
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ }
+ return rcStrict;
+# endif
+}
+
+
+/**
+ * Implements 'CLGI'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_clgi)
+{
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
+ RT_NOREF2(pVCpu, cbInstr);
+ return VINF_EM_RAW_EMULATE_INSTR;
+# else
+ LogFlow(("iemCImpl_clgi\n"));
+ IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
+ {
+ Log(("clgi: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ CPUMSetGuestGif(&pVCpu->cpum.GstCtx, false);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
+ return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
+# else
+ return VINF_SUCCESS;
+# endif
+# endif
+}
+
+
+/**
+ * Implements 'STGI'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_stgi)
+{
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
+ RT_NOREF2(pVCpu, cbInstr);
+ return VINF_EM_RAW_EMULATE_INSTR;
+# else
+ LogFlow(("iemCImpl_stgi\n"));
+ IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
+ {
+ Log2(("stgi: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ CPUMSetGuestGif(&pVCpu->cpum.GstCtx, true);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+
+# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
+ return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
+# else
+ return VINF_SUCCESS;
+# endif
+# endif
+}
+
+
+/**
+ * Implements 'INVLPGA'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_invlpga)
+{
+ /** @todo Check effective address size using address size prefix. */
+ RTGCPTR const GCPtrPage = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
+ /** @todo PGM needs virtual ASID support. */
+# if 0
+ uint32_t const uAsid = pVCpu->cpum.GstCtx.ecx;
+# endif
+
+ IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
+ {
+ Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ PGMInvalidatePage(pVCpu, GCPtrPage);
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Implements 'SKINIT'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_skinit)
+{
+ IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
+
+ uint32_t uIgnore;
+ uint32_t fFeaturesECX;
+ CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
+ if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
+ return iemRaiseUndefinedOpcode(pVCpu);
+
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
+ {
+ Log2(("skinit: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+ RT_NOREF(cbInstr);
+ return VERR_IEM_INSTR_NOT_IMPLEMENTED;
+}
+
+
+/**
+ * Implements SVM's implementation of PAUSE.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_svm_pause)
+{
+ bool fCheckIntercept = true;
+ if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilter)
+ {
+ IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
+
+ /* TSC based pause-filter thresholding. */
+ if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilterThreshold
+ && pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold > 0)
+ {
+ uint64_t const uTick = TMCpuTickGet(pVCpu);
+ if (uTick - pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick > pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold)
+ pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = CPUMGetGuestSvmPauseFilterCount(pVCpu, IEM_GET_CTX(pVCpu));
+ pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick = uTick;
+ }
+
+ /* Simple pause-filter counter. */
+ if (pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter > 0)
+ {
+ --pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter;
+ fCheckIntercept = false;
+ }
+ }
+
+ if (fCheckIntercept)
+ IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_PAUSE, SVM_EXIT_PAUSE, 0, 0);
+
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ return VINF_SUCCESS;
+}
+
+#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
+
+/**
+ * Common code for iemCImpl_vmmcall and iemCImpl_vmcall (latter in IEMAllCImplVmxInstr.cpp.h).
+ */
+IEM_CIMPL_DEF_1(iemCImpl_Hypercall, uint16_t, uDisOpcode)
+{
+ if (EMAreHypercallInstructionsEnabled(pVCpu))
+ {
+ NOREF(uDisOpcode);
+ VBOXSTRICTRC rcStrict = GIMHypercallEx(pVCpu, IEM_GET_CTX(pVCpu), uDisOpcode, cbInstr);
+ if (RT_SUCCESS(rcStrict))
+ {
+ if (rcStrict == VINF_SUCCESS)
+ iemRegAddToRipAndClearRF(pVCpu, cbInstr);
+ if ( rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
+ return VINF_SUCCESS;
+ AssertMsgReturn(rcStrict == VINF_GIM_R3_HYPERCALL, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4);
+ return rcStrict;
+ }
+ AssertMsgReturn( rcStrict == VERR_GIM_HYPERCALL_ACCESS_DENIED
+ || rcStrict == VERR_GIM_HYPERCALLS_NOT_AVAILABLE
+ || rcStrict == VERR_GIM_NOT_ENABLED
+ || rcStrict == VERR_GIM_HYPERCALL_MEMORY_READ_FAILED
+ || rcStrict == VERR_GIM_HYPERCALL_MEMORY_WRITE_FAILED,
+ ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4);
+
+ /* Raise #UD on all failures. */
+ }
+ return iemRaiseUndefinedOpcode(pVCpu);
+}
+
+
+/**
+ * Implements 'VMMCALL'.
+ */
+IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
+{
+ if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
+ {
+ Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
+ IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
+ }
+
+#ifndef IN_RC
+ /* This is a little bit more complicated than the VT-x version because HM/SVM may
+ patch MOV CR8 instructions to speed up APIC.TPR access for 32-bit windows guests. */
+ if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
+ {
+ int rc = HMHCMaybeMovTprSvmHypercall(pVCpu);
+ if (RT_SUCCESS(rc))
+ {
+ Log(("vmmcall: MovTrp\n"));
+ return VINF_SUCCESS;
+ }
+ }
+#endif
+
+ /* Join forces with vmcall. */
+ return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMMCALL);
+}
+