summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR0/HMVMXR0.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMR0/HMVMXR0.cpp')
-rw-r--r--src/VBox/VMM/VMMR0/HMVMXR0.cpp13777
1 files changed, 13777 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR0/HMVMXR0.cpp b/src/VBox/VMM/VMMR0/HMVMXR0.cpp
new file mode 100644
index 00000000..62d2b7e1
--- /dev/null
+++ b/src/VBox/VMM/VMMR0/HMVMXR0.cpp
@@ -0,0 +1,13777 @@
+/* $Id: HMVMXR0.cpp $ */
+/** @file
+ * HM VMX (Intel VT-x) - Host Context Ring-0.
+ */
+
+/*
+ * Copyright (C) 2012-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_HM
+#define VMCPU_INCL_CPUM_GST_CTX
+#include <iprt/x86.h>
+#include <iprt/asm-amd64-x86.h>
+#include <iprt/thread.h>
+
+#include <VBox/vmm/pdmapi.h>
+#include <VBox/vmm/dbgf.h>
+#include <VBox/vmm/iem.h>
+#include <VBox/vmm/iom.h>
+#include <VBox/vmm/selm.h>
+#include <VBox/vmm/tm.h>
+#include <VBox/vmm/em.h>
+#include <VBox/vmm/gim.h>
+#include <VBox/vmm/apic.h>
+#ifdef VBOX_WITH_REM
+# include <VBox/vmm/rem.h>
+#endif
+#include "HMInternal.h"
+#include <VBox/vmm/vm.h>
+#include <VBox/vmm/hmvmxinline.h>
+#include "HMVMXR0.h"
+#include "dtrace/VBoxVMM.h"
+
+#ifdef DEBUG_ramshankar
+# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
+# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
+# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
+# define HMVMX_ALWAYS_CHECK_GUEST_STATE
+# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
+# define HMVMX_ALWAYS_TRAP_PF
+# define HMVMX_ALWAYS_FLUSH_TLB
+# define HMVMX_ALWAYS_SWAP_EFER
+#endif
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** Use the function table. */
+#define HMVMX_USE_FUNCTION_TABLE
+
+/** Determine which tagged-TLB flush handler to use. */
+#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
+#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
+#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
+#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
+
+/** @name HMVMX_READ_XXX
+ * Flags to skip redundant reads of some common VMCS fields that are not part of
+ * the guest-CPU or VCPU state but are needed while handling VM-exits.
+ */
+#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
+#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
+#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
+#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
+#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
+#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
+#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
+#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
+/** @} */
+
+/**
+ * States of the VMCS.
+ *
+ * This does not reflect all possible VMCS states but currently only those
+ * needed for maintaining the VMCS consistently even when thread-context hooks
+ * are used. Maybe later this can be extended (i.e. Nested Virtualization).
+ */
+#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
+#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
+#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
+
+/**
+ * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
+ * guest using hardware-assisted VMX.
+ *
+ * This excludes state like GPRs (other than RSP) which are always are
+ * swapped and restored across the world-switch and also registers like EFER,
+ * MSR which cannot be modified by the guest without causing a VM-exit.
+ */
+#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
+ | CPUMCTX_EXTRN_RFLAGS \
+ | CPUMCTX_EXTRN_RSP \
+ | CPUMCTX_EXTRN_SREG_MASK \
+ | CPUMCTX_EXTRN_TABLE_MASK \
+ | CPUMCTX_EXTRN_KERNEL_GS_BASE \
+ | CPUMCTX_EXTRN_SYSCALL_MSRS \
+ | CPUMCTX_EXTRN_SYSENTER_MSRS \
+ | CPUMCTX_EXTRN_TSC_AUX \
+ | CPUMCTX_EXTRN_OTHER_MSRS \
+ | CPUMCTX_EXTRN_CR0 \
+ | CPUMCTX_EXTRN_CR3 \
+ | CPUMCTX_EXTRN_CR4 \
+ | CPUMCTX_EXTRN_DR7 \
+ | CPUMCTX_EXTRN_HM_VMX_MASK)
+
+/**
+ * Exception bitmap mask for real-mode guests (real-on-v86).
+ *
+ * We need to intercept all exceptions manually except:
+ * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
+ * due to bugs in Intel CPUs.
+ * - \#PF need not be intercepted even in real-mode if we have Nested Paging
+ * support.
+ */
+#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
+ | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
+ | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
+ | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
+ | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
+ | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
+ | RT_BIT(X86_XCPT_XF))
+
+/** Maximum VM-instruction error number. */
+#define HMVMX_INSTR_ERROR_MAX 28
+
+/** Profiling macro. */
+#ifdef HM_PROFILE_EXIT_DISPATCH
+# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
+# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
+#else
+# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
+# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
+#endif
+
+/** Assert that preemption is disabled or covered by thread-context hooks. */
+#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
+ || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
+
+/** Assert that we haven't migrated CPUs when thread-context hooks are not
+ * used. */
+#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
+ || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
+ ("Illegal migration! Entered on CPU %u Current %u\n", \
+ (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
+
+/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
+ * context. */
+#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
+ ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
+ (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
+
+/** Macro for importing guest state from the VMCS back into CPUMCTX (intended to be
+ * used only from VM-exit handlers). */
+#define HMVMX_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) (hmR0VmxImportGuestState((a_pVCpu), (a_fWhat)))
+
+/** Helper macro for VM-exit handlers called unexpectedly. */
+#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
+ do { \
+ (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
+ return VERR_VMX_UNEXPECTED_EXIT; \
+ } while (0)
+
+/** Macro for importing segment registers to the VMCS from the guest-CPU context. */
+#ifdef VMX_USE_CACHED_VMCS_ACCESSES
+# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
+ hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
+ VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
+#else
+# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
+ hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
+ VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
+#endif
+
+/** Macro for exporting segment registers to the VMCS from the guest-CPU context. */
+#define HMVMX_EXPORT_SREG(Sel, a_pCtxSelReg) \
+ hmR0VmxExportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
+ VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+/** Macro that does the necessary privilege checks and intercepted VM-exits for
+ * guests that attempted to execute a VMX instruction. */
+# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
+ do \
+ { \
+ VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
+ if (rcStrictTmp == VINF_SUCCESS) \
+ { /* likely */ } \
+ else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
+ { \
+ Assert((a_pVCpu)->hm.s.Event.fPending); \
+ Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
+ return VINF_SUCCESS; \
+ } \
+ else \
+ { \
+ int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
+ AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
+ } \
+ } while (0)
+
+/** Macro that decodes a memory operand for an instruction VM-exit. */
+# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
+ do \
+ { \
+ VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
+ (a_pGCPtrEffAddr)); \
+ if (rcStrictTmp == VINF_SUCCESS) \
+ { /* likely */ } \
+ else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
+ { \
+ uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
+ Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
+ NOREF(uXcptTmp); \
+ return VINF_SUCCESS; \
+ } \
+ else \
+ { \
+ Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
+ return rcStrictTmp; \
+ } \
+ } while (0)
+
+# ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+/** Macro that executes a VMX instruction in IEM. */
+# define HMVMX_IEM_EXEC_VMX_INSTR_RET(a_pVCpu) \
+ do { \
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE((a_pVCpu), HMVMX_CPUMCTX_EXTRN_ALL); \
+ AssertRCReturn(rc, rc); \
+ VBOXSTRICTRC rcStrict = IEMExecOne((a_pVCpu)); \
+ if (rcStrict == VINF_SUCCESS) \
+ ASMAtomicUoOrU64(&(a_pVCpu)->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
+ else if (rcStrict == VINF_IEM_RAISED_XCPT) \
+ { \
+ rcStrict = VINF_SUCCESS; \
+ ASMAtomicUoOrU64(&(a_pVCpu)->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); \
+ } \
+ return VBOXSTRICTRC_VAL(rcStrict); \
+ } while (0)
+
+# endif /* VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM */
+#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+/**
+ * VMX transient state.
+ *
+ * A state structure for holding miscellaneous information across
+ * VMX non-root operation and restored after the transition.
+ */
+typedef struct VMXTRANSIENT
+{
+ /** The host's rflags/eflags. */
+ RTCCUINTREG fEFlags;
+#if HC_ARCH_BITS == 32
+ uint32_t u32Alignment0;
+#endif
+ /** The guest's TPR value used for TPR shadowing. */
+ uint8_t u8GuestTpr;
+ /** Alignment. */
+ uint8_t abAlignment0[7];
+
+ /** The basic VM-exit reason. */
+ uint16_t uExitReason;
+ /** Alignment. */
+ uint16_t u16Alignment0;
+ /** The VM-exit interruption error code. */
+ uint32_t uExitIntErrorCode;
+ /** The VM-exit exit code qualification. */
+ uint64_t uExitQual;
+ /** The Guest-linear address. */
+ uint64_t uGuestLinearAddr;
+
+ /** The VM-exit interruption-information field. */
+ uint32_t uExitIntInfo;
+ /** The VM-exit instruction-length field. */
+ uint32_t cbInstr;
+ /** The VM-exit instruction-information field. */
+ VMXEXITINSTRINFO ExitInstrInfo;
+ /** Whether the VM-entry failed or not. */
+ bool fVMEntryFailed;
+ /** Alignment. */
+ uint8_t abAlignment1[3];
+
+ /** The VM-entry interruption-information field. */
+ uint32_t uEntryIntInfo;
+ /** The VM-entry exception error code field. */
+ uint32_t uEntryXcptErrorCode;
+ /** The VM-entry instruction length field. */
+ uint32_t cbEntryInstr;
+
+ /** IDT-vectoring information field. */
+ uint32_t uIdtVectoringInfo;
+ /** IDT-vectoring error code. */
+ uint32_t uIdtVectoringErrorCode;
+
+ /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
+ uint32_t fVmcsFieldsRead;
+
+ /** Whether the guest debug state was active at the time of VM-exit. */
+ bool fWasGuestDebugStateActive;
+ /** Whether the hyper debug state was active at the time of VM-exit. */
+ bool fWasHyperDebugStateActive;
+ /** Whether TSC-offsetting should be setup before VM-entry. */
+ bool fUpdateTscOffsettingAndPreemptTimer;
+ /** Whether the VM-exit was caused by a page-fault during delivery of a
+ * contributory exception or a page-fault. */
+ bool fVectoringDoublePF;
+ /** Whether the VM-exit was caused by a page-fault during delivery of an
+ * external interrupt or NMI. */
+ bool fVectoringPF;
+} VMXTRANSIENT;
+AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
+AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
+AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
+AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
+AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
+/** Pointer to VMX transient state. */
+typedef VMXTRANSIENT *PVMXTRANSIENT;
+
+/**
+ * Memory operand read or write access.
+ */
+typedef enum VMXMEMACCESS
+{
+ VMXMEMACCESS_READ = 0,
+ VMXMEMACCESS_WRITE = 1
+} VMXMEMACCESS;
+
+/**
+ * VMX VM-exit handler.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient Pointer to the VMX-transient structure.
+ */
+#ifndef HMVMX_USE_FUNCTION_TABLE
+typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+#else
+typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+/** Pointer to VM-exit handler. */
+typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
+#endif
+
+/**
+ * VMX VM-exit handler, non-strict status code.
+ *
+ * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
+ *
+ * @returns VBox status code, no informational status code returned.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient Pointer to the VMX-transient structure.
+ *
+ * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
+ * use of that status code will be replaced with VINF_EM_SOMETHING
+ * later when switching over to IEM.
+ */
+#ifndef HMVMX_USE_FUNCTION_TABLE
+typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+#else
+typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
+#endif
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush);
+static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr);
+static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
+static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat);
+static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
+ RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState);
+#if HC_ARCH_BITS == 32
+static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
+#endif
+#ifndef HMVMX_USE_FUNCTION_TABLE
+DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
+# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
+# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
+#else
+# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
+# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
+#endif
+
+/** @name VM-exit handlers.
+ * @{
+ */
+static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
+static FNVMXEXITHANDLER hmR0VmxExitExtInt;
+static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
+static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
+static FNVMXEXITHANDLER hmR0VmxExitCpuid;
+static FNVMXEXITHANDLER hmR0VmxExitGetsec;
+static FNVMXEXITHANDLER hmR0VmxExitHlt;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
+static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
+static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
+static FNVMXEXITHANDLER hmR0VmxExitVmcall;
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+static FNVMXEXITHANDLER hmR0VmxExitVmclear;
+static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
+static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
+static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
+static FNVMXEXITHANDLER hmR0VmxExitVmread;
+static FNVMXEXITHANDLER hmR0VmxExitVmresume;
+static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
+static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
+static FNVMXEXITHANDLER hmR0VmxExitVmxon;
+#endif
+static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
+static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
+static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
+static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
+static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
+static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
+static FNVMXEXITHANDLER hmR0VmxExitMwait;
+static FNVMXEXITHANDLER hmR0VmxExitMtf;
+static FNVMXEXITHANDLER hmR0VmxExitMonitor;
+static FNVMXEXITHANDLER hmR0VmxExitPause;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
+static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
+static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
+static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
+static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
+static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
+static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
+static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
+static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
+static FNVMXEXITHANDLER hmR0VmxExitRdrand;
+static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
+/** @} */
+
+static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
+static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu);
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+#ifdef HMVMX_USE_FUNCTION_TABLE
+
+/**
+ * VMX_EXIT dispatch table.
+ */
+static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
+{
+ /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
+ /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
+ /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
+ /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
+ /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
+ /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
+ /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
+ /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
+ /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
+ /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
+ /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
+ /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
+ /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
+ /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
+ /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
+ /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
+ /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
+ /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
+ /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
+ /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
+ /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
+ /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
+ /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
+ /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
+ /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
+ /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
+ /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
+#else
+ /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
+ /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
+ /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
+ /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
+ /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
+ /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
+ /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
+ /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
+ /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
+#endif
+ /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
+ /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
+ /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
+ /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
+ /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
+ /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
+ /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
+ /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
+ /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
+ /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
+ /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
+ /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
+ /* 40 UNDEFINED */ hmR0VmxExitPause,
+ /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
+ /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
+ /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
+ /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
+ /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
+ /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
+ /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
+ /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
+ /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
+ /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
+ /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
+ /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
+ /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
+ /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
+ /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
+ /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
+ /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
+ /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
+ /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
+ /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
+ /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
+ /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
+ /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
+ /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
+};
+#endif /* HMVMX_USE_FUNCTION_TABLE */
+
+#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
+static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
+{
+ /* 0 */ "(Not Used)",
+ /* 1 */ "VMCALL executed in VMX root operation.",
+ /* 2 */ "VMCLEAR with invalid physical address.",
+ /* 3 */ "VMCLEAR with VMXON pointer.",
+ /* 4 */ "VMLAUNCH with non-clear VMCS.",
+ /* 5 */ "VMRESUME with non-launched VMCS.",
+ /* 6 */ "VMRESUME after VMXOFF",
+ /* 7 */ "VM-entry with invalid control fields.",
+ /* 8 */ "VM-entry with invalid host state fields.",
+ /* 9 */ "VMPTRLD with invalid physical address.",
+ /* 10 */ "VMPTRLD with VMXON pointer.",
+ /* 11 */ "VMPTRLD with incorrect revision identifier.",
+ /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
+ /* 13 */ "VMWRITE to read-only VMCS component.",
+ /* 14 */ "(Not Used)",
+ /* 15 */ "VMXON executed in VMX root operation.",
+ /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
+ /* 17 */ "VM-entry with non-launched executing VMCS.",
+ /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
+ /* 19 */ "VMCALL with non-clear VMCS.",
+ /* 20 */ "VMCALL with invalid VM-exit control fields.",
+ /* 21 */ "(Not Used)",
+ /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
+ /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
+ /* 24 */ "VMCALL with invalid SMM-monitor features.",
+ /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
+ /* 26 */ "VM-entry with events blocked by MOV SS.",
+ /* 27 */ "(Not Used)",
+ /* 28 */ "Invalid operand to INVEPT/INVVPID."
+};
+#endif /* VBOX_STRICT */
+
+
+/**
+ * Updates the VM's last error record.
+ *
+ * If there was a VMX instruction error, reads the error data from the VMCS and
+ * updates VCPU's last error record as well.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
+ * VERR_VMX_INVALID_VMCS_FIELD.
+ * @param rc The error code.
+ */
+static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
+{
+ if ( rc == VERR_VMX_INVALID_VMCS_FIELD
+ || rc == VERR_VMX_UNABLE_TO_START_VM)
+ {
+ AssertPtrReturnVoid(pVCpu);
+ VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
+ }
+ pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
+}
+
+
+/**
+ * Reads the VM-entry interruption-information field from the VMCS into the VMX
+ * transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
+{
+ int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
+ AssertRCReturn(rc, rc);
+ return VINF_SUCCESS;
+}
+
+#ifdef VBOX_STRICT
+/**
+ * Reads the VM-entry exception error code field from the VMCS into
+ * the VMX transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
+{
+ int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
+ AssertRCReturn(rc, rc);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Reads the VM-entry exception error code field from the VMCS into
+ * the VMX transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
+{
+ int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
+ AssertRCReturn(rc, rc);
+ return VINF_SUCCESS;
+}
+#endif /* VBOX_STRICT */
+
+
+/**
+ * Reads the VM-exit interruption-information field from the VMCS into the VMX
+ * transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ */
+DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
+{
+ if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
+ {
+ int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
+ AssertRCReturn(rc,rc);
+ pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Reads the VM-exit interruption error code from the VMCS into the VMX
+ * transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ */
+DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
+{
+ if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
+ {
+ int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
+ AssertRCReturn(rc, rc);
+ pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Reads the VM-exit instruction length field from the VMCS into the VMX
+ * transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ */
+DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
+{
+ if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
+ {
+ int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
+ AssertRCReturn(rc, rc);
+ pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Reads the VM-exit instruction-information field from the VMCS into
+ * the VMX transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ */
+DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
+{
+ if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
+ {
+ int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
+ AssertRCReturn(rc, rc);
+ pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT. (Required for the VMCS cache case.)
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ */
+DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
+ {
+ int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
+ AssertRCReturn(rc, rc);
+ pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Reads the Guest-linear address from the VMCS into the VMX transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT. (Required for the VMCS cache case.)
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ */
+DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
+ {
+ int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
+ AssertRCReturn(rc, rc);
+ pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Reads the IDT-vectoring information field from the VMCS into the VMX
+ * transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
+{
+ if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
+ {
+ int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
+ AssertRCReturn(rc, rc);
+ pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Reads the IDT-vectoring error code from the VMCS into the VMX
+ * transient structure.
+ *
+ * @returns VBox status code.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ */
+DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
+{
+ if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
+ {
+ int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
+ AssertRCReturn(rc, rc);
+ pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Enters VMX root mode operation on the current CPU.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure. Can be
+ * NULL, after a resume.
+ * @param HCPhysCpuPage Physical address of the VMXON region.
+ * @param pvCpuPage Pointer to the VMXON region.
+ */
+static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
+{
+ Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
+ Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
+ Assert(pvCpuPage);
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ if (pVM)
+ {
+ /* Write the VMCS revision dword to the VMXON region. */
+ *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
+ }
+
+ /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
+ RTCCUINTREG fEFlags = ASMIntDisableFlags();
+
+ /* Enable the VMX bit in CR4 if necessary. */
+ RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
+
+ /* Enter VMX root mode. */
+ int rc = VMXEnable(HCPhysCpuPage);
+ if (RT_FAILURE(rc))
+ {
+ if (!(uOldCr4 & X86_CR4_VMXE))
+ SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
+
+ if (pVM)
+ pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
+ }
+
+ /* Restore interrupts. */
+ ASMSetFlags(fEFlags);
+ return rc;
+}
+
+
+/**
+ * Exits VMX root mode operation on the current CPU.
+ *
+ * @returns VBox status code.
+ */
+static int hmR0VmxLeaveRootMode(void)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
+ RTCCUINTREG fEFlags = ASMIntDisableFlags();
+
+ /* If we're for some reason not in VMX root mode, then don't leave it. */
+ RTCCUINTREG uHostCR4 = ASMGetCR4();
+
+ int rc;
+ if (uHostCR4 & X86_CR4_VMXE)
+ {
+ /* Exit VMX root mode and clear the VMX bit in CR4. */
+ VMXDisable();
+ SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
+ rc = VINF_SUCCESS;
+ }
+ else
+ rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
+
+ /* Restore interrupts. */
+ ASMSetFlags(fEFlags);
+ return rc;
+}
+
+
+/**
+ * Allocates and maps one physically contiguous page. The allocated page is
+ * zero'd out. (Used by various VT-x structures).
+ *
+ * @returns IPRT status code.
+ * @param pMemObj Pointer to the ring-0 memory object.
+ * @param ppVirt Where to store the virtual address of the
+ * allocation.
+ * @param pHCPhys Where to store the physical address of the
+ * allocation.
+ */
+static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
+{
+ AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
+ AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
+
+ int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
+ if (RT_FAILURE(rc))
+ return rc;
+ *ppVirt = RTR0MemObjAddress(*pMemObj);
+ *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
+ ASMMemZero32(*ppVirt, PAGE_SIZE);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Frees and unmaps an allocated physical page.
+ *
+ * @param pMemObj Pointer to the ring-0 memory object.
+ * @param ppVirt Where to re-initialize the virtual address of
+ * allocation as 0.
+ * @param pHCPhys Where to re-initialize the physical address of the
+ * allocation as 0.
+ */
+static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
+{
+ AssertPtr(pMemObj);
+ AssertPtr(ppVirt);
+ AssertPtr(pHCPhys);
+ if (*pMemObj != NIL_RTR0MEMOBJ)
+ {
+ int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
+ AssertRC(rc);
+ *pMemObj = NIL_RTR0MEMOBJ;
+ *ppVirt = 0;
+ *pHCPhys = 0;
+ }
+}
+
+
+/**
+ * Worker function to free VT-x related structures.
+ *
+ * @returns IPRT status code.
+ * @param pVM The cross context VM structure.
+ */
+static void hmR0VmxStructsFree(PVM pVM)
+{
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ AssertPtr(pVCpu);
+
+ hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
+ hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
+
+ if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
+
+ hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
+ }
+
+ hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
+#ifdef VBOX_WITH_CRASHDUMP_MAGIC
+ hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
+#endif
+}
+
+
+/**
+ * Worker function to allocate VT-x related VM structures.
+ *
+ * @returns IPRT status code.
+ * @param pVM The cross context VM structure.
+ */
+static int hmR0VmxStructsAlloc(PVM pVM)
+{
+ /*
+ * Initialize members up-front so we can cleanup properly on allocation failure.
+ */
+#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
+ pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
+ pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
+ pVM->hm.s.vmx.HCPhys##a_Name = 0;
+
+#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
+ pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
+ pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
+ pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
+
+#ifdef VBOX_WITH_CRASHDUMP_MAGIC
+ VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
+#endif
+ VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
+
+ AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
+ VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
+ VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
+ VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
+ }
+#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
+#undef VMXLOCAL_INIT_VM_MEMOBJ
+
+ /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
+ AssertReturnStmt(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE) <= PAGE_SIZE,
+ (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
+ VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
+
+ /*
+ * Allocate all the VT-x structures.
+ */
+ int rc = VINF_SUCCESS;
+#ifdef VBOX_WITH_CRASHDUMP_MAGIC
+ rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
+ if (RT_FAILURE(rc))
+ goto cleanup;
+ strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
+ *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
+#endif
+
+ /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
+ if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
+ {
+ rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
+ &pVM->hm.s.vmx.HCPhysApicAccess);
+ if (RT_FAILURE(rc))
+ goto cleanup;
+ }
+
+ /*
+ * Initialize per-VCPU VT-x structures.
+ */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ AssertPtr(pVCpu);
+
+ /* Allocate the VM control structure (VMCS). */
+ rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
+ if (RT_FAILURE(rc))
+ goto cleanup;
+
+ /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
+ if ( PDMHasApic(pVM)
+ && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
+ {
+ rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
+ NULL /* pR3Ptr */, NULL /* pRCPtr */);
+ if (RT_FAILURE(rc))
+ goto cleanup;
+ }
+
+ /*
+ * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
+ * transparent accesses of specific MSRs.
+ *
+ * If the condition for enabling MSR bitmaps changes here, don't forget to
+ * update HMAreMsrBitmapsAvailable().
+ */
+ if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ {
+ rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
+ &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
+ if (RT_FAILURE(rc))
+ goto cleanup;
+ ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
+ }
+
+ /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
+ rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
+ if (RT_FAILURE(rc))
+ goto cleanup;
+
+ /* Allocate the VM-exit MSR-load page for the host MSRs. */
+ rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
+ if (RT_FAILURE(rc))
+ goto cleanup;
+ }
+
+ return VINF_SUCCESS;
+
+cleanup:
+ hmR0VmxStructsFree(pVM);
+ return rc;
+}
+
+
+/**
+ * Does global VT-x initialization (called during module initialization).
+ *
+ * @returns VBox status code.
+ */
+VMMR0DECL(int) VMXR0GlobalInit(void)
+{
+#ifdef HMVMX_USE_FUNCTION_TABLE
+ AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
+# ifdef VBOX_STRICT
+ for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
+ Assert(g_apfnVMExitHandlers[i]);
+# endif
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Does global VT-x termination (called during module termination).
+ */
+VMMR0DECL(void) VMXR0GlobalTerm()
+{
+ /* Nothing to do currently. */
+}
+
+
+/**
+ * Sets up and activates VT-x on the current CPU.
+ *
+ * @returns VBox status code.
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pVM The cross context VM structure. Can be
+ * NULL after a host resume operation.
+ * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
+ * fEnabledByHost is @c true).
+ * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
+ * @a fEnabledByHost is @c true).
+ * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
+ * enable VT-x on the host.
+ * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
+ */
+VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
+ PCSUPHWVIRTMSRS pHwvirtMsrs)
+{
+ Assert(pHostCpu);
+ Assert(pHwvirtMsrs);
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ /* Enable VT-x if it's not already enabled by the host. */
+ if (!fEnabledByHost)
+ {
+ int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ /*
+ * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
+ * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
+ * invalidated when flushing by VPID.
+ */
+ if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
+ {
+ hmR0VmxFlushEpt(NULL /* pVCpu */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
+ pHostCpu->fFlushAsidBeforeUse = false;
+ }
+ else
+ pHostCpu->fFlushAsidBeforeUse = true;
+
+ /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
+ ++pHostCpu->cTlbFlushes;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Deactivates VT-x on the current CPU.
+ *
+ * @returns VBox status code.
+ * @param pvCpuPage Pointer to the VMXON region.
+ * @param HCPhysCpuPage Physical address of the VMXON region.
+ *
+ * @remarks This function should never be called when SUPR0EnableVTx() or
+ * similar was used to enable VT-x on the host.
+ */
+VMMR0DECL(int) VMXR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
+{
+ RT_NOREF2(pvCpuPage, HCPhysCpuPage);
+
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ return hmR0VmxLeaveRootMode();
+}
+
+
+/**
+ * Sets the permission bits for the specified MSR in the MSR bitmap.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uMsr The MSR value.
+ * @param enmRead Whether reading this MSR causes a VM-exit.
+ * @param enmWrite Whether writing this MSR causes a VM-exit.
+ */
+static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
+{
+ int32_t iBit;
+ uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
+
+ /*
+ * MSR Layout:
+ * Byte index MSR range Interpreted as
+ * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
+ * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
+ * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
+ * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
+ *
+ * A bit corresponding to an MSR within the above range causes a VM-exit
+ * if the bit is 1 on executions of RDMSR/WRMSR.
+ *
+ * If an MSR falls out of the MSR range, it always cause a VM-exit.
+ *
+ * See Intel spec. 24.6.9 "MSR-Bitmap Address".
+ */
+ if (uMsr <= 0x00001fff)
+ iBit = uMsr;
+ else if (uMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
+ {
+ iBit = uMsr - UINT32_C(0xc0000000);
+ pbMsrBitmap += 0x400;
+ }
+ else
+ AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
+
+ Assert(iBit <= 0x1fff);
+ if (enmRead == VMXMSREXIT_INTERCEPT_READ)
+ ASMBitSet(pbMsrBitmap, iBit);
+ else
+ ASMBitClear(pbMsrBitmap, iBit);
+
+ if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
+ ASMBitSet(pbMsrBitmap + 0x800, iBit);
+ else
+ ASMBitClear(pbMsrBitmap + 0x800, iBit);
+}
+
+
+/**
+ * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
+ * area.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cMsrs The number of MSRs.
+ */
+static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
+{
+ /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
+ uint64_t const uVmxMiscMsr = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc;
+ uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(uVmxMiscMsr);
+ if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
+ {
+ LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
+ pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Update number of guest MSRs to load/store across the world-switch. */
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
+
+ /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
+ AssertRCReturn(rc, rc);
+
+ /* Update the VCPU's copy of the MSR count. */
+ pVCpu->hm.s.vmx.cMsrs = cMsrs;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Adds a new (or updates the value of an existing) guest/host MSR
+ * pair to be swapped during the world-switch as part of the
+ * auto-load/store MSR area in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uMsr The MSR.
+ * @param uGuestMsrValue Value of the guest MSR.
+ * @param fUpdateHostMsr Whether to update the value of the host MSR if
+ * necessary.
+ * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
+ * its value was updated. Optional, can be NULL.
+ */
+static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
+ bool *pfAddedAndUpdated)
+{
+ PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
+ uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
+ uint32_t i;
+ for (i = 0; i < cMsrs; i++)
+ {
+ if (pGuestMsr->u32Msr == uMsr)
+ break;
+ pGuestMsr++;
+ }
+
+ bool fAdded = false;
+ if (i == cMsrs)
+ {
+ ++cMsrs;
+ int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
+ AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
+
+ /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+
+ fAdded = true;
+ }
+
+ /* Update the MSR values in the auto-load/store MSR area. */
+ pGuestMsr->u32Msr = uMsr;
+ pGuestMsr->u64Value = uGuestMsrValue;
+
+ /* Create/update the MSR slot in the host MSR area. */
+ PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
+ pHostMsr += i;
+ pHostMsr->u32Msr = uMsr;
+
+ /*
+ * Update the host MSR only when requested by the caller AND when we're
+ * adding it to the auto-load/store area. Otherwise, it would have been
+ * updated by hmR0VmxExportHostMsrs(). We do this for performance reasons.
+ */
+ bool fUpdatedMsrValue = false;
+ if ( fAdded
+ && fUpdateHostMsr)
+ {
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
+ fUpdatedMsrValue = true;
+ }
+
+ if (pfAddedAndUpdated)
+ *pfAddedAndUpdated = fUpdatedMsrValue;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Removes a guest/host MSR pair to be swapped during the world-switch from the
+ * auto-load/store MSR area in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uMsr The MSR.
+ */
+static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
+{
+ PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
+ uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
+ for (uint32_t i = 0; i < cMsrs; i++)
+ {
+ /* Find the MSR. */
+ if (pGuestMsr->u32Msr == uMsr)
+ {
+ /* If it's the last MSR, simply reduce the count. */
+ if (i == cMsrs - 1)
+ {
+ --cMsrs;
+ break;
+ }
+
+ /* Remove it by swapping the last MSR in place of it, and reducing the count. */
+ PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
+ pLastGuestMsr += cMsrs - 1;
+ pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
+ pGuestMsr->u64Value = pLastGuestMsr->u64Value;
+
+ PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
+ PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
+ pLastHostMsr += cMsrs - 1;
+ pHostMsr->u32Msr = pLastHostMsr->u32Msr;
+ pHostMsr->u64Value = pLastHostMsr->u64Value;
+ --cMsrs;
+ break;
+ }
+ pGuestMsr++;
+ }
+
+ /* Update the VMCS if the count changed (meaning the MSR was found). */
+ if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
+ {
+ int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
+ AssertRCReturn(rc, rc);
+
+ /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
+
+ Log4Func(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
+ return VINF_SUCCESS;
+ }
+
+ return VERR_NOT_FOUND;
+}
+
+
+/**
+ * Checks if the specified guest MSR is part of the auto-load/store area in
+ * the VMCS.
+ *
+ * @returns true if found, false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uMsr The MSR to find.
+ */
+static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
+{
+ PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
+ uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
+
+ for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
+ {
+ if (pGuestMsr->u32Msr == uMsr)
+ return true;
+ }
+ return false;
+}
+
+
+/**
+ * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
+ PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
+ uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
+
+ for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
+ {
+ AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
+
+ /*
+ * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
+ * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
+ */
+ if (pHostMsr->u32Msr == MSR_K6_EFER)
+ pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
+ else
+ pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
+ }
+
+ pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
+}
+
+
+/**
+ * Saves a set of host MSRs to allow read/write passthru access to the guest and
+ * perform lazy restoration of the host MSRs while leaving VT-x.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ /*
+ * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
+ */
+ if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
+ {
+ Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
+#if HC_ARCH_BITS == 64
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
+ {
+ pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
+ pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
+ pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
+ pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
+ }
+#endif
+ pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
+ }
+}
+
+
+/**
+ * Checks whether the MSR belongs to the set of guest MSRs that we restore
+ * lazily while leaving VT-x.
+ *
+ * @returns true if it does, false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uMsr The MSR to check.
+ */
+static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
+{
+ NOREF(pVCpu);
+#if HC_ARCH_BITS == 64
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
+ {
+ switch (uMsr)
+ {
+ case MSR_K8_LSTAR:
+ case MSR_K6_STAR:
+ case MSR_K8_SF_MASK:
+ case MSR_K8_KERNEL_GS_BASE:
+ return true;
+ }
+ }
+#else
+ RT_NOREF(pVCpu, uMsr);
+#endif
+ return false;
+}
+
+
+/**
+ * Loads a set of guests MSRs to allow read/passthru to the guest.
+ *
+ * The name of this function is slightly confusing. This function does NOT
+ * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
+ * common prefix for functions dealing with "lazy restoration" of the shared
+ * MSRs.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
+#if HC_ARCH_BITS == 64
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
+ {
+ /*
+ * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
+ * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
+ * we can skip a few MSR writes.
+ *
+ * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
+ * guest MSR values in the guest-CPU context might be different to what's currently
+ * loaded in the CPU. In either case, we need to write the new guest MSR values to the
+ * CPU, see @bugref{8728}.
+ */
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
+ && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
+ && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
+ && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
+ && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
+ {
+#ifdef VBOX_STRICT
+ Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
+ Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
+ Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
+ Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
+#endif
+ }
+ else
+ {
+ ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
+ ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
+ ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
+ ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
+ }
+ }
+#endif
+ pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
+}
+
+
+/**
+ * Performs lazy restoration of the set of host MSRs if they were previously
+ * loaded with guest MSR values.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ * @remarks The guest MSRs should have been saved back into the guest-CPU
+ * context by hmR0VmxImportGuestState()!!!
+ */
+static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
+ {
+ Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
+#if HC_ARCH_BITS == 64
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
+ {
+ ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
+ ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
+ ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
+ ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
+ }
+#endif
+ }
+ pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
+}
+
+
+/**
+ * Verifies that our cached values of the VMCS fields are all consistent with
+ * what's actually present in the VMCS.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
+ * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
+ * VMCS content. HMCPU error-field is
+ * updated, see VMX_VCI_XXX.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
+{
+ uint32_t u32Val;
+ int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
+ AssertRCReturn(rc, rc);
+ AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32EntryCtls == u32Val,
+ ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
+ pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
+ VERR_VMX_VMCS_FIELD_CACHE_INVALID);
+
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
+ AssertRCReturn(rc, rc);
+ AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ExitCtls == u32Val,
+ ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
+ pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
+ VERR_VMX_VMCS_FIELD_CACHE_INVALID);
+
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
+ AssertRCReturn(rc, rc);
+ AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32PinCtls == u32Val,
+ ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
+ pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
+ VERR_VMX_VMCS_FIELD_CACHE_INVALID);
+
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
+ AssertRCReturn(rc, rc);
+ AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls == u32Val,
+ ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
+ pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
+ VERR_VMX_VMCS_FIELD_CACHE_INVALID);
+
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
+ {
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
+ AssertRCReturn(rc, rc);
+ AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
+ ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
+ pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
+ VERR_VMX_VMCS_FIELD_CACHE_INVALID);
+ }
+
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
+ AssertRCReturn(rc, rc);
+ AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32XcptBitmap == u32Val,
+ ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap, u32Val),
+ pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
+ VERR_VMX_VMCS_FIELD_CACHE_INVALID);
+
+ uint64_t u64Val;
+ rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
+ AssertRCReturn(rc, rc);
+ AssertMsgReturnStmt(pVCpu->hm.s.vmx.u64TscOffset == u64Val,
+ ("Cache=%#RX64 VMCS=%#RX64\n", pVCpu->hm.s.vmx.u64TscOffset, u64Val),
+ pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
+ VERR_VMX_VMCS_FIELD_CACHE_INVALID);
+
+ return VINF_SUCCESS;
+}
+
+
+#ifdef VBOX_STRICT
+/**
+ * Verifies that our cached host EFER value has not changed
+ * since we cached it.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
+ {
+ uint64_t u64Val;
+ int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
+ AssertRC(rc);
+
+ uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
+ AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
+ }
+}
+
+
+/**
+ * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
+ * VMCS are correct.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ /* Verify MSR counts in the VMCS are what we think it should be. */
+ uint32_t cMsrs;
+ int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
+ Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
+
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
+ Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
+
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
+ Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
+
+ PCVMXAUTOMSR pHostMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
+ PCVMXAUTOMSR pGuestMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
+ for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
+ {
+ /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
+ AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
+ pGuestMsr->u32Msr, cMsrs));
+
+ uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
+ AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
+ pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
+
+ /* Verify that the permissions are as expected in the MSR bitmap. */
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ {
+ VMXMSREXITREAD enmRead;
+ VMXMSREXITWRITE enmWrite;
+ rc = HMGetVmxMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, pGuestMsr->u32Msr, &enmRead, &enmWrite);
+ AssertMsgReturnVoid(rc == VINF_SUCCESS, ("HMGetVmxMsrPermission! failed. rc=%Rrc\n", rc));
+ if (pGuestMsr->u32Msr == MSR_K6_EFER)
+ {
+ AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
+ AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
+ }
+ else
+ {
+ AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
+ pGuestMsr->u32Msr, cMsrs));
+ AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
+ pGuestMsr->u32Msr, cMsrs));
+ }
+ }
+ }
+}
+#endif /* VBOX_STRICT */
+
+
+/**
+ * Flushes the TLB using EPT.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the calling
+ * EMT. Can be NULL depending on @a enmTlbFlush.
+ * @param enmTlbFlush Type of flush.
+ *
+ * @remarks Caller is responsible for making sure this function is called only
+ * when NestedPaging is supported and providing @a enmTlbFlush that is
+ * supported by the CPU.
+ * @remarks Can be called with interrupts disabled.
+ */
+static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush)
+{
+ uint64_t au64Descriptor[2];
+ if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
+ au64Descriptor[0] = 0;
+ else
+ {
+ Assert(pVCpu);
+ au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
+ }
+ au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
+
+ int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
+ AssertMsg(rc == VINF_SUCCESS,
+ ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0, rc));
+
+ if ( RT_SUCCESS(rc)
+ && pVCpu)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
+}
+
+
+/**
+ * Flushes the TLB using VPID.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the calling
+ * EMT. Can be NULL depending on @a enmTlbFlush.
+ * @param enmTlbFlush Type of flush.
+ * @param GCPtr Virtual address of the page to flush (can be 0 depending
+ * on @a enmTlbFlush).
+ *
+ * @remarks Can be called with interrupts disabled.
+ */
+static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
+{
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
+
+ uint64_t au64Descriptor[2];
+ if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
+ {
+ au64Descriptor[0] = 0;
+ au64Descriptor[1] = 0;
+ }
+ else
+ {
+ AssertPtr(pVCpu);
+ AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
+ AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
+ au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
+ au64Descriptor[1] = GCPtr;
+ }
+
+ int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
+ AssertMsg(rc == VINF_SUCCESS,
+ ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
+
+ if ( RT_SUCCESS(rc)
+ && pVCpu)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
+ NOREF(rc);
+}
+
+
+/**
+ * Invalidates a guest page by guest virtual address. Only relevant for
+ * EPT/VPID, otherwise there is nothing really to invalidate.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param GCVirt Guest virtual address of the page to invalidate.
+ */
+VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
+{
+ AssertPtr(pVCpu);
+ LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
+
+ bool fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
+ if (!fFlushPending)
+ {
+ /*
+ * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
+ * the EPT case. See @bugref{6043} and @bugref{6177}.
+ *
+ * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
+ * as this function maybe called in a loop with individual addresses.
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if (pVM->hm.s.vmx.fVpid)
+ {
+ bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
+
+#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
+ /*
+ * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
+ * where executing INVVPID outside 64-bit mode does not flush translations of
+ * 64-bit linear addresses, see @bugref{6208#c72}.
+ */
+ if (RT_HI_U32(GCVirt))
+ fVpidFlush = false;
+#endif
+
+ if (fVpidFlush)
+ {
+ hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
+ }
+ else
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
+ }
+ else if (pVM->hm.s.fNestedPaging)
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
+ * case where neither EPT nor VPID is supported by the CPU.
+ *
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Called with interrupts disabled.
+ */
+static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+ AssertPtr(pHostCpu);
+
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
+
+ Assert(pHostCpu->idCpu != NIL_RTCPUID);
+ pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
+ pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
+ pVCpu->hm.s.fForceTLBFlush = false;
+ return;
+}
+
+
+/**
+ * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
+ *
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
+ * nomenclature. The reason is, to avoid confusion in compare statements
+ * since the host-CPU copies are named "ASID".
+ *
+ * @remarks Called with interrupts disabled.
+ */
+static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
+{
+#ifdef VBOX_WITH_STATISTICS
+ bool fTlbFlushed = false;
+# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
+# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
+ if (!fTlbFlushed) \
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
+ } while (0)
+#else
+# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
+# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
+#endif
+
+ AssertPtr(pVCpu);
+ AssertPtr(pHostCpu);
+ Assert(pHostCpu->idCpu != NIL_RTCPUID);
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
+ ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
+ "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
+
+ /*
+ * Force a TLB flush for the first world-switch if the current CPU differs from the one we
+ * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
+ * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
+ * cannot reuse the current ASID anymore.
+ */
+ if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
+ || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
+ {
+ ++pHostCpu->uCurrentAsid;
+ if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
+ {
+ pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
+ pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
+ pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
+ }
+
+ pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
+ pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
+ pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
+
+ /*
+ * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
+ * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
+ */
+ hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
+ HMVMX_SET_TAGGED_TLB_FLUSHED();
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
+ }
+ else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
+ {
+ /*
+ * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
+ * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
+ * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
+ * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
+ * mappings, see @bugref{6568}.
+ *
+ * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
+ */
+ hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
+ HMVMX_SET_TAGGED_TLB_FLUSHED();
+ }
+
+ pVCpu->hm.s.fForceTLBFlush = false;
+ HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
+
+ Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
+ Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
+ AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
+ ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
+ AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
+ ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
+ pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
+ AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
+ ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
+
+ /* Update VMCS with the VPID. */
+ int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
+ AssertRC(rc);
+
+#undef HMVMX_SET_TAGGED_TLB_FLUSHED
+}
+
+
+/**
+ * Flushes the tagged-TLB entries for EPT CPUs as necessary.
+ *
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Called with interrupts disabled.
+ */
+static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+ AssertPtr(pHostCpu);
+ Assert(pHostCpu->idCpu != NIL_RTCPUID);
+ AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
+ AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
+
+ /*
+ * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
+ * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
+ */
+ if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
+ || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
+ {
+ pVCpu->hm.s.fForceTLBFlush = true;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
+ }
+
+ /* Check for explicit TLB flushes. */
+ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
+ {
+ pVCpu->hm.s.fForceTLBFlush = true;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
+ }
+
+ pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
+ pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
+
+ if (pVCpu->hm.s.fForceTLBFlush)
+ {
+ hmR0VmxFlushEpt(pVCpu, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
+ pVCpu->hm.s.fForceTLBFlush = false;
+ }
+}
+
+
+/**
+ * Flushes the tagged-TLB entries for VPID CPUs as necessary.
+ *
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Called with interrupts disabled.
+ */
+static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+ AssertPtr(pHostCpu);
+ Assert(pHostCpu->idCpu != NIL_RTCPUID);
+ AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
+ AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
+
+ /*
+ * Force a TLB flush for the first world switch if the current CPU differs from the one we
+ * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
+ * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
+ * cannot reuse the current ASID anymore.
+ */
+ if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
+ || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
+ {
+ pVCpu->hm.s.fForceTLBFlush = true;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
+ }
+
+ /* Check for explicit TLB flushes. */
+ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
+ {
+ /*
+ * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
+ * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
+ * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
+ * include fExplicitFlush's too) - an obscure corner case.
+ */
+ pVCpu->hm.s.fForceTLBFlush = true;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
+ }
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
+ if (pVCpu->hm.s.fForceTLBFlush)
+ {
+ ++pHostCpu->uCurrentAsid;
+ if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
+ {
+ pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
+ pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
+ pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
+ }
+
+ pVCpu->hm.s.fForceTLBFlush = false;
+ pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
+ pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
+ if (pHostCpu->fFlushAsidBeforeUse)
+ {
+ if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
+ hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
+ else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
+ {
+ hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
+ pHostCpu->fFlushAsidBeforeUse = false;
+ }
+ else
+ {
+ /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
+ AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
+ }
+ }
+ }
+
+ AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
+ ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
+ AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
+ ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
+ pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
+ AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
+ ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
+
+ int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
+ AssertRC(rc);
+}
+
+
+/**
+ * Flushes the guest TLB entry based on CPU capabilities.
+ *
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Called with interrupts disabled.
+ */
+DECLINLINE(void) hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
+{
+#ifdef HMVMX_ALWAYS_FLUSH_TLB
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
+#endif
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ switch (pVM->hm.s.vmx.enmTlbFlushType)
+ {
+ case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu); break;
+ case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu); break;
+ case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
+ case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
+ default:
+ AssertMsgFailed(("Invalid flush-tag function identifier\n"));
+ break;
+ }
+ /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
+}
+
+
+/**
+ * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
+ * TLB entries from the host TLB before VM-entry.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+static int hmR0VmxSetupTaggedTlb(PVM pVM)
+{
+ /*
+ * Determine optimal flush type for Nested Paging.
+ * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
+ * guest execution (see hmR3InitFinalizeR0()).
+ */
+ if (pVM->hm.s.fNestedPaging)
+ {
+ if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
+ {
+ if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
+ pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
+ else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
+ pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
+ else
+ {
+ /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
+ pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
+ pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Make sure the write-back cacheable memory type for EPT is supported. */
+ if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
+ {
+ pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
+ pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* EPT requires a page-walk length of 4. */
+ if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
+ {
+ pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
+ pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+ }
+ else
+ {
+ /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
+ pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
+ pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+ }
+
+ /*
+ * Determine optimal flush type for VPID.
+ */
+ if (pVM->hm.s.vmx.fVpid)
+ {
+ if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
+ {
+ if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
+ pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
+ else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
+ pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
+ else
+ {
+ /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
+ if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
+ LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
+ if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
+ LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
+ pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
+ pVM->hm.s.vmx.fVpid = false;
+ }
+ }
+ else
+ {
+ /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
+ Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
+ pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
+ pVM->hm.s.vmx.fVpid = false;
+ }
+ }
+
+ /*
+ * Setup the handler for flushing tagged-TLBs.
+ */
+ if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
+ pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
+ else if (pVM->hm.s.fNestedPaging)
+ pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
+ else if (pVM->hm.s.vmx.fVpid)
+ pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
+ else
+ pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets up pin-based VM-execution controls in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks We don't really care about optimizing vmwrites here as it's done only
+ * once per VM and hence we don't care about VMCS-field cache comparisons.
+ */
+static int hmR0VmxSetupPinCtls(PVMCPU pVCpu)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
+ uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
+
+ fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
+ | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
+
+ if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
+ fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
+
+ /* Enable the VMX preemption timer. */
+ if (pVM->hm.s.vmx.fUsePreemptTimer)
+ {
+ Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
+ fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
+ }
+
+#if 0
+ /* Enable posted-interrupt processing. */
+ if (pVM->hm.s.fPostedIntrs)
+ {
+ Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
+ Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
+ fVal |= VMX_PIN_CTL_POSTED_INT;
+ }
+#endif
+
+ if ((fVal & fZap) != fVal)
+ {
+ LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
+ pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
+ pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Commit it to the VMCS and update our cache. */
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
+ AssertRCReturn(rc, rc);
+ pVCpu->hm.s.vmx.u32PinCtls = fVal;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets up secondary processor-based VM-execution controls in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks We don't really care about optimizing vmwrites here as it's done only
+ * once per VM and hence we don't care about VMCS-field cache comparisons.
+ */
+static int hmR0VmxSetupProcCtls2(PVMCPU pVCpu)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
+ uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
+
+ /* WBINVD causes a VM-exit. */
+ if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
+ fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
+
+ /* Enable EPT (aka nested-paging). */
+ if (pVM->hm.s.fNestedPaging)
+ fVal |= VMX_PROC_CTLS2_EPT;
+
+ /*
+ * Enable the INVPCID instruction if supported by the hardware and we expose
+ * it to the guest. Without this, guest executing INVPCID would cause a #UD.
+ */
+ if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
+ && pVM->cpum.ro.GuestFeatures.fInvpcid)
+ fVal |= VMX_PROC_CTLS2_INVPCID;
+
+ /* Enable VPID. */
+ if (pVM->hm.s.vmx.fVpid)
+ fVal |= VMX_PROC_CTLS2_VPID;
+
+ /* Enable Unrestricted guest execution. */
+ if (pVM->hm.s.vmx.fUnrestrictedGuest)
+ fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
+
+#if 0
+ if (pVM->hm.s.fVirtApicRegs)
+ {
+ /* Enable APIC-register virtualization. */
+ Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
+ fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
+
+ /* Enable virtual-interrupt delivery. */
+ Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
+ fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
+ }
+#endif
+
+ /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
+ /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
+ * done dynamically. */
+ if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
+ {
+ Assert(pVM->hm.s.vmx.HCPhysApicAccess);
+ Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
+ fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS; /* Virtualize APIC accesses. */
+ int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
+ AssertRCReturn(rc, rc);
+ }
+
+ /* Enable RDTSCP. */
+ if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
+ fVal |= VMX_PROC_CTLS2_RDTSCP;
+
+ /* Enable Pause-Loop exiting. */
+ if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
+ && pVM->hm.s.vmx.cPleGapTicks
+ && pVM->hm.s.vmx.cPleWindowTicks)
+ {
+ fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
+
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
+ AssertRCReturn(rc, rc);
+ }
+
+ if ((fVal & fZap) != fVal)
+ {
+ LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
+ pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
+ pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Commit it to the VMCS and update our cache. */
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
+ AssertRCReturn(rc, rc);
+ pVCpu->hm.s.vmx.u32ProcCtls2 = fVal;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets up processor-based VM-execution controls in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks We don't really care about optimizing vmwrites here as it's done only
+ * once per VM and hence we don't care about VMCS-field cache comparisons.
+ */
+static int hmR0VmxSetupProcCtls(PVMCPU pVCpu)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
+ uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
+
+ fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
+ | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
+ | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
+ | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
+ | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
+ | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
+ | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
+
+ /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
+ if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
+ || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
+ {
+ LogRelFunc(("Unsupported VMX_PROC_CTLS_MOV_DR_EXIT combo!"));
+ pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
+ if (!pVM->hm.s.fNestedPaging)
+ {
+ Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
+ fVal |= VMX_PROC_CTLS_INVLPG_EXIT
+ | VMX_PROC_CTLS_CR3_LOAD_EXIT
+ | VMX_PROC_CTLS_CR3_STORE_EXIT;
+ }
+
+ /* Use TPR shadowing if supported by the CPU. */
+ if ( PDMHasApic(pVM)
+ && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
+ {
+ Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
+ Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
+ rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
+ AssertRCReturn(rc, rc);
+
+ fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
+ /* CR8 writes cause a VM-exit based on TPR threshold. */
+ Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
+ Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
+ }
+ else
+ {
+ /*
+ * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
+ * Set this control only for 64-bit guests.
+ */
+ if (pVM->hm.s.fAllow64BitGuests)
+ {
+ fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
+ | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
+ }
+ }
+
+ /* Use MSR-bitmaps if supported by the CPU. */
+ if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ {
+ fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
+
+ Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
+ Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
+ int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
+ * automatically using dedicated fields in the VMCS.
+ */
+ hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+ hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+ hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+ hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+ hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+#if HC_ARCH_BITS == 64
+ /*
+ * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
+ */
+ if (pVM->hm.s.fAllow64BitGuests)
+ {
+ hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+ hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+ hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+ hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+ }
+#endif
+ /*
+ * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
+ * associated with then. We never need to intercept access (writes need to
+ * be executed without exiting, reads will #GP-fault anyway).
+ */
+ if (pVM->cpum.ro.GuestFeatures.fIbpb)
+ hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+ if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
+ hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_FLUSH_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
+
+ /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
+ }
+
+ /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
+ if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
+ fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
+
+ if ((fVal & fZap) != fVal)
+ {
+ LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
+ pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
+ pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Commit it to the VMCS and update our cache. */
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
+ AssertRCReturn(rc, rc);
+ pVCpu->hm.s.vmx.u32ProcCtls = fVal;
+
+ /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
+ return hmR0VmxSetupProcCtls2(pVCpu);
+
+ /* Sanity check, should not really happen. */
+ if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
+ {
+ LogRelFunc(("Unrestricted Guest enabled when secondary processor-based VM-execution controls not available\n"));
+ pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets up miscellaneous (everything other than Pin & Processor-based
+ * VM-execution) control fields in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static int hmR0VmxSetupMiscCtls(PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+
+ int rc = VERR_GENERAL_FAILURE;
+
+ /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
+#if 0
+ /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxExportGuestCR3AndCR4())*/
+ rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
+ rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
+
+ /*
+ * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
+ * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
+ * We thus use the exception bitmap to control it rather than use both.
+ */
+ rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
+
+ /* All IO & IOIO instructions cause VM-exits. */
+ rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
+ rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
+
+ /* Initialize the MSR-bitmap area. */
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
+ AssertRCReturn(rc, rc);
+#endif
+
+ /* Setup MSR auto-load/store area. */
+ Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
+ Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
+ rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
+ rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
+ AssertRCReturn(rc, rc);
+
+ Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
+ Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
+ rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
+ AssertRCReturn(rc, rc);
+
+ /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
+ rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
+ AssertRCReturn(rc, rc);
+
+ /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
+#if 0
+ /* Setup debug controls */
+ rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
+ rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);
+ AssertRCReturn(rc, rc);
+#endif
+
+ return rc;
+}
+
+
+/**
+ * Sets up the initial exception bitmap in the VMCS based on static conditions.
+ *
+ * We shall setup those exception intercepts that don't change during the
+ * lifetime of the VM here. The rest are done dynamically while loading the
+ * guest state.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static int hmR0VmxInitXcptBitmap(PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+
+ uint32_t uXcptBitmap;
+
+ /* Must always intercept #AC to prevent the guest from hanging the CPU. */
+ uXcptBitmap = RT_BIT_32(X86_XCPT_AC);
+
+ /* Because we need to maintain the DR6 state even when intercepting DRx reads
+ and writes, and because recursive #DBs can cause the CPU hang, we must always
+ intercept #DB. */
+ uXcptBitmap |= RT_BIT_32(X86_XCPT_DB);
+
+ /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
+ if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
+ uXcptBitmap |= RT_BIT(X86_XCPT_PF);
+
+ /* Commit it to the VMCS. */
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
+ AssertRCReturn(rc, rc);
+
+ /* Update our cache of the exception bitmap. */
+ pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Does per-VM VT-x initialization.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR0DECL(int) VMXR0InitVM(PVM pVM)
+{
+ LogFlowFunc(("pVM=%p\n", pVM));
+
+ int rc = hmR0VmxStructsAlloc(pVM);
+ if (RT_FAILURE(rc))
+ {
+ LogRelFunc(("hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
+ return rc;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Does per-VM VT-x termination.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR0DECL(int) VMXR0TermVM(PVM pVM)
+{
+ LogFlowFunc(("pVM=%p\n", pVM));
+
+#ifdef VBOX_WITH_CRASHDUMP_MAGIC
+ if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
+ ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
+#endif
+ hmR0VmxStructsFree(pVM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets up the VM for execution under VT-x.
+ * This function is only called once per-VM during initialization.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
+{
+ AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ LogFlowFunc(("pVM=%p\n", pVM));
+
+ /*
+ * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be
+ * allocated. We no longer support the highly unlikely case of UnrestrictedGuest without
+ * pRealModeTSS, see hmR3InitFinalizeR0Intel().
+ */
+ if ( !pVM->hm.s.vmx.fUnrestrictedGuest
+ && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
+ || !pVM->hm.s.vmx.pRealModeTSS))
+ {
+ LogRelFunc(("Invalid real-on-v86 state.\n"));
+ return VERR_INTERNAL_ERROR;
+ }
+
+ /* Initialize these always, see hmR3InitFinalizeR0().*/
+ pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
+ pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
+
+ /* Setup the tagged-TLB flush handlers. */
+ int rc = hmR0VmxSetupTaggedTlb(pVM);
+ if (RT_FAILURE(rc))
+ {
+ LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
+ return rc;
+ }
+
+ /* Check if we can use the VMCS controls for swapping the EFER MSR. */
+ Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
+#if HC_ARCH_BITS == 64
+ if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
+ && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
+ && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
+ {
+ pVM->hm.s.vmx.fSupportsVmcsEfer = true;
+ }
+#endif
+
+ /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
+ RTCCUINTREG const uHostCR4 = ASMGetCR4();
+ if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
+ return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
+
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ AssertPtr(pVCpu);
+ AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
+
+ /* Log the VCPU pointers, useful for debugging SMP VMs. */
+ Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
+
+ /* Set revision dword at the beginning of the VMCS structure. */
+ *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
+
+ /* Set the VMCS launch state to "clear", see Intel spec. 31.6 "Preparation and launch a virtual machine". */
+ rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
+ AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc\n", rc),
+ hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
+
+ /* Load this VMCS as the current VMCS. */
+ rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
+ AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc\n", rc),
+ hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
+
+ rc = hmR0VmxSetupPinCtls(pVCpu);
+ AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc\n", rc),
+ hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
+
+ rc = hmR0VmxSetupProcCtls(pVCpu);
+ AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc\n", rc),
+ hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
+
+ rc = hmR0VmxSetupMiscCtls(pVCpu);
+ AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc\n", rc),
+ hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
+
+ rc = hmR0VmxInitXcptBitmap(pVCpu);
+ AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc\n", rc),
+ hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
+
+#if HC_ARCH_BITS == 32
+ rc = hmR0VmxInitVmcsReadCache(pVCpu);
+ AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc\n", rc),
+ hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
+#endif
+
+ /* Sync any CPU internal VMCS data back into our VMCS in memory. */
+ rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
+ AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc\n", rc),
+ hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
+
+ pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
+
+ hmR0VmxUpdateErrorRecord(pVCpu, rc);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
+ * the VMCS.
+ *
+ * @returns VBox status code.
+ */
+static int hmR0VmxExportHostControlRegs(void)
+{
+ RTCCUINTREG uReg = ASMGetCR0();
+ int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
+ AssertRCReturn(rc, rc);
+
+ uReg = ASMGetCR3();
+ rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
+ AssertRCReturn(rc, rc);
+
+ uReg = ASMGetCR4();
+ rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
+ AssertRCReturn(rc, rc);
+ return rc;
+}
+
+
+/**
+ * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
+ * the host-state area in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
+{
+#if HC_ARCH_BITS == 64
+/**
+ * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
+ * requirements. See hmR0VmxExportHostSegmentRegs().
+ */
+# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
+ if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
+ { \
+ bool fValidSelector = true; \
+ if ((selValue) & X86_SEL_LDT) \
+ { \
+ uint32_t uAttr = ASMGetSegAttr((selValue)); \
+ fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
+ } \
+ if (fValidSelector) \
+ { \
+ pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
+ pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
+ } \
+ (selValue) = 0; \
+ }
+
+ /*
+ * If we've executed guest code using VT-x, the host-state bits will be messed up. We
+ * should -not- save the messed up state without restoring the original host-state,
+ * see @bugref{7240}.
+ *
+ * This apparently can happen (most likely the FPU changes), deal with it rather than
+ * asserting. Was observed booting Solaris 10u10 32-bit guest.
+ */
+ if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
+ && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
+ {
+ Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
+ pVCpu->idCpu));
+ VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
+ }
+ pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
+#else
+ RT_NOREF(pVCpu);
+#endif
+
+ /*
+ * Host DS, ES, FS and GS segment registers.
+ */
+#if HC_ARCH_BITS == 64
+ RTSEL uSelDS = ASMGetDS();
+ RTSEL uSelES = ASMGetES();
+ RTSEL uSelFS = ASMGetFS();
+ RTSEL uSelGS = ASMGetGS();
+#else
+ RTSEL uSelDS = 0;
+ RTSEL uSelES = 0;
+ RTSEL uSelFS = 0;
+ RTSEL uSelGS = 0;
+#endif
+
+ /*
+ * Host CS and SS segment registers.
+ */
+ RTSEL uSelCS = ASMGetCS();
+ RTSEL uSelSS = ASMGetSS();
+
+ /*
+ * Host TR segment register.
+ */
+ RTSEL uSelTR = ASMGetTR();
+
+#if HC_ARCH_BITS == 64
+ /*
+ * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
+ * gain VM-entry and restore them before we get preempted.
+ *
+ * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
+ */
+ VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
+ VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
+ VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
+ VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
+# undef VMXLOCAL_ADJUST_HOST_SEG
+#endif
+
+ /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
+ Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
+ Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
+ Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
+ Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
+ Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
+ Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
+ Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
+ Assert(uSelCS);
+ Assert(uSelTR);
+
+ /* Assertion is right but we would not have updated u32ExitCtls yet. */
+#if 0
+ if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE))
+ Assert(uSelSS != 0);
+#endif
+
+ /* Write these host selector fields into the host-state area in the VMCS. */
+ int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
+ rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
+#if HC_ARCH_BITS == 64
+ rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
+ rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
+ rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
+ rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
+#else
+ NOREF(uSelDS);
+ NOREF(uSelES);
+ NOREF(uSelFS);
+ NOREF(uSelGS);
+#endif
+ rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Host GDTR and IDTR.
+ */
+ RTGDTR Gdtr;
+ RTIDTR Idtr;
+ RT_ZERO(Gdtr);
+ RT_ZERO(Idtr);
+ ASMGetGDTR(&Gdtr);
+ ASMGetIDTR(&Idtr);
+ rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
+ rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
+ AssertRCReturn(rc, rc);
+
+#if HC_ARCH_BITS == 64
+ /*
+ * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
+ * them to the maximum limit (0xffff) on every VM-exit.
+ */
+ if (Gdtr.cbGdt != 0xffff)
+ pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
+
+ /*
+ * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
+ * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
+ * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
+ * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
+ * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
+ * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
+ * at 0xffff on hosts where we are sure it won't cause trouble.
+ */
+# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
+ if (Idtr.cbIdt < 0x0fff)
+# else
+ if (Idtr.cbIdt != 0xffff)
+# endif
+ {
+ pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
+ AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
+ memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
+ }
+#endif
+
+ /*
+ * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
+ * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
+ * RPL should be too in most cases.
+ */
+ AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
+ ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
+
+ PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
+#if HC_ARCH_BITS == 64
+ uintptr_t uTRBase = X86DESC64_BASE(pDesc);
+
+ /*
+ * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
+ * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
+ * restoration if the host has something else. Task switching is not supported in 64-bit
+ * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
+ * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
+ *
+ * [1] See Intel spec. 3.5 "System Descriptor Types".
+ * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ Assert(pDesc->System.u4Type == 11);
+ if ( pDesc->System.u16LimitLow != 0x67
+ || pDesc->System.u4LimitHigh)
+ {
+ pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
+ /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
+ if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
+ pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
+ pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
+ }
+
+ /*
+ * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
+ */
+ if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
+ {
+ AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
+ memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
+ if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
+ {
+ /* The GDT is read-only but the writable GDT is available. */
+ pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
+ pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
+ rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
+ AssertRCReturn(rc, rc);
+ }
+ }
+#else
+ uintptr_t uTRBase = X86DESC_BASE(pDesc);
+#endif
+ rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Host FS base and GS base.
+ */
+#if HC_ARCH_BITS == 64
+ uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
+ uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
+ rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
+ rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
+ AssertRCReturn(rc, rc);
+
+ /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
+ if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
+ pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
+ if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
+ pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports certain host MSRs in the VM-exit MSR-load area and some in the
+ * host-state area of the VMCS.
+ *
+ * Theses MSRs will be automatically restored on the host after every successful
+ * VM-exit.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+ AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
+
+ /*
+ * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
+ * rather than swapping them on every VM-entry.
+ */
+ hmR0VmxLazySaveHostMsrs(pVCpu);
+
+ /*
+ * Host Sysenter MSRs.
+ */
+ int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
+#if HC_ARCH_BITS == 32
+ rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
+ rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
+#else
+ rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
+ rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
+#endif
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Host EFER MSR.
+ *
+ * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
+ * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if (pVM->hm.s.vmx.fSupportsVmcsEfer)
+ {
+ rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
+ AssertRCReturn(rc, rc);
+ }
+
+ /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see hmR0VmxExportGuestExitCtls(). */
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Figures out if we need to swap the EFER MSR which is particularly expensive.
+ *
+ * We check all relevant bits. For now, that's everything besides LMA/LME, as
+ * these two bits are handled by VM-entry, see hmR0VmxExportGuestExitCtls() and
+ * hmR0VMxExportGuestEntryCtls().
+ *
+ * @returns true if we need to load guest EFER, false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Requires EFER, CR4.
+ * @remarks No-long-jump zone!!!
+ */
+static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
+{
+#ifdef HMVMX_ALWAYS_SWAP_EFER
+ RT_NOREF(pVCpu);
+ return true;
+#else
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
+ /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
+ if (CPUMIsGuestInLongModeEx(pCtx))
+ return false;
+#endif
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
+ uint64_t const u64GuestEfer = pCtx->msrEFER;
+
+ /*
+ * For 64-bit guests, if EFER.SCE bit differs, we need to swap EFER to ensure that the
+ * guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
+ */
+ if ( CPUMIsGuestInLongModeEx(pCtx)
+ && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
+ {
+ return true;
+ }
+
+ /*
+ * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
+ * affects guest paging. 64-bit paging implies CR4.PAE as well.
+ * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
+ */
+ if ( (pCtx->cr4 & X86_CR4_PAE)
+ && (pCtx->cr0 & X86_CR0_PG)
+ && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
+ {
+ /* Assert that host is NX capable. */
+ Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
+ return true;
+ }
+
+ return false;
+#endif
+}
+
+
+/**
+ * Exports the guest state with appropriate VM-entry controls in the VMCS.
+ *
+ * These controls can affect things done on VM-exit; e.g. "load debug controls",
+ * see Intel spec. 24.8.1 "VM-entry controls".
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Requires EFER.
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestEntryCtls(PVMCPU pVCpu)
+{
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_CTLS)
+ {
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
+ uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
+
+ /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
+ fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
+
+ /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
+ if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
+ {
+ fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
+ Log4Func(("VMX_ENTRY_CTLS_IA32E_MODE_GUEST\n"));
+ }
+ else
+ Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
+
+ /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
+ if ( pVM->hm.s.vmx.fSupportsVmcsEfer
+ && hmR0VmxShouldSwapEferMsr(pVCpu))
+ {
+ fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
+ Log4Func(("VMX_ENTRY_CTLS_LOAD_EFER_MSR\n"));
+ }
+
+ /*
+ * The following should -not- be set (since we're not in SMM mode):
+ * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
+ * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
+ */
+
+ /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
+ * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
+
+ if ((fVal & fZap) != fVal)
+ {
+ Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
+ pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
+ pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Commit it to the VMCS and update our cache. */
+ if (pVCpu->hm.s.vmx.u32EntryCtls != fVal)
+ {
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
+ AssertRCReturn(rc, rc);
+ pVCpu->hm.s.vmx.u32EntryCtls = fVal;
+ }
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_CTLS);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports the guest state with appropriate VM-exit controls in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Requires EFER.
+ */
+static int hmR0VmxExportGuestExitCtls(PVMCPU pVCpu)
+{
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_EXIT_CTLS)
+ {
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
+ uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
+
+ /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
+ fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
+
+ /*
+ * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
+ * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in
+ * hmR0VmxExportHostMsrs().
+ */
+#if HC_ARCH_BITS == 64
+ fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
+ Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
+#else
+ Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
+ || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
+ /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
+ if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
+ {
+ /* The switcher returns to long mode, EFER is managed by the switcher. */
+ fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
+ Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
+ }
+ else
+ Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
+#endif
+
+ /* If the newer VMCS fields for managing EFER exists, use it. */
+ if ( pVM->hm.s.vmx.fSupportsVmcsEfer
+ && hmR0VmxShouldSwapEferMsr(pVCpu))
+ {
+ fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
+ | VMX_EXIT_CTLS_LOAD_EFER_MSR;
+ Log4Func(("VMX_EXIT_CTLS_SAVE_EFER_MSR and VMX_EXIT_CTLS_LOAD_EFER_MSR\n"));
+ }
+
+ /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
+ Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
+
+ /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
+ * VMX_EXIT_CTLS_SAVE_PAT_MSR,
+ * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
+
+ /* Enable saving of the VMX preemption timer value on VM-exit. */
+ if ( pVM->hm.s.vmx.fUsePreemptTimer
+ && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
+ fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
+
+ if ((fVal & fZap) != fVal)
+ {
+ LogRelFunc(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
+ pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
+ pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Commit it to the VMCS and update our cache. */
+ if (pVCpu->hm.s.vmx.u32ExitCtls != fVal)
+ {
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
+ AssertRCReturn(rc, rc);
+ pVCpu->hm.s.vmx.u32ExitCtls = fVal;
+ }
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_EXIT_CTLS);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets the TPR threshold in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param u32TprThreshold The TPR threshold (task-priority class only).
+ */
+DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
+{
+ Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
+ Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
+ return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
+}
+
+
+/**
+ * Exports the guest APIC TPR state into the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu)
+{
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
+
+ if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
+ && APICIsEnabled(pVCpu))
+ {
+ /*
+ * Setup TPR shadowing.
+ */
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
+ {
+ Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
+
+ bool fPendingIntr = false;
+ uint8_t u8Tpr = 0;
+ uint8_t u8PendingIntr = 0;
+ int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * If there are interrupts pending but masked by the TPR, instruct VT-x to
+ * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
+ * priority of the pending interrupt so we can deliver the interrupt. If there
+ * are no interrupts pending, set threshold to 0 to not cause any
+ * TPR-below-threshold VM-exits.
+ */
+ pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
+ uint32_t u32TprThreshold = 0;
+ if (fPendingIntr)
+ {
+ /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
+ const uint8_t u8PendingPriority = u8PendingIntr >> 4;
+ const uint8_t u8TprPriority = u8Tpr >> 4;
+ if (u8PendingPriority <= u8TprPriority)
+ u32TprThreshold = u8PendingPriority;
+ }
+
+ rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
+ AssertRCReturn(rc, rc);
+ }
+ }
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
+ *
+ * @returns Guest's interruptibility-state.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu)
+{
+ /*
+ * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
+ */
+ uint32_t fIntrState = 0;
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ {
+ /* If inhibition is active, RIP & RFLAGS should've been accessed
+ (i.e. read previously from the VMCS or from ring-3). */
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+#ifdef VBOX_STRICT
+ uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
+ AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
+#endif
+ if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
+ {
+ if (pCtx->eflags.Bits.u1IF)
+ fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
+ else
+ fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
+ }
+ else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ {
+ /*
+ * We can clear the inhibit force flag as even if we go back to the recompiler
+ * without executing guest code in VT-x, the flag's condition to be cleared is
+ * met and thus the cleared state is correct.
+ */
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+ }
+ }
+
+ /*
+ * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
+ * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
+ * setting this would block host-NMIs and IRET will not clear the blocking.
+ *
+ * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
+ */
+ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
+ && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
+ {
+ fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
+ }
+
+ return fIntrState;
+}
+
+
+/**
+ * Exports the exception intercepts required for guest execution in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu)
+{
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
+ {
+ uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
+
+ /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxExportGuestCR0(). */
+ if (pVCpu->hm.s.fGIMTrapXcptUD)
+ uXcptBitmap |= RT_BIT(X86_XCPT_UD);
+#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
+ else
+ uXcptBitmap &= ~RT_BIT(X86_XCPT_UD);
+#endif
+
+ Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_AC));
+ Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_DB));
+
+ if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
+ {
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
+ AssertRCReturn(rc, rc);
+ pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
+ }
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
+ Log4Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64\n", uXcptBitmap));
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports the guest's RIP into the guest-state area in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
+{
+ int rc = VINF_SUCCESS;
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
+
+ rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
+ AssertRCReturn(rc, rc);
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
+ Log4Func(("RIP=%#RX64\n", pVCpu->cpum.GstCtx.rip));
+ }
+ return rc;
+}
+
+
+/**
+ * Exports the guest's RSP into the guest-state area in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
+{
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
+
+ int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
+ AssertRCReturn(rc, rc);
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports the guest's RFLAGS into the guest-state area in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestRflags(PVMCPU pVCpu)
+{
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
+
+ /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
+ Let us assert it as such and use 32-bit VMWRITE. */
+ Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
+ X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
+ Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
+ Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
+
+ /*
+ * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
+ * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
+ * can run the real-mode guest code under Virtual 8086 mode.
+ */
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
+ Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
+ pVCpu->hm.s.vmx.RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
+ fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
+ fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
+ }
+
+ int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Setup pending debug exceptions if the guest is single-stepping using EFLAGS.TF.
+ *
+ * We must avoid setting any automatic debug exceptions delivery when single-stepping
+ * through the hypervisor debugger using EFLAGS.TF.
+ */
+ if ( !pVCpu->hm.s.fSingleInstruction
+ && fEFlags.Bits.u1TF)
+ {
+ /** @todo r=ramshankar: Warning! We ASSUME EFLAGS.TF will not cleared on
+ * premature trips to ring-3 esp since IEM does not yet handle it. */
+ rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
+ AssertRCReturn(rc, rc);
+ }
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
+ Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports the guest CR0 control register into the guest-state area in the VMCS.
+ *
+ * The guest FPU state is always pre-loaded hence we don't need to bother about
+ * sharing FPU related CR0 bits between the guest and host.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestCR0(PVMCPU pVCpu)
+{
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
+ {
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
+ Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.cr0));
+
+ uint32_t const u32ShadowCr0 = pVCpu->cpum.GstCtx.cr0;
+ uint32_t u32GuestCr0 = pVCpu->cpum.GstCtx.cr0;
+
+ /*
+ * Setup VT-x's view of the guest CR0.
+ * Minimize VM-exits due to CR3 changes when we have NestedPaging.
+ */
+ uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
+ if (pVM->hm.s.fNestedPaging)
+ {
+ if (CPUMIsGuestPagingEnabled(pVCpu))
+ {
+ /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
+ uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
+ | VMX_PROC_CTLS_CR3_STORE_EXIT);
+ }
+ else
+ {
+ /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
+ uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
+ | VMX_PROC_CTLS_CR3_STORE_EXIT;
+ }
+
+ /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
+ if (pVM->hm.s.vmx.fUnrestrictedGuest)
+ uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
+ }
+ else
+ {
+ /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
+ u32GuestCr0 |= X86_CR0_WP;
+ }
+
+ /*
+ * Guest FPU bits.
+ *
+ * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
+ * using CR0.TS.
+ *
+ * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
+ * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
+ */
+ u32GuestCr0 |= X86_CR0_NE;
+
+ /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
+ bool const fInterceptMF = !(u32ShadowCr0 & X86_CR0_NE);
+
+ /*
+ * Update exception intercepts.
+ */
+ uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ Assert(PDMVmmDevHeapIsEnabled(pVM));
+ Assert(pVM->hm.s.vmx.pRealModeTSS);
+ uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
+ }
+ else
+ {
+ /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
+ uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
+ if (fInterceptMF)
+ uXcptBitmap |= RT_BIT(X86_XCPT_MF);
+ }
+
+ /* Additional intercepts for debugging, define these yourself explicitly. */
+#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
+ uXcptBitmap |= 0
+ | RT_BIT(X86_XCPT_BP)
+ | RT_BIT(X86_XCPT_DE)
+ | RT_BIT(X86_XCPT_NM)
+ | RT_BIT(X86_XCPT_TS)
+ | RT_BIT(X86_XCPT_UD)
+ | RT_BIT(X86_XCPT_NP)
+ | RT_BIT(X86_XCPT_SS)
+ | RT_BIT(X86_XCPT_GP)
+ | RT_BIT(X86_XCPT_PF)
+ | RT_BIT(X86_XCPT_MF)
+ ;
+#elif defined(HMVMX_ALWAYS_TRAP_PF)
+ uXcptBitmap |= RT_BIT(X86_XCPT_PF);
+#endif
+ if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
+ uXcptBitmap |= RT_BIT(X86_XCPT_GP);
+ Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
+
+ /*
+ * Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW).
+ */
+ uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
+ uint32_t fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
+ if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
+ fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
+ else
+ Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
+
+ u32GuestCr0 |= fSetCr0;
+ u32GuestCr0 &= fZapCr0;
+ u32GuestCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
+
+ /*
+ * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
+ * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
+ * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
+ */
+ uint32_t u32Cr0Mask = X86_CR0_PE
+ | X86_CR0_NE
+ | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
+ | X86_CR0_PG
+ | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
+ | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
+ | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
+
+ /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
+ * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
+ * and @bugref{6944}. */
+#if 0
+ if (pVM->hm.s.vmx.fUnrestrictedGuest)
+ u32Cr0Mask &= ~X86_CR0_PE;
+#endif
+ /*
+ * Finally, update VMCS fields with the CR0 values and the exception bitmap.
+ */
+ int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCr0);
+ rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32ShadowCr0);
+ if (u32Cr0Mask != pVCpu->hm.s.vmx.u32Cr0Mask)
+ rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32Cr0Mask);
+ if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
+ if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
+ AssertRCReturn(rc, rc);
+
+ /* Update our caches. */
+ pVCpu->hm.s.vmx.u32Cr0Mask = u32Cr0Mask;
+ pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
+ pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
+
+ Log4Func(("u32Cr0Mask=%#RX32 u32ShadowCr0=%#RX32 u32GuestCr0=%#RX32 (fSetCr0=%#RX32 fZapCr0=%#RX32\n", u32Cr0Mask,
+ u32ShadowCr0, u32GuestCr0, fSetCr0, fZapCr0));
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports the guest control registers (CR3, CR4) into the guest-state area
+ * in the VMCS.
+ *
+ * @returns VBox strict status code.
+ * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
+ * without unrestricted guest access and the VMMDev is not presently
+ * mapped (e.g. EFI32).
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu)
+{
+ int rc = VINF_SUCCESS;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+
+ /*
+ * Guest CR2.
+ * It's always loaded in the assembler code. Nothing to do here.
+ */
+
+ /*
+ * Guest CR3.
+ */
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
+
+ RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
+ if (pVM->hm.s.fNestedPaging)
+ {
+ pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
+
+ /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
+ Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
+ Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
+ Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
+
+ /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
+ pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
+ | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
+
+ /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
+ AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
+ && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
+ ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
+ AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
+ || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
+ ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
+
+ rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
+ AssertRCReturn(rc, rc);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if ( pVM->hm.s.vmx.fUnrestrictedGuest
+ || CPUMIsGuestPagingEnabledEx(pCtx))
+ {
+ /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
+ if (CPUMIsGuestInPAEModeEx(pCtx))
+ {
+ rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
+ AssertRCReturn(rc, rc);
+ rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
+ rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
+ rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
+ rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
+ AssertRCReturn(rc, rc);
+ }
+
+ /*
+ * The guest's view of its CR3 is unblemished with Nested Paging when the
+ * guest is using paging or we have unrestricted guest execution to handle
+ * the guest when it's not using paging.
+ */
+ GCPhysGuestCR3 = pCtx->cr3;
+ }
+ else
+ {
+ /*
+ * The guest is not using paging, but the CPU (VT-x) has to. While the guest
+ * thinks it accesses physical memory directly, we use our identity-mapped
+ * page table to map guest-linear to guest-physical addresses. EPT takes care
+ * of translating it to host-physical addresses.
+ */
+ RTGCPHYS GCPhys;
+ Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
+
+ /* We obtain it here every time as the guest could have relocated this PCI region. */
+ rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
+ if (RT_SUCCESS(rc))
+ { /* likely */ }
+ else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
+ {
+ Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
+ return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
+ }
+ else
+ AssertMsgFailedReturn(("%Rrc\n", rc), rc);
+
+ GCPhysGuestCR3 = GCPhys;
+ }
+
+ Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
+ rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
+ AssertRCReturn(rc, rc);
+ }
+ else
+ {
+ /* Non-nested paging case, just use the hypervisor's CR3. */
+ RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
+
+ Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
+ rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
+ AssertRCReturn(rc, rc);
+ }
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
+ }
+
+ /*
+ * Guest CR4.
+ * ASSUMES this is done everytime we get in from ring-3! (XCR0)
+ */
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
+ {
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
+ Assert(!RT_HI_U32(pCtx->cr4));
+
+ uint32_t u32GuestCr4 = pCtx->cr4;
+ uint32_t const u32ShadowCr4 = pCtx->cr4;
+
+ /*
+ * Setup VT-x's view of the guest CR4.
+ *
+ * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
+ * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
+ * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
+ *
+ * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
+ */
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ Assert(pVM->hm.s.vmx.pRealModeTSS);
+ Assert(PDMVmmDevHeapIsEnabled(pVM));
+ u32GuestCr4 &= ~X86_CR4_VME;
+ }
+
+ if (pVM->hm.s.fNestedPaging)
+ {
+ if ( !CPUMIsGuestPagingEnabledEx(pCtx)
+ && !pVM->hm.s.vmx.fUnrestrictedGuest)
+ {
+ /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
+ u32GuestCr4 |= X86_CR4_PSE;
+ /* Our identity mapping is a 32-bit page directory. */
+ u32GuestCr4 &= ~X86_CR4_PAE;
+ }
+ /* else use guest CR4.*/
+ }
+ else
+ {
+ /*
+ * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
+ * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
+ */
+ switch (pVCpu->hm.s.enmShadowMode)
+ {
+ case PGMMODE_REAL: /* Real-mode. */
+ case PGMMODE_PROTECTED: /* Protected mode without paging. */
+ case PGMMODE_32_BIT: /* 32-bit paging. */
+ {
+ u32GuestCr4 &= ~X86_CR4_PAE;
+ break;
+ }
+
+ case PGMMODE_PAE: /* PAE paging. */
+ case PGMMODE_PAE_NX: /* PAE paging with NX. */
+ {
+ u32GuestCr4 |= X86_CR4_PAE;
+ break;
+ }
+
+ case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
+ case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
+#ifdef VBOX_ENABLE_64_BITS_GUESTS
+ break;
+#endif
+ default:
+ AssertFailed();
+ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
+ }
+ }
+
+ /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
+ uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
+ uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
+ u32GuestCr4 |= fSetCr4;
+ u32GuestCr4 &= fZapCr4;
+
+ /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them,
+ that would cause a VM-exit. */
+ uint32_t u32Cr4Mask = X86_CR4_VME
+ | X86_CR4_PAE
+ | X86_CR4_PGE
+ | X86_CR4_PSE
+ | X86_CR4_VMXE;
+ if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
+ u32Cr4Mask |= X86_CR4_OSXSAVE;
+ if (pVM->cpum.ro.GuestFeatures.fPcid)
+ u32Cr4Mask |= X86_CR4_PCIDE;
+
+ /* Write VT-x's view of the guest CR4, the CR4 modify mask and the read-only CR4 shadow
+ into the VMCS and update our cache. */
+ rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCr4);
+ rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32ShadowCr4);
+ if (pVCpu->hm.s.vmx.u32Cr4Mask != u32Cr4Mask)
+ rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32Cr4Mask);
+ AssertRCReturn(rc, rc);
+ pVCpu->hm.s.vmx.u32Cr4Mask = u32Cr4Mask;
+
+ /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
+ pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
+
+ Log4Func(("u32GuestCr4=%#RX32 u32ShadowCr4=%#RX32 (fSetCr4=%#RX32 fZapCr4=%#RX32)\n", u32GuestCr4, u32ShadowCr4, fSetCr4,
+ fZapCr4));
+ }
+ return rc;
+}
+
+
+/**
+ * Exports the guest debug registers into the guest-state area in the VMCS.
+ * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
+ *
+ * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+#ifdef VBOX_STRICT
+ /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
+ if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
+ {
+ /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
+ Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
+ Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
+ }
+#endif
+
+ bool fSteppingDB = false;
+ bool fInterceptMovDRx = false;
+ uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
+ if (pVCpu->hm.s.fSingleInstruction)
+ {
+ /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
+ {
+ uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
+ Assert(fSteppingDB == false);
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
+ pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
+ pVCpu->hm.s.fClearTrapFlag = true;
+ fSteppingDB = true;
+ }
+ }
+
+ uint32_t u32GuestDr7;
+ if ( fSteppingDB
+ || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
+ {
+ /*
+ * Use the combined guest and host DRx values found in the hypervisor register set
+ * because the debugger has breakpoints active or someone is single stepping on the
+ * host side without a monitor trap flag.
+ *
+ * Note! DBGF expects a clean DR6 state before executing guest code.
+ */
+#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
+ if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
+ && !CPUMIsHyperDebugStateActivePending(pVCpu))
+ {
+ CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
+ Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
+ Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
+ }
+ else
+#endif
+ if (!CPUMIsHyperDebugStateActive(pVCpu))
+ {
+ CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
+ Assert(CPUMIsHyperDebugStateActive(pVCpu));
+ Assert(!CPUMIsGuestDebugStateActive(pVCpu));
+ }
+
+ /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
+ u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
+ pVCpu->hm.s.fUsingHyperDR7 = true;
+ fInterceptMovDRx = true;
+ }
+ else
+ {
+ /*
+ * If the guest has enabled debug registers, we need to load them prior to
+ * executing guest code so they'll trigger at the right time.
+ */
+ if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
+ {
+#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
+ if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
+ && !CPUMIsGuestDebugStateActivePending(pVCpu))
+ {
+ CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
+ Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
+ Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
+ }
+ else
+#endif
+ if (!CPUMIsGuestDebugStateActive(pVCpu))
+ {
+ CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
+ Assert(CPUMIsGuestDebugStateActive(pVCpu));
+ Assert(!CPUMIsHyperDebugStateActive(pVCpu));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
+ }
+ Assert(!fInterceptMovDRx);
+ }
+ /*
+ * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
+ * must intercept #DB in order to maintain a correct DR6 guest value, and
+ * because we need to intercept it to prevent nested #DBs from hanging the
+ * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
+ */
+#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
+ else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
+ && !CPUMIsGuestDebugStateActive(pVCpu))
+#else
+ else if (!CPUMIsGuestDebugStateActive(pVCpu))
+#endif
+ {
+ fInterceptMovDRx = true;
+ }
+
+ /* Update DR7 with the actual guest value. */
+ u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
+ pVCpu->hm.s.fUsingHyperDR7 = false;
+ }
+
+ if (fInterceptMovDRx)
+ uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
+ else
+ uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
+
+ /*
+ * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
+ * monitor-trap flag and update our cache.
+ */
+ if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
+ {
+ int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
+ AssertRCReturn(rc2, rc2);
+ pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
+ }
+
+ /*
+ * Update guest DR7.
+ */
+ int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
+ * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
+ *
+ * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
+ */
+ if (fSteppingDB)
+ {
+ Assert(pVCpu->hm.s.fSingleInstruction);
+ Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
+
+ uint32_t fIntrState = 0;
+ rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
+ AssertRCReturn(rc, rc);
+
+ if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
+ {
+ fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
+ rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
+ AssertRCReturn(rc, rc);
+ }
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+#ifdef VBOX_STRICT
+/**
+ * Strict function to validate segment registers.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Will import guest CR0 on strict builds during validation of
+ * segments.
+ */
+static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu)
+{
+ /*
+ * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
+ *
+ * The reason we check for attribute value 0 in this function and not just the unusable bit is
+ * because hmR0VmxExportGuestSegmentReg() only updates the VMCS' copy of the value with the unusable bit
+ * and doesn't change the guest-context value.
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
+ if ( !pVM->hm.s.vmx.fUnrestrictedGuest
+ && ( !CPUMIsGuestInRealModeEx(pCtx)
+ && !CPUMIsGuestInV86ModeEx(pCtx)))
+ {
+ /* Protected mode checks */
+ /* CS */
+ Assert(pCtx->cs.Attr.n.u1Present);
+ Assert(!(pCtx->cs.Attr.u & 0xf00));
+ Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
+ Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->cs.Attr.n.u1Granularity));
+ Assert( !(pCtx->cs.u32Limit & 0xfff00000)
+ || (pCtx->cs.Attr.n.u1Granularity));
+ /* CS cannot be loaded with NULL in protected mode. */
+ Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
+ if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
+ Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
+ else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
+ Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
+ else
+ AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
+ /* SS */
+ Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
+ Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
+ if ( !(pCtx->cr0 & X86_CR0_PE)
+ || pCtx->cs.Attr.n.u4Type == 3)
+ {
+ Assert(!pCtx->ss.Attr.n.u2Dpl);
+ }
+ if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
+ Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
+ Assert(pCtx->ss.Attr.n.u1Present);
+ Assert(!(pCtx->ss.Attr.u & 0xf00));
+ Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
+ Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->ss.Attr.n.u1Granularity));
+ Assert( !(pCtx->ss.u32Limit & 0xfff00000)
+ || (pCtx->ss.Attr.n.u1Granularity));
+ }
+ /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmentReg(). */
+ if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
+ Assert(pCtx->ds.Attr.n.u1Present);
+ Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
+ Assert(!(pCtx->ds.Attr.u & 0xf00));
+ Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
+ Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->ds.Attr.n.u1Granularity));
+ Assert( !(pCtx->ds.u32Limit & 0xfff00000)
+ || (pCtx->ds.Attr.n.u1Granularity));
+ Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
+ || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
+ }
+ if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
+ Assert(pCtx->es.Attr.n.u1Present);
+ Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
+ Assert(!(pCtx->es.Attr.u & 0xf00));
+ Assert(!(pCtx->es.Attr.u & 0xfffe0000));
+ Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->es.Attr.n.u1Granularity));
+ Assert( !(pCtx->es.u32Limit & 0xfff00000)
+ || (pCtx->es.Attr.n.u1Granularity));
+ Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
+ || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
+ }
+ if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
+ Assert(pCtx->fs.Attr.n.u1Present);
+ Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
+ Assert(!(pCtx->fs.Attr.u & 0xf00));
+ Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
+ Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->fs.Attr.n.u1Granularity));
+ Assert( !(pCtx->fs.u32Limit & 0xfff00000)
+ || (pCtx->fs.Attr.n.u1Granularity));
+ Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
+ || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
+ }
+ if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
+ Assert(pCtx->gs.Attr.n.u1Present);
+ Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
+ Assert(!(pCtx->gs.Attr.u & 0xf00));
+ Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
+ Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->gs.Attr.n.u1Granularity));
+ Assert( !(pCtx->gs.u32Limit & 0xfff00000)
+ || (pCtx->gs.Attr.n.u1Granularity));
+ Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
+ || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
+ }
+ /* 64-bit capable CPUs. */
+# if HC_ARCH_BITS == 64
+ Assert(!RT_HI_U32(pCtx->cs.u64Base));
+ Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
+ Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
+ Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
+# endif
+ }
+ else if ( CPUMIsGuestInV86ModeEx(pCtx)
+ || ( CPUMIsGuestInRealModeEx(pCtx)
+ && !pVM->hm.s.vmx.fUnrestrictedGuest))
+ {
+ /* Real and v86 mode checks. */
+ /* hmR0VmxExportGuestSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
+ uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
+ }
+ else
+ {
+ u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
+ u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
+ }
+
+ /* CS */
+ AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
+ Assert(pCtx->cs.u32Limit == 0xffff);
+ Assert(u32CSAttr == 0xf3);
+ /* SS */
+ Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
+ Assert(pCtx->ss.u32Limit == 0xffff);
+ Assert(u32SSAttr == 0xf3);
+ /* DS */
+ Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
+ Assert(pCtx->ds.u32Limit == 0xffff);
+ Assert(u32DSAttr == 0xf3);
+ /* ES */
+ Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
+ Assert(pCtx->es.u32Limit == 0xffff);
+ Assert(u32ESAttr == 0xf3);
+ /* FS */
+ Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
+ Assert(pCtx->fs.u32Limit == 0xffff);
+ Assert(u32FSAttr == 0xf3);
+ /* GS */
+ Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
+ Assert(pCtx->gs.u32Limit == 0xffff);
+ Assert(u32GSAttr == 0xf3);
+ /* 64-bit capable CPUs. */
+# if HC_ARCH_BITS == 64
+ Assert(!RT_HI_U32(pCtx->cs.u64Base));
+ Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
+ Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
+ Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
+# endif
+ }
+}
+#endif /* VBOX_STRICT */
+
+
+/**
+ * Exports a guest segment register into the guest-state area in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param idxSel Index of the selector in the VMCS.
+ * @param idxLimit Index of the segment limit in the VMCS.
+ * @param idxBase Index of the segment base in the VMCS.
+ * @param idxAccess Index of the access rights of the segment in the VMCS.
+ * @param pSelReg Pointer to the segment selector.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
+ PCCPUMSELREG pSelReg)
+{
+ int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
+ rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
+ rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
+ AssertRCReturn(rc, rc);
+
+ uint32_t u32Access = pSelReg->Attr.u;
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
+ u32Access = 0xf3;
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
+ Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
+ }
+ else
+ {
+ /*
+ * The way to differentiate between whether this is really a null selector or was just
+ * a selector loaded with 0 in real-mode is using the segment attributes. A selector
+ * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
+ * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
+ * NULL selectors loaded in protected-mode have their attribute as 0.
+ */
+ if (!u32Access)
+ u32Access = X86DESCATTR_UNUSABLE;
+ }
+
+ /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
+ AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
+ ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
+
+ rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
+ AssertRCReturn(rc, rc);
+ return rc;
+}
+
+
+/**
+ * Exports the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
+ * into the guest-state area in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Will import guest CR0 on strict builds during validation of
+ * segments.
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestSegmentRegs(PVMCPU pVCpu)
+{
+ int rc = VERR_INTERNAL_ERROR_5;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+
+ /*
+ * Guest Segment registers: CS, SS, DS, ES, FS, GS.
+ */
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
+ {
+#ifdef VBOX_WITH_REM
+ if (!pVM->hm.s.vmx.fUnrestrictedGuest)
+ {
+ Assert(pVM->hm.s.vmx.pRealModeTSS);
+ AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
+ if ( pVCpu->hm.s.vmx.fWasInRealMode
+ && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
+ {
+ /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
+ in real-mode (e.g. OpenBSD 4.0) */
+ REMFlushTBs(pVM);
+ Log4Func(("Switch to protected mode detected!\n"));
+ pVCpu->hm.s.vmx.fWasInRealMode = false;
+ }
+ }
+#endif
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pVCpu->hm.s.vmx.RealMode.AttrCS.u = pCtx->cs.Attr.u;
+ rc = HMVMX_EXPORT_SREG(CS, &pCtx->cs);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
+ }
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pVCpu->hm.s.vmx.RealMode.AttrSS.u = pCtx->ss.Attr.u;
+ rc = HMVMX_EXPORT_SREG(SS, &pCtx->ss);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
+ }
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pVCpu->hm.s.vmx.RealMode.AttrDS.u = pCtx->ds.Attr.u;
+ rc = HMVMX_EXPORT_SREG(DS, &pCtx->ds);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
+ }
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pVCpu->hm.s.vmx.RealMode.AttrES.u = pCtx->es.Attr.u;
+ rc = HMVMX_EXPORT_SREG(ES, &pCtx->es);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
+ }
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pVCpu->hm.s.vmx.RealMode.AttrFS.u = pCtx->fs.Attr.u;
+ rc = HMVMX_EXPORT_SREG(FS, &pCtx->fs);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
+ }
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pVCpu->hm.s.vmx.RealMode.AttrGS.u = pCtx->gs.Attr.u;
+ rc = HMVMX_EXPORT_SREG(GS, &pCtx->gs);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
+ }
+
+#ifdef VBOX_STRICT
+ hmR0VmxValidateSegmentRegs(pVCpu);
+#endif
+
+ Log4Func(("CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pCtx->cs.Sel, pCtx->cs.u64Base,
+ pCtx->cs.u32Limit, pCtx->cs.Attr.u));
+ }
+
+ /*
+ * Guest TR.
+ */
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
+
+ /*
+ * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
+ * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
+ * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
+ */
+ uint16_t u16Sel = 0;
+ uint32_t u32Limit = 0;
+ uint64_t u64Base = 0;
+ uint32_t u32AccessRights = 0;
+
+ if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ u16Sel = pCtx->tr.Sel;
+ u32Limit = pCtx->tr.u32Limit;
+ u64Base = pCtx->tr.u64Base;
+ u32AccessRights = pCtx->tr.Attr.u;
+ }
+ else
+ {
+ Assert(pVM->hm.s.vmx.pRealModeTSS);
+ Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
+
+ /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
+ RTGCPHYS GCPhys;
+ rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
+ AssertRCReturn(rc, rc);
+
+ X86DESCATTR DescAttr;
+ DescAttr.u = 0;
+ DescAttr.n.u1Present = 1;
+ DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
+
+ u16Sel = 0;
+ u32Limit = HM_VTX_TSS_SIZE;
+ u64Base = GCPhys; /* in real-mode phys = virt. */
+ u32AccessRights = DescAttr.u;
+ }
+
+ /* Validate. */
+ Assert(!(u16Sel & RT_BIT(2)));
+ AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
+ || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
+ AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
+ Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
+ Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
+ Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
+ Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
+ Assert( (u32Limit & 0xfff) == 0xfff
+ || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
+ Assert( !(pCtx->tr.u32Limit & 0xfff00000)
+ || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
+
+ rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
+ rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
+ AssertRCReturn(rc, rc);
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
+ Log4Func(("TR base=%#RX64\n", pCtx->tr.u64Base));
+ }
+
+ /*
+ * Guest GDTR.
+ */
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
+
+ rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
+ rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
+ AssertRCReturn(rc, rc);
+
+ /* Validate. */
+ Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
+ Log4Func(("GDTR base=%#RX64\n", pCtx->gdtr.pGdt));
+ }
+
+ /*
+ * Guest LDTR.
+ */
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
+
+ /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
+ uint32_t u32Access = 0;
+ if (!pCtx->ldtr.Attr.u)
+ u32Access = X86DESCATTR_UNUSABLE;
+ else
+ u32Access = pCtx->ldtr.Attr.u;
+
+ rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
+ rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
+ AssertRCReturn(rc, rc);
+
+ /* Validate. */
+ if (!(u32Access & X86DESCATTR_UNUSABLE))
+ {
+ Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
+ Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
+ Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
+ Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
+ Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
+ Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
+ Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
+ || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
+ Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
+ || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
+ }
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
+ Log4Func(("LDTR base=%#RX64\n", pCtx->ldtr.u64Base));
+ }
+
+ /*
+ * Guest IDTR.
+ */
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
+
+ rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
+ rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
+ AssertRCReturn(rc, rc);
+
+ /* Validate. */
+ Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
+ Log4Func(("IDTR base=%#RX64\n", pCtx->idtr.pIdt));
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
+ * areas.
+ *
+ * These MSRs will automatically be loaded to the host CPU on every successful
+ * VM-entry and stored from the host CPU on every successful VM-exit. This also
+ * creates/updates MSR slots for the host MSRs. The actual host MSR values are
+ * -not- updated here for performance reasons. See hmR0VmxExportHostMsrs().
+ *
+ * Also exports the guest sysenter MSRs into the guest-state area in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+ AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
+
+ /*
+ * MSRs that we use the auto-load/store MSR area in the VMCS.
+ * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
+ {
+ if (pVM->hm.s.fAllow64BitGuests)
+ {
+#if HC_ARCH_BITS == 32
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
+
+ int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pCtx->msrLSTAR, false, NULL);
+ rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pCtx->msrSTAR, false, NULL);
+ rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pCtx->msrSFMASK, false, NULL);
+ rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, false, NULL);
+ AssertRCReturn(rc, rc);
+# ifdef LOG_ENABLED
+ PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
+ for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
+ Log4Func(("MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
+# endif
+#endif
+ }
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
+ }
+
+ /*
+ * Guest Sysenter MSRs.
+ * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
+ * VM-exits on WRMSRs for these MSRs.
+ */
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
+ {
+ int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
+ }
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
+ {
+ int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
+ }
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
+ {
+ int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
+ }
+ }
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
+ {
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
+
+ if (hmR0VmxShouldSwapEferMsr(pVCpu))
+ {
+ /*
+ * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
+ * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
+ */
+ if (pVM->hm.s.vmx.fSupportsVmcsEfer)
+ {
+ int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
+ AssertRCReturn(rc,rc);
+ Log4Func(("EFER=%#RX64\n", pCtx->msrEFER));
+ }
+ else
+ {
+ int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pCtx->msrEFER, false /* fUpdateHostMsr */,
+ NULL /* pfAddedAndUpdated */);
+ AssertRCReturn(rc, rc);
+
+ /* We need to intercept reads too, see @bugref{7386#c16}. */
+ if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
+ Log4Func(("MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", MSR_K6_EFER, pCtx->msrEFER,
+ pVCpu->hm.s.vmx.cMsrs));
+ }
+ }
+ else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
+ hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
+/**
+ * Check if guest state allows safe use of 32-bit switcher again.
+ *
+ * Segment bases and protected mode structures must be 32-bit addressable
+ * because the 32-bit switcher will ignore high dword when writing these VMCS
+ * fields. See @bugref{8432} for details.
+ *
+ * @returns true if safe, false if must continue to use the 64-bit switcher.
+ * @param pCtx Pointer to the guest-CPU context.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
+{
+ if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
+ if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
+ if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
+ if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
+ if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
+ if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
+ if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
+ if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
+ if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
+ if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
+
+ /* All good, bases are 32-bit. */
+ return true;
+}
+#endif
+
+
+/**
+ * Selects up the appropriate function to run guest code.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu)
+{
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if (CPUMIsGuestInLongModeEx(pCtx))
+ {
+#ifndef VBOX_ENABLE_64_BITS_GUESTS
+ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
+#endif
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
+#if HC_ARCH_BITS == 32
+ /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
+ if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
+ {
+#ifdef VBOX_STRICT
+ if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
+ {
+ /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
+ uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
+ RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
+ AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
+ | HM_CHANGED_VMX_ENTRY_CTLS
+ | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
+ }
+#endif
+ pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
+
+ /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
+ the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
+ pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
+ Log4Func(("Selected 64-bit switcher\n"));
+ }
+#else
+ /* 64-bit host. */
+ pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
+#endif
+ }
+ else
+ {
+ /* Guest is not in long mode, use the 32-bit handler. */
+#if HC_ARCH_BITS == 32
+ if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
+ && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
+ && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
+ {
+# ifdef VBOX_STRICT
+ /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
+ uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
+ RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
+ AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
+ | HM_CHANGED_VMX_ENTRY_CTLS
+ | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
+# endif
+ }
+# ifdef VBOX_ENABLE_64_BITS_GUESTS
+ /*
+ * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
+ * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
+ * switcher flag because now we know the guest is in a sane state where it's safe
+ * to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
+ * the much faster 32-bit switcher again.
+ */
+ if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
+ {
+ if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
+ Log4Func(("Selected 32-bit switcher\n"));
+ pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
+ }
+ else
+ {
+ Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
+ if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
+ || hmR0VmxIs32BitSwitcherSafe(pCtx))
+ {
+ pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
+ pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
+ | HM_CHANGED_VMX_ENTRY_CTLS
+ | HM_CHANGED_VMX_EXIT_CTLS
+ | HM_CHANGED_HOST_CONTEXT);
+ Log4Func(("Selected 32-bit switcher (safe)\n"));
+ }
+ }
+# else
+ pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
+# endif
+#else
+ pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
+#endif
+ }
+ Assert(pVCpu->hm.s.vmx.pfnStartVM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Wrapper for running the guest code in VT-x.
+ *
+ * @returns VBox status code, no informational status codes.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu)
+{
+ /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
+
+ /*
+ * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
+ * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
+ * callee-saved and thus the need for this XMM wrapper.
+ *
+ * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
+ */
+ bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
+ /** @todo Add stats for resume vs launch. */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+#ifdef VBOX_WITH_KERNEL_USING_XMM
+ int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
+#else
+ int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
+#endif
+ AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * Reports world-switch error and dumps some useful debug info.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
+ * @param pVmxTransient Pointer to the VMX transient structure (only
+ * exitReason updated).
+ */
+static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
+{
+ Assert(pVCpu);
+ Assert(pVmxTransient);
+ HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
+
+ Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
+ switch (rcVMRun)
+ {
+ case VERR_VMX_INVALID_VMXON_PTR:
+ AssertFailed();
+ break;
+ case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
+ case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
+ {
+ int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
+ rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
+ rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRC(rc);
+
+ pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
+ /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
+ Cannot do it here as we may have been long preempted. */
+
+#ifdef VBOX_STRICT
+ Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
+ pVmxTransient->uExitReason));
+ Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
+ Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
+ if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
+ Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
+ else
+ Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
+ Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
+ Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
+
+ /* VMX control bits. */
+ uint32_t u32Val;
+ uint64_t u64Val;
+ RTHCUINTREG uHCReg;
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
+ {
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
+ }
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
+ rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
+ Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
+ Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
+ Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
+ Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
+ {
+ rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
+ Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
+ }
+
+ /* Guest bits. */
+ rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
+ Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
+ rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
+ Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
+ rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
+ Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
+ {
+ rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS16_VPID %u\n", u32Val));
+ }
+
+ /* Host bits. */
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
+ Log4(("Host CR0 %#RHr\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
+ Log4(("Host CR3 %#RHr\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
+ Log4(("Host CR4 %#RHr\n", uHCReg));
+
+ RTGDTR HostGdtr;
+ PCX86DESCHC pDesc;
+ ASMGetGDTR(&HostGdtr);
+ rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
+ Log4(("Host CS %#08x\n", u32Val));
+ if (u32Val < HostGdtr.cbGdt)
+ {
+ pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
+ hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
+ }
+
+ rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
+ Log4(("Host DS %#08x\n", u32Val));
+ if (u32Val < HostGdtr.cbGdt)
+ {
+ pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
+ hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
+ }
+
+ rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
+ Log4(("Host ES %#08x\n", u32Val));
+ if (u32Val < HostGdtr.cbGdt)
+ {
+ pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
+ hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
+ }
+
+ rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
+ Log4(("Host FS %#08x\n", u32Val));
+ if (u32Val < HostGdtr.cbGdt)
+ {
+ pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
+ hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
+ }
+
+ rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
+ Log4(("Host GS %#08x\n", u32Val));
+ if (u32Val < HostGdtr.cbGdt)
+ {
+ pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
+ hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
+ }
+
+ rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
+ Log4(("Host SS %#08x\n", u32Val));
+ if (u32Val < HostGdtr.cbGdt)
+ {
+ pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
+ hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
+ }
+
+ rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
+ Log4(("Host TR %#08x\n", u32Val));
+ if (u32Val < HostGdtr.cbGdt)
+ {
+ pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
+ hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
+ }
+
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
+ Log4(("Host TR Base %#RHv\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
+ Log4(("Host GDTR Base %#RHv\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
+ Log4(("Host IDTR Base %#RHv\n", uHCReg));
+ rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
+ Log4(("Host SYSENTER CS %#08x\n", u32Val));
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
+ Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
+ Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
+ Log4(("Host RSP %#RHv\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
+ Log4(("Host RIP %#RHv\n", uHCReg));
+# if HC_ARCH_BITS == 64
+ Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
+ Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
+ Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
+ Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
+ Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
+ Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
+# endif
+#endif /* VBOX_STRICT */
+ break;
+ }
+
+ default:
+ /* Impossible */
+ AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
+ break;
+ }
+}
+
+
+#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
+#ifndef VMX_USE_CACHED_VMCS_ACCESSES
+# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
+#endif
+#ifdef VBOX_STRICT
+static bool hmR0VmxIsValidWriteField(uint32_t idxField)
+{
+ switch (idxField)
+ {
+ case VMX_VMCS_GUEST_RIP:
+ case VMX_VMCS_GUEST_RSP:
+ case VMX_VMCS_GUEST_SYSENTER_EIP:
+ case VMX_VMCS_GUEST_SYSENTER_ESP:
+ case VMX_VMCS_GUEST_GDTR_BASE:
+ case VMX_VMCS_GUEST_IDTR_BASE:
+ case VMX_VMCS_GUEST_CS_BASE:
+ case VMX_VMCS_GUEST_DS_BASE:
+ case VMX_VMCS_GUEST_ES_BASE:
+ case VMX_VMCS_GUEST_FS_BASE:
+ case VMX_VMCS_GUEST_GS_BASE:
+ case VMX_VMCS_GUEST_SS_BASE:
+ case VMX_VMCS_GUEST_LDTR_BASE:
+ case VMX_VMCS_GUEST_TR_BASE:
+ case VMX_VMCS_GUEST_CR3:
+ return true;
+ }
+ return false;
+}
+
+static bool hmR0VmxIsValidReadField(uint32_t idxField)
+{
+ switch (idxField)
+ {
+ /* Read-only fields. */
+ case VMX_VMCS_RO_EXIT_QUALIFICATION:
+ return true;
+ }
+ /* Remaining readable fields should also be writable. */
+ return hmR0VmxIsValidWriteField(idxField);
+}
+#endif /* VBOX_STRICT */
+
+
+/**
+ * Executes the specified handler in 64-bit mode.
+ *
+ * @returns VBox status code (no informational status codes).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param enmOp The operation to perform.
+ * @param cParams Number of parameters.
+ * @param paParam Array of 32-bit parameters.
+ */
+VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
+ Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
+ Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
+ Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
+
+#ifdef VBOX_STRICT
+ for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
+ Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
+
+ for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
+ Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
+#endif
+
+ /* Disable interrupts. */
+ RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
+
+#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
+ RTCPUID idHostCpu = RTMpCpuId();
+ CPUMR0SetLApic(pVCpu, idHostCpu);
+#endif
+
+ PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
+ RTHCPHYS HCPhysCpuPage = pHostCpu->HCPhysMemObj;
+
+ /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
+ VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
+ pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
+
+ /* Leave VMX Root Mode. */
+ VMXDisable();
+
+ SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
+
+ CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
+ CPUMSetHyperEIP(pVCpu, enmOp);
+ for (int i = (int)cParams - 1; i >= 0; i--)
+ CPUMPushHyper(pVCpu, paParam[i]);
+
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
+
+ /* Call the switcher. */
+ int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
+
+ /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
+ /* Make sure the VMX instructions don't cause #UD faults. */
+ SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
+
+ /* Re-enter VMX Root Mode */
+ int rc2 = VMXEnable(HCPhysCpuPage);
+ if (RT_FAILURE(rc2))
+ {
+ SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
+ ASMSetFlags(fOldEFlags);
+ pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
+ return rc2;
+ }
+
+ rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
+ AssertRC(rc2);
+ pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_ACTIVE;
+ Assert(!(ASMGetFlags() & X86_EFL_IF));
+ ASMSetFlags(fOldEFlags);
+ return rc;
+}
+
+
+/**
+ * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
+ * supporting 64-bit guests.
+ *
+ * @returns VBox status code.
+ * @param fResume Whether to VMLAUNCH or VMRESUME.
+ * @param pCtx Pointer to the guest-CPU context.
+ * @param pCache Pointer to the VMCS cache.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
+{
+ NOREF(fResume);
+
+ PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
+ RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
+
+#ifdef VBOX_WITH_CRASHDUMP_MAGIC
+ pCache->uPos = 1;
+ pCache->interPD = PGMGetInterPaeCR3(pVM);
+ pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
+#endif
+
+#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
+ pCache->TestIn.HCPhysCpuPage = 0;
+ pCache->TestIn.HCPhysVmcs = 0;
+ pCache->TestIn.pCache = 0;
+ pCache->TestOut.HCPhysVmcs = 0;
+ pCache->TestOut.pCache = 0;
+ pCache->TestOut.pCtx = 0;
+ pCache->TestOut.eflags = 0;
+#else
+ NOREF(pCache);
+#endif
+
+ uint32_t aParam[10];
+ aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
+ aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
+ aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
+ aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
+ aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
+ aParam[5] = 0;
+ aParam[6] = VM_RC_ADDR(pVM, pVM);
+ aParam[7] = 0;
+ aParam[8] = VM_RC_ADDR(pVM, pVCpu);
+ aParam[9] = 0;
+
+#ifdef VBOX_WITH_CRASHDUMP_MAGIC
+ pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
+ *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
+#endif
+ int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
+
+#ifdef VBOX_WITH_CRASHDUMP_MAGIC
+ Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
+ Assert(pCtx->dr[4] == 10);
+ *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
+#endif
+
+#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
+ AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
+ AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
+ pVCpu->hm.s.vmx.HCPhysVmcs));
+ AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
+ pCache->TestOut.HCPhysVmcs));
+ AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
+ pCache->TestOut.pCache));
+ AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
+ ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
+ AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
+ pCache->TestOut.pCtx));
+ Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
+#endif
+ NOREF(pCtx);
+ return rc;
+}
+
+
+/**
+ * Initialize the VMCS-Read cache.
+ *
+ * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
+ * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
+ * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
+ * (those that have a 32-bit FULL & HIGH part).
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
+{
+#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
+ do { \
+ Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
+ pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
+ pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
+ ++cReadFields; \
+ } while (0)
+
+ PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
+ uint32_t cReadFields = 0;
+
+ /*
+ * Don't remove the #if 0'd fields in this code. They're listed here for consistency
+ * and serve to indicate exceptions to the rules.
+ */
+
+ /* Guest-natural selector base fields. */
+#if 0
+ /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
+#endif
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
+#if 0
+ /* Unused natural width guest-state fields. */
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
+#endif
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
+
+ /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
+ these 64-bit fields (using "FULL" and "HIGH" fields). */
+#if 0
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
+#endif
+
+ /* Natural width guest-state fields. */
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_GUEST_LINEAR_ADDR);
+
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
+ {
+ VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
+ AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
+ VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
+ pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
+ }
+ else
+ {
+ AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
+ pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
+ }
+
+#undef VMXLOCAL_INIT_READ_CACHE_FIELD
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
+ * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
+ * darwin, running 64-bit guests).
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param idxField The VMCS field encoding.
+ * @param u64Val 16, 32 or 64-bit value.
+ */
+VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
+{
+ int rc;
+ switch (idxField)
+ {
+ /*
+ * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
+ */
+ /* 64-bit Control fields. */
+ case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
+ case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
+ case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
+ case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
+ case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
+ case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
+ case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
+ case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
+ case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
+ case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
+ case VMX_VMCS64_CTRL_EPTP_FULL:
+ case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
+ /* 64-bit Guest-state fields. */
+ case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
+ case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
+ case VMX_VMCS64_GUEST_PAT_FULL:
+ case VMX_VMCS64_GUEST_EFER_FULL:
+ case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
+ case VMX_VMCS64_GUEST_PDPTE0_FULL:
+ case VMX_VMCS64_GUEST_PDPTE1_FULL:
+ case VMX_VMCS64_GUEST_PDPTE2_FULL:
+ case VMX_VMCS64_GUEST_PDPTE3_FULL:
+ /* 64-bit Host-state fields. */
+ case VMX_VMCS64_HOST_PAT_FULL:
+ case VMX_VMCS64_HOST_EFER_FULL:
+ case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
+ {
+ rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
+ rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
+ break;
+ }
+
+ /*
+ * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
+ * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
+ */
+ /* Natural-width Guest-state fields. */
+ case VMX_VMCS_GUEST_CR3:
+ case VMX_VMCS_GUEST_ES_BASE:
+ case VMX_VMCS_GUEST_CS_BASE:
+ case VMX_VMCS_GUEST_SS_BASE:
+ case VMX_VMCS_GUEST_DS_BASE:
+ case VMX_VMCS_GUEST_FS_BASE:
+ case VMX_VMCS_GUEST_GS_BASE:
+ case VMX_VMCS_GUEST_LDTR_BASE:
+ case VMX_VMCS_GUEST_TR_BASE:
+ case VMX_VMCS_GUEST_GDTR_BASE:
+ case VMX_VMCS_GUEST_IDTR_BASE:
+ case VMX_VMCS_GUEST_RSP:
+ case VMX_VMCS_GUEST_RIP:
+ case VMX_VMCS_GUEST_SYSENTER_ESP:
+ case VMX_VMCS_GUEST_SYSENTER_EIP:
+ {
+ if (!(RT_HI_U32(u64Val)))
+ {
+ /* If this field is 64-bit, VT-x will zero out the top bits. */
+ rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
+ }
+ else
+ {
+ /* Assert that only the 32->64 switcher case should ever come here. */
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
+ rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
+ }
+ break;
+ }
+
+ default:
+ {
+ AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
+ rc = VERR_INVALID_PARAMETER;
+ break;
+ }
+ }
+ AssertRCReturn(rc, rc);
+ return rc;
+}
+
+
+/**
+ * Queue up a VMWRITE by using the VMCS write cache.
+ * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param idxField The VMCS field encoding.
+ * @param u64Val 16, 32 or 64-bit value.
+ */
+VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
+{
+ AssertPtr(pVCpu);
+ PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
+
+ AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
+ ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
+
+ /* Make sure there are no duplicates. */
+ for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
+ {
+ if (pCache->Write.aField[i] == idxField)
+ {
+ pCache->Write.aFieldVal[i] = u64Val;
+ return VINF_SUCCESS;
+ }
+ }
+
+ pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
+ pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
+ pCache->Write.cValidEntries++;
+ return VINF_SUCCESS;
+}
+#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
+
+
+/**
+ * Sets up the usage of TSC-offsetting and updates the VMCS.
+ *
+ * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
+ * VMX preemption timer.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
+{
+ bool fOffsettedTsc;
+ bool fParavirtTsc;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ uint64_t uTscOffset;
+ if (pVM->hm.s.vmx.fUsePreemptTimer)
+ {
+ uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
+
+ /* Make sure the returned values have sane upper and lower boundaries. */
+ uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
+ cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
+ cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
+ cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
+
+ uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
+ int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
+ AssertRC(rc);
+ }
+ else
+ fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
+
+ if (fParavirtTsc)
+ {
+ /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
+ information before every VM-entry, hence disable it for performance sake. */
+#if 0
+ int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
+ AssertRC(rc);
+#endif
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
+ }
+
+ uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
+ if ( fOffsettedTsc
+ && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
+ {
+ if (pVCpu->hm.s.vmx.u64TscOffset != uTscOffset)
+ {
+ int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
+ AssertRC(rc);
+ pVCpu->hm.s.vmx.u64TscOffset = uTscOffset;
+ }
+
+ if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
+ {
+ uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
+ AssertRC(rc);
+ pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
+ }
+ else
+ {
+ /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
+ if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
+ {
+ uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
+ AssertRC(rc);
+ pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
+ }
+}
+
+
+/**
+ * Gets the IEM exception flags for the specified vector and IDT vectoring /
+ * VM-exit interruption info type.
+ *
+ * @returns The IEM exception flags.
+ * @param uVector The event vector.
+ * @param uVmxVectorType The VMX event type.
+ *
+ * @remarks This function currently only constructs flags required for
+ * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
+ * and CR2 aspects of an exception are not included).
+ */
+static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
+{
+ uint32_t fIemXcptFlags;
+ switch (uVmxVectorType)
+ {
+ case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
+ case VMX_IDT_VECTORING_INFO_TYPE_NMI:
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
+ break;
+
+ case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
+ break;
+
+ case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
+ break;
+
+ case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
+ {
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
+ if (uVector == X86_XCPT_BP)
+ fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
+ else if (uVector == X86_XCPT_OF)
+ fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
+ else
+ {
+ fIemXcptFlags = 0;
+ AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
+ }
+ break;
+ }
+
+ case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
+ break;
+
+ default:
+ fIemXcptFlags = 0;
+ AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
+ break;
+ }
+ return fIemXcptFlags;
+}
+
+
+/**
+ * Sets an event as a pending event to be injected into the guest.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param u32IntInfo The VM-entry interruption-information field.
+ * @param cbInstr The VM-entry instruction length in bytes (for software
+ * interrupts, exceptions and privileged software
+ * exceptions).
+ * @param u32ErrCode The VM-entry exception error code.
+ * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
+ * page-fault.
+ *
+ * @remarks Statistics counter assumes this is a guest event being injected or
+ * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
+ * always incremented.
+ */
+DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
+ RTGCUINTPTR GCPtrFaultAddress)
+{
+ Assert(!pVCpu->hm.s.Event.fPending);
+ pVCpu->hm.s.Event.fPending = true;
+ pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
+ pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
+ pVCpu->hm.s.Event.cbInstr = cbInstr;
+ pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
+}
+
+
+/**
+ * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
+{
+ uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
+ hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
+{
+ uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
+ hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets a debug (\#DB) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
+{
+ uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
+ hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
+}
+
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+/**
+ * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param u32ErrCode The error code for the general-protection exception.
+ */
+DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
+{
+ uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
+ hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets a stack (\#SS) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param u32ErrCode The error code for the stack exception.
+ */
+DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
+{
+ uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
+ | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
+ hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
+}
+
+
+# ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+/**
+ * Decodes the memory operand of an instruction that caused a VM-exit.
+ *
+ * The VM-exit qualification field provides the displacement field for memory
+ * operand instructions, if any.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @retval VINF_SUCCESS if the operand was successfully decoded.
+ * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
+ * operand.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitInstrInfo The VM-exit instruction information field.
+ * @param enmMemAccess The memory operand's access type (read or write).
+ * @param GCPtrDisp The instruction displacement field, if any. For
+ * RIP-relative addressing pass RIP + displacement here.
+ * @param pGCPtrMem Where to store the effective destination memory address.
+ */
+static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
+ PRTGCPTR pGCPtrMem)
+{
+ Assert(pGCPtrMem);
+ Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
+ | CPUMCTX_EXTRN_CR0);
+
+ static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
+ static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
+ AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
+
+ VMXEXITINSTRINFO ExitInstrInfo;
+ ExitInstrInfo.u = uExitInstrInfo;
+ uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
+ uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
+ bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
+ uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
+ uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
+ bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
+ uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
+ bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
+ bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
+
+ /*
+ * Validate instruction information.
+ * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
+ */
+ AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
+ ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
+ AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
+ ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
+ AssertLogRelMsgReturn(fIsMemOperand,
+ ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
+
+ /*
+ * Compute the complete effective address.
+ *
+ * See AMD instruction spec. 1.4.2 "SIB Byte Format"
+ * See AMD spec. 4.5.2 "Segment Registers".
+ */
+ RTGCPTR GCPtrMem = GCPtrDisp;
+ if (fBaseRegValid)
+ GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
+ if (fIdxRegValid)
+ GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
+
+ RTGCPTR const GCPtrOff = GCPtrMem;
+ if ( !fIsLongMode
+ || iSegReg >= X86_SREG_FS)
+ GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
+ GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
+
+ /*
+ * Validate effective address.
+ * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
+ */
+ uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
+ Assert(cbAccess > 0);
+ if (fIsLongMode)
+ {
+ if (X86_IS_CANONICAL(GCPtrMem))
+ {
+ *pGCPtrMem = GCPtrMem;
+ return VINF_SUCCESS;
+ }
+
+ /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
+ * "Data Limit Checks in 64-bit Mode". */
+ Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
+ hmR0VmxSetPendingXcptGP(pVCpu, 0);
+ return VINF_HM_PENDING_XCPT;
+ }
+
+ /*
+ * This is a watered down version of iemMemApplySegment().
+ * Parts that are not applicable for VMX instructions like real-or-v8086 mode
+ * and segment CPL/DPL checks are skipped.
+ */
+ RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
+ RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
+ PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
+
+ /* Check if the segment is present and usable. */
+ if ( pSel->Attr.n.u1Present
+ && !pSel->Attr.n.u1Unusable)
+ {
+ Assert(pSel->Attr.n.u1DescType);
+ if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
+ {
+ /* Check permissions for the data segment. */
+ if ( enmMemAccess == VMXMEMACCESS_WRITE
+ && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
+ {
+ Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
+ hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
+ return VINF_HM_PENDING_XCPT;
+ }
+
+ /* Check limits if it's a normal data segment. */
+ if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
+ {
+ if ( GCPtrFirst32 > pSel->u32Limit
+ || GCPtrLast32 > pSel->u32Limit)
+ {
+ Log4Func(("Data segment limit exceeded."
+ "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
+ GCPtrLast32, pSel->u32Limit));
+ if (iSegReg == X86_SREG_SS)
+ hmR0VmxSetPendingXcptSS(pVCpu, 0);
+ else
+ hmR0VmxSetPendingXcptGP(pVCpu, 0);
+ return VINF_HM_PENDING_XCPT;
+ }
+ }
+ else
+ {
+ /* Check limits if it's an expand-down data segment.
+ Note! The upper boundary is defined by the B bit, not the G bit! */
+ if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
+ || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
+ {
+ Log4Func(("Expand-down data segment limit exceeded."
+ "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
+ GCPtrLast32, pSel->u32Limit));
+ if (iSegReg == X86_SREG_SS)
+ hmR0VmxSetPendingXcptSS(pVCpu, 0);
+ else
+ hmR0VmxSetPendingXcptGP(pVCpu, 0);
+ return VINF_HM_PENDING_XCPT;
+ }
+ }
+ }
+ else
+ {
+ /* Check permissions for the code segment. */
+ if ( enmMemAccess == VMXMEMACCESS_WRITE
+ || ( enmMemAccess == VMXMEMACCESS_READ
+ && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
+ {
+ Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
+ Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
+ hmR0VmxSetPendingXcptGP(pVCpu, 0);
+ return VINF_HM_PENDING_XCPT;
+ }
+
+ /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
+ if ( GCPtrFirst32 > pSel->u32Limit
+ || GCPtrLast32 > pSel->u32Limit)
+ {
+ Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
+ GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
+ if (iSegReg == X86_SREG_SS)
+ hmR0VmxSetPendingXcptSS(pVCpu, 0);
+ else
+ hmR0VmxSetPendingXcptGP(pVCpu, 0);
+ return VINF_HM_PENDING_XCPT;
+ }
+ }
+ }
+ else
+ {
+ Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
+ hmR0VmxSetPendingXcptGP(pVCpu, 0);
+ return VINF_HM_PENDING_XCPT;
+ }
+
+ *pGCPtrMem = GCPtrMem;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
+ * guest attempting to execute a VMX instruction.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @retval VINF_SUCCESS if we should continue handling the VM-exit.
+ * @retval VINF_HM_PENDING_XCPT if an exception was raised.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason.
+ *
+ * @todo NstVmx: Document other error codes when VM-exit is implemented.
+ * @remarks No-long-jump zone!!!
+ */
+static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
+{
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
+ | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
+
+ if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
+ || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
+ && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
+ {
+ Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
+ hmR0VmxSetPendingXcptUD(pVCpu);
+ return VINF_HM_PENDING_XCPT;
+ }
+
+ if (uExitReason == VMX_EXIT_VMXON)
+ {
+ /*
+ * We check CR4.VMXE because it is required to be always set while in VMX operation
+ * by physical CPUs and our CR4 read shadow is only consulted when executing specific
+ * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
+ * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
+ */
+ if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
+ {
+ Log4Func(("CR4.VMXE is not set -> #UD\n"));
+ hmR0VmxSetPendingXcptUD(pVCpu);
+ return VINF_HM_PENDING_XCPT;
+ }
+ }
+ else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
+ {
+ /*
+ * The guest has not entered VMX operation but attempted to execute a VMX instruction
+ * (other than VMXON), we need to raise a #UD.
+ */
+ Log4Func(("Not in VMX root mode -> #UD\n"));
+ hmR0VmxSetPendingXcptUD(pVCpu);
+ return VINF_HM_PENDING_XCPT;
+ }
+
+ if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
+ {
+ /*
+ * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
+ * the guest hypervisor deal with it.
+ */
+ /** @todo NSTVMX: Trigger a VM-exit */
+ }
+
+ /*
+ * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
+ * (above) takes preceedence over the CPL check.
+ */
+ if (CPUMGetGuestCPL(pVCpu) > 0)
+ {
+ Log4Func(("CPL > 0 -> #GP(0)\n"));
+ hmR0VmxSetPendingXcptGP(pVCpu, 0);
+ return VINF_HM_PENDING_XCPT;
+ }
+
+ return VINF_SUCCESS;
+}
+# endif /* !VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM */
+#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
+
+
+/**
+ * Handle a condition that occurred while delivering an event through the guest
+ * IDT.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @retval VINF_SUCCESS if we should continue handling the VM-exit.
+ * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
+ * to continue execution of the guest which will delivery the \#DF.
+ * @retval VINF_EM_RESET if we detected a triple-fault condition.
+ * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
+
+ int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
+ rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
+ AssertRCReturn(rc2, rc2);
+
+ VBOXSTRICTRC rcStrict = VINF_SUCCESS;
+ if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
+ {
+ uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
+ uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
+
+ /*
+ * If the event was a software interrupt (generated with INT n) or a software exception
+ * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
+ * can handle the VM-exit and continue guest execution which will re-execute the
+ * instruction rather than re-injecting the exception, as that can cause premature
+ * trips to ring-3 before injection and involve TRPM which currently has no way of
+ * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
+ * the problem).
+ */
+ IEMXCPTRAISE enmRaise;
+ IEMXCPTRAISEINFO fRaiseInfo;
+ if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
+ || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
+ || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
+ {
+ enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
+ fRaiseInfo = IEMXCPTRAISEINFO_NONE;
+ }
+ else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
+ {
+ uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
+ uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
+ uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
+ /** @todo Make AssertMsgReturn as just AssertMsg later. */
+ AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
+ ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
+ uExitVectorType), VERR_VMX_IPE_5);
+
+ enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
+
+ /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
+ if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
+ {
+ pVmxTransient->fVectoringPF = true;
+ enmRaise = IEMXCPTRAISE_PREV_EVENT;
+ }
+ }
+ else
+ {
+ /*
+ * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
+ * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
+ * It is sufficient to reflect the original event to the guest after handling the VM-exit.
+ */
+ Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
+ || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
+ || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
+ enmRaise = IEMXCPTRAISE_PREV_EVENT;
+ fRaiseInfo = IEMXCPTRAISEINFO_NONE;
+ }
+
+ /*
+ * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
+ * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
+ * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
+ * subsequent VM-entry would fail.
+ *
+ * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
+ */
+ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
+ && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
+ && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
+ || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
+ && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
+ {
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
+ }
+
+ switch (enmRaise)
+ {
+ case IEMXCPTRAISE_CURRENT_XCPT:
+ {
+ Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
+ pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
+ Assert(rcStrict == VINF_SUCCESS);
+ break;
+ }
+
+ case IEMXCPTRAISE_PREV_EVENT:
+ {
+ uint32_t u32ErrCode;
+ if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
+ {
+ rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
+ AssertRCReturn(rc2, rc2);
+ u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
+ }
+ else
+ u32ErrCode = 0;
+
+ /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
+ 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
+
+ Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
+ pVCpu->hm.s.Event.u32ErrCode));
+ Assert(rcStrict == VINF_SUCCESS);
+ break;
+ }
+
+ case IEMXCPTRAISE_REEXEC_INSTR:
+ Assert(rcStrict == VINF_SUCCESS);
+ break;
+
+ case IEMXCPTRAISE_DOUBLE_FAULT:
+ {
+ /*
+ * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
+ * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
+ */
+ if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
+ {
+ pVmxTransient->fVectoringDoublePF = true;
+ Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
+ pVCpu->cpum.GstCtx.cr2));
+ rcStrict = VINF_SUCCESS;
+ }
+ else
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
+ hmR0VmxSetPendingXcptDF(pVCpu);
+ Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
+ uIdtVector, uExitVector));
+ rcStrict = VINF_HM_DOUBLE_FAULT;
+ }
+ break;
+ }
+
+ case IEMXCPTRAISE_TRIPLE_FAULT:
+ {
+ Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
+ rcStrict = VINF_EM_RESET;
+ break;
+ }
+
+ case IEMXCPTRAISE_CPU_HANG:
+ {
+ Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
+ rcStrict = VERR_EM_GUEST_CPU_HANG;
+ break;
+ }
+
+ default:
+ {
+ AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
+ rcStrict = VERR_VMX_IPE_2;
+ break;
+ }
+ }
+ }
+ else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
+ && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
+ && uExitVector != X86_XCPT_DF
+ && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
+ {
+ /*
+ * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
+ * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
+ * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
+ */
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ {
+ Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
+ VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
+ }
+ }
+
+ Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
+ || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
+ return rcStrict;
+}
+
+
+/**
+ * Imports a guest segment register from the current VMCS into
+ * the guest-CPU context.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param idxSel Index of the selector in the VMCS.
+ * @param idxLimit Index of the segment limit in the VMCS.
+ * @param idxBase Index of the segment base in the VMCS.
+ * @param idxAccess Index of the access rights of the segment in the VMCS.
+ * @param pSelReg Pointer to the segment selector.
+ *
+ * @remarks Called with interrupts and/or preemption disabled, try not to assert and
+ * do not log!
+ *
+ * @remarks Never call this function directly!!! Use the
+ * HMVMX_IMPORT_SREG() macro as that takes care
+ * of whether to read from the VMCS cache or not.
+ */
+static int hmR0VmxImportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
+ PCPUMSELREG pSelReg)
+{
+ NOREF(pVCpu);
+
+ uint32_t u32Sel;
+ uint32_t u32Limit;
+ uint32_t u32Attr;
+ uint64_t u64Base;
+ int rc = VMXReadVmcs32(idxSel, &u32Sel);
+ rc |= VMXReadVmcs32(idxLimit, &u32Limit);
+ rc |= VMXReadVmcs32(idxAccess, &u32Attr);
+ rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
+ AssertRCReturn(rc, rc);
+
+ pSelReg->Sel = (uint16_t)u32Sel;
+ pSelReg->ValidSel = (uint16_t)u32Sel;
+ pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
+ pSelReg->u32Limit = u32Limit;
+ pSelReg->u64Base = u64Base;
+ pSelReg->Attr.u = u32Attr;
+
+ /*
+ * If VT-x marks the segment as unusable, most other bits remain undefined:
+ * - For CS the L, D and G bits have meaning.
+ * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
+ * - For the remaining data segments no bits are defined.
+ *
+ * The present bit and the unusable bit has been observed to be set at the
+ * same time (the selector was supposed to be invalid as we started executing
+ * a V8086 interrupt in ring-0).
+ *
+ * What should be important for the rest of the VBox code, is that the P bit is
+ * cleared. Some of the other VBox code recognizes the unusable bit, but
+ * AMD-V certainly don't, and REM doesn't really either. So, to be on the
+ * safe side here, we'll strip off P and other bits we don't care about. If
+ * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
+ *
+ * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
+ */
+ if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
+ {
+ Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
+
+ /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
+ pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
+ | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
+#ifdef VBOX_STRICT
+ VMMRZCallRing3Disable(pVCpu);
+ Log4Func(("Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Sel, pSelReg->Attr.u));
+# ifdef DEBUG_bird
+ AssertMsg((u32Attr & ~X86DESCATTR_P) == pSelReg->Attr.u,
+ ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
+ idxSel, u32Sel, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
+# endif
+ VMMRZCallRing3Enable(pVCpu);
+#endif
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Imports the guest RIP from the VMCS back into the guest-CPU context.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Called with interrupts and/or preemption disabled, should not assert!
+ * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
+ * instead!!!
+ */
+DECLINLINE(int) hmR0VmxImportGuestRip(PVMCPU pVCpu)
+{
+ uint64_t u64Val;
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
+ {
+ int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
+ if (RT_SUCCESS(rc))
+ {
+ pCtx->rip = u64Val;
+ EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
+ pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
+ }
+ return rc;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Called with interrupts and/or preemption disabled, should not assert!
+ * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
+ * instead!!!
+ */
+DECLINLINE(int) hmR0VmxImportGuestRFlags(PVMCPU pVCpu)
+{
+ uint32_t u32Val;
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
+ {
+ int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
+ if (RT_SUCCESS(rc))
+ {
+ pCtx->eflags.u32 = u32Val;
+
+ /* Restore eflags for real-on-v86-mode hack. */
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ pCtx->eflags.Bits.u1VM = 0;
+ pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
+ }
+ }
+ pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
+ return rc;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
+ * context.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Called with interrupts and/or preemption disabled, try not to assert and
+ * do not log!
+ * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
+ * instead!!!
+ */
+DECLINLINE(int) hmR0VmxImportGuestIntrState(PVMCPU pVCpu)
+{
+ uint32_t u32Val;
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * We additionally have a requirement to import RIP, RFLAGS depending on whether we
+ * might need them in hmR0VmxEvaluatePendingEvent().
+ */
+ if (!u32Val)
+ {
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ {
+ rc = hmR0VmxImportGuestRip(pVCpu);
+ rc |= hmR0VmxImportGuestRFlags(pVCpu);
+ AssertRCReturn(rc, rc);
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+ }
+
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
+ }
+ else
+ {
+ rc = hmR0VmxImportGuestRip(pVCpu);
+ rc |= hmR0VmxImportGuestRFlags(pVCpu);
+ AssertRCReturn(rc, rc);
+
+ if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
+ | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
+ {
+ EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
+ }
+ else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+
+ if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
+ {
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
+ }
+ else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Worker for VMXR0ImportStateOnDemand.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
+ */
+static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
+{
+#define VMXLOCAL_BREAK_RC(a_rc) \
+ if (RT_FAILURE(a_rc)) \
+ break
+
+ int rc = VINF_SUCCESS;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ uint64_t u64Val;
+ uint32_t u32Val;
+
+ Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
+
+ /*
+ * We disable interrupts to make the updating of the state and in particular
+ * the fExtrn modification atomic wrt to preemption hooks.
+ */
+ RTCCUINTREG const fEFlags = ASMIntDisableFlags();
+
+ fWhat &= pCtx->fExtrn;
+ if (fWhat)
+ {
+ do
+ {
+ if (fWhat & CPUMCTX_EXTRN_RIP)
+ {
+ rc = hmR0VmxImportGuestRip(pVCpu);
+ VMXLOCAL_BREAK_RC(rc);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_RFLAGS)
+ {
+ rc = hmR0VmxImportGuestRFlags(pVCpu);
+ VMXLOCAL_BREAK_RC(rc);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
+ {
+ rc = hmR0VmxImportGuestIntrState(pVCpu);
+ VMXLOCAL_BREAK_RC(rc);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_RSP)
+ {
+ rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
+ VMXLOCAL_BREAK_RC(rc);
+ pCtx->rsp = u64Val;
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_CS)
+ {
+ rc = HMVMX_IMPORT_SREG(CS, &pCtx->cs);
+ rc |= hmR0VmxImportGuestRip(pVCpu);
+ VMXLOCAL_BREAK_RC(rc);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
+ EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true);
+ }
+ if (fWhat & CPUMCTX_EXTRN_SS)
+ {
+ rc = HMVMX_IMPORT_SREG(SS, &pCtx->ss);
+ VMXLOCAL_BREAK_RC(rc);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
+ }
+ if (fWhat & CPUMCTX_EXTRN_DS)
+ {
+ rc = HMVMX_IMPORT_SREG(DS, &pCtx->ds);
+ VMXLOCAL_BREAK_RC(rc);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
+ }
+ if (fWhat & CPUMCTX_EXTRN_ES)
+ {
+ rc = HMVMX_IMPORT_SREG(ES, &pCtx->es);
+ VMXLOCAL_BREAK_RC(rc);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
+ }
+ if (fWhat & CPUMCTX_EXTRN_FS)
+ {
+ rc = HMVMX_IMPORT_SREG(FS, &pCtx->fs);
+ VMXLOCAL_BREAK_RC(rc);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
+ }
+ if (fWhat & CPUMCTX_EXTRN_GS)
+ {
+ rc = HMVMX_IMPORT_SREG(GS, &pCtx->gs);
+ VMXLOCAL_BREAK_RC(rc);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ pCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_LDTR)
+ {
+ rc = HMVMX_IMPORT_SREG(LDTR, &pCtx->ldtr);
+ VMXLOCAL_BREAK_RC(rc);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_GDTR)
+ {
+ rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
+ rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
+ VMXLOCAL_BREAK_RC(rc);
+ pCtx->gdtr.pGdt = u64Val;
+ pCtx->gdtr.cbGdt = u32Val;
+ }
+
+ /* Guest IDTR. */
+ if (fWhat & CPUMCTX_EXTRN_IDTR)
+ {
+ rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
+ rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
+ VMXLOCAL_BREAK_RC(rc);
+ pCtx->idtr.pIdt = u64Val;
+ pCtx->idtr.cbIdt = u32Val;
+ }
+
+ /* Guest TR. */
+ if (fWhat & CPUMCTX_EXTRN_TR)
+ {
+ /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, don't save that one. */
+ if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ rc = HMVMX_IMPORT_SREG(TR, &pCtx->tr);
+ VMXLOCAL_BREAK_RC(rc);
+ }
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ {
+ rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
+ rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
+ rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
+ pCtx->SysEnter.cs = u32Val;
+ VMXLOCAL_BREAK_RC(rc);
+ }
+
+#if HC_ARCH_BITS == 64
+ if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ {
+ if ( pVM->hm.s.fAllow64BitGuests
+ && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
+ pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ {
+ if ( pVM->hm.s.fAllow64BitGuests
+ && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
+ {
+ pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
+ pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
+ pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
+ }
+ }
+#endif
+
+ if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
+#if HC_ARCH_BITS == 32
+ || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
+#endif
+ )
+ {
+ PCVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
+ uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
+ for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
+ {
+ switch (pMsr->u32Msr)
+ {
+#if HC_ARCH_BITS == 32
+ case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
+ case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
+ case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
+ case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
+#endif
+ case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
+ case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
+ case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit */ break;
+ default:
+ {
+ pVCpu->hm.s.u32HMError = pMsr->u32Msr;
+ ASMSetFlags(fEFlags);
+ AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
+ cMsrs));
+ return VERR_HM_UNEXPECTED_LD_ST_MSR;
+ }
+ }
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_DR7)
+ {
+ if (!pVCpu->hm.s.fUsingHyperDR7)
+ {
+ /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
+ rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
+ VMXLOCAL_BREAK_RC(rc);
+ pCtx->dr[7] = u32Val;
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_CR_MASK)
+ {
+ uint32_t u32Shadow;
+ if (fWhat & CPUMCTX_EXTRN_CR0)
+ {
+ rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
+ rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
+ VMXLOCAL_BREAK_RC(rc);
+ u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr0Mask)
+ | (u32Shadow & pVCpu->hm.s.vmx.u32Cr0Mask);
+ VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
+ CPUMSetGuestCR0(pVCpu, u32Val);
+ VMMRZCallRing3Enable(pVCpu);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_CR4)
+ {
+ rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
+ rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
+ VMXLOCAL_BREAK_RC(rc);
+ u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr4Mask)
+ | (u32Shadow & pVCpu->hm.s.vmx.u32Cr4Mask);
+ CPUMSetGuestCR4(pVCpu, u32Val);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_CR3)
+ {
+ /* CR0.PG bit changes are always intercepted, so it's up to date. */
+ if ( pVM->hm.s.vmx.fUnrestrictedGuest
+ || ( pVM->hm.s.fNestedPaging
+ && CPUMIsGuestPagingEnabledEx(pCtx)))
+ {
+ rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
+ if (pCtx->cr3 != u64Val)
+ {
+ CPUMSetGuestCR3(pVCpu, u64Val);
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
+ }
+
+ /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
+ Note: CR4.PAE, CR0.PG, EFER bit changes are always intercepted, so they're up to date. */
+ if (CPUMIsGuestInPAEModeEx(pCtx))
+ {
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
+ rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
+ rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
+ rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
+ VMXLOCAL_BREAK_RC(rc);
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
+ }
+ }
+ }
+ }
+ } while (0);
+
+ if (RT_SUCCESS(rc))
+ {
+ /* Update fExtrn. */
+ pCtx->fExtrn &= ~fWhat;
+
+ /* If everything has been imported, clear the HM keeper bit. */
+ if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
+ {
+ pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
+ Assert(!pCtx->fExtrn);
+ }
+ }
+ }
+ else
+ AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
+
+ ASMSetFlags(fEFlags);
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
+
+ /*
+ * Honor any pending CR3 updates.
+ *
+ * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
+ * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
+ * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
+ *
+ * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
+ * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
+ * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
+ * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
+ *
+ * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
+ */
+ if (VMMRZCallRing3IsEnabled(pVCpu))
+ {
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
+ {
+ Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
+ PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
+ }
+
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
+ PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
+
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
+ }
+
+ return VINF_SUCCESS;
+#undef VMXLOCAL_BREAK_RC
+}
+
+
+/**
+ * Saves the guest state from the VMCS into the guest-CPU context.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
+ */
+VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
+{
+ return hmR0VmxImportGuestState(pVCpu, fWhat);
+}
+
+
+/**
+ * Check per-VM and per-VCPU force flag actions that require us to go back to
+ * ring-3 for one reason or another.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too)
+ * @retval VINF_SUCCESS if we don't have any actions that require going back to
+ * ring-3.
+ * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
+ * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
+ * interrupts)
+ * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
+ * all EMTs to be in ring-3.
+ * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
+ * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
+ * to the EM loop.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fStepping Running in hmR0VmxRunGuestCodeStep().
+ */
+static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
+{
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+
+ /*
+ * Anything pending? Should be more likely than not if we're doing a good job.
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if ( !fStepping
+ ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
+ && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
+ : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
+ && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
+ return VINF_SUCCESS;
+
+ /* Pending PGM C3 sync. */
+ if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
+ {
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
+ VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
+ VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
+ if (rcStrict2 != VINF_SUCCESS)
+ {
+ AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
+ Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
+ return rcStrict2;
+ }
+ }
+
+ /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
+ if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
+ || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
+ int rc2 = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
+ Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
+ return rc2;
+ }
+
+ /* Pending VM request packets, such as hardware interrupts. */
+ if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
+ || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
+ {
+ Log4Func(("Pending VM request forcing us back to ring-3\n"));
+ return VINF_EM_PENDING_REQUEST;
+ }
+
+ /* Pending PGM pool flushes. */
+ if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
+ {
+ Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
+ return VINF_PGM_POOL_FLUSH_PENDING;
+ }
+
+ /* Pending DMA requests. */
+ if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
+ {
+ Log4Func(("Pending DMA request forcing us back to ring-3\n"));
+ return VINF_EM_RAW_TO_R3;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Converts any TRPM trap into a pending HM event. This is typically used when
+ * entering from ring-3 (not longjmp returns).
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
+{
+ Assert(TRPMHasTrap(pVCpu));
+ Assert(!pVCpu->hm.s.Event.fPending);
+
+ uint8_t uVector;
+ TRPMEVENT enmTrpmEvent;
+ RTGCUINT uErrCode;
+ RTGCUINTPTR GCPtrFaultAddress;
+ uint8_t cbInstr;
+
+ int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
+ AssertRC(rc);
+
+ /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
+ uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
+ if (enmTrpmEvent == TRPM_TRAP)
+ {
+ switch (uVector)
+ {
+ case X86_XCPT_NMI:
+ u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
+ break;
+
+ case X86_XCPT_BP:
+ case X86_XCPT_OF:
+ u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
+ break;
+
+ case X86_XCPT_PF:
+ case X86_XCPT_DF:
+ case X86_XCPT_TS:
+ case X86_XCPT_NP:
+ case X86_XCPT_SS:
+ case X86_XCPT_GP:
+ case X86_XCPT_AC:
+ u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
+ RT_FALL_THRU();
+ default:
+ u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
+ break;
+ }
+ }
+ else if (enmTrpmEvent == TRPM_HARDWARE_INT)
+ u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
+ else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
+ u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
+ else
+ AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
+
+ rc = TRPMResetTrap(pVCpu);
+ AssertRC(rc);
+ Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
+ u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
+
+ hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
+}
+
+
+/**
+ * Converts the pending HM event into a TRPM trap.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
+{
+ Assert(pVCpu->hm.s.Event.fPending);
+
+ uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
+ uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
+ bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
+ uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
+
+ /* If a trap was already pending, we did something wrong! */
+ Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
+
+ TRPMEVENT enmTrapType;
+ switch (uVectorType)
+ {
+ case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
+ enmTrapType = TRPM_HARDWARE_INT;
+ break;
+
+ case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
+ enmTrapType = TRPM_SOFTWARE_INT;
+ break;
+
+ case VMX_IDT_VECTORING_INFO_TYPE_NMI:
+ case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
+ case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
+ case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
+ enmTrapType = TRPM_TRAP;
+ break;
+
+ default:
+ AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
+ enmTrapType = TRPM_32BIT_HACK;
+ break;
+ }
+
+ Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
+
+ int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
+ AssertRC(rc);
+
+ if (fErrorCodeValid)
+ TRPMSetErrorCode(pVCpu, uErrorCode);
+
+ if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
+ && uVector == X86_XCPT_PF)
+ {
+ TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
+ }
+ else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
+ || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
+ || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
+ {
+ AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
+ || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
+ ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
+ TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
+ }
+
+ /* Clear the events from the VMCS. */
+ VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
+
+ /* We're now done converting the pending event. */
+ pVCpu->hm.s.Event.fPending = false;
+}
+
+
+/**
+ * Does the necessary state syncing before returning to ring-3 for any reason
+ * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fImportState Whether to import the guest state from the VMCS back
+ * to the guest-CPU context.
+ *
+ * @remarks No-long-jmp zone!!!
+ */
+static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ RTCPUID idCpu = RTMpCpuId();
+ Log4Func(("HostCpuId=%u\n", idCpu));
+
+ /*
+ * !!! IMPORTANT !!!
+ * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
+ */
+
+ /* Save the guest state if necessary. */
+ if (fImportState)
+ {
+ int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRCReturn(rc, rc);
+ }
+
+ /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
+ CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
+ Assert(!CPUMIsGuestFPUStateActive(pVCpu));
+
+ /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
+#ifdef VBOX_STRICT
+ if (CPUMIsHyperDebugStateActive(pVCpu))
+ Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
+#endif
+ CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
+ Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
+ Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
+
+#if HC_ARCH_BITS == 64
+ /* Restore host-state bits that VT-x only restores partially. */
+ if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
+ && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
+ {
+ Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
+ VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
+ }
+ pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
+#endif
+
+ /* Restore the lazy host MSRs as we're leaving VT-x context. */
+ if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
+ {
+ /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
+ if (!fImportState)
+ {
+ int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
+ AssertRCReturn(rc, rc);
+ }
+ hmR0VmxLazyRestoreHostMsrs(pVCpu);
+ Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
+ }
+ else
+ pVCpu->hm.s.vmx.fLazyMsrs = 0;
+
+ /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
+ pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
+
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
+
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
+
+ /** @todo This partially defeats the purpose of having preemption hooks.
+ * The problem is, deregistering the hooks should be moved to a place that
+ * lasts until the EMT is about to be destroyed not everytime while leaving HM
+ * context.
+ */
+ if (pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_ACTIVE)
+ {
+ int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
+ AssertRCReturn(rc, rc);
+
+ pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
+ Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
+ }
+ Assert(!(pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
+ NOREF(idCpu);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Leaves the VT-x session.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jmp zone!!!
+ */
+static int hmR0VmxLeaveSession(PVMCPU pVCpu)
+{
+ HM_DISABLE_PREEMPT(pVCpu);
+ HMVMX_ASSERT_CPU_SAFE(pVCpu);
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
+ and done this from the VMXR0ThreadCtxCallback(). */
+ if (!pVCpu->hm.s.fLeaveDone)
+ {
+ int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
+ AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
+ pVCpu->hm.s.fLeaveDone = true;
+ }
+ Assert(!pVCpu->cpum.GstCtx.fExtrn);
+
+ /*
+ * !!! IMPORTANT !!!
+ * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
+ */
+
+ /* Deregister hook now that we've left HM context before re-enabling preemption. */
+ /** @todo Deregistering here means we need to VMCLEAR always
+ * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
+ * for calling VMMR0ThreadCtxHookDisable here! */
+ VMMR0ThreadCtxHookDisable(pVCpu);
+
+ /* Leave HM context. This takes care of local init (term). */
+ int rc = HMR0LeaveCpu(pVCpu);
+
+ HM_RESTORE_PREEMPT();
+ return rc;
+}
+
+
+/**
+ * Does the necessary state syncing before doing a longjmp to ring-3.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jmp zone!!!
+ */
+DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
+{
+ return hmR0VmxLeaveSession(pVCpu);
+}
+
+
+/**
+ * Take necessary actions before going back to ring-3.
+ *
+ * An action requires us to go back to ring-3. This function does the necessary
+ * steps before we can safely return to ring-3. This is not the same as longjmps
+ * to ring-3, this is voluntary and prepares the guest so it may continue
+ * executing outside HM (recompiler/IEM).
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param rcExit The reason for exiting to ring-3. Can be
+ * VINF_VMM_UNKNOWN_RING3_CALL.
+ */
+static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
+{
+ Assert(pVCpu);
+ HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
+
+ if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
+ {
+ VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VmcsPhys);
+ pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
+ pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
+ /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
+ }
+
+ /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
+ VMMRZCallRing3Disable(pVCpu);
+ Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
+
+ /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
+ if (pVCpu->hm.s.Event.fPending)
+ {
+ hmR0VmxPendingEventToTrpmTrap(pVCpu);
+ Assert(!pVCpu->hm.s.Event.fPending);
+ }
+
+ /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
+ hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
+
+ /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
+ and if we're injecting an event we should have a TRPM trap pending. */
+ AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
+#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
+ AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
+#endif
+
+ /* Save guest state and restore host state bits. */
+ int rc = hmR0VmxLeaveSession(pVCpu);
+ AssertRCReturn(rc, rc);
+ STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
+ /* Thread-context hooks are unregistered at this point!!! */
+
+ /* Sync recompiler state. */
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
+ | CPUM_CHANGED_LDTR
+ | CPUM_CHANGED_GDTR
+ | CPUM_CHANGED_IDTR
+ | CPUM_CHANGED_TR
+ | CPUM_CHANGED_HIDDEN_SEL_REGS);
+ if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
+ && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
+ {
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
+ }
+
+ Assert(!pVCpu->hm.s.fClearTrapFlag);
+
+ /* Update the exit-to-ring 3 reason. */
+ pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
+
+ /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
+ if (rcExit != VINF_EM_RAW_INTERRUPT)
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
+
+ /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
+ VMMRZCallRing3RemoveNotification(pVCpu);
+ VMMRZCallRing3Enable(pVCpu);
+
+ return rc;
+}
+
+
+/**
+ * VMMRZCallRing3() callback wrapper which saves the guest state before we
+ * longjump to ring-3 and possibly get preempted.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param enmOperation The operation causing the ring-3 longjump.
+ * @param pvUser User argument, currently unused, NULL.
+ */
+static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
+{
+ RT_NOREF(pvUser);
+ if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
+ {
+ /*
+ * !!! IMPORTANT !!!
+ * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
+ * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
+ */
+ VMMRZCallRing3RemoveNotification(pVCpu);
+ VMMRZCallRing3Disable(pVCpu);
+ RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
+ RTThreadPreemptDisable(&PreemptState);
+
+ hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
+ CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
+
+#if HC_ARCH_BITS == 64
+ /* Restore host-state bits that VT-x only restores partially. */
+ if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
+ && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
+ VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
+ pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
+#endif
+
+ /* Restore the lazy host MSRs as we're leaving VT-x context. */
+ if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
+ hmR0VmxLazyRestoreHostMsrs(pVCpu);
+
+ /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
+ pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
+ if (pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_ACTIVE)
+ {
+ VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
+ pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
+ }
+
+ /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
+ VMMR0ThreadCtxHookDisable(pVCpu);
+ HMR0LeaveCpu(pVCpu);
+ RTThreadPreemptRestore(&PreemptState);
+ return VINF_SUCCESS;
+ }
+
+ Assert(pVCpu);
+ Assert(pvUser);
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+ HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
+
+ VMMRZCallRing3Disable(pVCpu);
+ Assert(VMMR0IsLogFlushDisabled(pVCpu));
+
+ Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
+
+ int rc = hmR0VmxLongJmpToRing3(pVCpu);
+ AssertRCReturn(rc, rc);
+
+ VMMRZCallRing3Enable(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
+ * cause a VM-exit as soon as the guest is in a state to receive interrupts.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
+{
+ if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT))
+ {
+ if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
+ {
+ pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
+ AssertRC(rc);
+ Log4Func(("Setup interrupt-window exiting\n"));
+ }
+ } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
+}
+
+
+/**
+ * Clears the interrupt-window exiting control in the VMCS.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
+{
+ Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
+ pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
+ AssertRC(rc);
+ Log4Func(("Cleared interrupt-window exiting\n"));
+}
+
+
+/**
+ * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
+ * cause a VM-exit as soon as the guest is in a state to receive NMIs.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
+{
+ if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
+ {
+ if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
+ {
+ pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
+ AssertRC(rc);
+ Log4Func(("Setup NMI-window exiting\n"));
+ }
+ } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
+}
+
+
+/**
+ * Clears the NMI-window exiting control in the VMCS.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
+{
+ Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
+ pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
+ AssertRC(rc);
+ Log4Func(("Cleared NMI-window exiting\n"));
+}
+
+
+/**
+ * Evaluates the event to be delivered to the guest and sets it as the pending
+ * event.
+ *
+ * @returns The VT-x guest-interruptibility state.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu)
+{
+ /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu);
+ bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
+ bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
+ bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
+
+ Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
+ Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
+ Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
+ Assert(!TRPMHasTrap(pVCpu));
+
+ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
+ APICUpdatePendingInterrupts(pVCpu);
+
+ /*
+ * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
+ * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
+ */
+ /** @todo SMI. SMIs take priority over NMIs. */
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
+ {
+ /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
+ if ( !pVCpu->hm.s.Event.fPending
+ && !fBlockNmi
+ && !fBlockSti
+ && !fBlockMovSS)
+ {
+ Log4Func(("Pending NMI\n"));
+ uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INT_INFO_VALID;
+ u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
+
+ hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
+ }
+ else
+ hmR0VmxSetNmiWindowExitVmcs(pVCpu);
+ }
+ /*
+ * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
+ * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
+ */
+ else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
+ && !pVCpu->hm.s.fSingleInstruction)
+ {
+ Assert(!DBGFIsStepping(pVCpu));
+ int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
+ AssertRCReturn(rc, 0);
+ bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
+ if ( !pVCpu->hm.s.Event.fPending
+ && !fBlockInt
+ && !fBlockSti
+ && !fBlockMovSS)
+ {
+ uint8_t u8Interrupt;
+ rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
+ if (RT_SUCCESS(rc))
+ {
+ Log4Func(("Pending external interrupt u8Interrupt=%#x\n", u8Interrupt));
+ uint32_t u32IntInfo = u8Interrupt
+ | VMX_EXIT_INT_INFO_VALID
+ | (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
+
+ hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
+ }
+ else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
+ {
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
+ hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
+
+ /*
+ * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
+ * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
+ * need to re-set this force-flag here.
+ */
+ }
+ else
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
+ }
+ else
+ hmR0VmxSetIntWindowExitVmcs(pVCpu);
+ }
+
+ return fIntrState;
+}
+
+
+/**
+ * Injects any pending events into the guest if the guest is in a state to
+ * receive them.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fIntrState The VT-x guest-interruptibility state.
+ * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
+ * return VINF_EM_DBG_STEPPED if the event was
+ * dispatched directly.
+ */
+static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, uint32_t fIntrState, bool fStepping)
+{
+ HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+
+ bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
+ bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
+
+ Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
+ Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
+ Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
+ Assert(!TRPMHasTrap(pVCpu));
+
+ VBOXSTRICTRC rcStrict = VINF_SUCCESS;
+ if (pVCpu->hm.s.Event.fPending)
+ {
+ /*
+ * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
+ * pending even while injecting an event and in this case, we want a VM-exit as soon as
+ * the guest is ready for the next interrupt, see @bugref{6208#c45}.
+ *
+ * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
+ */
+ uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
+#ifdef VBOX_STRICT
+ if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
+ {
+ bool const fBlockInt = !(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
+ Assert(!fBlockInt);
+ Assert(!fBlockSti);
+ Assert(!fBlockMovSS);
+ }
+ else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
+ {
+ bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
+ Assert(!fBlockSti);
+ Assert(!fBlockMovSS);
+ Assert(!fBlockNmi);
+ }
+#endif
+ Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
+ uIntType));
+
+ /*
+ * Inject the event and get any changes to the guest-interruptibility state.
+ *
+ * The guest-interruptibility state may need to be updated if we inject the event
+ * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
+ */
+ rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
+ pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping,
+ &fIntrState);
+ AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
+
+ if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
+ else
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
+ }
+
+ /*
+ * Update the guest-interruptibility state.
+ *
+ * This is required for the real-on-v86 software interrupt injection case above, as well as
+ * updates to the guest state from ring-3 or IEM/REM.
+ */
+ int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * There's no need to clear the VM-entry interruption-information field here if we're not
+ * injecting anything. VT-x clears the valid bit on every VM-exit.
+ *
+ * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
+ */
+
+ Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
+ NOREF(fBlockMovSS); NOREF(fBlockSti);
+ return rcStrict;
+}
+
+
+/**
+ * Injects a double-fault (\#DF) exception into the VM.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
+ * and should return VINF_EM_DBG_STEPPED if the event
+ * is injected directly (register modified by us, not
+ * by hardware on VM-entry).
+ * @param pfIntrState Pointer to the current guest interruptibility-state.
+ * This interruptibility-state will be updated if
+ * necessary. This cannot not be NULL.
+ */
+DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, bool fStepping, uint32_t *pfIntrState)
+{
+ uint32_t const u32IntInfo = X86_XCPT_DF | VMX_EXIT_INT_INFO_VALID
+ | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
+ | VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
+ return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */, fStepping,
+ pfIntrState);
+}
+
+
+/**
+ * Injects a general-protection (\#GP) fault into the VM.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
+ * mode, i.e. in real-mode it's not valid).
+ * @param u32ErrorCode The error code associated with the \#GP.
+ * @param fStepping Whether we're running in
+ * hmR0VmxRunGuestCodeStep() and should return
+ * VINF_EM_DBG_STEPPED if the event is injected
+ * directly (register modified by us, not by
+ * hardware on VM-entry).
+ * @param pfIntrState Pointer to the current guest interruptibility-state.
+ * This interruptibility-state will be updated if
+ * necessary. This cannot not be NULL.
+ */
+DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, bool fErrorCodeValid, uint32_t u32ErrorCode, bool fStepping,
+ uint32_t *pfIntrState)
+{
+ uint32_t const u32IntInfo = X86_XCPT_GP | VMX_EXIT_INT_INFO_VALID
+ | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
+ | (fErrorCodeValid ? VMX_EXIT_INT_INFO_ERROR_CODE_VALID : 0);
+ return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */, fStepping,
+ pfIntrState);
+}
+
+
+/**
+ * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
+ * stack.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uValue The value to push to the guest stack.
+ */
+static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
+{
+ /*
+ * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
+ * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
+ * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
+ */
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if (pCtx->sp == 1)
+ return VINF_EM_RESET;
+ pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
+ int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
+ AssertRC(rc);
+ return rc;
+}
+
+
+/**
+ * Injects an event into the guest upon VM-entry by updating the relevant fields
+ * in the VM-entry area in the VMCS.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
+ * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param u64IntInfo The VM-entry interruption-information field.
+ * @param cbInstr The VM-entry instruction length in bytes (for
+ * software interrupts, exceptions and privileged
+ * software exceptions).
+ * @param u32ErrCode The VM-entry exception error code.
+ * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
+ * @param pfIntrState Pointer to the current guest interruptibility-state.
+ * This interruptibility-state will be updated if
+ * necessary. This cannot not be NULL.
+ * @param fStepping Whether we're running in
+ * hmR0VmxRunGuestCodeStep() and should return
+ * VINF_EM_DBG_STEPPED if the event is injected
+ * directly (register modified by us, not by
+ * hardware on VM-entry).
+ */
+static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
+ RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState)
+{
+ /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
+ AssertMsg(!RT_HI_U32(u64IntInfo), ("%#RX64\n", u64IntInfo));
+ Assert(pfIntrState);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ uint32_t u32IntInfo = (uint32_t)u64IntInfo;
+ uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
+ uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
+
+#ifdef VBOX_STRICT
+ /*
+ * Validate the error-code-valid bit for hardware exceptions.
+ * No error codes for exceptions in real-mode.
+ *
+ * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
+ */
+ if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
+ && !CPUMIsGuestInRealModeEx(pCtx))
+ {
+ switch (uVector)
+ {
+ case X86_XCPT_PF:
+ case X86_XCPT_DF:
+ case X86_XCPT_TS:
+ case X86_XCPT_NP:
+ case X86_XCPT_SS:
+ case X86_XCPT_GP:
+ case X86_XCPT_AC:
+ AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
+ ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
+ RT_FALL_THRU();
+ default:
+ break;
+ }
+ }
+#endif
+
+ /* Cannot inject an NMI when block-by-MOV SS is in effect. */
+ Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
+ || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
+
+ /*
+ * Hardware interrupts & exceptions cannot be delivered through the software interrupt
+ * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
+ * interrupt handler in the (real-mode) guest.
+ *
+ * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
+ * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
+ */
+ if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
+ {
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
+ {
+ /*
+ * For unrestricted execution enabled CPUs running real-mode guests, we must not
+ * set the deliver-error-code bit.
+ *
+ * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
+ */
+ u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
+ }
+ else
+ {
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ Assert(PDMVmmDevHeapIsEnabled(pVM));
+ Assert(pVM->hm.s.vmx.pRealModeTSS);
+
+ /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
+ int rc2 = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_RIP
+ | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
+ AssertRCReturn(rc2, rc2);
+
+ /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
+ size_t const cbIdtEntry = sizeof(X86IDTR16);
+ if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
+ {
+ /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
+ if (uVector == X86_XCPT_DF)
+ return VINF_EM_RESET;
+
+ /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
+ if (uVector == X86_XCPT_GP)
+ return hmR0VmxInjectXcptDF(pVCpu, fStepping, pfIntrState);
+
+ /*
+ * If we're injecting an event with no valid IDT entry, inject a #GP.
+ * No error codes for exceptions in real-mode.
+ *
+ * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
+ */
+ return hmR0VmxInjectXcptGP(pVCpu, false /* fErrCodeValid */, 0 /* u32ErrCode */, fStepping, pfIntrState);
+ }
+
+ /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
+ uint16_t uGuestIp = pCtx->ip;
+ if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
+ {
+ Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
+ /* #BP and #OF are both benign traps, we need to resume the next instruction. */
+ uGuestIp = pCtx->ip + (uint16_t)cbInstr;
+ }
+ else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
+ uGuestIp = pCtx->ip + (uint16_t)cbInstr;
+
+ /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
+ X86IDTR16 IdtEntry;
+ RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
+ rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
+ AssertRCReturn(rc2, rc2);
+
+ /* Construct the stack frame for the interrupt/exception handler. */
+ VBOXSTRICTRC rcStrict;
+ rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
+ if (rcStrict == VINF_SUCCESS)
+ rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
+
+ /* Clear the required eflag bits and jump to the interrupt/exception handler. */
+ if (rcStrict == VINF_SUCCESS)
+ {
+ pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
+ pCtx->rip = IdtEntry.offSel;
+ pCtx->cs.Sel = IdtEntry.uSel;
+ pCtx->cs.ValidSel = IdtEntry.uSel;
+ pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
+ if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
+ && uVector == X86_XCPT_PF)
+ pCtx->cr2 = GCPtrFaultAddress;
+
+ /* If any other guest-state bits are changed here, make sure to update
+ hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
+ | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
+ | HM_CHANGED_GUEST_RSP);
+
+ /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
+ if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
+ {
+ Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
+ && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
+ Log4Func(("Clearing inhibition due to STI\n"));
+ *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
+ }
+ Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
+ u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
+
+ /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
+ it, if we are returning to ring-3 before executing guest code. */
+ pVCpu->hm.s.Event.fPending = false;
+
+ /* Make hmR0VmxPreRunGuest() return if we're stepping since we've changed cs:rip. */
+ if (fStepping)
+ rcStrict = VINF_EM_DBG_STEPPED;
+ }
+ AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
+ ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+ }
+
+ /* Validate. */
+ Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
+ Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
+
+ /* Inject. */
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
+ if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
+ rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
+ AssertRCReturn(rc, rc);
+
+ /* Update CR2. */
+ if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
+ && uVector == X86_XCPT_PF)
+ pCtx->cr2 = GCPtrFaultAddress;
+
+ Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Clears the interrupt-window exiting control in the VMCS and if necessary
+ * clears the current event in the VMCS as well.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Use this function only to clear events that have not yet been
+ * delivered to the guest but are injected in the VMCS!
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
+{
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
+ {
+ hmR0VmxClearIntWindowExitVmcs(pVCpu);
+ Log4Func(("Cleared interrupt window\n"));
+ }
+
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
+ {
+ hmR0VmxClearNmiWindowExitVmcs(pVCpu);
+ Log4Func(("Cleared NMI window\n"));
+ }
+}
+
+
+/**
+ * Enters the VT-x session.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ LogFlowFunc(("pVCpu=%p\n", pVCpu));
+ Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
+ == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
+
+#ifdef VBOX_STRICT
+ /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
+ RTCCUINTREG uHostCR4 = ASMGetCR4();
+ if (!(uHostCR4 & X86_CR4_VMXE))
+ {
+ LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
+ return VERR_VMX_X86_CR4_VMXE_CLEARED;
+ }
+#endif
+
+ /*
+ * Load the VCPU's VMCS as the current (and active) one.
+ */
+ Assert(pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_CLEAR);
+ int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
+ if (RT_SUCCESS(rc))
+ {
+ pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_ACTIVE;
+ pVCpu->hm.s.fLeaveDone = false;
+ Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
+
+ /*
+ * Do the EMT scheduled L1D flush here if needed.
+ */
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
+ ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
+ }
+ return rc;
+}
+
+
+/**
+ * The thread-context callback (only on platforms which support it).
+ *
+ * @param enmEvent The thread-context event.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
+ * @thread EMT(pVCpu)
+ */
+VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
+{
+ NOREF(fGlobalInit);
+
+ switch (enmEvent)
+ {
+ case RTTHREADCTXEVENT_OUT:
+ {
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
+ VMCPU_ASSERT_EMT(pVCpu);
+
+ /* No longjmps (logger flushes, locks) in this fragile context. */
+ VMMRZCallRing3Disable(pVCpu);
+ Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
+
+ /*
+ * Restore host-state (FPU, debug etc.)
+ */
+ if (!pVCpu->hm.s.fLeaveDone)
+ {
+ /*
+ * Do -not- import the guest-state here as we might already be in the middle of importing
+ * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
+ */
+ hmR0VmxLeave(pVCpu, false /* fImportState */);
+ pVCpu->hm.s.fLeaveDone = true;
+ }
+
+ /* Leave HM context, takes care of local init (term). */
+ int rc = HMR0LeaveCpu(pVCpu);
+ AssertRC(rc); NOREF(rc);
+
+ /* Restore longjmp state. */
+ VMMRZCallRing3Enable(pVCpu);
+ STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
+ break;
+ }
+
+ case RTTHREADCTXEVENT_IN:
+ {
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
+ VMCPU_ASSERT_EMT(pVCpu);
+
+ /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
+ VMMRZCallRing3Disable(pVCpu);
+ Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
+
+ /* Initialize the bare minimum state required for HM. This takes care of
+ initializing VT-x if necessary (onlined CPUs, local init etc.) */
+ int rc = hmR0EnterCpu(pVCpu);
+ AssertRC(rc);
+ Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
+ == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
+
+ /* Load the active VMCS as the current one. */
+ if (pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_CLEAR)
+ {
+ rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
+ AssertRC(rc); NOREF(rc);
+ pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_ACTIVE;
+ Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
+ }
+ pVCpu->hm.s.fLeaveDone = false;
+
+ /* Do the EMT scheduled L1D flush if needed. */
+ if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
+ ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
+
+ /* Restore longjmp state. */
+ VMMRZCallRing3Enable(pVCpu);
+ break;
+ }
+
+ default:
+ break;
+ }
+}
+
+
+/**
+ * Exports the host state into the VMCS host-state area.
+ * Sets up the VM-exit MSR-load area.
+ *
+ * The CPU state will be loaded from these fields on every successful VM-exit.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxExportHostState(PVMCPU pVCpu)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ int rc = VINF_SUCCESS;
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
+ {
+ rc = hmR0VmxExportHostControlRegs();
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ rc = hmR0VmxExportHostSegmentRegs(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ rc = hmR0VmxExportHostMsrs(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
+ }
+ return rc;
+}
+
+
+/**
+ * Saves the host state in the VMCS host-state.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ /*
+ * Export the host state here while entering HM context.
+ * When thread-context hooks are used, we might get preempted and have to re-save the host
+ * state but most of the time we won't be, so do it here before we disable interrupts.
+ */
+ return hmR0VmxExportHostState(pVCpu);
+}
+
+
+/**
+ * Exports the guest state into the VMCS guest-state area.
+ *
+ * The will typically be done before VM-entry when the guest-CPU state and the
+ * VMCS state may potentially be out of sync.
+ *
+ * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
+ * VM-entry controls.
+ * Sets up the appropriate VMX non-root function to execute guest code based on
+ * the guest CPU mode.
+ *
+ * @returns VBox strict status code.
+ * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
+ * without unrestricted guest access and the VMMDev is not presently
+ * mapped (e.g. EFI32).
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu)
+{
+ AssertPtr(pVCpu);
+ HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
+
+ LogFlowFunc(("pVCpu=%p\n", pVCpu));
+
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
+
+ /* Determine real-on-v86 mode. */
+ pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
+ if ( !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
+ && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
+ pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
+
+ /*
+ * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
+ * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
+ */
+ int rc = hmR0VmxSelectVMRunHandler(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
+ rc = hmR0VmxExportGuestEntryCtls(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
+ rc = hmR0VmxExportGuestExitCtls(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ rc = hmR0VmxExportGuestCR0(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ { /* likely */ }
+ else
+ {
+ Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
+ return rcStrict;
+ }
+
+ rc = hmR0VmxExportGuestSegmentRegs(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ /* This needs to be done after hmR0VmxExportGuestEntryCtls() and hmR0VmxExportGuestExitCtls() as it
+ may alter controls if we determine we don't have to swap EFER after all. */
+ rc = hmR0VmxExportGuestMsrs(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ rc = hmR0VmxExportGuestApicTpr(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ rc = hmR0VmxExportGuestXcptIntercepts(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ rc = hmR0VmxExportGuestRip(pVCpu);
+ rc |= hmR0VmxExportGuestRsp(pVCpu);
+ rc |= hmR0VmxExportGuestRflags(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
+ | HM_CHANGED_GUEST_CR2
+ | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
+ | HM_CHANGED_GUEST_X87
+ | HM_CHANGED_GUEST_SSE_AVX
+ | HM_CHANGED_GUEST_OTHER_XSAVE
+ | HM_CHANGED_GUEST_XCRx
+ | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
+ | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
+ | HM_CHANGED_GUEST_TSC_AUX
+ | HM_CHANGED_GUEST_OTHER_MSRS
+ | HM_CHANGED_GUEST_HWVIRT
+ | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
+ return rc;
+}
+
+
+/**
+ * Exports the state shared between the host and guest into the VMCS.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0VmxExportSharedState(PVMCPU pVCpu)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
+ {
+ int rc = hmR0VmxExportSharedDebugState(pVCpu);
+ AssertRC(rc);
+ pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
+
+ /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
+ {
+ rc = hmR0VmxExportGuestRflags(pVCpu);
+ AssertRC(rc);
+ }
+ }
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
+ {
+ hmR0VmxLazyLoadGuestMsrs(pVCpu);
+ pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
+ }
+
+ AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
+ ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
+}
+
+
+/**
+ * Worker for loading the guest-state bits in the inner VT-x execution loop.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
+ * without unrestricted guest access and the VMMDev is not presently
+ * mapped (e.g. EFI32).
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu)
+{
+ HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(VMMR0IsLogFlushDisabled(pVCpu));
+
+#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+#endif
+
+ /*
+ * For many exits it's only RIP that changes and hence try to export it first
+ * without going through a lot of change flag checks.
+ */
+ VBOXSTRICTRC rcStrict;
+ uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
+ RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
+ if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
+ {
+ rcStrict = hmR0VmxExportGuestRip(pVCpu);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* likely */}
+ else
+ AssertMsgFailedReturn(("hmR0VmxExportGuestRip failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
+ }
+ else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
+ {
+ rcStrict = hmR0VmxExportGuestState(pVCpu);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* likely */}
+ else
+ {
+ AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("hmR0VmxExportGuestState failed! rc=%Rrc\n",
+ VBOXSTRICTRC_VAL(rcStrict)));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ return rcStrict;
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
+ }
+ else
+ rcStrict = VINF_SUCCESS;
+
+#ifdef VBOX_STRICT
+ /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
+ fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
+ RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
+ AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
+ ("fCtxChanged=%#RX64\n", fCtxChanged));
+#endif
+ return rcStrict;
+}
+
+
+/**
+ * Does the preparations before executing guest code in VT-x.
+ *
+ * This may cause longjmps to ring-3 and may even result in rescheduling to the
+ * recompiler/IEM. We must be cautious what we do here regarding committing
+ * guest-state information into the VMCS assuming we assuredly execute the
+ * guest in VT-x mode.
+ *
+ * If we fall back to the recompiler/IEM after updating the VMCS and clearing
+ * the common-state (TRPM/forceflags), we must undo those changes so that the
+ * recompiler/IEM can (and should) use them when it resumes guest execution.
+ * Otherwise such operations must be done when we can no longer exit to ring-3.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
+ * have been disabled.
+ * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
+ * double-fault into the guest.
+ * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
+ * dispatched directly.
+ * @retval VINF_* scheduling changes, we have to go back to ring-3.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
+ * us ignore some of the reasons for returning to
+ * ring-3, and return VINF_EM_DBG_STEPPED if event
+ * dispatching took place.
+ */
+static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
+{
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
+ {
+ Log2(("hmR0VmxPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
+ RT_NOREF3(pVCpu, pVmxTransient, fStepping);
+ return VINF_EM_RESCHEDULE_REM;
+ }
+#endif
+
+#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
+ PGMRZDynMapFlushAutoSet(pVCpu);
+#endif
+
+ /* Check force flag actions that might require us to go back to ring-3. */
+ VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
+ if (rcStrict == VINF_SUCCESS)
+ { /* FFs doesn't get set all the time. */ }
+ else
+ return rcStrict;
+
+ /*
+ * Setup the virtualized-APIC accesses.
+ *
+ * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
+ * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
+ *
+ * This is the reason we do it here and not in hmR0VmxExportGuestState().
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if ( !pVCpu->hm.s.vmx.u64MsrApicBase
+ && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
+ && PDMHasApic(pVM))
+ {
+ uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
+ Assert(u64MsrApicBase);
+ Assert(pVM->hm.s.vmx.HCPhysApicAccess);
+
+ RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
+
+ /* Unalias any existing mapping. */
+ int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
+ AssertRCReturn(rc, rc);
+
+ /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
+ Log4Func(("Mapped HC APIC-access page at %#RGp\n", GCPhysApicBase));
+ rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
+ AssertRCReturn(rc, rc);
+
+ /* Update the per-VCPU cache of the APIC base MSR. */
+ pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
+ }
+
+ if (TRPMHasTrap(pVCpu))
+ hmR0VmxTrpmTrapToPendingEvent(pVCpu);
+ uint32_t fIntrState = hmR0VmxEvaluatePendingEvent(pVCpu);
+
+ /*
+ * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
+ * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
+ * also result in triple-faulting the VM.
+ */
+ rcStrict = hmR0VmxInjectPendingEvent(pVCpu, fIntrState, fStepping);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* likely */ }
+ else
+ {
+ AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
+ ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ /*
+ * A longjump might result in importing CR3 even for VM-exits that don't necessarily
+ * import CR3 themselves. We will need to update them here, as even as late as the above
+ * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
+ * the below force flags to be set.
+ */
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
+ {
+ Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
+ int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
+ AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
+ ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
+ }
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
+ {
+ PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
+ }
+
+ /*
+ * No longjmps to ring-3 from this point on!!!
+ * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
+ * This also disables flushing of the R0-logger instance (if any).
+ */
+ VMMRZCallRing3Disable(pVCpu);
+
+ /*
+ * Export the guest state bits.
+ *
+ * We cannot perform longjmps while loading the guest state because we do not preserve the
+ * host/guest state (although the VMCS will be preserved) across longjmps which can cause
+ * CPU migration.
+ *
+ * If we are injecting events to a real-on-v86 mode guest, we will have to update
+ * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
+ * Hence, loading of the guest state needs to be done -after- injection of events.
+ */
+ rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* likely */ }
+ else
+ {
+ VMMRZCallRing3Enable(pVCpu);
+ return rcStrict;
+ }
+
+ /*
+ * We disable interrupts so that we don't miss any interrupts that would flag preemption
+ * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
+ * preemption disabled for a while. Since this is purly to aid the
+ * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
+ * disable interrupt on NT.
+ *
+ * We need to check for force-flags that could've possible been altered since we last
+ * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
+ * see @bugref{6398}).
+ *
+ * We also check a couple of other force-flags as a last opportunity to get the EMT back
+ * to ring-3 before executing guest code.
+ */
+ pVmxTransient->fEFlags = ASMIntDisableFlags();
+
+ if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
+ && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
+ || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
+ && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
+ {
+ if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
+ {
+ pVCpu->hm.s.Event.fPending = false;
+
+ /*
+ * We've injected any pending events. This is really the point of no return (to ring-3).
+ *
+ * Note! The caller expects to continue with interrupts & longjmps disabled on successful
+ * returns from this function, so don't enable them here.
+ */
+ return VINF_SUCCESS;
+ }
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
+ rcStrict = VINF_EM_RAW_INTERRUPT;
+ }
+ else
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
+ rcStrict = VINF_EM_RAW_TO_R3;
+ }
+
+ ASMSetFlags(pVmxTransient->fEFlags);
+ VMMRZCallRing3Enable(pVCpu);
+
+ return rcStrict;
+}
+
+
+/**
+ * Prepares to run guest code in VT-x and we've committed to doing so. This
+ * means there is no backing out to ring-3 or anywhere else at this
+ * point.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ *
+ * @remarks Called with preemption disabled.
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(VMMR0IsLogFlushDisabled(pVCpu));
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ /*
+ * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
+ */
+ VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
+ VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if (!CPUMIsGuestFPUStateActive(pVCpu))
+ {
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
+ if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
+ pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
+ }
+
+ /*
+ * Lazy-update of the host MSRs values in the auto-load/store MSR area.
+ */
+ if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
+ && pVCpu->hm.s.vmx.cMsrs > 0)
+ hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
+
+ /*
+ * Re-save the host state bits as we may've been preempted (only happens when
+ * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
+ * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
+ * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
+ * See @bugref{8432}.
+ */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
+ {
+ int rc = hmR0VmxExportHostState(pVCpu);
+ AssertRC(rc);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
+ }
+ Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
+
+ /*
+ * Export the state shared between host and guest (FPU, debug, lazy MSRs).
+ */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
+ hmR0VmxExportSharedState(pVCpu);
+ AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
+
+ /* Store status of the shared guest-host state at the time of VM-entry. */
+#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
+ if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
+ {
+ pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
+ pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
+ }
+ else
+#endif
+ {
+ pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
+ pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
+ }
+
+ /*
+ * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
+ */
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
+ pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
+
+ PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
+ RTCPUID idCurrentCpu = pHostCpu->idCpu;
+ if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
+ || idCurrentCpu != pVCpu->hm.s.idLastCpu)
+ {
+ hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
+ pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
+ }
+
+ ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
+ hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu); /* Invalidate the appropriate guest entries from the TLB. */
+ Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
+ pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
+
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
+
+ TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
+ to start executing. */
+
+ /*
+ * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
+ */
+ if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
+ {
+ if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
+ {
+ bool fMsrUpdated;
+ hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
+ int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
+ &fMsrUpdated);
+ AssertRC(rc2);
+ Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
+ /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
+ pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
+ }
+ else
+ {
+ hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
+ Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
+ }
+ }
+
+ if (pVM->cpum.ro.GuestFeatures.fIbrs)
+ {
+ bool fMsrUpdated;
+ hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
+ int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
+ &fMsrUpdated);
+ AssertRC(rc2);
+ Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
+ /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
+ pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
+ }
+
+#ifdef VBOX_STRICT
+ hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
+ hmR0VmxCheckHostEferMsr(pVCpu);
+ AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
+#endif
+#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
+ if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
+ {
+ uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
+ if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
+ Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
+ }
+#endif
+}
+
+
+/**
+ * Performs some essential restoration of state after running guest code in
+ * VT-x.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
+ *
+ * @remarks Called with interrupts disabled, and returns with interrupts enabled!
+ *
+ * @remarks No-long-jump zone!!! This function will however re-enable longjmps
+ * unconditionally when it is safe to do so.
+ */
+static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
+{
+ uint64_t const uHostTsc = ASMReadTSC();
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
+ ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
+ pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
+ pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
+ pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
+ pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
+
+ if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
+ TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVCpu->hm.s.vmx.u64TscOffset);
+
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
+ TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
+ Assert(!ASMIntAreEnabled());
+ VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
+
+#if HC_ARCH_BITS == 64
+ pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
+#endif
+#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
+ /* The 64-on-32 switcher maintains fVmcsState on its own and we need to leave it alone here. */
+ if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
+ pVCpu->hm.s.vmx.fVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
+#else
+ pVCpu->hm.s.vmx.fVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
+#endif
+#ifdef VBOX_STRICT
+ hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
+#endif
+ ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
+
+ /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
+ uint32_t uExitReason;
+ int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
+ rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
+ AssertRC(rc);
+ pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
+ pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
+
+ if (rcVMRun == VINF_SUCCESS)
+ {
+ /*
+ * Update the VM-exit history array here even if the VM-entry failed due to:
+ * - Invalid guest state.
+ * - MSR loading.
+ * - Machine-check event.
+ *
+ * In any of the above cases we will still have a "valid" VM-exit reason
+ * despite @a fVMEntryFailed being false.
+ *
+ * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
+ *
+ * Note! We don't have CS or RIP at this point. Will probably address that later
+ * by amending the history entry added here.
+ */
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
+ UINT64_MAX, uHostTsc);
+
+ if (!pVmxTransient->fVMEntryFailed)
+ {
+ VMMRZCallRing3Enable(pVCpu);
+
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
+
+#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
+ rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRC(rc);
+#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
+ rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_RFLAGS);
+ AssertRC(rc);
+#else
+ /*
+ * Import the guest-interruptibility state always as we need it while evaluating
+ * injecting events on re-entry.
+ *
+ * We don't import CR0 (when Unrestricted guest execution is unavailable) despite
+ * checking for real-mode while exporting the state because all bits that cause
+ * mode changes wrt CR0 are intercepted.
+ */
+ rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
+ AssertRC(rc);
+#endif
+
+ /*
+ * Sync the TPR shadow with our APIC state.
+ */
+ if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
+ && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
+ {
+ rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
+ AssertRC(rc);
+ ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
+ }
+
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+ return;
+ }
+ }
+ else
+ Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
+
+ VMMRZCallRing3Enable(pVCpu);
+}
+
+
+/**
+ * Runs the guest code using VT-x the normal way.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @note Mostly the same as hmR0VmxRunGuestCodeStep().
+ */
+static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu)
+{
+ VMXTRANSIENT VmxTransient;
+ VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
+ VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
+ uint32_t cLoops = 0;
+
+ for (;; cLoops++)
+ {
+ Assert(!HMR0SuspendPending());
+ HMVMX_ASSERT_CPU_SAFE(pVCpu);
+
+ /* Preparatory work for running guest code, this may force us to return
+ to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
+ rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
+ if (rcStrict != VINF_SUCCESS)
+ break;
+
+ hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
+ int rcRun = hmR0VmxRunGuest(pVCpu);
+
+ /* Restore any residual host-state and save any bits shared between host
+ and guest into the guest-CPU state. Re-enables interrupts! */
+ hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
+
+ /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
+ if (RT_SUCCESS(rcRun))
+ { /* very likely */ }
+ else
+ {
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
+ hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
+ return rcRun;
+ }
+
+ /* Profile the VM-exit. */
+ AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
+ STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
+ HMVMX_START_EXIT_DISPATCH_PROF();
+
+ VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
+
+ /* Handle the VM-exit. */
+#ifdef HMVMX_USE_FUNCTION_TABLE
+ rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
+#else
+ rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient, VmxTransient.uExitReason);
+#endif
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ if (cLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
+ continue; /* likely */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
+ rcStrict = VINF_EM_RAW_INTERRUPT;
+ }
+ break;
+ }
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
+ return rcStrict;
+}
+
+
+
+/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
+ * probes.
+ *
+ * The following few functions and associated structure contains the bloat
+ * necessary for providing detailed debug events and dtrace probes as well as
+ * reliable host side single stepping. This works on the principle of
+ * "subclassing" the normal execution loop and workers. We replace the loop
+ * method completely and override selected helpers to add necessary adjustments
+ * to their core operation.
+ *
+ * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
+ * any performance for debug and analysis features.
+ *
+ * @{
+ */
+
+/**
+ * Transient per-VCPU debug state of VMCS and related info. we save/restore in
+ * the debug run loop.
+ */
+typedef struct VMXRUNDBGSTATE
+{
+ /** The RIP we started executing at. This is for detecting that we stepped. */
+ uint64_t uRipStart;
+ /** The CS we started executing with. */
+ uint16_t uCsStart;
+
+ /** Whether we've actually modified the 1st execution control field. */
+ bool fModifiedProcCtls : 1;
+ /** Whether we've actually modified the 2nd execution control field. */
+ bool fModifiedProcCtls2 : 1;
+ /** Whether we've actually modified the exception bitmap. */
+ bool fModifiedXcptBitmap : 1;
+
+ /** We desire the modified the CR0 mask to be cleared. */
+ bool fClearCr0Mask : 1;
+ /** We desire the modified the CR4 mask to be cleared. */
+ bool fClearCr4Mask : 1;
+ /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
+ uint32_t fCpe1Extra;
+ /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
+ uint32_t fCpe1Unwanted;
+ /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
+ uint32_t fCpe2Extra;
+ /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
+ uint32_t bmXcptExtra;
+ /** The sequence number of the Dtrace provider settings the state was
+ * configured against. */
+ uint32_t uDtraceSettingsSeqNo;
+ /** VM-exits to check (one bit per VM-exit). */
+ uint32_t bmExitsToCheck[3];
+
+ /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
+ uint32_t fProcCtlsInitial;
+ /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
+ uint32_t fProcCtls2Initial;
+ /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
+ uint32_t bmXcptInitial;
+} VMXRUNDBGSTATE;
+AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
+typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
+
+
+/**
+ * Initializes the VMXRUNDBGSTATE structure.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ * @param pDbgState The structure to initialize.
+ */
+static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
+{
+ pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
+ pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
+
+ pDbgState->fModifiedProcCtls = false;
+ pDbgState->fModifiedProcCtls2 = false;
+ pDbgState->fModifiedXcptBitmap = false;
+ pDbgState->fClearCr0Mask = false;
+ pDbgState->fClearCr4Mask = false;
+ pDbgState->fCpe1Extra = 0;
+ pDbgState->fCpe1Unwanted = 0;
+ pDbgState->fCpe2Extra = 0;
+ pDbgState->bmXcptExtra = 0;
+ pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
+ pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
+ pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
+}
+
+
+/**
+ * Updates the VMSC fields with changes requested by @a pDbgState.
+ *
+ * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
+ * immediately before executing guest code, i.e. when interrupts are disabled.
+ * We don't check status codes here as we cannot easily assert or return in the
+ * latter case.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pDbgState The debug state.
+ */
+static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
+{
+ /*
+ * Ensure desired flags in VMCS control fields are set.
+ * (Ignoring write failure here, as we're committed and it's just debug extras.)
+ *
+ * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
+ * there should be no stale data in pCtx at this point.
+ */
+ if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
+ || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
+ {
+ pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
+ pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
+ VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
+ Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
+ pDbgState->fModifiedProcCtls = true;
+ }
+
+ if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
+ {
+ pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
+ VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
+ Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
+ pDbgState->fModifiedProcCtls2 = true;
+ }
+
+ if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
+ {
+ pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
+ VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
+ Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
+ pDbgState->fModifiedXcptBitmap = true;
+ }
+
+ if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32Cr0Mask != 0)
+ {
+ pVCpu->hm.s.vmx.u32Cr0Mask = 0;
+ VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
+ Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
+ }
+
+ if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32Cr4Mask != 0)
+ {
+ pVCpu->hm.s.vmx.u32Cr4Mask = 0;
+ VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
+ Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
+ }
+}
+
+
+/**
+ * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
+ * re-entry next time around.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pDbgState The debug state.
+ * @param rcStrict The return code from executing the guest using single
+ * stepping.
+ */
+static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
+{
+ /*
+ * Restore VM-exit control settings as we may not reenter this function the
+ * next time around.
+ */
+ /* We reload the initial value, trigger what we can of recalculations the
+ next time around. From the looks of things, that's all that's required atm. */
+ if (pDbgState->fModifiedProcCtls)
+ {
+ if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
+ pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
+ int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
+ AssertRCReturn(rc2, rc2);
+ pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
+ }
+
+ /* We're currently the only ones messing with this one, so just restore the
+ cached value and reload the field. */
+ if ( pDbgState->fModifiedProcCtls2
+ && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
+ {
+ int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
+ AssertRCReturn(rc2, rc2);
+ pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
+ }
+
+ /* If we've modified the exception bitmap, we restore it and trigger
+ reloading and partial recalculation the next time around. */
+ if (pDbgState->fModifiedXcptBitmap)
+ pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
+
+ return rcStrict;
+}
+
+
+/**
+ * Configures VM-exit controls for current DBGF and DTrace settings.
+ *
+ * This updates @a pDbgState and the VMCS execution control fields to reflect
+ * the necessary VM-exits demanded by DBGF and DTrace.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pDbgState The debug state.
+ * @param pVmxTransient Pointer to the VMX transient structure. May update
+ * fUpdateTscOffsettingAndPreemptTimer.
+ */
+static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
+{
+ /*
+ * Take down the dtrace serial number so we can spot changes.
+ */
+ pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
+ ASMCompilerBarrier();
+
+ /*
+ * We'll rebuild most of the middle block of data members (holding the
+ * current settings) as we go along here, so start by clearing it all.
+ */
+ pDbgState->bmXcptExtra = 0;
+ pDbgState->fCpe1Extra = 0;
+ pDbgState->fCpe1Unwanted = 0;
+ pDbgState->fCpe2Extra = 0;
+ for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
+ pDbgState->bmExitsToCheck[i] = 0;
+
+ /*
+ * Software interrupts (INT XXh) - no idea how to trigger these...
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
+ || VBOXVMM_INT_SOFTWARE_ENABLED())
+ {
+ ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
+ }
+
+ /*
+ * INT3 breakpoints - triggered by #BP exceptions.
+ */
+ if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
+ pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
+
+ /*
+ * Exception bitmap and XCPT events+probes.
+ */
+ for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
+ if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
+ pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
+
+ if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
+ if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
+ if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
+ if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
+ if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
+ if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
+ if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
+ if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
+ if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
+ if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
+ if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
+ if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
+ if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
+ if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
+ if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
+ if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
+ if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
+ if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
+
+ if (pDbgState->bmXcptExtra)
+ ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
+
+ /*
+ * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
+ *
+ * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
+ * So, when adding/changing/removing please don't forget to update it.
+ *
+ * Some of the macros are picking up local variables to save horizontal space,
+ * (being able to see it in a table is the lesser evil here).
+ */
+#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
+ ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
+ || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
+#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
+ if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
+ { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
+ ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
+ } else do { } while (0)
+#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
+ if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
+ { \
+ (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
+ AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
+ ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
+ } else do { } while (0)
+#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
+ if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
+ { \
+ (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
+ AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
+ ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
+ } else do { } while (0)
+#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
+ if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
+ { \
+ (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
+ AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
+ ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
+ } else do { } while (0)
+
+ SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
+ SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
+ SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
+
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
+ SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
+ SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
+ SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
+ SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
+
+ if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
+ || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
+ {
+ int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
+ AssertRC(rc);
+
+#if 0 /** @todo fix me */
+ pDbgState->fClearCr0Mask = true;
+ pDbgState->fClearCr4Mask = true;
+#endif
+ if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
+ pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
+ if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
+ pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
+ pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
+ /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
+ require clearing here and in the loop if we start using it. */
+ ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
+ }
+ else
+ {
+ if (pDbgState->fClearCr0Mask)
+ {
+ pDbgState->fClearCr0Mask = false;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
+ }
+ if (pDbgState->fClearCr4Mask)
+ {
+ pDbgState->fClearCr4Mask = false;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
+ }
+ }
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
+
+ if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
+ || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
+ {
+ /** @todo later, need to fix handler as it assumes this won't usually happen. */
+ ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
+ }
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
+
+ SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
+ SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
+ SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
+ SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
+#if 0 /** @todo too slow, fix handler. */
+ SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
+#endif
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
+
+ if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
+ || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
+ || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
+ || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
+ {
+ pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
+ ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
+ }
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
+
+ if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
+ || IS_EITHER_ENABLED(pVM, INSTR_STR)
+ || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
+ || IS_EITHER_ENABLED(pVM, INSTR_LTR))
+ {
+ pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
+ ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
+ }
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
+
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
+ SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
+ SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
+ SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
+ SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
+ SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
+ SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
+
+#undef IS_EITHER_ENABLED
+#undef SET_ONLY_XBM_IF_EITHER_EN
+#undef SET_CPE1_XBM_IF_EITHER_EN
+#undef SET_CPEU_XBM_IF_EITHER_EN
+#undef SET_CPE2_XBM_IF_EITHER_EN
+
+ /*
+ * Sanitize the control stuff.
+ */
+ pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
+ if (pDbgState->fCpe2Extra)
+ pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
+ pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
+ pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
+ if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
+ {
+ pVCpu->hm.s.fDebugWantRdTscExit ^= true;
+ pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
+ }
+
+ Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
+ pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
+ pDbgState->fClearCr0Mask ? " clr-cr0" : "",
+ pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
+}
+
+
+/**
+ * Fires off DBGF events and dtrace probes for a VM-exit, when it's
+ * appropriate.
+ *
+ * The caller has checked the VM-exit against the
+ * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
+ * already, so we don't have to do that either.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient Pointer to the VMX-transient structure.
+ * @param uExitReason The VM-exit reason.
+ *
+ * @remarks The name of this function is displayed by dtrace, so keep it short
+ * and to the point. No longer than 33 chars long, please.
+ */
+static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
+{
+ /*
+ * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
+ * same time check whether any corresponding Dtrace event is enabled (fDtrace).
+ *
+ * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
+ * does. Must add/change/remove both places. Same ordering, please.
+ *
+ * Added/removed events must also be reflected in the next section
+ * where we dispatch dtrace events.
+ */
+ bool fDtrace1 = false;
+ bool fDtrace2 = false;
+ DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
+ DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
+ uint32_t uEventArg = 0;
+#define SET_EXIT(a_EventSubName) \
+ do { \
+ enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
+ fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
+ } while (0)
+#define SET_BOTH(a_EventSubName) \
+ do { \
+ enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
+ enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
+ fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
+ fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
+ } while (0)
+ switch (uExitReason)
+ {
+ case VMX_EXIT_MTF:
+ return hmR0VmxExitMtf(pVCpu, pVmxTransient);
+
+ case VMX_EXIT_XCPT_OR_NMI:
+ {
+ uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
+ switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
+ {
+ case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
+ case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
+ case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
+ if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
+ {
+ if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
+ {
+ hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
+ uEventArg = pVmxTransient->uExitIntErrorCode;
+ }
+ enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
+ switch (enmEvent1)
+ {
+ case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
+ case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
+ case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
+ case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
+ case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
+ case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
+ case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
+ case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
+ case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
+ case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
+ case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
+ case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
+ case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
+ case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
+ case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
+ case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
+ case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
+ case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
+ default: break;
+ }
+ }
+ else
+ AssertFailed();
+ break;
+
+ case VMX_EXIT_INT_INFO_TYPE_SW_INT:
+ uEventArg = idxVector;
+ enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
+ fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
+ break;
+ }
+ break;
+ }
+
+ case VMX_EXIT_TRIPLE_FAULT:
+ enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
+ //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
+ break;
+ case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
+ case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
+ case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
+ case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
+ case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
+
+ /* Instruction specific VM-exits: */
+ case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
+ case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
+ case VMX_EXIT_HLT: SET_BOTH(HALT); break;
+ case VMX_EXIT_INVD: SET_BOTH(INVD); break;
+ case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
+ case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
+ case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
+ case VMX_EXIT_RSM: SET_BOTH(RSM); break;
+ case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
+ case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
+ case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
+ case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
+ case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
+ case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
+ case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
+ case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
+ case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
+ case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
+ case VMX_EXIT_MOV_CRX:
+ hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
+ SET_BOTH(CRX_READ);
+ else
+ SET_BOTH(CRX_WRITE);
+ uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
+ break;
+ case VMX_EXIT_MOV_DRX:
+ hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
+ == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
+ SET_BOTH(DRX_READ);
+ else
+ SET_BOTH(DRX_WRITE);
+ uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
+ break;
+ case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
+ case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
+ case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
+ case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
+ case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
+ case VMX_EXIT_GDTR_IDTR_ACCESS:
+ hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
+ switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
+ {
+ case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
+ case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
+ case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
+ case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
+ }
+ break;
+
+ case VMX_EXIT_LDTR_TR_ACCESS:
+ hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
+ switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
+ {
+ case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
+ case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
+ case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
+ case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
+ }
+ break;
+
+ case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
+ case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
+ case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
+ case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
+ case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
+ case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
+ case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
+ case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
+ case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
+ case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
+ case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
+
+ /* Events that aren't relevant at this point. */
+ case VMX_EXIT_EXT_INT:
+ case VMX_EXIT_INT_WINDOW:
+ case VMX_EXIT_NMI_WINDOW:
+ case VMX_EXIT_TPR_BELOW_THRESHOLD:
+ case VMX_EXIT_PREEMPT_TIMER:
+ case VMX_EXIT_IO_INSTR:
+ break;
+
+ /* Errors and unexpected events. */
+ case VMX_EXIT_INIT_SIGNAL:
+ case VMX_EXIT_SIPI:
+ case VMX_EXIT_IO_SMI:
+ case VMX_EXIT_SMI:
+ case VMX_EXIT_ERR_INVALID_GUEST_STATE:
+ case VMX_EXIT_ERR_MSR_LOAD:
+ case VMX_EXIT_ERR_MACHINE_CHECK:
+ break;
+
+ default:
+ AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
+ break;
+ }
+#undef SET_BOTH
+#undef SET_EXIT
+
+ /*
+ * Dtrace tracepoints go first. We do them here at once so we don't
+ * have to copy the guest state saving and stuff a few dozen times.
+ * Down side is that we've got to repeat the switch, though this time
+ * we use enmEvent since the probes are a subset of what DBGF does.
+ */
+ if (fDtrace1 || fDtrace2)
+ {
+ hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ switch (enmEvent1)
+ {
+ /** @todo consider which extra parameters would be helpful for each probe. */
+ case DBGFEVENT_END: break;
+ case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
+ case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
+ case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
+ case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
+ case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
+ case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
+ case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
+ case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
+ case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
+ case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
+ RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
+ case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
+ default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
+ }
+ switch (enmEvent2)
+ {
+ /** @todo consider which extra parameters would be helpful for each probe. */
+ case DBGFEVENT_END: break;
+ case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
+ case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
+ case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
+ RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
+ case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
+ default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
+ }
+ }
+
+ /*
+ * Fire of the DBGF event, if enabled (our check here is just a quick one,
+ * the DBGF call will do a full check).
+ *
+ * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
+ * Note! If we have to events, we prioritize the first, i.e. the instruction
+ * one, in order to avoid event nesting.
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if ( enmEvent1 != DBGFEVENT_END
+ && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
+ {
+ HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ }
+ else if ( enmEvent2 != DBGFEVENT_END
+ && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
+ {
+ HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Single-stepping VM-exit filtering.
+ *
+ * This is preprocessing the VM-exits and deciding whether we've gotten far
+ * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
+ * handling is performed.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pVmxTransient Pointer to the VMX-transient structure.
+ * @param pDbgState The debug state.
+ */
+DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
+{
+ /*
+ * Expensive (saves context) generic dtrace VM-exit probe.
+ */
+ uint32_t const uExitReason = pVmxTransient->uExitReason;
+ if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
+ { /* more likely */ }
+ else
+ {
+ hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRC(rc);
+ VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
+ }
+
+ /*
+ * Check for host NMI, just to get that out of the way.
+ */
+ if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
+ { /* normally likely */ }
+ else
+ {
+ int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
+ AssertRCReturn(rc2, rc2);
+ uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
+ if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
+ return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
+ }
+
+ /*
+ * Check for single stepping event if we're stepping.
+ */
+ if (pVCpu->hm.s.fSingleInstruction)
+ {
+ switch (uExitReason)
+ {
+ case VMX_EXIT_MTF:
+ return hmR0VmxExitMtf(pVCpu, pVmxTransient);
+
+ /* Various events: */
+ case VMX_EXIT_XCPT_OR_NMI:
+ case VMX_EXIT_EXT_INT:
+ case VMX_EXIT_TRIPLE_FAULT:
+ case VMX_EXIT_INT_WINDOW:
+ case VMX_EXIT_NMI_WINDOW:
+ case VMX_EXIT_TASK_SWITCH:
+ case VMX_EXIT_TPR_BELOW_THRESHOLD:
+ case VMX_EXIT_APIC_ACCESS:
+ case VMX_EXIT_EPT_VIOLATION:
+ case VMX_EXIT_EPT_MISCONFIG:
+ case VMX_EXIT_PREEMPT_TIMER:
+
+ /* Instruction specific VM-exits: */
+ case VMX_EXIT_CPUID:
+ case VMX_EXIT_GETSEC:
+ case VMX_EXIT_HLT:
+ case VMX_EXIT_INVD:
+ case VMX_EXIT_INVLPG:
+ case VMX_EXIT_RDPMC:
+ case VMX_EXIT_RDTSC:
+ case VMX_EXIT_RSM:
+ case VMX_EXIT_VMCALL:
+ case VMX_EXIT_VMCLEAR:
+ case VMX_EXIT_VMLAUNCH:
+ case VMX_EXIT_VMPTRLD:
+ case VMX_EXIT_VMPTRST:
+ case VMX_EXIT_VMREAD:
+ case VMX_EXIT_VMRESUME:
+ case VMX_EXIT_VMWRITE:
+ case VMX_EXIT_VMXOFF:
+ case VMX_EXIT_VMXON:
+ case VMX_EXIT_MOV_CRX:
+ case VMX_EXIT_MOV_DRX:
+ case VMX_EXIT_IO_INSTR:
+ case VMX_EXIT_RDMSR:
+ case VMX_EXIT_WRMSR:
+ case VMX_EXIT_MWAIT:
+ case VMX_EXIT_MONITOR:
+ case VMX_EXIT_PAUSE:
+ case VMX_EXIT_GDTR_IDTR_ACCESS:
+ case VMX_EXIT_LDTR_TR_ACCESS:
+ case VMX_EXIT_INVEPT:
+ case VMX_EXIT_RDTSCP:
+ case VMX_EXIT_INVVPID:
+ case VMX_EXIT_WBINVD:
+ case VMX_EXIT_XSETBV:
+ case VMX_EXIT_RDRAND:
+ case VMX_EXIT_INVPCID:
+ case VMX_EXIT_VMFUNC:
+ case VMX_EXIT_RDSEED:
+ case VMX_EXIT_XSAVES:
+ case VMX_EXIT_XRSTORS:
+ {
+ int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ AssertRCReturn(rc, rc);
+ if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
+ || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
+ return VINF_EM_DBG_STEPPED;
+ break;
+ }
+
+ /* Errors and unexpected events: */
+ case VMX_EXIT_INIT_SIGNAL:
+ case VMX_EXIT_SIPI:
+ case VMX_EXIT_IO_SMI:
+ case VMX_EXIT_SMI:
+ case VMX_EXIT_ERR_INVALID_GUEST_STATE:
+ case VMX_EXIT_ERR_MSR_LOAD:
+ case VMX_EXIT_ERR_MACHINE_CHECK:
+ case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
+ break;
+
+ default:
+ AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
+ break;
+ }
+ }
+
+ /*
+ * Check for debugger event breakpoints and dtrace probes.
+ */
+ if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
+ && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
+ {
+ VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
+ if (rcStrict != VINF_SUCCESS)
+ return rcStrict;
+ }
+
+ /*
+ * Normal processing.
+ */
+#ifdef HMVMX_USE_FUNCTION_TABLE
+ return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
+#else
+ return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
+#endif
+}
+
+
+/**
+ * Single steps guest code using VT-x.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
+ */
+static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu)
+{
+ VMXTRANSIENT VmxTransient;
+ VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
+
+ /* Set HMCPU indicators. */
+ bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
+ pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
+ pVCpu->hm.s.fDebugWantRdTscExit = false;
+ pVCpu->hm.s.fUsingDebugLoop = true;
+
+ /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
+ VMXRUNDBGSTATE DbgState;
+ hmR0VmxRunDebugStateInit(pVCpu, &DbgState);
+ hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
+
+ /*
+ * The loop.
+ */
+ VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
+ for (uint32_t cLoops = 0; ; cLoops++)
+ {
+ Assert(!HMR0SuspendPending());
+ HMVMX_ASSERT_CPU_SAFE(pVCpu);
+ bool fStepping = pVCpu->hm.s.fSingleInstruction;
+
+ /*
+ * Preparatory work for running guest code, this may force us to return
+ * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
+ */
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
+ hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
+ rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
+ if (rcStrict != VINF_SUCCESS)
+ break;
+
+ hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
+ hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
+
+ /*
+ * Now we can run the guest code.
+ */
+ int rcRun = hmR0VmxRunGuest(pVCpu);
+
+ /*
+ * Restore any residual host-state and save any bits shared between host
+ * and guest into the guest-CPU state. Re-enables interrupts!
+ */
+ hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
+
+ /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
+ if (RT_SUCCESS(rcRun))
+ { /* very likely */ }
+ else
+ {
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
+ hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
+ return rcRun;
+ }
+
+ /* Profile the VM-exit. */
+ AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
+ STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
+ HMVMX_START_EXIT_DISPATCH_PROF();
+
+ VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
+
+ /*
+ * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
+ */
+ rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
+ if (rcStrict != VINF_SUCCESS)
+ break;
+ if (cLoops > pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
+ rcStrict = VINF_EM_RAW_INTERRUPT;
+ break;
+ }
+
+ /*
+ * Stepping: Did the RIP change, if so, consider it a single step.
+ * Otherwise, make sure one of the TFs gets set.
+ */
+ if (fStepping)
+ {
+ int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ AssertRC(rc);
+ if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
+ || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
+ {
+ rcStrict = VINF_EM_DBG_STEPPED;
+ break;
+ }
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
+ }
+
+ /*
+ * Update when dtrace settings changes (DBGF kicks us, so no need to check).
+ */
+ if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
+ hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
+ }
+
+ /*
+ * Clear the X86_EFL_TF if necessary.
+ */
+ if (pVCpu->hm.s.fClearTrapFlag)
+ {
+ int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
+ AssertRC(rc);
+ pVCpu->hm.s.fClearTrapFlag = false;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
+ }
+ /** @todo there seems to be issues with the resume flag when the monitor trap
+ * flag is pending without being used. Seen early in bios init when
+ * accessing APIC page in protected mode. */
+
+ /*
+ * Restore VM-exit control settings as we may not reenter this function the
+ * next time around.
+ */
+ rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
+
+ /* Restore HMCPU indicators. */
+ pVCpu->hm.s.fUsingDebugLoop = false;
+ pVCpu->hm.s.fDebugWantRdTscExit = false;
+ pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
+ return rcStrict;
+}
+
+
+/** @} */
+
+
+/**
+ * Checks if any expensive dtrace probes are enabled and we should go to the
+ * debug loop.
+ *
+ * @returns true if we should use debug loop, false if not.
+ */
+static bool hmR0VmxAnyExpensiveProbesEnabled(void)
+{
+ /* It's probably faster to OR the raw 32-bit counter variables together.
+ Since the variables are in an array and the probes are next to one
+ another (more or less), we have good locality. So, better read
+ eight-nine cache lines ever time and only have one conditional, than
+ 128+ conditionals, right? */
+ return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
+ | VBOXVMM_XCPT_DE_ENABLED_RAW()
+ | VBOXVMM_XCPT_DB_ENABLED_RAW()
+ | VBOXVMM_XCPT_BP_ENABLED_RAW()
+ | VBOXVMM_XCPT_OF_ENABLED_RAW()
+ | VBOXVMM_XCPT_BR_ENABLED_RAW()
+ | VBOXVMM_XCPT_UD_ENABLED_RAW()
+ | VBOXVMM_XCPT_NM_ENABLED_RAW()
+ | VBOXVMM_XCPT_DF_ENABLED_RAW()
+ | VBOXVMM_XCPT_TS_ENABLED_RAW()
+ | VBOXVMM_XCPT_NP_ENABLED_RAW()
+ | VBOXVMM_XCPT_SS_ENABLED_RAW()
+ | VBOXVMM_XCPT_GP_ENABLED_RAW()
+ | VBOXVMM_XCPT_PF_ENABLED_RAW()
+ | VBOXVMM_XCPT_MF_ENABLED_RAW()
+ | VBOXVMM_XCPT_AC_ENABLED_RAW()
+ | VBOXVMM_XCPT_XF_ENABLED_RAW()
+ | VBOXVMM_XCPT_VE_ENABLED_RAW()
+ | VBOXVMM_XCPT_SX_ENABLED_RAW()
+ | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
+ | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
+ ) != 0
+ || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
+ | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
+ | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
+ | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
+ | VBOXVMM_INSTR_INVD_ENABLED_RAW()
+ | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
+ | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
+ | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
+ | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
+ | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
+ | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
+ | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
+ | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
+ | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
+ | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_STR_ENABLED_RAW()
+ | VBOXVMM_INSTR_LTR_ENABLED_RAW()
+ | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
+ | VBOXVMM_INSTR_RSM_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
+ | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
+ | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
+ ) != 0
+ || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
+ | VBOXVMM_EXIT_HALT_ENABLED_RAW()
+ | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
+ | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
+ | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
+ | VBOXVMM_EXIT_INVD_ENABLED_RAW()
+ | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
+ | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
+ | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
+ | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
+ | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
+ | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
+ | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
+ | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
+ | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
+ | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_STR_ENABLED_RAW()
+ | VBOXVMM_EXIT_LTR_ENABLED_RAW()
+ | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
+ | VBOXVMM_EXIT_RSM_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
+ | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
+ | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
+ ) != 0;
+}
+
+
+/**
+ * Runs the guest code using VT-x.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
+{
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
+ HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
+
+ VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
+
+ VBOXSTRICTRC rcStrict;
+ if ( !pVCpu->hm.s.fUseDebugLoop
+ && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
+ && !DBGFIsStepping(pVCpu)
+ && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
+ rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu);
+ else
+ rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu);
+
+ if (rcStrict == VERR_EM_INTERPRETER)
+ rcStrict = VINF_EM_RAW_EMULATE_INSTR;
+ else if (rcStrict == VINF_EM_RESET)
+ rcStrict = VINF_EM_TRIPLE_FAULT;
+
+ int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
+ if (RT_FAILURE(rc2))
+ {
+ pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
+ rcStrict = rc2;
+ }
+ Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
+ Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
+ return rcStrict;
+}
+
+
+#ifndef HMVMX_USE_FUNCTION_TABLE
+DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
+{
+#ifdef DEBUG_ramshankar
+#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
+ do { \
+ if (a_fSave != 0) \
+ hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
+ VBOXSTRICTRC rcStrict = a_CallExpr; \
+ if (a_fSave != 0) \
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
+ return rcStrict; \
+ } while (0)
+#else
+# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
+#endif
+ switch (rcReason)
+ {
+ case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
+ case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
+ case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
+ case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
+ case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
+ case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
+ case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
+ case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
+ case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
+ case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
+ case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
+ case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
+ case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
+ case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
+ case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
+ case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
+ case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
+ case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
+ case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
+ case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
+ case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
+ case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
+ case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
+ case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
+ case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
+ case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
+ case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
+ case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
+ case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
+ case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
+ case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
+ case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
+ case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
+ case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+ case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
+ case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
+ case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
+ case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
+ case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
+ case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
+ case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
+ case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
+ case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
+#else
+ case VMX_EXIT_VMCLEAR:
+ case VMX_EXIT_VMLAUNCH:
+ case VMX_EXIT_VMPTRLD:
+ case VMX_EXIT_VMPTRST:
+ case VMX_EXIT_VMREAD:
+ case VMX_EXIT_VMRESUME:
+ case VMX_EXIT_VMWRITE:
+ case VMX_EXIT_VMXOFF:
+ case VMX_EXIT_VMXON:
+ return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
+#endif
+
+ case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
+ case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
+ case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
+ case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
+ case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
+ case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
+ case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
+ case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
+ case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
+
+ case VMX_EXIT_INVEPT:
+ case VMX_EXIT_INVVPID:
+ case VMX_EXIT_VMFUNC:
+ case VMX_EXIT_XSAVES:
+ case VMX_EXIT_XRSTORS:
+ return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
+
+ case VMX_EXIT_ENCLS:
+ case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
+ case VMX_EXIT_PML_FULL:
+ default:
+ return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
+ }
+#undef VMEXIT_CALL_RET
+}
+#endif /* !HMVMX_USE_FUNCTION_TABLE */
+
+
+#ifdef VBOX_STRICT
+/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
+# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
+ RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
+
+# define HMVMX_ASSERT_PREEMPT_CPUID() \
+ do { \
+ RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
+ AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
+ } while (0)
+
+# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
+ do { \
+ AssertPtr((a_pVCpu)); \
+ AssertPtr((a_pVmxTransient)); \
+ Assert((a_pVmxTransient)->fVMEntryFailed == false); \
+ Assert(ASMIntAreEnabled()); \
+ HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
+ HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
+ Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
+ HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
+ if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
+ HMVMX_ASSERT_PREEMPT_CPUID(); \
+ HMVMX_STOP_EXIT_DISPATCH_PROF(); \
+ } while (0)
+
+# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
+ do { \
+ Log4Func(("\n")); \
+ } while (0)
+#else
+# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
+ do { \
+ HMVMX_STOP_EXIT_DISPATCH_PROF(); \
+ NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
+ } while (0)
+# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
+#endif
+
+
+/**
+ * Advances the guest RIP by the specified number of bytes.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cbInstr Number of bytes to advance the RIP by.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
+{
+ /* Advance the RIP. */
+ pVCpu->cpum.GstCtx.rip += cbInstr;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
+
+ /* Update interrupt inhibition. */
+ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
+ && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+}
+
+
+/**
+ * Advances the guest RIP after reading it from the VMCS.
+ *
+ * @returns VBox status code, no informational status codes.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient Pointer to the VMX transient structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
+ AssertRCReturn(rc, rc);
+
+ hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Tries to determine what part of the guest-state VT-x has deemed as invalid
+ * and update error record fields accordingly.
+ *
+ * @return VMX_IGS_* return codes.
+ * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
+ * wrong with the guest state.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks This function assumes our cache of the VMCS controls
+ * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
+ */
+static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu)
+{
+#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
+#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
+ uError = (err); \
+ break; \
+ } else do { } while (0)
+
+ int rc;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ uint32_t uError = VMX_IGS_ERROR;
+ uint32_t u32Val;
+ bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
+
+ do
+ {
+ /*
+ * CR0.
+ */
+ uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
+ uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
+ /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
+ See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
+ if (fUnrestrictedGuest)
+ fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
+
+ uint32_t u32GuestCr0;
+ rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
+ HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
+ if ( !fUnrestrictedGuest
+ && (u32GuestCr0 & X86_CR0_PG)
+ && !(u32GuestCr0 & X86_CR0_PE))
+ {
+ HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
+ }
+
+ /*
+ * CR4.
+ */
+ uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
+ uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
+
+ uint32_t u32GuestCr4;
+ rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
+ HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
+
+ /*
+ * IA32_DEBUGCTL MSR.
+ */
+ uint64_t u64Val;
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
+ AssertRCBreak(rc);
+ if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
+ && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
+ {
+ HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
+ }
+ uint64_t u64DebugCtlMsr = u64Val;
+
+#ifdef VBOX_STRICT
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
+ AssertRCBreak(rc);
+ Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
+#endif
+ bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
+
+ /*
+ * RIP and RFLAGS.
+ */
+ uint32_t u32Eflags;
+#if HC_ARCH_BITS == 64
+ rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
+ AssertRCBreak(rc);
+ /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
+ if ( !fLongModeGuest
+ || !pCtx->cs.Attr.n.u1Long)
+ {
+ HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
+ }
+ /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
+ * must be identical if the "IA-32e mode guest" VM-entry
+ * control is 1 and CS.L is 1. No check applies if the
+ * CPU supports 64 linear-address bits. */
+
+ /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
+ rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
+ VMX_IGS_RFLAGS_RESERVED);
+ HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
+ u32Eflags = u64Val;
+#else
+ rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
+ HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
+#endif
+
+ if ( fLongModeGuest
+ || ( fUnrestrictedGuest
+ && !(u32GuestCr0 & X86_CR0_PE)))
+ {
+ HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
+ }
+
+ uint32_t u32EntryInfo;
+ rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
+ AssertRCBreak(rc);
+ if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
+ && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
+ {
+ HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
+ }
+
+ /*
+ * 64-bit checks.
+ */
+#if HC_ARCH_BITS == 64
+ if (fLongModeGuest)
+ {
+ HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
+ HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
+ }
+
+ if ( !fLongModeGuest
+ && (u32GuestCr4 & X86_CR4_PCIDE))
+ {
+ HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
+ }
+
+ /** @todo CR3 field must be such that bits 63:52 and bits in the range
+ * 51:32 beyond the processor's physical-address width are 0. */
+
+ if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
+ && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
+ {
+ HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
+ }
+
+ rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
+
+ rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
+#endif
+
+ /*
+ * PERF_GLOBAL MSR.
+ */
+ if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
+ {
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
+ VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
+ }
+
+ /*
+ * PAT MSR.
+ */
+ if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
+ {
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
+ for (unsigned i = 0; i < 8; i++)
+ {
+ uint8_t u8Val = (u64Val & 0xff);
+ if ( u8Val != 0 /* UC */
+ && u8Val != 1 /* WC */
+ && u8Val != 4 /* WT */
+ && u8Val != 5 /* WP */
+ && u8Val != 6 /* WB */
+ && u8Val != 7 /* UC- */)
+ {
+ HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
+ }
+ u64Val >>= 8;
+ }
+ }
+
+ /*
+ * EFER MSR.
+ */
+ if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
+ {
+ Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
+ VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
+ HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
+ & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
+ VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
+ /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
+ * iemVmxVmentryCheckGuestState(). */
+ HMVMX_CHECK_BREAK( fUnrestrictedGuest
+ || !(u32GuestCr0 & X86_CR0_PG)
+ || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
+ VMX_IGS_EFER_LMA_LME_MISMATCH);
+ }
+
+ /*
+ * Segment registers.
+ */
+ HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
+ || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
+ if (!(u32Eflags & X86_EFL_VM))
+ {
+ /* CS */
+ HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
+ HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
+ || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
+ /* CS cannot be loaded with NULL in protected mode. */
+ HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
+ HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
+ if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
+ HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
+ else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
+ HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
+ else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
+ HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
+ else
+ HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
+
+ /* SS */
+ HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
+ || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
+ HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
+ if ( !(pCtx->cr0 & X86_CR0_PE)
+ || pCtx->cs.Attr.n.u4Type == 3)
+ {
+ HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
+ }
+ if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
+ HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
+ || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
+ }
+
+ /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmenReg(). */
+ if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
+ HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
+ || pCtx->ds.Attr.n.u4Type > 11
+ || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
+ HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
+ || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
+ || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
+ }
+ if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
+ HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
+ || pCtx->es.Attr.n.u4Type > 11
+ || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
+ HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
+ || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
+ || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
+ }
+ if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
+ HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
+ || pCtx->fs.Attr.n.u4Type > 11
+ || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
+ HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
+ || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
+ || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
+ }
+ if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
+ {
+ HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
+ HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
+ || pCtx->gs.Attr.n.u4Type > 11
+ || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
+ HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
+ HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
+ || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
+ || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
+ }
+ /* 64-bit capable CPUs. */
+#if HC_ARCH_BITS == 64
+ HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
+ HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
+ HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
+ || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
+ HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
+ HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
+ VMX_IGS_LONGMODE_SS_BASE_INVALID);
+ HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
+ VMX_IGS_LONGMODE_DS_BASE_INVALID);
+ HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
+ VMX_IGS_LONGMODE_ES_BASE_INVALID);
+#endif
+ }
+ else
+ {
+ /* V86 mode checks. */
+ uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ u32CSAttr = 0xf3; u32SSAttr = 0xf3;
+ u32DSAttr = 0xf3; u32ESAttr = 0xf3;
+ u32FSAttr = 0xf3; u32GSAttr = 0xf3;
+ }
+ else
+ {
+ u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
+ u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
+ u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
+ }
+
+ /* CS */
+ HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
+ HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
+ /* SS */
+ HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
+ HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
+ /* DS */
+ HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
+ HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
+ /* ES */
+ HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
+ HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
+ /* FS */
+ HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
+ HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
+ /* GS */
+ HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
+ HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
+ /* 64-bit capable CPUs. */
+#if HC_ARCH_BITS == 64
+ HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
+ HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
+ HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
+ || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
+ HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
+ HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
+ VMX_IGS_LONGMODE_SS_BASE_INVALID);
+ HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
+ VMX_IGS_LONGMODE_DS_BASE_INVALID);
+ HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
+ VMX_IGS_LONGMODE_ES_BASE_INVALID);
+#endif
+ }
+
+ /*
+ * TR.
+ */
+ HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
+ /* 64-bit capable CPUs. */
+#if HC_ARCH_BITS == 64
+ HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
+#endif
+ if (fLongModeGuest)
+ {
+ HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
+ VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
+ }
+ else
+ {
+ HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
+ || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
+ VMX_IGS_TR_ATTR_TYPE_INVALID);
+ }
+ HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
+ HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
+ HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
+ HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
+ || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
+ || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
+ HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
+
+ /*
+ * GDTR and IDTR.
+ */
+#if HC_ARCH_BITS == 64
+ rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
+
+ rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
+#endif
+
+ rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
+
+ rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
+
+ /*
+ * Guest Non-Register State.
+ */
+ /* Activity State. */
+ uint32_t u32ActivityState;
+ rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK( !u32ActivityState
+ || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
+ VMX_IGS_ACTIVITY_STATE_INVALID);
+ HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
+ || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
+ uint32_t u32IntrState;
+ rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
+ AssertRCBreak(rc);
+ if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
+ || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
+ {
+ HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
+ }
+
+ /** @todo Activity state and injecting interrupts. Left as a todo since we
+ * currently don't use activity states but ACTIVE. */
+
+ HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
+ || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
+
+ /* Guest interruptibility-state. */
+ HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
+ HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
+ != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
+ VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
+ HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
+ || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
+ VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
+ if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
+ {
+ if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
+ {
+ HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
+ && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
+ VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
+ }
+ else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
+ {
+ HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
+ VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
+ HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
+ VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
+ }
+ }
+ /** @todo Assumes the processor is not in SMM. */
+ HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
+ VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
+ HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
+ || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
+ VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
+ if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
+ && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
+ && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
+ {
+ HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
+ VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
+ }
+
+ /* Pending debug exceptions. */
+#if HC_ARCH_BITS == 64
+ rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
+ AssertRCBreak(rc);
+ /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
+ HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
+ u32Val = u64Val; /* For pending debug exceptions checks below. */
+#else
+ rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
+ AssertRCBreak(rc);
+ /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
+ HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
+#endif
+
+ if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
+ || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
+ || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
+ {
+ if ( (u32Eflags & X86_EFL_TF)
+ && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
+ {
+ /* Bit 14 is PendingDebug.BS. */
+ HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
+ }
+ if ( !(u32Eflags & X86_EFL_TF)
+ || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
+ {
+ /* Bit 14 is PendingDebug.BS. */
+ HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
+ }
+ }
+
+ /* VMCS link pointer. */
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
+ AssertRCBreak(rc);
+ if (u64Val != UINT64_C(0xffffffffffffffff))
+ {
+ HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
+ /** @todo Bits beyond the processor's physical-address width MBZ. */
+ /** @todo 32-bit located in memory referenced by value of this field (as a
+ * physical address) must contain the processor's VMCS revision ID. */
+ /** @todo SMM checks. */
+ }
+
+ /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
+ * not using Nested Paging? */
+ if ( pVM->hm.s.fNestedPaging
+ && !fLongModeGuest
+ && CPUMIsGuestInPAEModeEx(pCtx))
+ {
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
+
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
+
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
+
+ rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
+ AssertRCBreak(rc);
+ HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
+ }
+
+ /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
+ if (uError == VMX_IGS_ERROR)
+ uError = VMX_IGS_REASON_NOT_FOUND;
+ } while (0);
+
+ pVCpu->hm.s.u32HMError = uError;
+ return uError;
+
+#undef HMVMX_ERROR_BREAK
+#undef HMVMX_CHECK_BREAK
+}
+
+
+/** @name VM-exit handlers.
+ * @{
+ */
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+
+/**
+ * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
+ */
+HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
+ /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
+ if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
+ return VINF_SUCCESS;
+ return VINF_EM_RAW_INTERRUPT;
+}
+
+
+/**
+ * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
+ */
+HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
+
+ int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
+ Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
+ && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
+ Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
+
+ if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
+ {
+ /*
+ * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
+ * injected it ourselves and anything we inject is not going to cause a VM-exit directly
+ * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
+ *
+ * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
+ * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
+ */
+ VMXDispatchHostNmi();
+ STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
+ return VINF_SUCCESS;
+ }
+
+ /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
+ VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
+ if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
+ { /* likely */ }
+ else
+ {
+ if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
+ rcStrictRc1 = VINF_SUCCESS;
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
+ return rcStrictRc1;
+ }
+
+ uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
+ uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
+ switch (uIntType)
+ {
+ case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
+ Assert(uVector == X86_XCPT_DB);
+ RT_FALL_THRU();
+ case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
+ Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
+ RT_FALL_THRU();
+ case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
+ {
+ /*
+ * If there's any exception caused as a result of event injection, the resulting
+ * secondary/final execption will be pending, we shall continue guest execution
+ * after injecting the event. The page-fault case is complicated and we manually
+ * handle any currently pending event in hmR0VmxExitXcptPF.
+ */
+ if (!pVCpu->hm.s.Event.fPending)
+ { /* likely */ }
+ else if (uVector != X86_XCPT_PF)
+ {
+ rc = VINF_SUCCESS;
+ break;
+ }
+
+ switch (uVector)
+ {
+ case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
+ case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
+ case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
+ case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
+ case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
+ case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
+
+ case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
+ rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
+ case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
+ rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
+ case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
+ rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
+ case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
+ rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
+ case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
+ rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
+ case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
+ rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
+ case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
+ rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
+ default:
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ {
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
+ Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
+ Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
+
+ rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
+ pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
+ 0 /* GCPtrFaultAddress */);
+ }
+ else
+ {
+ AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
+ pVCpu->hm.s.u32HMError = uVector;
+ rc = VERR_VMX_UNEXPECTED_EXCEPTION;
+ }
+ break;
+ }
+ }
+ break;
+ }
+
+ default:
+ {
+ pVCpu->hm.s.u32HMError = uExitIntInfo;
+ rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
+ AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
+ break;
+ }
+ }
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
+ return rc;
+}
+
+
+/**
+ * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
+ hmR0VmxClearIntWindowExitVmcs(pVCpu);
+
+ /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)))
+ {
+ AssertMsgFailed(("Unexpected NMI-window exit.\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+ }
+
+ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS));
+
+ /*
+ * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
+ * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
+ */
+ uint32_t fIntrState = 0;
+ int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
+ AssertRCReturn(rc, rc);
+ Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
+ if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
+ {
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
+
+ fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
+ rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
+ AssertRCReturn(rc, rc);
+ }
+
+ /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
+ hmR0VmxClearNmiWindowExitVmcs(pVCpu);
+
+ /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /*
+ * Get the state we need and update the exit history entry.
+ */
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
+ AssertRCReturn(rc, rc);
+
+ VBOXSTRICTRC rcStrict;
+ PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
+ EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
+ pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
+ if (!pExitRec)
+ {
+ /*
+ * Regular CPUID instruction execution.
+ */
+ rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
+ if (rcStrict == VINF_SUCCESS)
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ }
+ else
+ {
+ /*
+ * Frequent exit or something needing probing. Get state and call EMHistoryExec.
+ */
+ int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRCReturn(rc2, rc2);
+
+ Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
+
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+
+ Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ }
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4);
+ AssertRCReturn(rc, rc);
+
+ if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
+ return VINF_EM_RAW_EMULATE_INSTR;
+
+ AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ {
+ /* If we get a spurious VM-exit when offsetting is enabled,
+ we must reset offsetting on VM-reentry. See @bugref{6634}. */
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
+ pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ {
+ /* If we get a spurious VM-exit when offsetting is enabled,
+ we must reset offsetting on VM-reentry. See @bugref{6634}. */
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
+ pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
+ AssertRCReturn(rc, rc);
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+ Assert(pVmxTransient->cbInstr == 2);
+ }
+ else
+ {
+ AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
+ rc = VERR_EM_INTERPRETER;
+ }
+ return rc;
+}
+
+
+/**
+ * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
+ if (EMAreHypercallInstructionsEnabled(pVCpu))
+ {
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
+ | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
+ AssertRCReturn(rc, rc);
+
+ /* Perform the hypercall. */
+ rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+ }
+ else
+ Assert( rcStrict == VINF_GIM_R3_HYPERCALL
+ || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
+ || RT_FAILURE(rcStrict));
+
+ /* If the hypercall changes anything other than guest's general-purpose registers,
+ we would need to reload the guest changed bits here before VM-entry. */
+ }
+ else
+ Log4Func(("Hypercalls not enabled\n"));
+
+ /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
+ if (RT_FAILURE(rcStrict))
+ {
+ hmR0VmxSetPendingXcptUD(pVCpu);
+ rcStrict = VINF_SUCCESS;
+ }
+
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
+
+ int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
+ AssertRCReturn(rc, rc);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
+
+ if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ else
+ AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
+ VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
+ AssertRCReturn(rc, rc);
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+ else
+ {
+ AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
+ rc = VERR_EM_INTERPRETER;
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
+ return rc;
+}
+
+
+/**
+ * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
+ AssertRCReturn(rc, rc);
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
+ rc = VBOXSTRICTRC_VAL(rc2);
+ if (RT_LIKELY( rc == VINF_SUCCESS
+ || rc == VINF_EM_HALT))
+ {
+ int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+ AssertRCReturn(rc3, rc3);
+
+ if ( rc == VINF_EM_HALT
+ && EMMonitorWaitShouldContinue(pVCpu, pCtx))
+ rc = VINF_SUCCESS;
+ }
+ else
+ {
+ AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
+ rc = VERR_EM_INTERPRETER;
+ }
+ AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
+ ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
+ return rc;
+}
+
+
+/**
+ * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ /*
+ * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
+ * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
+ * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
+ * VMX root operation. If we get here, something funny is going on.
+ *
+ * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
+ */
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ AssertMsgFailed(("Unexpected RSM VM-exit\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ /*
+ * This can only happen if we support dual-monitor treatment of SMI, which can be activated
+ * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
+ * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
+ * an SMI. If we get here, something funny is going on.
+ *
+ * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
+ * See Intel spec. 25.3 "Other Causes of VM-Exits"
+ */
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ AssertMsgFailed(("Unexpected SMI VM-exit\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ /*
+ * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
+ * We don't make use of it as our guests don't have direct access to the host LAPIC.
+ * See Intel spec. 25.3 "Other Causes of VM-exits".
+ */
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
+ * VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ /*
+ * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
+ * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
+ *
+ * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
+ * See Intel spec. "23.8 Restrictions on VMX operation".
+ */
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
+ * VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ return VINF_EM_RESET;
+}
+
+
+/**
+ * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_HLT_EXIT);
+
+ int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RFLAGS);
+ AssertRCReturn(rc, rc);
+
+ if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
+ rc = VINF_SUCCESS;
+ else
+ rc = VINF_EM_HALT;
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
+ if (rc != VINF_SUCCESS)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
+ return rc;
+}
+
+
+/**
+ * VM-exit handler for instructions that result in a \#UD exception delivered to
+ * the guest.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ hmR0VmxSetPendingXcptUD(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VM-exit handler for expiry of the VMX preemption timer.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
+ pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
+
+ /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
+ return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
+}
+
+
+/**
+ * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
+ AssertRCReturn(rc, rc);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
+ : HM_CHANGED_RAISED_XCPT_MASK);
+
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
+
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ /** @todo Use VM-exit instruction information. */
+ return VERR_EM_INTERPRETER;
+}
+
+
+/**
+ * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
+ * Error VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRCReturn(rc, rc);
+ rc = hmR0VmxCheckVmcsCtls(pVCpu);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
+ NOREF(uInvalidReason);
+
+#ifdef VBOX_STRICT
+ uint32_t fIntrState;
+ RTHCUINTREG uHCReg;
+ uint64_t u64Val;
+ uint32_t u32Val;
+
+ rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
+ rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
+ rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
+ AssertRCReturn(rc, rc);
+
+ Log4(("uInvalidReason %u\n", uInvalidReason));
+ Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
+ Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
+ Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
+ Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
+
+ rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
+ Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
+ rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
+ Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
+ Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
+ Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
+ rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
+ Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
+ rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
+ Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
+
+ hmR0DumpRegs(pVCpu);
+#else
+ NOREF(pVmxTransient);
+#endif
+
+ return VERR_VMX_INVALID_GUEST_STATE;
+}
+
+
+/**
+ * VM-exit handler for VM-entry failure due to an MSR-load
+ * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ AssertMsgFailed(("Unexpected MSR-load exit\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for VM-entry failure due to a machine-check event
+ * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ AssertMsgFailed(("Unexpected machine-check event exit\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for all undefined reasons. Should never ever happen.. in
+ * theory.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ RT_NOREF2(pVCpu, pVmxTransient);
+ AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
+ return VERR_VMX_UNDEFINED_EXIT_CODE;
+}
+
+
+/**
+ * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
+ * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
+ * Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
+ if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
+ return VERR_EM_INTERPRETER;
+ AssertMsgFailed(("Unexpected XDTR access\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
+ if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
+ return VERR_EM_INTERPRETER;
+ AssertMsgFailed(("Unexpected RDRAND exit\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
+ */
+HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /** @todo Optimize this: We currently drag in in the whole MSR state
+ * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
+ * MSRs required. That would require changes to IEM and possibly CPUM too.
+ * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
+ uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
+ switch (idMsr)
+ {
+ /* The FS and GS base MSRs are not part of the above all-MSRs mask. */
+ case MSR_K8_FS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_FS); break;
+ case MSR_K8_GS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_GS); break;
+ }
+ AssertRCReturn(rc, rc);
+
+ Log4Func(("ecx=%#RX32\n", idMsr));
+
+#ifdef VBOX_STRICT
+ if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
+ {
+ if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr)
+ && idMsr != MSR_K6_EFER)
+ {
+ AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+ }
+ if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
+ {
+ VMXMSREXITREAD enmRead;
+ VMXMSREXITWRITE enmWrite;
+ int rc2 = HMGetVmxMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
+ AssertRCReturn(rc2, rc2);
+ if (enmRead == VMXMSREXIT_PASSTHRU_READ)
+ {
+ AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+ }
+ }
+ }
+#endif
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
+ if (rcStrict == VINF_SUCCESS)
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
+ | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ else
+ AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
+ */
+HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /** @todo Optimize this: We currently drag in in the whole MSR state
+ * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
+ * MSRs required. That would require changes to IEM and possibly CPUM too.
+ * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
+ uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK
+ | CPUMCTX_EXTRN_ALL_MSRS);
+ switch (idMsr)
+ {
+ /*
+ * The FS and GS base MSRs are not part of the above all-MSRs mask.
+ *
+ * Although we don't need to fetch the base as it will be overwritten shortly, while
+ * loading guest-state we would also load the entire segment register including limit
+ * and attributes and thus we need to load them here.
+ */
+ case MSR_K8_FS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_FS); break;
+ case MSR_K8_GS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_GS); break;
+ }
+ AssertRCReturn(rc, rc);
+
+ Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
+
+ if (rcStrict == VINF_SUCCESS)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
+
+ /* If this is an X2APIC WRMSR access, update the APIC state as well. */
+ if ( idMsr == MSR_IA32_APICBASE
+ || ( idMsr >= MSR_IA32_X2APIC_START
+ && idMsr <= MSR_IA32_X2APIC_END))
+ {
+ /*
+ * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
+ * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before IEM changes it.
+ */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
+ }
+ else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
+ pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
+ else if (idMsr == MSR_K6_EFER)
+ {
+ /*
+ * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
+ * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
+ * the other bits as well, SCE and NXE. See @bugref{7368}.
+ */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS
+ | HM_CHANGED_VMX_EXIT_CTLS);
+ }
+
+ /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
+ if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
+ {
+ switch (idMsr)
+ {
+ case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
+ case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
+ case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
+ case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
+ case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
+ case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
+ default:
+ {
+ if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
+ else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
+ break;
+ }
+ }
+ }
+#ifdef VBOX_STRICT
+ else
+ {
+ /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
+ switch (idMsr)
+ {
+ case MSR_IA32_SYSENTER_CS:
+ case MSR_IA32_SYSENTER_EIP:
+ case MSR_IA32_SYSENTER_ESP:
+ case MSR_K8_FS_BASE:
+ case MSR_K8_GS_BASE:
+ {
+ AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+ }
+
+ /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
+ default:
+ {
+ if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
+ {
+ /* EFER writes are always intercepted, see hmR0VmxExportGuestMsrs(). */
+ if (idMsr != MSR_K6_EFER)
+ {
+ AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
+ idMsr));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+ }
+ }
+
+ if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
+ {
+ VMXMSREXITREAD enmRead;
+ VMXMSREXITWRITE enmWrite;
+ int rc2 = HMGetVmxMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
+ AssertRCReturn(rc2, rc2);
+ if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
+ {
+ AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+ }
+ }
+ break;
+ }
+ }
+ }
+#endif /* VBOX_STRICT */
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ else
+ AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
+
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ /** @todo The guest has likely hit a contended spinlock. We might want to
+ * poke a schedule different guest VCPU. */
+ return VINF_EM_RAW_INTERRUPT;
+}
+
+
+/**
+ * VM-exit handler for when the TPR value is lowered below the specified
+ * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
+ */
+HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
+
+ /*
+ * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
+ * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
+ */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
+ * VM-exit.
+ *
+ * @retval VINF_SUCCESS when guest execution can continue.
+ * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
+ * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
+ * interpreter.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
+
+ int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ AssertRCReturn(rc, rc);
+
+ VBOXSTRICTRC rcStrict;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
+ uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
+ switch (uAccessType)
+ {
+ case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
+ {
+ uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
+ rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
+ VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
+ AssertMsg( rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_IEM_RAISED_XCPT
+ || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+
+ switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
+ {
+ case 0:
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
+ HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
+ Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
+
+ /*
+ * This is a kludge for handling switches back to real mode when we try to use
+ * V86 mode to run real mode code directly. Problem is that V86 mode cannot
+ * deal with special selector values, so we have to return to ring-3 and run
+ * there till the selector values are V86 mode compatible.
+ *
+ * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
+ * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
+ * at the end of this function.
+ */
+ if ( rc == VINF_SUCCESS
+ && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
+ && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
+ && (uOldCr0 & X86_CR0_PE)
+ && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
+ {
+ /** @todo check selectors rather than returning all the time. */
+ Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
+ rcStrict = VINF_EM_RESCHEDULE_REM;
+ }
+ break;
+ }
+
+ case 2:
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
+ /* Nothing to do here, CR2 it's not part of the VMCS. */
+ break;
+ }
+
+ case 3:
+ {
+ Assert( !pVM->hm.s.fNestedPaging
+ || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
+ || pVCpu->hm.s.fUsingDebugLoop);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
+ HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
+ Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
+ break;
+ }
+
+ case 4:
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
+ HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
+ Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
+ pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
+ break;
+ }
+
+ case 8:
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
+ Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
+ HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
+ break;
+ }
+ default:
+ AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
+ break;
+ }
+ break;
+ }
+
+ case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
+ {
+ Assert( !pVM->hm.s.fNestedPaging
+ || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
+ || pVCpu->hm.s.fUsingDebugLoop
+ || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
+ /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
+ Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
+ || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
+
+ rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
+ VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
+ AssertMsg( rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+#ifdef VBOX_WITH_STATISTICS
+ switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
+ {
+ case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
+ case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
+ case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
+ case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
+ case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
+ }
+#endif
+ Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
+ VBOXSTRICTRC_VAL(rcStrict)));
+ if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
+ else
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
+ break;
+ }
+
+ case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
+ {
+ rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
+ AssertMsg( rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
+ Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
+ break;
+ }
+
+ case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
+ {
+ /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
+ rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+ rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
+ pVmxTransient->uGuestLinearAddr);
+ AssertMsg( rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_IEM_RAISED_XCPT
+ , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
+ Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
+ break;
+ }
+
+ default:
+ AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
+ VERR_VMX_UNEXPECTED_EXCEPTION);
+ }
+
+ Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
+ == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
+ NOREF(pVM);
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
+ * VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER);
+ /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
+ AssertRCReturn(rc, rc);
+
+ /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
+ uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
+ uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
+ bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
+ bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
+ bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
+ bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
+ AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
+
+ /*
+ * Update exit history to see if this exit can be optimized.
+ */
+ VBOXSTRICTRC rcStrict;
+ PCEMEXITREC pExitRec = NULL;
+ if ( !fGstStepping
+ && !fDbgStepping)
+ pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
+ !fIOString
+ ? !fIOWrite
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
+ : !fIOWrite
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
+ pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
+ if (!pExitRec)
+ {
+ /* I/O operation lookup arrays. */
+ static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
+ static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
+ uint32_t const cbValue = s_aIOSizes[uIOWidth];
+ uint32_t const cbInstr = pVmxTransient->cbInstr;
+ bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if (fIOString)
+ {
+ /*
+ * INS/OUTS - I/O String instruction.
+ *
+ * Use instruction-information if available, otherwise fall back on
+ * interpreting the instruction.
+ */
+ Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
+ AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
+ bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
+ if (fInsOutsInfo)
+ {
+ int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
+ AssertRCReturn(rc2, rc2);
+ AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
+ AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
+ IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
+ bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
+ if (fIOWrite)
+ rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
+ pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
+ else
+ {
+ /*
+ * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
+ * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
+ * See Intel Instruction spec. for "INS".
+ * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
+ */
+ rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
+ }
+ }
+ else
+ rcStrict = IEMExecOne(pVCpu);
+
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
+ fUpdateRipAlready = true;
+ }
+ else
+ {
+ /*
+ * IN/OUT - I/O instruction.
+ */
+ Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
+ uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
+ Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
+ if (fIOWrite)
+ {
+ rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
+ if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
+ && !pCtx->eflags.Bits.u1TF)
+ rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
+ }
+ else
+ {
+ uint32_t u32Result = 0;
+ rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
+ if (IOM_SUCCESS(rcStrict))
+ {
+ /* Save result of I/O IN instr. in AL/AX/EAX. */
+ pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
+ }
+ if ( rcStrict == VINF_IOM_R3_IOPORT_READ
+ && !pCtx->eflags.Bits.u1TF)
+ rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
+ }
+ }
+
+ if (IOM_SUCCESS(rcStrict))
+ {
+ if (!fUpdateRipAlready)
+ {
+ hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
+ }
+
+ /*
+ * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
+ * while booting Fedora 17 64-bit guest.
+ *
+ * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
+ */
+ if (fIOString)
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
+
+ /*
+ * If any I/O breakpoints are armed, we need to check if one triggered
+ * and take appropriate action.
+ * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
+ */
+ rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
+ AssertRCReturn(rc, rc);
+
+ /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
+ * execution engines about whether hyper BPs and such are pending. */
+ uint32_t const uDr7 = pCtx->dr[7];
+ if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
+ && X86_DR7_ANY_RW_IO(uDr7)
+ && (pCtx->cr4 & X86_CR4_DE))
+ || DBGFBpIsHwIoArmed(pVM)))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
+
+ /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT(pVCpu);
+
+ bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
+
+ VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
+ if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
+ {
+ /* Raise #DB. */
+ if (fIsGuestDbgActive)
+ ASMSetDR6(pCtx->dr[6]);
+ if (pCtx->dr[7] != uDr7)
+ pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
+
+ hmR0VmxSetPendingXcptDB(pVCpu);
+ }
+ /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
+ however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
+ else if ( rcStrict2 != VINF_SUCCESS
+ && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
+ rcStrict = rcStrict2;
+ AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
+
+ HM_RESTORE_PREEMPT();
+ VMMRZCallRing3Enable(pVCpu);
+ }
+ }
+
+#ifdef VBOX_STRICT
+ if ( rcStrict == VINF_IOM_R3_IOPORT_READ
+ || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
+ Assert(!fIOWrite);
+ else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
+ || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
+ || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
+ Assert(fIOWrite);
+ else
+ {
+# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
+ * statuses, that the VMM device and some others may return. See
+ * IOM_SUCCESS() for guidance. */
+ AssertMsg( RT_FAILURE(rcStrict)
+ || rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_EM_RAW_EMULATE_INSTR
+ || rcStrict == VINF_EM_DBG_BREAKPOINT
+ || rcStrict == VINF_EM_RAW_GUEST_TRAP
+ || rcStrict == VINF_EM_RAW_TO_R3
+ || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+# endif
+ }
+#endif
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
+ }
+ else
+ {
+ /*
+ * Frequent exit or something needing probing. Get state and call EMHistoryExec.
+ */
+ int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRCReturn(rc2, rc2);
+ STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
+ : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
+ Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
+ VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
+ fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
+
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+
+ Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ }
+ return rcStrict;
+}
+
+
+/**
+ * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
+ * VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /* Check if this task-switch occurred while delivery an event through the guest IDT. */
+ int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+ if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
+ {
+ rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+ if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
+ {
+ uint32_t uErrCode;
+ RTGCUINTPTR GCPtrFaultAddress;
+ uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
+ uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
+ bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
+ if (fErrorCodeValid)
+ {
+ rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+ uErrCode = pVmxTransient->uIdtVectoringErrorCode;
+ }
+ else
+ uErrCode = 0;
+
+ if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
+ && uVector == X86_XCPT_PF)
+ GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
+ else
+ GCPtrFaultAddress = 0;
+
+ rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
+ pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
+
+ Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+ }
+
+ /* Fall back to the interpreter to emulate the task-switch. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
+ return VERR_EM_INTERPRETER;
+}
+
+
+/**
+ * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
+ pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
+ AssertRCReturn(rc, rc);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
+ return VINF_EM_DBG_STEPPED;
+}
+
+
+/**
+ * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
+
+ /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
+ VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
+ if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
+ {
+ /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
+ if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+ }
+ else
+ {
+ if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
+ rcStrict1 = VINF_SUCCESS;
+ return rcStrict1;
+ }
+
+ /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
+ uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
+ VBOXSTRICTRC rcStrict2;
+ switch (uAccessType)
+ {
+ case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
+ case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
+ {
+ AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
+ || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
+ ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
+
+ RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
+ GCPhys &= PAGE_BASE_GC_MASK;
+ GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
+ VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
+ uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
+ CPUMCTX2CORE(pCtx), GCPhys);
+ Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
+ if ( rcStrict2 == VINF_SUCCESS
+ || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
+ || rcStrict2 == VERR_PAGE_NOT_PRESENT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
+ | HM_CHANGED_GUEST_APIC_TPR);
+ rcStrict2 = VINF_SUCCESS;
+ }
+ break;
+ }
+
+ default:
+ Log4Func(("uAccessType=%#x\n", uAccessType));
+ rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
+ break;
+ }
+
+ if (rcStrict2 != VINF_SUCCESS)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
+ return rcStrict2;
+}
+
+
+/**
+ * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
+ * VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /* We should -not- get this VM-exit if the guest's debug registers were active. */
+ if (pVmxTransient->fWasGuestDebugStateActive)
+ {
+ AssertMsgFailed(("Unexpected MOV DRx exit\n"));
+ HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
+ }
+
+ if ( !pVCpu->hm.s.fSingleInstruction
+ && !pVmxTransient->fWasHyperDebugStateActive)
+ {
+ Assert(!DBGFIsStepping(pVCpu));
+ Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
+
+ /* Don't intercept MOV DRx any more. */
+ pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
+ int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
+ AssertRCReturn(rc, rc);
+
+ /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT(pVCpu);
+
+ /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
+ CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
+ Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
+
+ HM_RESTORE_PREEMPT();
+ VMMRZCallRing3Enable(pVCpu);
+
+#ifdef VBOX_WITH_STATISTICS
+ rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+ if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
+ else
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
+#endif
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
+ * Update the segment registers and DR7 from the CPU.
+ */
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
+ AssertRCReturn(rc, rc);
+ Log4Func(("CS:RIP=%04x:%08RX64\n", pCtx->cs.Sel, pCtx->rip));
+
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
+ {
+ rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
+ VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
+ VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
+ if (RT_SUCCESS(rc))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
+ }
+ else
+ {
+ rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
+ VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
+ VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
+ }
+
+ Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
+ if (RT_SUCCESS(rc))
+ {
+ int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+ AssertRCReturn(rc2, rc2);
+ return VINF_SUCCESS;
+ }
+ return rc;
+}
+
+
+/**
+ * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
+ * Conditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
+
+ /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
+ VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
+ if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
+ {
+ /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
+ injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
+ if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+ }
+ else
+ {
+ if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
+ rcStrict1 = VINF_SUCCESS;
+ return rcStrict1;
+ }
+
+ /*
+ * Get sufficent state and update the exit history entry.
+ */
+ RTGCPHYS GCPhys;
+ int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ AssertRCReturn(rc, rc);
+
+ VBOXSTRICTRC rcStrict;
+ PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
+ EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
+ pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
+ if (!pExitRec)
+ {
+ /*
+ * If we succeed, resume guest execution.
+ * If we fail in interpreting the instruction because we couldn't get the guest physical address
+ * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
+ * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
+ * weird case. See @bugref{6043}.
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
+ Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
+ if ( rcStrict == VINF_SUCCESS
+ || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
+ || rcStrict == VERR_PAGE_NOT_PRESENT)
+ {
+ /* Successfully handled MMIO operation. */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
+ | HM_CHANGED_GUEST_APIC_TPR);
+ rcStrict = VINF_SUCCESS;
+ }
+ }
+ else
+ {
+ /*
+ * Frequent exit or something needing probing. Get state and call EMHistoryExec.
+ */
+ int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ AssertRCReturn(rc2, rc2);
+
+ Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
+
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+
+ Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ }
+ return VBOXSTRICTRC_TODO(rcStrict);
+}
+
+
+/**
+ * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
+ * VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
+
+ /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
+ VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
+ if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
+ {
+ /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
+ if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
+ Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
+ }
+ else
+ {
+ if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
+ rcStrict1 = VINF_SUCCESS;
+ return rcStrict1;
+ }
+
+ RTGCPHYS GCPhys;
+ int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
+ rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ AssertRCReturn(rc, rc);
+
+ /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
+ AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
+
+ RTGCUINT uErrorCode = 0;
+ if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
+ uErrorCode |= X86_TRAP_PF_ID;
+ if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
+ uErrorCode |= X86_TRAP_PF_RW;
+ if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
+ uErrorCode |= X86_TRAP_PF_P;
+
+ TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
+
+
+ /* Handle the pagefault trap for the nested shadow table. */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+
+ Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
+ pCtx->cs.Sel, pCtx->rip));
+
+ VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
+ TRPMResetTrap(pVCpu);
+
+ /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
+ if ( rcStrict2 == VINF_SUCCESS
+ || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
+ || rcStrict2 == VERR_PAGE_NOT_PRESENT)
+ {
+ /* Successfully synced our nested page tables. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
+ return VINF_SUCCESS;
+ }
+
+ Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
+ return rcStrict2;
+}
+
+/** @} */
+
+/** @name VM-exit exception handlers.
+ * @{
+ */
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+
+/**
+ * VM-exit exception handler for \#MF (Math Fault: floating point exception).
+ */
+static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
+
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
+ AssertRCReturn(rc, rc);
+
+ if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
+ {
+ /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
+ rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
+
+ /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
+ * provides VM-exit instruction length. If this causes problem later,
+ * disassemble the instruction like it's done on AMD-V. */
+ int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+ AssertRCReturn(rc2, rc2);
+ return rc;
+ }
+
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
+ pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
+ return rc;
+}
+
+
+/**
+ * VM-exit exception handler for \#BP (Breakpoint exception).
+ */
+static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
+
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRCReturn(rc, rc);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
+ if (rc == VINF_EM_RAW_GUEST_TRAP)
+ {
+ rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
+ pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
+ }
+
+ Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
+ return rc;
+}
+
+
+/**
+ * VM-exit exception handler for \#AC (alignment check exception).
+ */
+static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+
+ /*
+ * Re-inject it. We'll detect any nesting before getting here.
+ */
+ int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+ Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
+
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
+ pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VM-exit exception handler for \#DB (Debug exception).
+ */
+static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
+
+ /*
+ * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
+ * for processing.
+ */
+ int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+
+ /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
+ uint64_t uDR6 = X86_DR6_INIT_VAL;
+ uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
+ Log6Func(("rc=%Rrc\n", rc));
+ if (rc == VINF_EM_RAW_GUEST_TRAP)
+ {
+ /*
+ * The exception was for the guest. Update DR6, DR7.GD and
+ * IA32_DEBUGCTL.LBR before forwarding it.
+ * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
+ */
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT(pVCpu);
+
+ pCtx->dr[6] &= ~X86_DR6_B_MASK;
+ pCtx->dr[6] |= uDR6;
+ if (CPUMIsGuestDebugStateActive(pVCpu))
+ ASMSetDR6(pCtx->dr[6]);
+
+ HM_RESTORE_PREEMPT();
+ VMMRZCallRing3Enable(pVCpu);
+
+ rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
+ AssertRCReturn(rc, rc);
+
+ /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
+ pCtx->dr[7] &= ~X86_DR7_GD;
+
+ /* Paranoia. */
+ pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
+ pCtx->dr[7] |= X86_DR7_RA1_MASK;
+
+ rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Raise #DB in the guest.
+ *
+ * It is important to reflect exactly what the VM-exit gave us (preserving the
+ * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
+ * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
+ * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
+ *
+ * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
+ * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
+ */
+ rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
+ pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Not a guest trap, must be a hypervisor related debug event then.
+ * Update DR6 in case someone is interested in it.
+ */
+ AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
+ AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
+ CPUMSetHyperDR6(pVCpu, uDR6);
+
+ return rc;
+}
+
+
+/**
+ * Hacks its way around the lovely mesa driver's backdoor accesses.
+ *
+ * @sa hmR0SvmHandleMesaDrvGp
+ */
+static int hmR0VmxHandleMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
+{
+ Log(("hmR0VmxHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
+ RT_NOREF(pCtx);
+
+ /* For now we'll just skip the instruction. */
+ return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
+}
+
+
+/**
+ * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
+ * backdoor logging w/o checking what it is running inside.
+ *
+ * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
+ * backdoor port and magic numbers loaded in registers.
+ *
+ * @returns true if it is, false if it isn't.
+ * @sa hmR0SvmIsMesaDrvGp
+ */
+DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
+{
+ /* 0xed: IN eAX,dx */
+ uint8_t abInstr[1];
+ if (pVmxTransient->cbInstr != sizeof(abInstr))
+ return false;
+
+ /* Check that it is #GP(0). */
+ if (pVmxTransient->uExitIntErrorCode != 0)
+ return false;
+
+ /* Check magic and port. */
+ Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
+ /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
+ if (pCtx->rax != UINT32_C(0x564d5868))
+ return false;
+ if (pCtx->dx != UINT32_C(0x5658))
+ return false;
+
+ /* Flat ring-3 CS. */
+ AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
+ Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
+ /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
+ if (pCtx->cs.Attr.n.u2Dpl != 3)
+ return false;
+ if (pCtx->cs.u64Base != 0)
+ return false;
+
+ /* Check opcode. */
+ AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
+ Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
+ int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
+ /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
+ if (RT_FAILURE(rc))
+ return false;
+ if (abInstr[0] != 0xed)
+ return false;
+
+ return true;
+}
+
+
+/**
+ * VM-exit exception handler for \#GP (General-protection exception).
+ *
+ * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
+ */
+static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
+ { /* likely */ }
+ else
+ {
+#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
+ Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv);
+#endif
+ /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
+ int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRCReturn(rc, rc);
+ Log4Func(("Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pCtx->cs.Sel, pCtx->rip,
+ pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
+
+ if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
+ || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
+ pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
+ else
+ rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
+ return rc;
+ }
+
+ Assert(CPUMIsGuestInRealModeEx(pCtx));
+ Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
+
+ int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRCReturn(rc, rc);
+
+ VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ if (!CPUMIsGuestInRealModeEx(pCtx))
+ {
+ /*
+ * The guest is no longer in real-mode, check if we can continue executing the
+ * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
+ */
+ if (HMCanExecuteVmxGuest(pVCpu, pCtx))
+ {
+ Log4Func(("Mode changed but guest still suitable for executing using VT-x\n"));
+ pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+ }
+ else
+ {
+ Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
+ rcStrict = VINF_EM_RESCHEDULE;
+ }
+ }
+ else
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ rcStrict = VINF_SUCCESS;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ }
+ return VBOXSTRICTRC_VAL(rcStrict);
+}
+
+
+/**
+ * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
+ * the exception reported in the VMX transient structure back into the VM.
+ *
+ * @remarks Requires uExitIntInfo in the VMX transient structure to be
+ * up-to-date.
+ */
+static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
+ AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
+ ("uVector=%#x u32XcptBitmap=%#X32\n",
+ VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
+#endif
+
+ /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
+ hmR0VmxCheckExitDueToEventDelivery(). */
+ int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+ Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
+
+#ifdef DEBUG_ramshankar
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ uint8_t uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
+ Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
+#endif
+
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
+ pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VM-exit exception handler for \#PF (Page-fault exception).
+ */
+static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ if (!pVM->hm.s.fNestedPaging)
+ { /* likely */ }
+ else
+ {
+#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
+ Assert(pVCpu->hm.s.fUsingDebugLoop);
+#endif
+ pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
+ if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
+ {
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
+ pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
+ }
+ else
+ {
+ /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
+ hmR0VmxSetPendingXcptDF(pVCpu);
+ Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
+ return rc;
+ }
+
+ /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
+ of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
+ if (pVmxTransient->fVectoringPF)
+ {
+ Assert(pVCpu->hm.s.Event.fPending);
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
+ AssertRCReturn(rc, rc);
+
+ Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
+ pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
+
+ TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
+ rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
+
+ Log4Func(("#PF: rc=%Rrc\n", rc));
+ if (rc == VINF_SUCCESS)
+ {
+ /*
+ * This is typically a shadow page table sync or a MMIO instruction. But we may have
+ * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
+ */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+ TRPMResetTrap(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
+ return rc;
+ }
+
+ if (rc == VINF_EM_RAW_GUEST_TRAP)
+ {
+ if (!pVmxTransient->fVectoringDoublePF)
+ {
+ /* It's a guest page fault and needs to be reflected to the guest. */
+ uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
+ TRPMResetTrap(pVCpu);
+ pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
+ hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
+ uGstErrorCode, pVmxTransient->uExitQual);
+ }
+ else
+ {
+ /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
+ TRPMResetTrap(pVCpu);
+ pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
+ hmR0VmxSetPendingXcptDF(pVCpu);
+ Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
+ }
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
+ return VINF_SUCCESS;
+ }
+
+ TRPMResetTrap(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
+ return rc;
+}
+
+/** @} */
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+/** @name Nested-guest VM-exit handlers.
+ * @{
+ */
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Nested-guest VM-exit handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+
+/**
+ * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
+ | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
+ rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = pVmxTransient->uExitReason;
+ ExitInfo.u64Qual = pVmxTransient->uExitQual;
+ ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
+ ExitInfo.cbInstr = pVmxTransient->cbInstr;
+ HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+#else
+ HMVMX_IEM_EXEC_VMX_INSTR_RET(pVCpu);
+#endif
+}
+
+
+/**
+ * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
+ AssertRCReturn(rc, rc);
+
+ HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMLAUNCH);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+ Assert(rcStrict != VINF_IEM_RAISED_XCPT);
+ return rcStrict;
+#else
+ HMVMX_IEM_EXEC_VMX_INSTR_RET(pVCpu);
+#endif
+}
+
+
+/**
+ * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
+ | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
+ rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = pVmxTransient->uExitReason;
+ ExitInfo.u64Qual = pVmxTransient->uExitQual;
+ ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
+ ExitInfo.cbInstr = pVmxTransient->cbInstr;
+ HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+#else
+ HMVMX_IEM_EXEC_VMX_INSTR_RET(pVCpu);
+#endif
+}
+
+
+/**
+ * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
+ | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
+ rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = pVmxTransient->uExitReason;
+ ExitInfo.u64Qual = pVmxTransient->uExitQual;
+ ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
+ ExitInfo.cbInstr = pVmxTransient->cbInstr;
+ HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+#else
+ HMVMX_IEM_EXEC_VMX_INSTR_RET(pVCpu);
+#endif
+}
+
+
+/**
+ * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
+ | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
+ rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = pVmxTransient->uExitReason;
+ ExitInfo.u64Qual = pVmxTransient->uExitQual;
+ ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
+ ExitInfo.cbInstr = pVmxTransient->cbInstr;
+ if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
+ HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+#else
+ HMVMX_IEM_EXEC_VMX_INSTR_RET(pVCpu);
+#endif
+}
+
+
+/**
+ * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
+ AssertRCReturn(rc, rc);
+
+ HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMRESUME);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+ Assert(rcStrict != VINF_IEM_RAISED_XCPT);
+ return rcStrict;
+#else
+ HMVMX_IEM_EXEC_VMX_INSTR_RET(pVCpu);
+#endif
+}
+
+
+/**
+ * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
+ | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
+ rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = pVmxTransient->uExitReason;
+ ExitInfo.u64Qual = pVmxTransient->uExitQual;
+ ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
+ ExitInfo.cbInstr = pVmxTransient->cbInstr;
+ if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
+ HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+#else
+ HMVMX_IEM_EXEC_VMX_INSTR_RET(pVCpu);
+#endif
+}
+
+
+/**
+ * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
+ AssertRCReturn(rc, rc);
+
+ HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ {
+ /* VMXOFF changes the internal hwvirt. state but not anything that's visible to the guest other than RIP. */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+#else
+ HMVMX_IEM_EXEC_VMX_INSTR_RET(pVCpu);
+#endif
+}
+
+
+/**
+ * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
+ */
+HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
+ rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
+ | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
+ rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
+ rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
+
+ VMXVEXITINFO ExitInfo;
+ RT_ZERO(ExitInfo);
+ ExitInfo.uReason = pVmxTransient->uExitReason;
+ ExitInfo.u64Qual = pVmxTransient->uExitQual;
+ ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
+ ExitInfo.cbInstr = pVmxTransient->cbInstr;
+ HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
+
+ VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+#else
+ HMVMX_IEM_EXEC_VMX_INSTR_RET(pVCpu);
+#endif
+}
+
+/** @} */
+#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
+