summaryrefslogtreecommitdiffstats
path: root/src/recompiler/exec.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/recompiler/exec.c')
-rw-r--r--src/recompiler/exec.c4586
1 files changed, 4586 insertions, 0 deletions
diff --git a/src/recompiler/exec.c b/src/recompiler/exec.c
new file mode 100644
index 00000000..ca632372
--- /dev/null
+++ b/src/recompiler/exec.c
@@ -0,0 +1,4586 @@
+/*
+ * virtual page mapping and translated block handling
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
+ * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
+ * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
+ * a choice of LGPL license versions is made available with the language indicating
+ * that LGPLv2 or any later version may be used, or where a choice of which version
+ * of the LGPL is applied is otherwise unspecified.
+ */
+
+#include "config.h"
+#ifndef VBOX
+#ifdef _WIN32
+#include <windows.h>
+#else
+#include <sys/types.h>
+#include <sys/mman.h>
+#endif
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <errno.h>
+#include <unistd.h>
+#include <inttypes.h>
+#else /* VBOX */
+# include <stdlib.h>
+# include <stdio.h>
+# include <iprt/alloc.h>
+# include <iprt/string.h>
+# include <iprt/param.h>
+# include <VBox/vmm/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
+# include <iprt/errcore.h>
+#endif /* VBOX */
+
+#include "cpu.h"
+#include "exec-all.h"
+#include "qemu-common.h"
+#include "tcg.h"
+#ifndef VBOX
+#include "hw/hw.h"
+#include "hw/qdev.h"
+#endif /* !VBOX */
+#include "osdep.h"
+#include "kvm.h"
+#include "qemu-timer.h"
+#if defined(CONFIG_USER_ONLY)
+#include <qemu.h>
+#include <signal.h>
+#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
+#include <sys/param.h>
+#if __FreeBSD_version >= 700104
+#define HAVE_KINFO_GETVMMAP
+#define sigqueue sigqueue_freebsd /* avoid redefinition */
+#include <sys/time.h>
+#include <sys/proc.h>
+#include <machine/profile.h>
+#define _KERNEL
+#include <sys/user.h>
+#undef _KERNEL
+#undef sigqueue
+#include <libutil.h>
+#endif
+#endif
+#endif
+
+//#define DEBUG_TB_INVALIDATE
+//#define DEBUG_FLUSH
+//#define DEBUG_TLB
+//#define DEBUG_UNASSIGNED
+
+/* make various TB consistency checks */
+//#define DEBUG_TB_CHECK
+//#define DEBUG_TLB_CHECK
+
+//#define DEBUG_IOPORT
+//#define DEBUG_SUBPAGE
+
+#if !defined(CONFIG_USER_ONLY)
+/* TB consistency checks only implemented for usermode emulation. */
+#undef DEBUG_TB_CHECK
+#endif
+
+#define SMC_BITMAP_USE_THRESHOLD 10
+
+static TranslationBlock *tbs;
+static int code_gen_max_blocks;
+TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
+static int nb_tbs;
+/* any access to the tbs or the page table must use this lock */
+spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
+
+#ifndef VBOX
+#if defined(__arm__) || defined(__sparc_v9__)
+/* The prologue must be reachable with a direct jump. ARM and Sparc64
+ have limited branch ranges (possibly also PPC) so place it in a
+ section close to code segment. */
+#define code_gen_section \
+ __attribute__((__section__(".gen_code"))) \
+ __attribute__((aligned (32)))
+#elif defined(_WIN32)
+/* Maximum alignment for Win32 is 16. */
+#define code_gen_section \
+ __attribute__((aligned (16)))
+#else
+#define code_gen_section \
+ __attribute__((aligned (32)))
+#endif
+
+uint8_t code_gen_prologue[1024] code_gen_section;
+#else /* VBOX */
+extern uint8_t *code_gen_prologue;
+#endif /* VBOX */
+static uint8_t *code_gen_buffer;
+static size_t code_gen_buffer_size;
+/* threshold to flush the translated code buffer */
+static size_t code_gen_buffer_max_size;
+static uint8_t *code_gen_ptr;
+
+#if !defined(CONFIG_USER_ONLY)
+# ifndef VBOX
+int phys_ram_fd;
+static int in_migration;
+# endif /* !VBOX */
+
+RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
+#endif
+
+CPUState *first_cpu;
+/* current CPU in the current thread. It is only valid inside
+ cpu_exec() */
+CPUState *cpu_single_env;
+/* 0 = Do not count executed instructions.
+ 1 = Precise instruction counting.
+ 2 = Adaptive rate instruction counting. */
+int use_icount = 0;
+/* Current instruction counter. While executing translated code this may
+ include some instructions that have not yet been executed. */
+int64_t qemu_icount;
+
+typedef struct PageDesc {
+ /* list of TBs intersecting this ram page */
+ TranslationBlock *first_tb;
+ /* in order to optimize self modifying code, we count the number
+ of lookups we do to a given page to use a bitmap */
+ unsigned int code_write_count;
+ uint8_t *code_bitmap;
+#if defined(CONFIG_USER_ONLY)
+ unsigned long flags;
+#endif
+} PageDesc;
+
+/* In system mode we want L1_MAP to be based on ram offsets,
+ while in user mode we want it to be based on virtual addresses. */
+#if !defined(CONFIG_USER_ONLY)
+#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
+# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
+#else
+# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
+#endif
+#else
+# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
+#endif
+
+/* Size of the L2 (and L3, etc) page tables. */
+#define L2_BITS 10
+#define L2_SIZE (1 << L2_BITS)
+
+/* The bits remaining after N lower levels of page tables. */
+#define P_L1_BITS_REM \
+ ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
+#define V_L1_BITS_REM \
+ ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
+
+/* Size of the L1 page table. Avoid silly small sizes. */
+#if P_L1_BITS_REM < 4
+#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
+#else
+#define P_L1_BITS P_L1_BITS_REM
+#endif
+
+#if V_L1_BITS_REM < 4
+#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
+#else
+#define V_L1_BITS V_L1_BITS_REM
+#endif
+
+#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
+#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
+
+#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
+#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
+
+size_t qemu_real_host_page_size;
+size_t qemu_host_page_bits;
+size_t qemu_host_page_size;
+uintptr_t qemu_host_page_mask;
+
+/* This is a multi-level map on the virtual address space.
+ The bottom level has pointers to PageDesc. */
+static void *l1_map[V_L1_SIZE];
+
+#if !defined(CONFIG_USER_ONLY)
+typedef struct PhysPageDesc {
+ /* offset in host memory of the page + io_index in the low bits */
+ ram_addr_t phys_offset;
+ ram_addr_t region_offset;
+} PhysPageDesc;
+
+/* This is a multi-level map on the physical address space.
+ The bottom level has pointers to PhysPageDesc. */
+static void *l1_phys_map[P_L1_SIZE];
+
+static void io_mem_init(void);
+
+/* io memory support */
+CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
+CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
+void *io_mem_opaque[IO_MEM_NB_ENTRIES];
+static char io_mem_used[IO_MEM_NB_ENTRIES];
+static int io_mem_watch;
+#endif
+
+#ifndef VBOX
+/* log support */
+#ifdef WIN32
+static const char *logfilename = "qemu.log";
+#else
+static const char *logfilename = "/tmp/qemu.log";
+#endif
+#endif /* !VBOX */
+FILE *logfile;
+int loglevel;
+#ifndef VBOX
+static int log_append = 0;
+#endif /* !VBOX */
+
+/* statistics */
+#ifndef VBOX
+#if !defined(CONFIG_USER_ONLY)
+static int tlb_flush_count;
+#endif
+static int tb_flush_count;
+static int tb_phys_invalidate_count;
+#else /* VBOX - Resettable U32 stats, see VBoxRecompiler.c. */
+uint32_t tlb_flush_count;
+uint32_t tb_flush_count;
+uint32_t tb_phys_invalidate_count;
+#endif /* VBOX */
+
+#ifndef VBOX
+#ifdef _WIN32
+static void map_exec(void *addr, size_t size)
+{
+ DWORD old_protect;
+ VirtualProtect(addr, size,
+ PAGE_EXECUTE_READWRITE, &old_protect);
+
+}
+#else
+static void map_exec(void *addr, size_t size)
+{
+ uintptr_t start, end, page_size;
+
+ page_size = getpagesize();
+ start = (uintptr_t)addr;
+ start &= ~(page_size - 1);
+
+ end = (uintptr_t)addr + size;
+ end += page_size - 1;
+ end &= ~(page_size - 1);
+
+ mprotect((void *)start, end - start,
+ PROT_READ | PROT_WRITE | PROT_EXEC);
+}
+#endif
+#else /* VBOX */
+static void map_exec(void *addr, size_t size)
+{
+ RTMemProtect(addr, size,
+ RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
+}
+#endif /* VBOX */
+
+static void page_init(void)
+{
+ /* NOTE: we can always suppose that qemu_host_page_size >=
+ TARGET_PAGE_SIZE */
+#ifdef VBOX
+ RTMemProtect(code_gen_buffer, code_gen_buffer_size,
+ RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
+ qemu_real_host_page_size = PAGE_SIZE;
+#else /* !VBOX */
+#ifdef _WIN32
+ {
+ SYSTEM_INFO system_info;
+
+ GetSystemInfo(&system_info);
+ qemu_real_host_page_size = system_info.dwPageSize;
+ }
+#else
+ qemu_real_host_page_size = getpagesize();
+#endif
+#endif /* !VBOX */
+ if (qemu_host_page_size == 0)
+ qemu_host_page_size = qemu_real_host_page_size;
+ if (qemu_host_page_size < TARGET_PAGE_SIZE)
+ qemu_host_page_size = TARGET_PAGE_SIZE;
+ qemu_host_page_bits = 0;
+ while ((1 << qemu_host_page_bits) < VBOX_ONLY((int))qemu_host_page_size)
+ qemu_host_page_bits++;
+ qemu_host_page_mask = ~(qemu_host_page_size - 1);
+
+#ifndef VBOX /* We use other means to set reserved bit on our pages */
+#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
+ {
+#ifdef HAVE_KINFO_GETVMMAP
+ struct kinfo_vmentry *freep;
+ int i, cnt;
+
+ freep = kinfo_getvmmap(getpid(), &cnt);
+ if (freep) {
+ mmap_lock();
+ for (i = 0; i < cnt; i++) {
+ uintptr_t startaddr, endaddr;
+
+ startaddr = freep[i].kve_start;
+ endaddr = freep[i].kve_end;
+ if (h2g_valid(startaddr)) {
+ startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
+
+ if (h2g_valid(endaddr)) {
+ endaddr = h2g(endaddr);
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+ } else {
+#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
+ endaddr = ~0ul;
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+#endif
+ }
+ }
+ }
+ free(freep);
+ mmap_unlock();
+ }
+#else
+ FILE *f;
+
+ last_brk = (uintptr_t)sbrk(0);
+
+ f = fopen("/compat/linux/proc/self/maps", "r");
+ if (f) {
+ mmap_lock();
+
+ do {
+ uintptr_t startaddr, endaddr;
+ int n;
+
+ n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
+
+ if (n == 2 && h2g_valid(startaddr)) {
+ startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
+
+ if (h2g_valid(endaddr)) {
+ endaddr = h2g(endaddr);
+ } else {
+ endaddr = ~0ul;
+ }
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+ }
+ } while (!feof(f));
+
+ fclose(f);
+ mmap_unlock();
+ }
+#endif
+ }
+#endif
+#endif /* !VBOX */
+}
+
+static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
+{
+ PageDesc *pd;
+ void **lp;
+ int i;
+
+#if defined(CONFIG_USER_ONLY)
+ /* We can't use qemu_malloc because it may recurse into a locked mutex. */
+# define ALLOC(P, SIZE) \
+ do { \
+ P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
+ } while (0)
+#else
+# define ALLOC(P, SIZE) \
+ do { P = qemu_mallocz(SIZE); } while (0)
+#endif
+
+ /* Level 1. Always allocated. */
+ lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
+
+ /* Level 2..N-1. */
+ for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
+ void **p = *lp;
+
+ if (p == NULL) {
+ if (!alloc) {
+ return NULL;
+ }
+ ALLOC(p, sizeof(void *) * L2_SIZE);
+ *lp = p;
+ }
+
+ lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
+ }
+
+ pd = *lp;
+ if (pd == NULL) {
+ if (!alloc) {
+ return NULL;
+ }
+ ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
+ *lp = pd;
+ }
+
+#undef ALLOC
+
+ return pd + (index & (L2_SIZE - 1));
+}
+
+static inline PageDesc *page_find(tb_page_addr_t index)
+{
+ return page_find_alloc(index, 0);
+}
+
+#if !defined(CONFIG_USER_ONLY)
+static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
+{
+ PhysPageDesc *pd;
+ void **lp;
+ int i;
+
+ /* Level 1. Always allocated. */
+ lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
+
+ /* Level 2..N-1. */
+ for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
+ void **p = *lp;
+ if (p == NULL) {
+ if (!alloc) {
+ return NULL;
+ }
+ *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
+ }
+ lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
+ }
+
+ pd = *lp;
+ if (pd == NULL) {
+ int i;
+
+ if (!alloc) {
+ return NULL;
+ }
+
+ *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
+
+ for (i = 0; i < L2_SIZE; i++) {
+ pd[i].phys_offset = IO_MEM_UNASSIGNED;
+ pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
+ }
+ }
+
+ return pd + (index & (L2_SIZE - 1));
+}
+
+static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
+{
+ return phys_page_find_alloc(index, 0);
+}
+
+static void tlb_protect_code(ram_addr_t ram_addr);
+static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+ target_ulong vaddr);
+#define mmap_lock() do { } while(0)
+#define mmap_unlock() do { } while(0)
+#endif
+
+#ifdef VBOX /* We don't need such huge codegen buffer size, as execute
+ most of the code in raw or hm mode. */
+#define DEFAULT_CODE_GEN_BUFFER_SIZE (8 * 1024 * 1024)
+#else /* !VBOX */
+#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
+#endif /* !VBOX */
+
+#if defined(CONFIG_USER_ONLY)
+/* Currently it is not recommended to allocate big chunks of data in
+ user mode. It will change when a dedicated libc will be used */
+#define USE_STATIC_CODE_GEN_BUFFER
+#endif
+
+#if defined(VBOX) && defined(USE_STATIC_CODE_GEN_BUFFER)
+# error "VBox allocates codegen buffer dynamically"
+#endif
+
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
+ __attribute__((aligned (CODE_GEN_ALIGN)));
+#endif
+
+static void code_gen_alloc(uintptr_t tb_size)
+{
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+ code_gen_buffer = static_code_gen_buffer;
+ code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+ map_exec(code_gen_buffer, code_gen_buffer_size);
+#else
+# ifdef VBOX
+ /* We cannot use phys_ram_size here, as it's 0 now,
+ * it only gets initialized once RAM registration callback
+ * (REMR3NotifyPhysRamRegister()) called.
+ */
+ code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+# else /* !VBOX */
+ code_gen_buffer_size = tb_size;
+ if (code_gen_buffer_size == 0) {
+#if defined(CONFIG_USER_ONLY)
+ /* in user mode, phys_ram_size is not meaningful */
+ code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+#else
+ /* XXX: needs adjustments */
+ code_gen_buffer_size = (uintptr_t)(ram_size / 4);
+#endif
+ }
+ if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
+ code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
+# endif /* !VBOX */
+ /* The code gen buffer location may have constraints depending on
+ the host cpu and OS */
+# ifdef VBOX
+ code_gen_buffer = RTMemExecAlloc(code_gen_buffer_size);
+
+ if (!code_gen_buffer) {
+ LogRel(("REM: failed allocate codegen buffer %lld\n",
+ code_gen_buffer_size));
+ return;
+ }
+# else /* !VBOX */
+#if defined(__linux__)
+ {
+ int flags;
+ void *start = NULL;
+
+ flags = MAP_PRIVATE | MAP_ANONYMOUS;
+#if defined(__x86_64__)
+ flags |= MAP_32BIT;
+ /* Cannot map more than that */
+ if (code_gen_buffer_size > (800 * 1024 * 1024))
+ code_gen_buffer_size = (800 * 1024 * 1024);
+#elif defined(__sparc_v9__)
+ // Map the buffer below 2G, so we can use direct calls and branches
+ flags |= MAP_FIXED;
+ start = (void *) 0x60000000UL;
+ if (code_gen_buffer_size > (512 * 1024 * 1024))
+ code_gen_buffer_size = (512 * 1024 * 1024);
+#elif defined(__arm__)
+ /* Map the buffer below 32M, so we can use direct calls and branches */
+ flags |= MAP_FIXED;
+ start = (void *) 0x01000000UL;
+ if (code_gen_buffer_size > 16 * 1024 * 1024)
+ code_gen_buffer_size = 16 * 1024 * 1024;
+#elif defined(__s390x__)
+ /* Map the buffer so that we can use direct calls and branches. */
+ /* We have a +- 4GB range on the branches; leave some slop. */
+ if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
+ code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
+ }
+ start = (void *)0x90000000UL;
+#endif
+ code_gen_buffer = mmap(start, code_gen_buffer_size,
+ PROT_WRITE | PROT_READ | PROT_EXEC,
+ flags, -1, 0);
+ if (code_gen_buffer == MAP_FAILED) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+ }
+#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
+ {
+ int flags;
+ void *addr = NULL;
+ flags = MAP_PRIVATE | MAP_ANONYMOUS;
+#if defined(__x86_64__)
+ /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
+ * 0x40000000 is free */
+ flags |= MAP_FIXED;
+ addr = (void *)0x40000000;
+ /* Cannot map more than that */
+ if (code_gen_buffer_size > (800 * 1024 * 1024))
+ code_gen_buffer_size = (800 * 1024 * 1024);
+#endif
+ code_gen_buffer = mmap(addr, code_gen_buffer_size,
+ PROT_WRITE | PROT_READ | PROT_EXEC,
+ flags, -1, 0);
+ if (code_gen_buffer == MAP_FAILED) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+ }
+#else
+ code_gen_buffer = qemu_malloc(code_gen_buffer_size);
+ map_exec(code_gen_buffer, code_gen_buffer_size);
+#endif
+# endif /* !VBOX */
+#endif /* !USE_STATIC_CODE_GEN_BUFFER */
+#ifndef VBOX /** @todo r=bird: why are we different? */
+ map_exec(code_gen_prologue, sizeof(code_gen_prologue));
+#else
+ map_exec(code_gen_prologue, _1K);
+#endif
+ code_gen_buffer_max_size = code_gen_buffer_size -
+ (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
+ code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
+ tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
+}
+
+/* Must be called before using the QEMU cpus. 'tb_size' is the size
+ (in bytes) allocated to the translation buffer. Zero means default
+ size. */
+void cpu_exec_init_all(uintptr_t tb_size)
+{
+ cpu_gen_init();
+ code_gen_alloc(tb_size);
+ code_gen_ptr = code_gen_buffer;
+ page_init();
+#if !defined(CONFIG_USER_ONLY)
+ io_mem_init();
+#endif
+#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
+ /* There's no guest base to take into account, so go ahead and
+ initialize the prologue now. */
+ tcg_prologue_init(&tcg_ctx);
+#endif
+}
+
+#ifndef VBOX
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+
+static int cpu_common_post_load(void *opaque, int version_id)
+{
+ CPUState *env = opaque;
+
+ /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
+ version_id is increased. */
+ env->interrupt_request &= ~0x01;
+ tlb_flush(env, 1);
+
+ return 0;
+}
+
+static const VMStateDescription vmstate_cpu_common = {
+ .name = "cpu_common",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .minimum_version_id_old = 1,
+ .post_load = cpu_common_post_load,
+ .fields = (VMStateField []) {
+ VMSTATE_UINT32(halted, CPUState),
+ VMSTATE_UINT32(interrupt_request, CPUState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+#endif
+
+CPUState *qemu_get_cpu(int cpu)
+{
+ CPUState *env = first_cpu;
+
+ while (env) {
+ if (env->cpu_index == cpu)
+ break;
+ env = env->next_cpu;
+ }
+
+ return env;
+}
+
+#endif /* !VBOX */
+
+void cpu_exec_init(CPUState *env)
+{
+ CPUState **penv;
+ int cpu_index;
+
+#if defined(CONFIG_USER_ONLY)
+ cpu_list_lock();
+#endif
+ env->next_cpu = NULL;
+ penv = &first_cpu;
+ cpu_index = 0;
+ while (*penv != NULL) {
+ penv = &(*penv)->next_cpu;
+ cpu_index++;
+ }
+ env->cpu_index = cpu_index;
+ env->numa_node = 0;
+ QTAILQ_INIT(&env->breakpoints);
+ QTAILQ_INIT(&env->watchpoints);
+ *penv = env;
+#ifndef VBOX
+#if defined(CONFIG_USER_ONLY)
+ cpu_list_unlock();
+#endif
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+ vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
+ register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
+ cpu_save, cpu_load, env);
+#endif
+#endif /* !VBOX */
+}
+
+static inline void invalidate_page_bitmap(PageDesc *p)
+{
+ if (p->code_bitmap) {
+ qemu_free(p->code_bitmap);
+ p->code_bitmap = NULL;
+ }
+ p->code_write_count = 0;
+}
+
+/* Set to NULL all the 'first_tb' fields in all PageDescs. */
+
+static void page_flush_tb_1 (int level, void **lp)
+{
+ int i;
+
+ if (*lp == NULL) {
+ return;
+ }
+ if (level == 0) {
+ PageDesc *pd = *lp;
+ for (i = 0; i < L2_SIZE; ++i) {
+ pd[i].first_tb = NULL;
+ invalidate_page_bitmap(pd + i);
+ }
+ } else {
+ void **pp = *lp;
+ for (i = 0; i < L2_SIZE; ++i) {
+ page_flush_tb_1 (level - 1, pp + i);
+ }
+ }
+}
+
+static void page_flush_tb(void)
+{
+ int i;
+ for (i = 0; i < V_L1_SIZE; i++) {
+ page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
+ }
+}
+
+/* flush all the translation blocks */
+/* XXX: tb_flush is currently not thread safe */
+void tb_flush(CPUState *env1)
+{
+ CPUState *env;
+#ifdef VBOX
+ STAM_PROFILE_START(&env1->StatTbFlush, a);
+#endif
+#if defined(DEBUG_FLUSH)
+ printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
+ (unsigned long)(code_gen_ptr - code_gen_buffer),
+ nb_tbs, nb_tbs > 0 ?
+ ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
+#endif
+ if ((uintptr_t)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
+ cpu_abort(env1, "Internal error: code buffer overflow\n");
+
+ nb_tbs = 0;
+
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
+ }
+
+ memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
+ page_flush_tb();
+
+ code_gen_ptr = code_gen_buffer;
+ /* XXX: flush processor icache at this point if cache flush is
+ expensive */
+ tb_flush_count++;
+#ifdef VBOX
+ STAM_PROFILE_STOP(&env1->StatTbFlush, a);
+#endif
+}
+
+#ifdef DEBUG_TB_CHECK
+
+static void tb_invalidate_check(target_ulong address)
+{
+ TranslationBlock *tb;
+ int i;
+ address &= TARGET_PAGE_MASK;
+ for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+ for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
+ if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
+ address >= tb->pc + tb->size)) {
+ printf("ERROR invalidate: address=" TARGET_FMT_lx
+ " PC=%08lx size=%04x\n",
+ address, (long)tb->pc, tb->size);
+ }
+ }
+ }
+}
+
+/* verify that all the pages have correct rights for code */
+static void tb_page_check(void)
+{
+ TranslationBlock *tb;
+ int i, flags1, flags2;
+
+ for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+ for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
+ flags1 = page_get_flags(tb->pc);
+ flags2 = page_get_flags(tb->pc + tb->size - 1);
+ if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
+ printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
+ (long)tb->pc, tb->size, flags1, flags2);
+ }
+ }
+ }
+}
+
+#endif
+
+/* invalidate one TB */
+static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
+ int next_offset)
+{
+ TranslationBlock *tb1;
+ for(;;) {
+ tb1 = *ptb;
+ if (tb1 == tb) {
+ *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
+ break;
+ }
+ ptb = (TranslationBlock **)((char *)tb1 + next_offset);
+ }
+}
+
+static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
+{
+ TranslationBlock *tb1;
+ unsigned int n1;
+
+ for(;;) {
+ tb1 = *ptb;
+ n1 = (intptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
+ if (tb1 == tb) {
+ *ptb = tb1->page_next[n1];
+ break;
+ }
+ ptb = &tb1->page_next[n1];
+ }
+}
+
+static inline void tb_jmp_remove(TranslationBlock *tb, int n)
+{
+ TranslationBlock *tb1, **ptb;
+ unsigned int n1;
+
+ ptb = &tb->jmp_next[n];
+ tb1 = *ptb;
+ if (tb1) {
+ /* find tb(n) in circular list */
+ for(;;) {
+ tb1 = *ptb;
+ n1 = (intptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
+ if (n1 == n && tb1 == tb)
+ break;
+ if (n1 == 2) {
+ ptb = &tb1->jmp_first;
+ } else {
+ ptb = &tb1->jmp_next[n1];
+ }
+ }
+ /* now we can suppress tb(n) from the list */
+ *ptb = tb->jmp_next[n];
+
+ tb->jmp_next[n] = NULL;
+ }
+}
+
+/* reset the jump entry 'n' of a TB so that it is not chained to
+ another TB */
+static inline void tb_reset_jump(TranslationBlock *tb, int n)
+{
+ tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
+}
+
+void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
+{
+ CPUState *env;
+ PageDesc *p;
+ unsigned int h, n1;
+ tb_page_addr_t phys_pc;
+ TranslationBlock *tb1, *tb2;
+
+ /* remove the TB from the hash list */
+ phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ h = tb_phys_hash_func(phys_pc);
+ tb_remove(&tb_phys_hash[h], tb,
+ offsetof(TranslationBlock, phys_hash_next));
+
+ /* remove the TB from the page list */
+ if (tb->page_addr[0] != page_addr) {
+ p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+ if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
+ p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+
+ tb_invalidated_flag = 1;
+
+ /* remove the TB from the hash list */
+ h = tb_jmp_cache_hash_func(tb->pc);
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ if (env->tb_jmp_cache[h] == tb)
+ env->tb_jmp_cache[h] = NULL;
+ }
+
+ /* suppress this TB from the two jump lists */
+ tb_jmp_remove(tb, 0);
+ tb_jmp_remove(tb, 1);
+
+ /* suppress any remaining jumps to this TB */
+ tb1 = tb->jmp_first;
+ for(;;) {
+ n1 = (intptr_t)tb1 & 3;
+ if (n1 == 2)
+ break;
+ tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
+ tb2 = tb1->jmp_next[n1];
+ tb_reset_jump(tb1, n1);
+ tb1->jmp_next[n1] = NULL;
+ tb1 = tb2;
+ }
+ tb->jmp_first = (TranslationBlock *)((intptr_t)tb | 2); /* fail safe */
+
+ tb_phys_invalidate_count++;
+}
+
+#ifdef VBOX
+
+void tb_invalidate_virt(CPUState *env, uint32_t eip)
+{
+# if 1
+ tb_flush(env);
+# else
+ uint8_t *cs_base, *pc;
+ unsigned int flags, h, phys_pc;
+ TranslationBlock *tb, **ptb;
+
+ flags = env->hflags;
+ flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ cs_base = env->segs[R_CS].base;
+ pc = cs_base + eip;
+
+ tb = tb_find(&ptb, (uintptr_t)pc, (uintptr_t)cs_base,
+ flags);
+
+ if(tb)
+ {
+# ifdef DEBUG
+ printf("invalidating TB (%08X) at %08X\n", tb, eip);
+# endif
+ tb_invalidate(tb);
+ //Note: this will leak TBs, but the whole cache will be flushed
+ // when it happens too often
+ tb->pc = 0;
+ tb->cs_base = 0;
+ tb->flags = 0;
+ }
+# endif
+}
+
+# ifdef VBOX_STRICT
+/**
+ * Gets the page offset.
+ */
+ram_addr_t get_phys_page_offset(target_ulong addr)
+{
+ PhysPageDesc *p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ return p ? p->phys_offset : 0;
+}
+# endif /* VBOX_STRICT */
+
+#endif /* VBOX */
+
+static inline void set_bits(uint8_t *tab, int start, int len)
+{
+ int end, mask, end1;
+
+ end = start + len;
+ tab += start >> 3;
+ mask = 0xff << (start & 7);
+ if ((start & ~7) == (end & ~7)) {
+ if (start < end) {
+ mask &= ~(0xff << (end & 7));
+ *tab |= mask;
+ }
+ } else {
+ *tab++ |= mask;
+ start = (start + 8) & ~7;
+ end1 = end & ~7;
+ while (start < end1) {
+ *tab++ = 0xff;
+ start += 8;
+ }
+ if (start < end) {
+ mask = ~(0xff << (end & 7));
+ *tab |= mask;
+ }
+ }
+}
+
+static void build_page_bitmap(PageDesc *p)
+{
+ int n, tb_start, tb_end;
+ TranslationBlock *tb;
+
+ p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
+
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (intptr_t)tb & 3;
+ tb = (TranslationBlock *)((intptr_t)tb & ~3);
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->pc & ~TARGET_PAGE_MASK;
+ tb_end = tb_start + tb->size;
+ if (tb_end > TARGET_PAGE_SIZE)
+ tb_end = TARGET_PAGE_SIZE;
+ } else {
+ tb_start = 0;
+ tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
+ tb = tb->page_next[n];
+ }
+}
+
+TranslationBlock *tb_gen_code(CPUState *env,
+ target_ulong pc, target_ulong cs_base,
+ int flags, int cflags)
+{
+ TranslationBlock *tb;
+ uint8_t *tc_ptr;
+ tb_page_addr_t phys_pc, phys_page2;
+ target_ulong virt_page2;
+ int code_gen_size;
+
+ phys_pc = get_page_addr_code(env, pc);
+ tb = tb_alloc(pc);
+ if (!tb) {
+ /* flush must be done */
+ tb_flush(env);
+ /* cannot fail at this point */
+ tb = tb_alloc(pc);
+ /* Don't forget to invalidate previous TB info. */
+ tb_invalidated_flag = 1;
+ }
+ tc_ptr = code_gen_ptr;
+ tb->tc_ptr = tc_ptr;
+ tb->cs_base = cs_base;
+ tb->flags = flags;
+ tb->cflags = cflags;
+ cpu_gen_code(env, tb, &code_gen_size);
+ code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+
+ /* check next page if needed */
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+ phys_page2 = get_page_addr_code(env, virt_page2);
+ }
+ tb_link_page(tb, phys_pc, phys_page2);
+ return tb;
+}
+
+/* invalidate all TBs which intersect with the target physical page
+ starting in range [start;end[. NOTE: start and end must refer to
+ the same physical page. 'is_cpu_write_access' should be true if called
+ from a real cpu write access: the virtual CPU will exit the current
+ TB if code is modified inside this TB. */
+void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
+ int is_cpu_write_access)
+{
+ TranslationBlock *tb, *tb_next, *saved_tb;
+ CPUState *env = cpu_single_env;
+ tb_page_addr_t tb_start, tb_end;
+ PageDesc *p;
+ int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+ int current_tb_not_found = is_cpu_write_access;
+ TranslationBlock *current_tb = NULL;
+ int current_tb_modified = 0;
+ target_ulong current_pc = 0;
+ target_ulong current_cs_base = 0;
+ int current_flags = 0;
+#endif /* TARGET_HAS_PRECISE_SMC */
+
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p)
+ return;
+ if (!p->code_bitmap &&
+ ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
+ is_cpu_write_access) {
+ /* build code bitmap */
+ build_page_bitmap(p);
+ }
+
+ /* we remove all the TBs in the range [start, end[ */
+ /* XXX: see if in some cases it could be faster to invalidate all the code */
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (intptr_t)tb & 3;
+ tb = (TranslationBlock *)((intptr_t)tb & ~3);
+ tb_next = tb->page_next[n];
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ tb_end = tb_start + tb->size;
+ } else {
+ tb_start = tb->page_addr[1];
+ tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ if (!(tb_end <= start || tb_start >= end)) {
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_not_found) {
+ current_tb_not_found = 0;
+ current_tb = NULL;
+ if (env->mem_io_pc) {
+ /* now we have a real cpu fault */
+ current_tb = tb_find_pc(env->mem_io_pc);
+ }
+ }
+ if (current_tb == tb &&
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state(current_tb, env,
+ env->mem_io_pc, NULL);
+ cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+ &current_flags);
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ /* we need to do that to handle the case where a signal
+ occurs while doing tb_phys_invalidate() */
+ saved_tb = NULL;
+ if (env) {
+ saved_tb = env->current_tb;
+ env->current_tb = NULL;
+ }
+ tb_phys_invalidate(tb, -1);
+ if (env) {
+ env->current_tb = saved_tb;
+ if (env->interrupt_request && env->current_tb)
+ cpu_interrupt(env, env->interrupt_request);
+ }
+ }
+ tb = tb_next;
+ }
+#if !defined(CONFIG_USER_ONLY)
+ /* if no code remaining, no need to continue to use slow writes */
+ if (!p->first_tb) {
+ invalidate_page_bitmap(p);
+ if (is_cpu_write_access) {
+ tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
+ }
+ }
+#endif
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ env->current_tb = NULL;
+ tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
+ cpu_resume_from_signal(env, NULL);
+ }
+#endif
+}
+
+/* len must be <= 8 and start must be a multiple of len */
+static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
+{
+ PageDesc *p;
+ int offset, b;
+#if 0
+ if (1) {
+ qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
+ cpu_single_env->mem_io_vaddr, len,
+ cpu_single_env->eip,
+ cpu_single_env->eip + (intptr_t)cpu_single_env->segs[R_CS].base);
+ }
+#endif
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p)
+ return;
+ if (p->code_bitmap) {
+ offset = start & ~TARGET_PAGE_MASK;
+ b = p->code_bitmap[offset >> 3] >> (offset & 7);
+ if (b & ((1 << len) - 1))
+ goto do_invalidate;
+ } else {
+ do_invalidate:
+ tb_invalidate_phys_page_range(start, start + len, 1);
+ }
+}
+
+#if !defined(CONFIG_SOFTMMU)
+static void tb_invalidate_phys_page(tb_page_addr_t addr,
+ uintptr_t pc, void *puc)
+{
+ TranslationBlock *tb;
+ PageDesc *p;
+ int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+ TranslationBlock *current_tb = NULL;
+ CPUState *env = cpu_single_env;
+ int current_tb_modified = 0;
+ target_ulong current_pc = 0;
+ target_ulong current_cs_base = 0;
+ int current_flags = 0;
+#endif
+
+ addr &= TARGET_PAGE_MASK;
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p)
+ return;
+ tb = p->first_tb;
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (tb && pc != 0) {
+ current_tb = tb_find_pc(pc);
+ }
+#endif
+ while (tb != NULL) {
+ n = (intptr_t)tb & 3;
+ tb = (TranslationBlock *)((intptr_t)tb & ~3);
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb == tb &&
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state(current_tb, env, pc, puc);
+ cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+ &current_flags);
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ tb_phys_invalidate(tb, addr);
+ tb = tb->page_next[n];
+ }
+ p->first_tb = NULL;
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ env->current_tb = NULL;
+ tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
+ cpu_resume_from_signal(env, puc);
+ }
+#endif
+}
+#endif
+
+/* add the tb in the target page and protect it if necessary */
+static inline void tb_alloc_page(TranslationBlock *tb,
+ unsigned int n, tb_page_addr_t page_addr)
+{
+ PageDesc *p;
+ TranslationBlock *last_first_tb;
+
+ tb->page_addr[n] = page_addr;
+ p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
+ tb->page_next[n] = p->first_tb;
+ last_first_tb = p->first_tb;
+ p->first_tb = (TranslationBlock *)((intptr_t)tb | n);
+ invalidate_page_bitmap(p);
+
+#if defined(TARGET_HAS_SMC) || 1
+
+#if defined(CONFIG_USER_ONLY)
+ if (p->flags & PAGE_WRITE) {
+ target_ulong addr;
+ PageDesc *p2;
+ int prot;
+
+ /* force the host page as non writable (writes will have a
+ page fault + mprotect overhead) */
+ page_addr &= qemu_host_page_mask;
+ prot = 0;
+ for(addr = page_addr; addr < page_addr + qemu_host_page_size;
+ addr += TARGET_PAGE_SIZE) {
+
+ p2 = page_find (addr >> TARGET_PAGE_BITS);
+ if (!p2)
+ continue;
+ prot |= p2->flags;
+ p2->flags &= ~PAGE_WRITE;
+ }
+ mprotect(g2h(page_addr), qemu_host_page_size,
+ (prot & PAGE_BITS) & ~PAGE_WRITE);
+#ifdef DEBUG_TB_INVALIDATE
+ printf("protecting code page: 0x" TARGET_FMT_lx "\n",
+ page_addr);
+#endif
+ }
+#else
+ /* if some code is already present, then the pages are already
+ protected. So we handle the case where only the first TB is
+ allocated in a physical page */
+ if (!last_first_tb) {
+ tlb_protect_code(page_addr);
+ }
+#endif
+
+#endif /* TARGET_HAS_SMC */
+}
+
+/* Allocate a new translation block. Flush the translation buffer if
+ too many translation blocks or too much generated code. */
+TranslationBlock *tb_alloc(target_ulong pc)
+{
+ TranslationBlock *tb;
+
+ if (nb_tbs >= code_gen_max_blocks ||
+ (code_gen_ptr - code_gen_buffer) >= VBOX_ONLY((uintptr_t))code_gen_buffer_max_size)
+ return NULL;
+ tb = &tbs[nb_tbs++];
+ tb->pc = pc;
+ tb->cflags = 0;
+ return tb;
+}
+
+void tb_free(TranslationBlock *tb)
+{
+ /* In practice this is mostly used for single use temporary TB
+ Ignore the hard cases and just back up if this TB happens to
+ be the last one generated. */
+ if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
+ code_gen_ptr = tb->tc_ptr;
+ nb_tbs--;
+ }
+}
+
+/* add a new TB and link it to the physical page tables. phys_page2 is
+ (-1) to indicate that only one page contains the TB. */
+void tb_link_page(TranslationBlock *tb,
+ tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
+{
+ unsigned int h;
+ TranslationBlock **ptb;
+
+ /* Grab the mmap lock to stop another thread invalidating this TB
+ before we are done. */
+ mmap_lock();
+ /* add in the physical hash table */
+ h = tb_phys_hash_func(phys_pc);
+ ptb = &tb_phys_hash[h];
+ tb->phys_hash_next = *ptb;
+ *ptb = tb;
+
+ /* add in the page list */
+ tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
+ if (phys_page2 != -1)
+ tb_alloc_page(tb, 1, phys_page2);
+ else
+ tb->page_addr[1] = -1;
+
+ tb->jmp_first = (TranslationBlock *)((intptr_t)tb | 2);
+ tb->jmp_next[0] = NULL;
+ tb->jmp_next[1] = NULL;
+
+ /* init original jump addresses */
+ if (tb->tb_next_offset[0] != 0xffff)
+ tb_reset_jump(tb, 0);
+ if (tb->tb_next_offset[1] != 0xffff)
+ tb_reset_jump(tb, 1);
+
+#ifdef DEBUG_TB_CHECK
+ tb_page_check();
+#endif
+ mmap_unlock();
+}
+
+/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
+ tb[1].tc_ptr. Return NULL if not found */
+TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
+{
+ int m_min, m_max, m;
+ uintptr_t v;
+ TranslationBlock *tb;
+
+ if (nb_tbs <= 0)
+ return NULL;
+ if (tc_ptr < (uintptr_t)code_gen_buffer ||
+ tc_ptr >= (uintptr_t)code_gen_ptr)
+ return NULL;
+ /* binary search (cf Knuth) */
+ m_min = 0;
+ m_max = nb_tbs - 1;
+ while (m_min <= m_max) {
+ m = (m_min + m_max) >> 1;
+ tb = &tbs[m];
+ v = (uintptr_t)tb->tc_ptr;
+ if (v == tc_ptr)
+ return tb;
+ else if (tc_ptr < v) {
+ m_max = m - 1;
+ } else {
+ m_min = m + 1;
+ }
+ }
+ return &tbs[m_max];
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb);
+
+static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
+{
+ TranslationBlock *tb1, *tb_next, **ptb;
+ unsigned int n1;
+
+ tb1 = tb->jmp_next[n];
+ if (tb1 != NULL) {
+ /* find head of list */
+ for(;;) {
+ n1 = (intptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
+ if (n1 == 2)
+ break;
+ tb1 = tb1->jmp_next[n1];
+ }
+ /* we are now sure now that tb jumps to tb1 */
+ tb_next = tb1;
+
+ /* remove tb from the jmp_first list */
+ ptb = &tb_next->jmp_first;
+ for(;;) {
+ tb1 = *ptb;
+ n1 = (intptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
+ if (n1 == n && tb1 == tb)
+ break;
+ ptb = &tb1->jmp_next[n1];
+ }
+ *ptb = tb->jmp_next[n];
+ tb->jmp_next[n] = NULL;
+
+ /* suppress the jump to next tb in generated code */
+ tb_reset_jump(tb, n);
+
+ /* suppress jumps in the tb on which we could have jumped */
+ tb_reset_jump_recursive(tb_next);
+ }
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb)
+{
+ tb_reset_jump_recursive2(tb, 0);
+ tb_reset_jump_recursive2(tb, 1);
+}
+
+#if defined(TARGET_HAS_ICE)
+#if defined(CONFIG_USER_ONLY)
+static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+{
+ tb_invalidate_phys_page_range(pc, pc + 1, 0);
+}
+#else
+static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+{
+ target_phys_addr_t addr;
+ target_ulong pd;
+ ram_addr_t ram_addr;
+ PhysPageDesc *p;
+
+ addr = cpu_get_phys_page_debug(env, pc);
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+ ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
+ tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
+}
+#endif
+#endif /* TARGET_HAS_ICE */
+
+#if defined(CONFIG_USER_ONLY)
+void cpu_watchpoint_remove_all(CPUState *env, int mask)
+
+{
+}
+
+int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+ int flags, CPUWatchpoint **watchpoint)
+{
+ return -ENOSYS;
+}
+#else
+/* Add a watchpoint. */
+int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+ int flags, CPUWatchpoint **watchpoint)
+{
+ target_ulong len_mask = ~(len - 1);
+ CPUWatchpoint *wp;
+
+ /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
+ if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
+ fprintf(stderr, "qemu: tried to set invalid watchpoint at "
+ TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
+#ifndef VBOX
+ return -EINVAL;
+#else
+ return VERR_INVALID_PARAMETER;
+#endif
+ }
+ wp = qemu_malloc(sizeof(*wp));
+
+ wp->vaddr = addr;
+ wp->len_mask = len_mask;
+ wp->flags = flags;
+
+ /* keep all GDB-injected watchpoints in front */
+ if (flags & BP_GDB)
+ QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
+ else
+ QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
+
+ tlb_flush_page(env, addr);
+
+ if (watchpoint)
+ *watchpoint = wp;
+ return 0;
+}
+
+/* Remove a specific watchpoint. */
+int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
+ int flags)
+{
+ target_ulong len_mask = ~(len - 1);
+ CPUWatchpoint *wp;
+
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ if (addr == wp->vaddr && len_mask == wp->len_mask
+ && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
+ cpu_watchpoint_remove_by_ref(env, wp);
+ return 0;
+ }
+ }
+#ifndef VBOX
+ return -ENOENT;
+#else
+ return VERR_NOT_FOUND;
+#endif
+}
+
+/* Remove a specific watchpoint by reference. */
+void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
+{
+ QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
+
+ tlb_flush_page(env, watchpoint->vaddr);
+
+ qemu_free(watchpoint);
+}
+
+/* Remove all matching watchpoints. */
+void cpu_watchpoint_remove_all(CPUState *env, int mask)
+{
+ CPUWatchpoint *wp, *next;
+
+ QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
+ if (wp->flags & mask)
+ cpu_watchpoint_remove_by_ref(env, wp);
+ }
+}
+#endif
+
+/* Add a breakpoint. */
+int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
+ CPUBreakpoint **breakpoint)
+{
+#if defined(TARGET_HAS_ICE)
+ CPUBreakpoint *bp;
+
+ bp = qemu_malloc(sizeof(*bp));
+
+ bp->pc = pc;
+ bp->flags = flags;
+
+ /* keep all GDB-injected breakpoints in front */
+ if (flags & BP_GDB)
+ QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
+ else
+ QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
+
+ breakpoint_invalidate(env, pc);
+
+ if (breakpoint)
+ *breakpoint = bp;
+ return 0;
+#else
+ return -ENOSYS;
+#endif
+}
+
+/* Remove a specific breakpoint. */
+int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
+{
+#if defined(TARGET_HAS_ICE)
+ CPUBreakpoint *bp;
+
+ QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
+ if (bp->pc == pc && bp->flags == flags) {
+ cpu_breakpoint_remove_by_ref(env, bp);
+ return 0;
+ }
+ }
+# ifndef VBOX
+ return -ENOENT;
+# else
+ return VERR_NOT_FOUND;
+# endif
+#else
+ return -ENOSYS;
+#endif
+}
+
+/* Remove a specific breakpoint by reference. */
+void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
+{
+#if defined(TARGET_HAS_ICE)
+ QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
+
+ breakpoint_invalidate(env, breakpoint->pc);
+
+ qemu_free(breakpoint);
+#endif
+}
+
+/* Remove all matching breakpoints. */
+void cpu_breakpoint_remove_all(CPUState *env, int mask)
+{
+#if defined(TARGET_HAS_ICE)
+ CPUBreakpoint *bp, *next;
+
+ QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
+ if (bp->flags & mask)
+ cpu_breakpoint_remove_by_ref(env, bp);
+ }
+#endif
+}
+
+/* enable or disable single step mode. EXCP_DEBUG is returned by the
+ CPU loop after each instruction */
+void cpu_single_step(CPUState *env, int enabled)
+{
+#if defined(TARGET_HAS_ICE)
+ if (env->singlestep_enabled != enabled) {
+ env->singlestep_enabled = enabled;
+ if (kvm_enabled())
+ kvm_update_guest_debug(env, 0);
+ else {
+ /* must flush all the translated code to avoid inconsistencies */
+ /* XXX: only flush what is necessary */
+ tb_flush(env);
+ }
+ }
+#endif
+}
+
+#ifndef VBOX
+
+/* enable or disable low levels log */
+void cpu_set_log(int log_flags)
+{
+ loglevel = log_flags;
+ if (loglevel && !logfile) {
+ logfile = fopen(logfilename, log_append ? "a" : "w");
+ if (!logfile) {
+ perror(logfilename);
+ _exit(1);
+ }
+#if !defined(CONFIG_SOFTMMU)
+ /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
+ {
+ static char logfile_buf[4096];
+ setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
+ }
+#elif !defined(_WIN32)
+ /* Win32 doesn't support line-buffering and requires size >= 2 */
+ setvbuf(logfile, NULL, _IOLBF, 0);
+#endif
+ log_append = 1;
+ }
+ if (!loglevel && logfile) {
+ fclose(logfile);
+ logfile = NULL;
+ }
+}
+
+void cpu_set_log_filename(const char *filename)
+{
+ logfilename = strdup(filename);
+ if (logfile) {
+ fclose(logfile);
+ logfile = NULL;
+ }
+ cpu_set_log(loglevel);
+}
+
+#endif /* !VBOX */
+
+static void cpu_unlink_tb(CPUState *env)
+{
+ /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
+ problem and hope the cpu will stop of its own accord. For userspace
+ emulation this often isn't actually as bad as it sounds. Often
+ signals are used primarily to interrupt blocking syscalls. */
+ TranslationBlock *tb;
+ static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
+
+ spin_lock(&interrupt_lock);
+ tb = env->current_tb;
+ /* if the cpu is currently executing code, we must unlink it and
+ all the potentially executing TB */
+ if (tb) {
+ env->current_tb = NULL;
+ tb_reset_jump_recursive(tb);
+ }
+ spin_unlock(&interrupt_lock);
+}
+
+/* mask must never be zero, except for A20 change call */
+void cpu_interrupt(CPUState *env, int mask)
+{
+ int old_mask;
+
+ old_mask = env->interrupt_request;
+#ifndef VBOX
+ env->interrupt_request |= mask;
+#else /* VBOX */
+ VM_ASSERT_EMT(env->pVM);
+ ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, mask);
+#endif /* VBOX */
+
+#ifndef VBOX
+#ifndef CONFIG_USER_ONLY
+ /*
+ * If called from iothread context, wake the target cpu in
+ * case its halted.
+ */
+ if (!qemu_cpu_self(env)) {
+ qemu_cpu_kick(env);
+ return;
+ }
+#endif
+#endif /* !VBOX */
+
+ if (use_icount) {
+ env->icount_decr.u16.high = 0xffff;
+#ifndef CONFIG_USER_ONLY
+ if (!can_do_io(env)
+ && (mask & ~old_mask) != 0) {
+ cpu_abort(env, "Raised interrupt while not in I/O function");
+ }
+#endif
+ } else {
+ cpu_unlink_tb(env);
+ }
+}
+
+void cpu_reset_interrupt(CPUState *env, int mask)
+{
+#ifdef VBOX
+ /*
+ * Note: the current implementation can be executed by another thread without problems; make sure this remains true
+ * for future changes!
+ */
+ ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~mask);
+#else /* !VBOX */
+ env->interrupt_request &= ~mask;
+#endif /* !VBOX */
+}
+
+void cpu_exit(CPUState *env)
+{
+ env->exit_request = 1;
+ cpu_unlink_tb(env);
+}
+
+#ifndef VBOX
+const CPULogItem cpu_log_items[] = {
+ { CPU_LOG_TB_OUT_ASM, "out_asm",
+ "show generated host assembly code for each compiled TB" },
+ { CPU_LOG_TB_IN_ASM, "in_asm",
+ "show target assembly code for each compiled TB" },
+ { CPU_LOG_TB_OP, "op",
+ "show micro ops for each compiled TB" },
+ { CPU_LOG_TB_OP_OPT, "op_opt",
+ "show micro ops "
+#ifdef TARGET_I386
+ "before eflags optimization and "
+#endif
+ "after liveness analysis" },
+ { CPU_LOG_INT, "int",
+ "show interrupts/exceptions in short format" },
+ { CPU_LOG_EXEC, "exec",
+ "show trace before each executed TB (lots of logs)" },
+ { CPU_LOG_TB_CPU, "cpu",
+ "show CPU state before block translation" },
+#ifdef TARGET_I386
+ { CPU_LOG_PCALL, "pcall",
+ "show protected mode far calls/returns/exceptions" },
+ { CPU_LOG_RESET, "cpu_reset",
+ "show CPU state before CPU resets" },
+#endif
+#ifdef DEBUG_IOPORT
+ { CPU_LOG_IOPORT, "ioport",
+ "show all i/o ports accesses" },
+#endif
+ { 0, NULL, NULL },
+};
+
+#ifndef CONFIG_USER_ONLY
+static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
+ = QLIST_HEAD_INITIALIZER(memory_client_list);
+
+static void cpu_notify_set_memory(target_phys_addr_t start_addr,
+ ram_addr_t size,
+ ram_addr_t phys_offset)
+{
+ CPUPhysMemoryClient *client;
+ QLIST_FOREACH(client, &memory_client_list, list) {
+ client->set_memory(client, start_addr, size, phys_offset);
+ }
+}
+
+static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
+ target_phys_addr_t end)
+{
+ CPUPhysMemoryClient *client;
+ QLIST_FOREACH(client, &memory_client_list, list) {
+ int r = client->sync_dirty_bitmap(client, start, end);
+ if (r < 0)
+ return r;
+ }
+ return 0;
+}
+
+static int cpu_notify_migration_log(int enable)
+{
+ CPUPhysMemoryClient *client;
+ QLIST_FOREACH(client, &memory_client_list, list) {
+ int r = client->migration_log(client, enable);
+ if (r < 0)
+ return r;
+ }
+ return 0;
+}
+
+static void phys_page_for_each_1(CPUPhysMemoryClient *client,
+ int level, void **lp)
+{
+ int i;
+
+ if (*lp == NULL) {
+ return;
+ }
+ if (level == 0) {
+ PhysPageDesc *pd = *lp;
+ for (i = 0; i < L2_SIZE; ++i) {
+ if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
+ client->set_memory(client, pd[i].region_offset,
+ TARGET_PAGE_SIZE, pd[i].phys_offset);
+ }
+ }
+ } else {
+ void **pp = *lp;
+ for (i = 0; i < L2_SIZE; ++i) {
+ phys_page_for_each_1(client, level - 1, pp + i);
+ }
+ }
+}
+
+static void phys_page_for_each(CPUPhysMemoryClient *client)
+{
+ int i;
+ for (i = 0; i < P_L1_SIZE; ++i) {
+ phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
+ l1_phys_map + 1);
+ }
+}
+
+void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
+{
+ QLIST_INSERT_HEAD(&memory_client_list, client, list);
+ phys_page_for_each(client);
+}
+
+void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
+{
+ QLIST_REMOVE(client, list);
+}
+#endif
+
+static int cmp1(const char *s1, int n, const char *s2)
+{
+ if (strlen(s2) != n)
+ return 0;
+ return memcmp(s1, s2, n) == 0;
+}
+
+/* takes a comma separated list of log masks. Return 0 if error. */
+int cpu_str_to_log_mask(const char *str)
+{
+ const CPULogItem *item;
+ int mask;
+ const char *p, *p1;
+
+ p = str;
+ mask = 0;
+ for(;;) {
+ p1 = strchr(p, ',');
+ if (!p1)
+ p1 = p + strlen(p);
+ if(cmp1(p,p1-p,"all")) {
+ for(item = cpu_log_items; item->mask != 0; item++) {
+ mask |= item->mask;
+ }
+ } else {
+ for(item = cpu_log_items; item->mask != 0; item++) {
+ if (cmp1(p, p1 - p, item->name))
+ goto found;
+ }
+ return 0;
+ }
+ found:
+ mask |= item->mask;
+ if (*p1 != ',')
+ break;
+ p = p1 + 1;
+ }
+ return mask;
+}
+
+void cpu_abort(CPUState *env, const char *fmt, ...)
+{
+ va_list ap;
+ va_list ap2;
+
+ va_start(ap, fmt);
+ va_copy(ap2, ap);
+ fprintf(stderr, "qemu: fatal: ");
+ vfprintf(stderr, fmt, ap);
+ fprintf(stderr, "\n");
+#ifdef TARGET_I386
+ cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
+#else
+ cpu_dump_state(env, stderr, fprintf, 0);
+#endif
+ if (qemu_log_enabled()) {
+ qemu_log("qemu: fatal: ");
+ qemu_log_vprintf(fmt, ap2);
+ qemu_log("\n");
+#ifdef TARGET_I386
+ log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
+#else
+ log_cpu_state(env, 0);
+#endif
+ qemu_log_flush();
+ qemu_log_close();
+ }
+ va_end(ap2);
+ va_end(ap);
+#if defined(CONFIG_USER_ONLY)
+ {
+ struct sigaction act;
+ sigfillset(&act.sa_mask);
+ act.sa_handler = SIG_DFL;
+ sigaction(SIGABRT, &act, NULL);
+ }
+#endif
+ abort();
+}
+
+CPUState *cpu_copy(CPUState *env)
+{
+ CPUState *new_env = cpu_init(env->cpu_model_str);
+ CPUState *next_cpu = new_env->next_cpu;
+ int cpu_index = new_env->cpu_index;
+#if defined(TARGET_HAS_ICE)
+ CPUBreakpoint *bp;
+ CPUWatchpoint *wp;
+#endif
+
+ memcpy(new_env, env, sizeof(CPUState));
+
+ /* Preserve chaining and index. */
+ new_env->next_cpu = next_cpu;
+ new_env->cpu_index = cpu_index;
+
+ /* Clone all break/watchpoints.
+ Note: Once we support ptrace with hw-debug register access, make sure
+ BP_CPU break/watchpoints are handled correctly on clone. */
+ QTAILQ_INIT(&env->breakpoints);
+ QTAILQ_INIT(&env->watchpoints);
+#if defined(TARGET_HAS_ICE)
+ QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
+ cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
+ }
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
+ wp->flags, NULL);
+ }
+#endif
+
+ return new_env;
+}
+
+#endif /* !VBOX */
+#if !defined(CONFIG_USER_ONLY)
+
+static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
+{
+ unsigned int i;
+
+ /* Discard jump cache entries for any tb which might potentially
+ overlap the flushed page. */
+ i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
+ memset (&env->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+
+ i = tb_jmp_cache_hash_page(addr);
+ memset (&env->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+#ifdef VBOX
+
+ /* inform raw mode about TLB page flush */
+ remR3FlushPage(env, addr);
+#endif /* VBOX */
+}
+
+static CPUTLBEntry s_cputlb_empty_entry = {
+ .addr_read = -1,
+ .addr_write = -1,
+ .addr_code = -1,
+ .addend = -1,
+};
+
+/* NOTE: if flush_global is true, also flush global entries (not
+ implemented yet) */
+void tlb_flush(CPUState *env, int flush_global)
+{
+ int i;
+
+#ifdef VBOX
+ Assert(EMRemIsLockOwner(env->pVM));
+ ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXTERNAL_FLUSH_TLB);
+#endif
+
+#if defined(DEBUG_TLB)
+ printf("tlb_flush:\n");
+#endif
+ /* must reset current TB so that interrupts cannot modify the
+ links while we are modifying them */
+ env->current_tb = NULL;
+
+ for(i = 0; i < CPU_TLB_SIZE; i++) {
+ int mmu_idx;
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
+ }
+ }
+
+ memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
+
+ env->tlb_flush_addr = -1;
+ env->tlb_flush_mask = 0;
+ tlb_flush_count++;
+#ifdef VBOX
+
+ /* inform raw mode about TLB flush */
+ remR3FlushTLB(env, flush_global);
+#endif /* VBOX */
+}
+
+static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
+{
+ if (addr == (tlb_entry->addr_read &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_write &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_code &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ *tlb_entry = s_cputlb_empty_entry;
+ }
+}
+
+void tlb_flush_page(CPUState *env, target_ulong addr)
+{
+ int i;
+ int mmu_idx;
+
+ Assert(EMRemIsLockOwner(env->pVM));
+#if defined(DEBUG_TLB)
+ printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
+#endif
+ /* Check if we need to flush due to large pages. */
+ if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
+#if defined(DEBUG_TLB)
+ printf("tlb_flush_page: forced full flush ("
+ TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
+ env->tlb_flush_addr, env->tlb_flush_mask);
+#endif
+ tlb_flush(env, 1);
+ return;
+ }
+ /* must reset current TB so that interrupts cannot modify the
+ links while we are modifying them */
+ env->current_tb = NULL;
+
+ addr &= TARGET_PAGE_MASK;
+ i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
+ tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
+
+ tlb_flush_jmp_cache(env, addr);
+}
+
+/* update the TLBs so that writes to code in the virtual page 'addr'
+ can be detected */
+static void tlb_protect_code(ram_addr_t ram_addr)
+{
+ cpu_physical_memory_reset_dirty(ram_addr,
+ ram_addr + TARGET_PAGE_SIZE,
+ CODE_DIRTY_FLAG);
+#if defined(VBOX) && defined(REM_MONITOR_CODE_PAGES)
+ /** @todo Retest this? This function has changed... */
+ remR3ProtectCode(cpu_single_env, ram_addr);
+#endif /* VBOX */
+}
+
+/* update the TLB so that writes in physical page 'phys_addr' are no longer
+ tested for self modifying code */
+static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+ target_ulong vaddr)
+{
+ cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
+}
+
+static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
+ uintptr_t start, uintptr_t length)
+{
+ uintptr_t addr;
+#ifdef VBOX
+
+ if (start & 3)
+ return;
+#endif /* VBOX */
+ if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
+ addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
+ if ((addr - start) < length) {
+ tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
+ }
+ }
+}
+
+/* Note: start and end must be within the same ram block. */
+void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
+ int dirty_flags)
+{
+ CPUState *env;
+ uintptr_t length, start1;
+ int i;
+
+ start &= TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+
+ length = end - start;
+ if (length == 0)
+ return;
+ cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
+
+ /* we modify the TLB cache so that the dirty bit will be set again
+ when accessing the range */
+#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
+ start1 = start;
+#elif !defined(VBOX)
+ start1 = (uintptr_t)qemu_get_ram_ptr(start);
+ /* Chek that we don't span multiple blocks - this breaks the
+ address comparisons below. */
+ if ((uintptr_t)qemu_get_ram_ptr(end - 1) - start1
+ != (end - 1) - start) {
+ abort();
+ }
+#else
+ start1 = (uintptr_t)remR3TlbGCPhys2Ptr(first_cpu, start, 1 /*fWritable*/); /** @todo page replacing (sharing or read only) may cause trouble, fix interface/whatever. */
+#endif
+
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ int mmu_idx;
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
+ start1, length);
+ }
+ }
+}
+
+#ifndef VBOX
+
+int cpu_physical_memory_set_dirty_tracking(int enable)
+{
+ int ret = 0;
+ in_migration = enable;
+ ret = cpu_notify_migration_log(!!enable);
+ return ret;
+}
+
+int cpu_physical_memory_get_dirty_tracking(void)
+{
+ return in_migration;
+}
+
+#endif /* !VBOX */
+
+int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
+ target_phys_addr_t end_addr)
+{
+#ifndef VBOX
+ int ret;
+
+ ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
+ return ret;
+#else /* VBOX */
+ return 0;
+#endif /* VBOX */
+}
+
+#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
+DECLINLINE(void) tlb_update_dirty(CPUTLBEntry *tlb_entry, target_phys_addr_t phys_addend)
+#else
+static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
+#endif
+{
+ ram_addr_t ram_addr;
+#ifndef VBOX
+ void *p;
+#endif
+
+ if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
+#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
+ ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
+#elif !defined(VBOX)
+ p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
+ + tlb_entry->addend);
+ ram_addr = qemu_ram_addr_from_host(p);
+#else
+ Assert(phys_addend != -1);
+ ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + phys_addend;
+#endif
+ if (!cpu_physical_memory_is_dirty(ram_addr)) {
+ tlb_entry->addr_write |= TLB_NOTDIRTY;
+ }
+ }
+}
+
+/* update the TLB according to the current state of the dirty bits */
+void cpu_tlb_update_dirty(CPUState *env)
+{
+ int i;
+ int mmu_idx;
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
+ tlb_update_dirty(&env->tlb_table[mmu_idx][i], env->phys_addends[mmu_idx][i]);
+#else
+ tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
+#endif
+ }
+}
+
+static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
+{
+ if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
+ tlb_entry->addr_write = vaddr;
+}
+
+/* update the TLB corresponding to virtual page vaddr
+ so that it is no longer dirty */
+static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
+{
+ int i;
+ int mmu_idx;
+
+ vaddr &= TARGET_PAGE_MASK;
+ i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
+ tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
+}
+
+/* Our TLB does not support large pages, so remember the area covered by
+ large pages and trigger a full TLB flush if these are invalidated. */
+static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
+ target_ulong size)
+{
+ target_ulong mask = ~(size - 1);
+
+ if (env->tlb_flush_addr == (target_ulong)-1) {
+ env->tlb_flush_addr = vaddr & mask;
+ env->tlb_flush_mask = mask;
+ return;
+ }
+ /* Extend the existing region to include the new page.
+ This is a compromise between unnecessary flushes and the cost
+ of maintaining a full variable size TLB. */
+ mask &= env->tlb_flush_mask;
+ while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
+ mask <<= 1;
+ }
+ env->tlb_flush_addr &= mask;
+ env->tlb_flush_mask = mask;
+}
+
+/* Add a new TLB entry. At most one entry for a given virtual address
+ is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
+ supplied size is only used by tlb_flush_page. */
+void tlb_set_page(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int mmu_idx, target_ulong size)
+{
+ PhysPageDesc *p;
+ ram_addr_t pd;
+ unsigned int index;
+ target_ulong address;
+ target_ulong code_address;
+ uintptr_t addend;
+ CPUTLBEntry *te;
+ CPUWatchpoint *wp;
+ target_phys_addr_t iotlb;
+#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
+ int read_mods = 0, write_mods = 0, code_mods = 0;
+#endif
+
+ assert(size >= TARGET_PAGE_SIZE);
+ if (size != TARGET_PAGE_SIZE) {
+ tlb_add_large_page(env, vaddr, size);
+ }
+ p = phys_page_find(paddr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+#if defined(DEBUG_TLB)
+ printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d size=" TARGET_FMT_lx " pd=0x%08lx\n",
+ vaddr, (int)paddr, prot, mmu_idx, size, (long)pd);
+#endif
+
+ address = vaddr;
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
+ /* IO memory case (romd handled later) */
+ address |= TLB_MMIO;
+ }
+#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
+ addend = pd & TARGET_PAGE_MASK;
+#elif !defined(VBOX)
+ addend = (uintptr_t)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
+#else
+ /** @todo this is racing the phys_page_find call above since it may register
+ * a new chunk of memory... */
+ addend = (uintptr_t)remR3TlbGCPhys2Ptr(env, pd & TARGET_PAGE_MASK, !!(prot & PAGE_WRITE));
+#endif
+
+ if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
+ /* Normal RAM. */
+ iotlb = pd & TARGET_PAGE_MASK;
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
+ iotlb |= IO_MEM_NOTDIRTY;
+ else
+ iotlb |= IO_MEM_ROM;
+ } else {
+ /* IO handlers are currently passed a physical address.
+ It would be nice to pass an offset from the base address
+ of that region. This would avoid having to special case RAM,
+ and avoid full address decoding in every device.
+ We can't use the high bits of pd for this because
+ IO_MEM_ROMD uses these as a ram address. */
+ iotlb = (pd & ~TARGET_PAGE_MASK);
+ if (p) {
+ iotlb += p->region_offset;
+ } else {
+ iotlb += paddr;
+ }
+ }
+
+ code_address = address;
+#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
+
+ if (addend & 0x3)
+ {
+ if (addend & 0x2)
+ {
+ /* catch write */
+ if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
+ write_mods |= TLB_MMIO;
+ }
+ else if (addend & 0x1)
+ {
+ /* catch all */
+ if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
+ {
+ read_mods |= TLB_MMIO;
+ write_mods |= TLB_MMIO;
+ code_mods |= TLB_MMIO;
+ }
+ }
+ if ((iotlb & ~TARGET_PAGE_MASK) == 0)
+ iotlb = env->pVM->rem.s.iHandlerMemType + paddr;
+ addend &= ~(target_ulong)0x3;
+ }
+
+#endif
+ /* Make accesses to pages with watchpoints go via the
+ watchpoint trap routines. */
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
+ /* Avoid trapping reads of pages with a write breakpoint. */
+ if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
+ iotlb = io_mem_watch + paddr;
+ address |= TLB_MMIO;
+ break;
+ }
+ }
+ }
+
+ index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ env->iotlb[mmu_idx][index] = iotlb - vaddr;
+ te = &env->tlb_table[mmu_idx][index];
+ te->addend = addend - vaddr;
+ if (prot & PAGE_READ) {
+ te->addr_read = address;
+ } else {
+ te->addr_read = -1;
+ }
+
+ if (prot & PAGE_EXEC) {
+ te->addr_code = code_address;
+ } else {
+ te->addr_code = -1;
+ }
+ if (prot & PAGE_WRITE) {
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
+ (pd & IO_MEM_ROMD)) {
+ /* Write access calls the I/O callback. */
+ te->addr_write = address | TLB_MMIO;
+ } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
+ !cpu_physical_memory_is_dirty(pd)) {
+ te->addr_write = address | TLB_NOTDIRTY;
+ } else {
+ te->addr_write = address;
+ }
+ } else {
+ te->addr_write = -1;
+ }
+
+#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
+ if (prot & PAGE_READ)
+ te->addr_read |= read_mods;
+ if (prot & PAGE_EXEC)
+ te->addr_code |= code_mods;
+ if (prot & PAGE_WRITE)
+ te->addr_write |= write_mods;
+
+ env->phys_addends[mmu_idx][index] = (pd & TARGET_PAGE_MASK)- vaddr;
+#endif
+
+#ifdef VBOX
+ /* inform raw mode about TLB page change */
+ remR3FlushPage(env, vaddr);
+#endif
+}
+
+#else
+
+void tlb_flush(CPUState *env, int flush_global)
+{
+}
+
+void tlb_flush_page(CPUState *env, target_ulong addr)
+{
+}
+
+/*
+ * Walks guest process memory "regions" one by one
+ * and calls callback function 'fn' for each region.
+ */
+
+struct walk_memory_regions_data
+{
+ walk_memory_regions_fn fn;
+ void *priv;
+ uintptr_t start;
+ int prot;
+};
+
+static int walk_memory_regions_end(struct walk_memory_regions_data *data,
+ abi_ulong end, int new_prot)
+{
+ if (data->start != -1ul) {
+ int rc = data->fn(data->priv, data->start, end, data->prot);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ data->start = (new_prot ? end : -1ul);
+ data->prot = new_prot;
+
+ return 0;
+}
+
+static int walk_memory_regions_1(struct walk_memory_regions_data *data,
+ abi_ulong base, int level, void **lp)
+{
+ abi_ulong pa;
+ int i, rc;
+
+ if (*lp == NULL) {
+ return walk_memory_regions_end(data, base, 0);
+ }
+
+ if (level == 0) {
+ PageDesc *pd = *lp;
+ for (i = 0; i < L2_SIZE; ++i) {
+ int prot = pd[i].flags;
+
+ pa = base | (i << TARGET_PAGE_BITS);
+ if (prot != data->prot) {
+ rc = walk_memory_regions_end(data, pa, prot);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+ }
+ } else {
+ void **pp = *lp;
+ for (i = 0; i < L2_SIZE; ++i) {
+ pa = base | ((abi_ulong)i <<
+ (TARGET_PAGE_BITS + L2_BITS * level));
+ rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+ }
+
+ return 0;
+}
+
+int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
+{
+ struct walk_memory_regions_data data;
+ target_ulong i;
+
+ data.fn = fn;
+ data.priv = priv;
+ data.start = -1ul;
+ data.prot = 0;
+
+ for (i = 0; i < V_L1_SIZE; i++) {
+ int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
+ V_L1_SHIFT / L2_BITS - 1, l1_map + i);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ return walk_memory_regions_end(&data, 0, 0);
+}
+
+static int dump_region(void *priv, abi_ulong start,
+ abi_ulong end, unsigned long prot)
+{
+ FILE *f = (FILE *)priv;
+
+ (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
+ " "TARGET_ABI_FMT_lx" %c%c%c\n",
+ start, end, end - start,
+ ((prot & PAGE_READ) ? 'r' : '-'),
+ ((prot & PAGE_WRITE) ? 'w' : '-'),
+ ((prot & PAGE_EXEC) ? 'x' : '-'));
+
+ return (0);
+}
+
+/* dump memory mappings */
+void page_dump(FILE *f)
+{
+ (void) fprintf(f, "%-8s %-8s %-8s %s\n",
+ "start", "end", "size", "prot");
+ walk_memory_regions(f, dump_region);
+}
+
+int page_get_flags(target_ulong address)
+{
+ PageDesc *p;
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p)
+ return 0;
+ return p->flags;
+}
+
+/* Modify the flags of a page and invalidate the code if necessary.
+ The flag PAGE_WRITE_ORG is positioned automatically depending
+ on PAGE_WRITE. The mmap_lock should already be held. */
+void page_set_flags(target_ulong start, target_ulong end, int flags)
+{
+ target_ulong addr, len;
+
+ /* This function should never be called with addresses outside the
+ guest address space. If this assert fires, it probably indicates
+ a missing call to h2g_valid. */
+#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
+ assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
+#endif
+ assert(start < end);
+
+ start = start & TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+
+ if (flags & PAGE_WRITE) {
+ flags |= PAGE_WRITE_ORG;
+ }
+
+#ifdef VBOX
+ AssertMsgFailed(("We shouldn't be here, and if we should, we must have an env to do the proper locking!\n"));
+#endif
+ for (addr = start, len = end - start;
+ len != 0;
+ len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
+ PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
+
+ /* If the write protection bit is set, then we invalidate
+ the code inside. */
+ if (!(p->flags & PAGE_WRITE) &&
+ (flags & PAGE_WRITE) &&
+ p->first_tb) {
+ tb_invalidate_phys_page(addr, 0, NULL);
+ }
+ p->flags = flags;
+ }
+}
+
+int page_check_range(target_ulong start, target_ulong len, int flags)
+{
+ PageDesc *p;
+ target_ulong end;
+ target_ulong addr;
+
+ /* This function should never be called with addresses outside the
+ guest address space. If this assert fires, it probably indicates
+ a missing call to h2g_valid. */
+#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
+ assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
+#endif
+
+ if (len == 0) {
+ return 0;
+ }
+ if (start + len - 1 < start) {
+ /* We've wrapped around. */
+ return -1;
+ }
+
+ end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
+ start = start & TARGET_PAGE_MASK;
+
+ for (addr = start, len = end - start;
+ len != 0;
+ len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if( !p )
+ return -1;
+ if( !(p->flags & PAGE_VALID) )
+ return -1;
+
+ if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
+ return -1;
+ if (flags & PAGE_WRITE) {
+ if (!(p->flags & PAGE_WRITE_ORG))
+ return -1;
+ /* unprotect the page if it was put read-only because it
+ contains translated code */
+ if (!(p->flags & PAGE_WRITE)) {
+ if (!page_unprotect(addr, 0, NULL))
+ return -1;
+ }
+ return 0;
+ }
+ }
+ return 0;
+}
+
+/* called from signal handler: invalidate the code and unprotect the
+ page. Return TRUE if the fault was successfully handled. */
+int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
+{
+ unsigned int prot;
+ PageDesc *p;
+ target_ulong host_start, host_end, addr;
+
+ /* Technically this isn't safe inside a signal handler. However we
+ know this only ever happens in a synchronous SEGV handler, so in
+ practice it seems to be ok. */
+ mmap_lock();
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p) {
+ mmap_unlock();
+ return 0;
+ }
+
+ /* if the page was really writable, then we change its
+ protection back to writable */
+ if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
+ host_start = address & qemu_host_page_mask;
+ host_end = host_start + qemu_host_page_size;
+
+ prot = 0;
+ for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ p->flags |= PAGE_WRITE;
+ prot |= p->flags;
+
+ /* and since the content will be modified, we must invalidate
+ the corresponding translated code. */
+ tb_invalidate_phys_page(addr, pc, puc);
+#ifdef DEBUG_TB_CHECK
+ tb_invalidate_check(addr);
+#endif
+ }
+ mprotect((void *)g2h(host_start), qemu_host_page_size,
+ prot & PAGE_BITS);
+
+ mmap_unlock();
+ return 1;
+ }
+ mmap_unlock();
+ return 0;
+}
+
+static inline void tlb_set_dirty(CPUState *env,
+ uintptr_t addr, target_ulong vaddr)
+{
+}
+#endif /* defined(CONFIG_USER_ONLY) */
+
+#if !defined(CONFIG_USER_ONLY)
+
+#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
+typedef struct subpage_t {
+ target_phys_addr_t base;
+ ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
+ ram_addr_t region_offset[TARGET_PAGE_SIZE];
+} subpage_t;
+
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+ ram_addr_t memory, ram_addr_t region_offset);
+static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
+ ram_addr_t orig_memory,
+ ram_addr_t region_offset);
+#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
+ need_subpage) \
+ do { \
+ if (addr > start_addr) \
+ start_addr2 = 0; \
+ else { \
+ start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
+ if (start_addr2 > 0) \
+ need_subpage = 1; \
+ } \
+ \
+ if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
+ end_addr2 = TARGET_PAGE_SIZE - 1; \
+ else { \
+ end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
+ if (end_addr2 < TARGET_PAGE_SIZE - 1) \
+ need_subpage = 1; \
+ } \
+ } while (0)
+
+/* register physical memory.
+ For RAM, 'size' must be a multiple of the target page size.
+ If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
+ io memory page. The address used when calling the IO function is
+ the offset from the start of the region, plus region_offset. Both
+ start_addr and region_offset are rounded down to a page boundary
+ before calculating this offset. This should not be a problem unless
+ the low bits of start_addr and region_offset differ. */
+void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
+ ram_addr_t size,
+ ram_addr_t phys_offset,
+ ram_addr_t region_offset)
+{
+ target_phys_addr_t addr, end_addr;
+ PhysPageDesc *p;
+ CPUState *env;
+ ram_addr_t orig_size = size;
+ subpage_t *subpage;
+
+#ifndef VBOX
+ cpu_notify_set_memory(start_addr, size, phys_offset);
+#endif /* !VBOX */
+
+ if (phys_offset == IO_MEM_UNASSIGNED) {
+ region_offset = start_addr;
+ }
+ region_offset &= TARGET_PAGE_MASK;
+ size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
+ end_addr = start_addr + (target_phys_addr_t)size;
+ for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
+ ram_addr_t orig_memory = p->phys_offset;
+ target_phys_addr_t start_addr2, end_addr2;
+ int need_subpage = 0;
+
+ CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
+ need_subpage);
+ if (need_subpage) {
+ if (!(orig_memory & IO_MEM_SUBPAGE)) {
+ subpage = subpage_init((addr & TARGET_PAGE_MASK),
+ &p->phys_offset, orig_memory,
+ p->region_offset);
+ } else {
+ subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
+ >> IO_MEM_SHIFT];
+ }
+ subpage_register(subpage, start_addr2, end_addr2, phys_offset,
+ region_offset);
+ p->region_offset = 0;
+ } else {
+ p->phys_offset = phys_offset;
+ if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
+ (phys_offset & IO_MEM_ROMD))
+ phys_offset += TARGET_PAGE_SIZE;
+ }
+ } else {
+ p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
+ p->phys_offset = phys_offset;
+ p->region_offset = region_offset;
+ if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
+ (phys_offset & IO_MEM_ROMD)) {
+ phys_offset += TARGET_PAGE_SIZE;
+ } else {
+ target_phys_addr_t start_addr2, end_addr2;
+ int need_subpage = 0;
+
+ CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
+ end_addr2, need_subpage);
+
+ if (need_subpage) {
+ subpage = subpage_init((addr & TARGET_PAGE_MASK),
+ &p->phys_offset, IO_MEM_UNASSIGNED,
+ addr & TARGET_PAGE_MASK);
+ subpage_register(subpage, start_addr2, end_addr2,
+ phys_offset, region_offset);
+ p->region_offset = 0;
+ }
+ }
+ }
+ region_offset += TARGET_PAGE_SIZE;
+ }
+
+ /* since each CPU stores ram addresses in its TLB cache, we must
+ reset the modified entries */
+#ifndef VBOX
+ /* XXX: slow ! */
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ tlb_flush(env, 1);
+ }
+#else
+ /* We have one thread per CPU, so, one of the other EMTs might be executing
+ code right now and flushing the TLB may crash it. */
+ env = first_cpu;
+ if (EMRemIsLockOwner(env->pVM))
+ tlb_flush(env, 1);
+ else
+ ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request,
+ CPU_INTERRUPT_EXTERNAL_FLUSH_TLB);
+#endif
+}
+
+/* XXX: temporary until new memory mapping API */
+ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
+{
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p)
+ return IO_MEM_UNASSIGNED;
+ return p->phys_offset;
+}
+
+#ifndef VBOX
+
+void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
+{
+ if (kvm_enabled())
+ kvm_coalesce_mmio_region(addr, size);
+}
+
+void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
+{
+ if (kvm_enabled())
+ kvm_uncoalesce_mmio_region(addr, size);
+}
+
+void qemu_flush_coalesced_mmio_buffer(void)
+{
+ if (kvm_enabled())
+ kvm_flush_coalesced_mmio_buffer();
+}
+
+#if defined(__linux__) && !defined(TARGET_S390X)
+
+#include <sys/vfs.h>
+
+#define HUGETLBFS_MAGIC 0x958458f6
+
+static size_t gethugepagesize(const char *path)
+{
+ struct statfs fs;
+ int ret;
+
+ do {
+ ret = statfs(path, &fs);
+ } while (ret != 0 && errno == EINTR);
+
+ if (ret != 0) {
+ perror(path);
+ return 0;
+ }
+
+ if (fs.f_type != HUGETLBFS_MAGIC)
+ fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
+
+ return (size_t)fs.f_bsize;
+}
+
+static void *file_ram_alloc(RAMBlock *block,
+ ram_addr_t memory,
+ const char *path)
+{
+ char *filename;
+ void *area;
+ int fd;
+#ifdef MAP_POPULATE
+ int flags;
+#endif
+ size_t hpagesize;
+
+ hpagesize = gethugepagesize(path);
+ if (!hpagesize) {
+ return NULL;
+ }
+
+ if (memory < hpagesize) {
+ return NULL;
+ }
+
+ if (kvm_enabled() && !kvm_has_sync_mmu()) {
+ fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
+ return NULL;
+ }
+
+ if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
+ return NULL;
+ }
+
+ fd = mkstemp(filename);
+ if (fd < 0) {
+ perror("unable to create backing store for hugepages");
+ free(filename);
+ return NULL;
+ }
+ unlink(filename);
+ free(filename);
+
+ memory = (memory+hpagesize-1) & ~(hpagesize-1);
+
+ /*
+ * ftruncate is not supported by hugetlbfs in older
+ * hosts, so don't bother bailing out on errors.
+ * If anything goes wrong with it under other filesystems,
+ * mmap will fail.
+ */
+ if (ftruncate(fd, memory))
+ perror("ftruncate");
+
+#ifdef MAP_POPULATE
+ /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
+ * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
+ * to sidestep this quirk.
+ */
+ flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
+ area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
+#else
+ area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
+#endif
+ if (area == MAP_FAILED) {
+ perror("file_ram_alloc: can't mmap RAM pages");
+ close(fd);
+ return (NULL);
+ }
+ block->fd = fd;
+ return area;
+}
+#endif
+
+static ram_addr_t find_ram_offset(ram_addr_t size)
+{
+ RAMBlock *block, *next_block;
+ ram_addr_t offset = 0, mingap = ULONG_MAX;
+
+ if (QLIST_EMPTY(&ram_list.blocks))
+ return 0;
+
+ QLIST_FOREACH(block, &ram_list.blocks, next) {
+ ram_addr_t end, next = ULONG_MAX;
+
+ end = block->offset + block->length;
+
+ QLIST_FOREACH(next_block, &ram_list.blocks, next) {
+ if (next_block->offset >= end) {
+ next = MIN(next, next_block->offset);
+ }
+ }
+ if (next - end >= size && next - end < mingap) {
+ offset = end;
+ mingap = next - end;
+ }
+ }
+ return offset;
+}
+
+static ram_addr_t last_ram_offset(void)
+{
+ RAMBlock *block;
+ ram_addr_t last = 0;
+
+ QLIST_FOREACH(block, &ram_list.blocks, next)
+ last = MAX(last, block->offset + block->length);
+
+ return last;
+}
+
+ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
+ ram_addr_t size, void *host)
+{
+ RAMBlock *new_block, *block;
+
+ size = TARGET_PAGE_ALIGN(size);
+ new_block = qemu_mallocz(sizeof(*new_block));
+
+ if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
+ char *id = dev->parent_bus->info->get_dev_path(dev);
+ if (id) {
+ snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
+ qemu_free(id);
+ }
+ }
+ pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
+
+ QLIST_FOREACH(block, &ram_list.blocks, next) {
+ if (!strcmp(block->idstr, new_block->idstr)) {
+ fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
+ new_block->idstr);
+ abort();
+ }
+ }
+
+ new_block->host = host;
+
+ new_block->offset = find_ram_offset(size);
+ new_block->length = size;
+
+ QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
+
+ ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
+ last_ram_offset() >> TARGET_PAGE_BITS);
+ memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
+ 0xff, size >> TARGET_PAGE_BITS);
+
+ if (kvm_enabled())
+ kvm_setup_guest_memory(new_block->host, size);
+
+ return new_block->offset;
+}
+
+ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
+{
+ RAMBlock *new_block, *block;
+
+ size = TARGET_PAGE_ALIGN(size);
+ new_block = qemu_mallocz(sizeof(*new_block));
+
+ if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
+ char *id = dev->parent_bus->info->get_dev_path(dev);
+ if (id) {
+ snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
+ qemu_free(id);
+ }
+ }
+ pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
+
+ QLIST_FOREACH(block, &ram_list.blocks, next) {
+ if (!strcmp(block->idstr, new_block->idstr)) {
+ fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
+ new_block->idstr);
+ abort();
+ }
+ }
+
+ if (mem_path) {
+#if defined (__linux__) && !defined(TARGET_S390X)
+ new_block->host = file_ram_alloc(new_block, size, mem_path);
+ if (!new_block->host) {
+ new_block->host = qemu_vmalloc(size);
+#ifdef MADV_MERGEABLE
+ madvise(new_block->host, size, MADV_MERGEABLE);
+#endif
+ }
+#else
+ fprintf(stderr, "-mem-path option unsupported\n");
+ exit(1);
+#endif
+ } else {
+#if defined(TARGET_S390X) && defined(CONFIG_KVM)
+ /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
+ new_block->host = mmap((void*)0x1000000, size,
+ PROT_EXEC|PROT_READ|PROT_WRITE,
+ MAP_SHARED | MAP_ANONYMOUS, -1, 0);
+#else
+ new_block->host = qemu_vmalloc(size);
+#endif
+#ifdef MADV_MERGEABLE
+ madvise(new_block->host, size, MADV_MERGEABLE);
+#endif
+ }
+ new_block->offset = find_ram_offset(size);
+ new_block->length = size;
+
+ QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
+
+ ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
+ last_ram_offset() >> TARGET_PAGE_BITS);
+ memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
+ 0xff, size >> TARGET_PAGE_BITS);
+
+ if (kvm_enabled())
+ kvm_setup_guest_memory(new_block->host, size);
+
+ return new_block->offset;
+}
+
+void qemu_ram_free(ram_addr_t addr)
+{
+ RAMBlock *block;
+
+ QLIST_FOREACH(block, &ram_list.blocks, next) {
+ if (addr == block->offset) {
+ QLIST_REMOVE(block, next);
+ if (mem_path) {
+#if defined (__linux__) && !defined(TARGET_S390X)
+ if (block->fd) {
+ munmap(block->host, block->length);
+ close(block->fd);
+ } else {
+ qemu_vfree(block->host);
+ }
+#endif
+ } else {
+#if defined(TARGET_S390X) && defined(CONFIG_KVM)
+ munmap(block->host, block->length);
+#else
+ qemu_vfree(block->host);
+#endif
+ }
+ qemu_free(block);
+ return;
+ }
+ }
+
+}
+
+/* Return a host pointer to ram allocated with qemu_ram_alloc.
+ With the exception of the softmmu code in this file, this should
+ only be used for local memory (e.g. video ram) that the device owns,
+ and knows it isn't going to access beyond the end of the block.
+
+ It should not be used for general purpose DMA.
+ Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
+ */
+void *qemu_get_ram_ptr(ram_addr_t addr)
+{
+ RAMBlock *block;
+
+ QLIST_FOREACH(block, &ram_list.blocks, next) {
+ if (addr - block->offset < block->length) {
+ QLIST_REMOVE(block, next);
+ QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
+ return block->host + (addr - block->offset);
+ }
+ }
+
+ fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
+ abort();
+
+ return NULL;
+}
+
+/* Some of the softmmu routines need to translate from a host pointer
+ (typically a TLB entry) back to a ram offset. */
+ram_addr_t qemu_ram_addr_from_host(void *ptr)
+{
+ RAMBlock *block;
+ uint8_t *host = ptr;
+
+ QLIST_FOREACH(block, &ram_list.blocks, next) {
+ if (host - block->host < block->length) {
+ return block->offset + (host - block->host);
+ }
+ }
+
+ fprintf(stderr, "Bad ram pointer %p\n", ptr);
+ abort();
+
+ return 0;
+}
+
+#endif /* !VBOX */
+
+static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
+ do_unassigned_access(addr, 0, 0, 0, 1);
+#endif
+ return 0;
+}
+
+static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
+ do_unassigned_access(addr, 0, 0, 0, 2);
+#endif
+ return 0;
+}
+
+static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
+ do_unassigned_access(addr, 0, 0, 0, 4);
+#endif
+ return 0;
+}
+
+static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
+ do_unassigned_access(addr, 1, 0, 0, 1);
+#endif
+}
+
+static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
+ do_unassigned_access(addr, 1, 0, 0, 2);
+#endif
+}
+
+static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
+ do_unassigned_access(addr, 1, 0, 0, 4);
+#endif
+}
+
+static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
+ unassigned_mem_readb,
+ unassigned_mem_readw,
+ unassigned_mem_readl,
+};
+
+static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
+ unassigned_mem_writeb,
+ unassigned_mem_writew,
+ unassigned_mem_writel,
+};
+
+static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
+ uint32_t val)
+{
+ int dirty_flags;
+ dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+#if !defined(CONFIG_USER_ONLY)
+ tb_invalidate_phys_page_fast(ram_addr, 1);
+ dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
+#endif
+ }
+#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
+ remR3PhysWriteU8(ram_addr, val);
+#else
+ stb_p(qemu_get_ram_ptr(ram_addr), val);
+#endif
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff)
+ tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+}
+
+static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
+ uint32_t val)
+{
+ int dirty_flags;
+ dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+#if !defined(CONFIG_USER_ONLY)
+ tb_invalidate_phys_page_fast(ram_addr, 2);
+ dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
+#endif
+ }
+#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
+ remR3PhysWriteU16(ram_addr, val);
+#else
+ stw_p(qemu_get_ram_ptr(ram_addr), val);
+#endif
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff)
+ tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+}
+
+static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
+ uint32_t val)
+{
+ int dirty_flags;
+ dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+#if !defined(CONFIG_USER_ONLY)
+ tb_invalidate_phys_page_fast(ram_addr, 4);
+ dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
+#endif
+ }
+#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
+ remR3PhysWriteU32(ram_addr, val);
+#else
+ stl_p(qemu_get_ram_ptr(ram_addr), val);
+#endif
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff)
+ tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+}
+
+static CPUReadMemoryFunc * const error_mem_read[3] = {
+ NULL, /* never used */
+ NULL, /* never used */
+ NULL, /* never used */
+};
+
+static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
+ notdirty_mem_writeb,
+ notdirty_mem_writew,
+ notdirty_mem_writel,
+};
+
+/* Generate a debug exception if a watchpoint has been hit. */
+static void check_watchpoint(int offset, int len_mask, int flags)
+{
+ CPUState *env = cpu_single_env;
+ target_ulong pc, cs_base;
+ TranslationBlock *tb;
+ target_ulong vaddr;
+ CPUWatchpoint *wp;
+ int cpu_flags;
+
+ if (env->watchpoint_hit) {
+ /* We re-entered the check after replacing the TB. Now raise
+ * the debug interrupt so that is will trigger after the
+ * current instruction. */
+ cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
+ return;
+ }
+ vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ if ((vaddr == (wp->vaddr & len_mask) ||
+ (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
+ wp->flags |= BP_WATCHPOINT_HIT;
+ if (!env->watchpoint_hit) {
+ env->watchpoint_hit = wp;
+ tb = tb_find_pc(env->mem_io_pc);
+ if (!tb) {
+ cpu_abort(env, "check_watchpoint: could not find TB for "
+ "pc=%p", (void *)env->mem_io_pc);
+ }
+ cpu_restore_state(tb, env, env->mem_io_pc, NULL);
+ tb_phys_invalidate(tb, -1);
+ if (wp->flags & BP_STOP_BEFORE_ACCESS) {
+ env->exception_index = EXCP_DEBUG;
+ } else {
+ cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
+ tb_gen_code(env, pc, cs_base, cpu_flags, 1);
+ }
+ cpu_resume_from_signal(env, NULL);
+ }
+ } else {
+ wp->flags &= ~BP_WATCHPOINT_HIT;
+ }
+ }
+}
+
+/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
+ so these check for a hit then pass through to the normal out-of-line
+ phys routines. */
+static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
+ return ldub_phys(addr);
+}
+
+static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
+ return lduw_phys(addr);
+}
+
+static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
+ return ldl_phys(addr);
+}
+
+static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
+ uint32_t val)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
+ stb_phys(addr, val);
+}
+
+static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
+ uint32_t val)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
+ stw_phys(addr, val);
+}
+
+static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
+ uint32_t val)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
+ stl_phys(addr, val);
+}
+
+static CPUReadMemoryFunc * const watch_mem_read[3] = {
+ watch_mem_readb,
+ watch_mem_readw,
+ watch_mem_readl,
+};
+
+static CPUWriteMemoryFunc * const watch_mem_write[3] = {
+ watch_mem_writeb,
+ watch_mem_writew,
+ watch_mem_writel,
+};
+
+static inline uint32_t subpage_readlen (subpage_t *mmio,
+ target_phys_addr_t addr,
+ unsigned int len)
+{
+ unsigned int idx = SUBPAGE_IDX(addr);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
+ mmio, len, addr, idx);
+#endif
+
+ addr += mmio->region_offset[idx];
+ idx = mmio->sub_io_index[idx];
+ return io_mem_read[idx][len](io_mem_opaque[idx], addr);
+}
+
+static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
+ uint32_t value, unsigned int len)
+{
+ unsigned int idx = SUBPAGE_IDX(addr);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
+ __func__, mmio, len, addr, idx, value);
+#endif
+
+ addr += mmio->region_offset[idx];
+ idx = mmio->sub_io_index[idx];
+ io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
+}
+
+static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
+{
+ return subpage_readlen(opaque, addr, 0);
+}
+
+static void subpage_writeb (void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ subpage_writelen(opaque, addr, value, 0);
+}
+
+static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
+{
+ return subpage_readlen(opaque, addr, 1);
+}
+
+static void subpage_writew (void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ subpage_writelen(opaque, addr, value, 1);
+}
+
+static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
+{
+ return subpage_readlen(opaque, addr, 2);
+}
+
+static void subpage_writel (void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ subpage_writelen(opaque, addr, value, 2);
+}
+
+static CPUReadMemoryFunc * const subpage_read[] = {
+ &subpage_readb,
+ &subpage_readw,
+ &subpage_readl,
+};
+
+static CPUWriteMemoryFunc * const subpage_write[] = {
+ &subpage_writeb,
+ &subpage_writew,
+ &subpage_writel,
+};
+
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+ ram_addr_t memory, ram_addr_t region_offset)
+{
+ int idx, eidx;
+
+ if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
+ return -1;
+ idx = SUBPAGE_IDX(start);
+ eidx = SUBPAGE_IDX(end);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
+ mmio, start, end, idx, eidx, memory);
+#endif
+ memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ for (; idx <= eidx; idx++) {
+ mmio->sub_io_index[idx] = memory;
+ mmio->region_offset[idx] = region_offset;
+ }
+
+ return 0;
+}
+
+static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
+ ram_addr_t orig_memory,
+ ram_addr_t region_offset)
+{
+ subpage_t *mmio;
+ int subpage_memory;
+
+ mmio = qemu_mallocz(sizeof(subpage_t));
+
+ mmio->base = base;
+ subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
+ mmio, base, TARGET_PAGE_SIZE, subpage_memory);
+#endif
+ *phys = subpage_memory | IO_MEM_SUBPAGE;
+ subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
+
+ return mmio;
+}
+
+static int get_free_io_mem_idx(void)
+{
+ int i;
+
+ for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
+ if (!io_mem_used[i]) {
+ io_mem_used[i] = 1;
+ return i;
+ }
+ fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
+ return -1;
+}
+
+/* mem_read and mem_write are arrays of functions containing the
+ function to access byte (index 0), word (index 1) and dword (index
+ 2). Functions can be omitted with a NULL function pointer.
+ If io_index is non zero, the corresponding io zone is
+ modified. If it is zero, a new io zone is allocated. The return
+ value can be used with cpu_register_physical_memory(). (-1) is
+ returned if error. */
+static int cpu_register_io_memory_fixed(int io_index,
+ CPUReadMemoryFunc * const *mem_read,
+ CPUWriteMemoryFunc * const *mem_write,
+ void *opaque)
+{
+ int i;
+
+ if (io_index <= 0) {
+ io_index = get_free_io_mem_idx();
+ if (io_index == -1)
+ return io_index;
+ } else {
+ io_index >>= IO_MEM_SHIFT;
+ if (io_index >= IO_MEM_NB_ENTRIES)
+ return -1;
+ }
+
+ for (i = 0; i < 3; ++i) {
+ io_mem_read[io_index][i]
+ = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
+ }
+ for (i = 0; i < 3; ++i) {
+ io_mem_write[io_index][i]
+ = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
+ }
+ io_mem_opaque[io_index] = opaque;
+
+ return (io_index << IO_MEM_SHIFT);
+}
+
+int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
+ CPUWriteMemoryFunc * const *mem_write,
+ void *opaque)
+{
+ return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
+}
+
+void cpu_unregister_io_memory(int io_table_address)
+{
+ int i;
+ int io_index = io_table_address >> IO_MEM_SHIFT;
+
+ for (i=0;i < 3; i++) {
+ io_mem_read[io_index][i] = unassigned_mem_read[i];
+ io_mem_write[io_index][i] = unassigned_mem_write[i];
+ }
+ io_mem_opaque[io_index] = NULL;
+ io_mem_used[io_index] = 0;
+}
+
+static void io_mem_init(void)
+{
+ int i;
+
+ cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
+ cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
+ cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
+ for (i=0; i<5; i++)
+ io_mem_used[i] = 1;
+
+ io_mem_watch = cpu_register_io_memory(watch_mem_read,
+ watch_mem_write, NULL);
+}
+
+#endif /* !defined(CONFIG_USER_ONLY) */
+
+/* physical memory access (slow version, mainly for debug) */
+#if defined(CONFIG_USER_ONLY)
+int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+ uint8_t *buf, int len, int is_write)
+{
+ int l, flags;
+ target_ulong page;
+ void * p;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ flags = page_get_flags(page);
+ if (!(flags & PAGE_VALID))
+ return -1;
+ if (is_write) {
+ if (!(flags & PAGE_WRITE))
+ return -1;
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
+ return -1;
+ memcpy(p, buf, l);
+ unlock_user(p, addr, l);
+ } else {
+ if (!(flags & PAGE_READ))
+ return -1;
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
+ return -1;
+ memcpy(buf, p, l);
+ unlock_user(p, addr, 0);
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+ return 0;
+}
+
+#else
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+ int len, int is_write)
+{
+ int l, io_index;
+ uint8_t *ptr;
+ uint32_t val;
+ target_phys_addr_t page;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ p = phys_page_find(page >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if (is_write) {
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ target_phys_addr_t addr1 = addr;
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (p)
+ addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ /* XXX: could force cpu_single_env to NULL to avoid
+ potential bugs */
+ if (l >= 4 && ((addr1 & 3) == 0)) {
+ /* 32 bit write access */
+#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
+ val = ldl_p(buf);
+#else
+ val = *(const uint32_t *)buf;
+#endif
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
+ l = 4;
+ } else if (l >= 2 && ((addr1 & 1) == 0)) {
+ /* 16 bit write access */
+#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
+ val = lduw_p(buf);
+#else
+ val = *(const uint16_t *)buf;
+#endif
+ io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
+ l = 2;
+ } else {
+ /* 8 bit write access */
+#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
+ val = ldub_p(buf);
+#else
+ val = *(const uint8_t *)buf;
+#endif
+ io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
+ l = 1;
+ }
+ } else {
+ ram_addr_t addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* RAM case */
+#ifdef VBOX
+ remR3PhysWrite(addr1, buf, l); NOREF(ptr);
+#else
+ ptr = qemu_get_ram_ptr(addr1);
+ memcpy(ptr, buf, l);
+#endif
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
+ /* set dirty bit */
+ cpu_physical_memory_set_dirty_flags(
+ addr1, (0xff & ~CODE_DIRTY_FLAG));
+ }
+ }
+ } else {
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ target_phys_addr_t addr1 = addr;
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (p)
+ addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ if (l >= 4 && ((addr1 & 3) == 0)) {
+ /* 32 bit read access */
+ val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
+#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
+ stl_p(buf, val);
+#else
+ *(uint32_t *)buf = val;
+#endif
+ l = 4;
+ } else if (l >= 2 && ((addr1 & 1) == 0)) {
+ /* 16 bit read access */
+ val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
+#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
+ stw_p(buf, val);
+#else
+ *(uint16_t *)buf = val;
+#endif
+ l = 2;
+ } else {
+ /* 8 bit read access */
+ val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
+#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
+ stb_p(buf, val);
+#else
+ *(uint8_t *)buf = val;
+#endif
+ l = 1;
+ }
+ } else {
+ /* RAM case */
+#ifdef VBOX
+ remR3PhysRead((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), buf, l); NOREF(ptr);
+#else
+ ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ memcpy(buf, ptr, l);
+#endif
+ }
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+}
+
+#ifndef VBOX
+
+/* used for ROM loading : can write in RAM and ROM */
+void cpu_physical_memory_write_rom(target_phys_addr_t addr,
+ const uint8_t *buf, int len)
+{
+ int l;
+ uint8_t *ptr;
+ target_phys_addr_t page;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ p = phys_page_find(page >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
+ (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* do nothing */
+ } else {
+ ram_addr_t addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* ROM/RAM case */
+ ptr = qemu_get_ram_ptr(addr1);
+ memcpy(ptr, buf, l);
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+}
+
+typedef struct {
+ void *buffer;
+ target_phys_addr_t addr;
+ target_phys_addr_t len;
+} BounceBuffer;
+
+static BounceBuffer bounce;
+
+typedef struct MapClient {
+ void *opaque;
+ void (*callback)(void *opaque);
+ QLIST_ENTRY(MapClient) link;
+} MapClient;
+
+static QLIST_HEAD(map_client_list, MapClient) map_client_list
+ = QLIST_HEAD_INITIALIZER(map_client_list);
+
+void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
+{
+ MapClient *client = qemu_malloc(sizeof(*client));
+
+ client->opaque = opaque;
+ client->callback = callback;
+ QLIST_INSERT_HEAD(&map_client_list, client, link);
+ return client;
+}
+
+void cpu_unregister_map_client(void *_client)
+{
+ MapClient *client = (MapClient *)_client;
+
+ QLIST_REMOVE(client, link);
+ qemu_free(client);
+}
+
+static void cpu_notify_map_clients(void)
+{
+ MapClient *client;
+
+ while (!QLIST_EMPTY(&map_client_list)) {
+ client = QLIST_FIRST(&map_client_list);
+ client->callback(client->opaque);
+ cpu_unregister_map_client(client);
+ }
+}
+
+/* Map a physical memory region into a host virtual address.
+ * May map a subset of the requested range, given by and returned in *plen.
+ * May return NULL if resources needed to perform the mapping are exhausted.
+ * Use only for reads OR writes - not for read-modify-write operations.
+ * Use cpu_register_map_client() to know when retrying the map operation is
+ * likely to succeed.
+ */
+void *cpu_physical_memory_map(target_phys_addr_t addr,
+ target_phys_addr_t *plen,
+ int is_write)
+{
+ target_phys_addr_t len = *plen;
+ target_phys_addr_t done = 0;
+ int l;
+ uint8_t *ret = NULL;
+ uint8_t *ptr;
+ target_phys_addr_t page;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+ ram_addr_t addr1;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ p = phys_page_find(page >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ if (done || bounce.buffer) {
+ break;
+ }
+ bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
+ bounce.addr = addr;
+ bounce.len = l;
+ if (!is_write) {
+ cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
+ }
+ ptr = bounce.buffer;
+ } else {
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr(addr1);
+ }
+ if (!done) {
+ ret = ptr;
+ } else if (ret + done != ptr) {
+ break;
+ }
+
+ len -= l;
+ addr += l;
+ done += l;
+ }
+ *plen = done;
+ return ret;
+}
+
+/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
+ * Will also mark the memory as dirty if is_write == 1. access_len gives
+ * the amount of memory that was actually read or written by the caller.
+ */
+void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
+ int is_write, target_phys_addr_t access_len)
+{
+ if (buffer != bounce.buffer) {
+ if (is_write) {
+ ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
+ while (access_len) {
+ unsigned l;
+ l = TARGET_PAGE_SIZE;
+ if (l > access_len)
+ l = access_len;
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
+ /* set dirty bit */
+ cpu_physical_memory_set_dirty_flags(
+ addr1, (0xff & ~CODE_DIRTY_FLAG));
+ }
+ addr1 += l;
+ access_len -= l;
+ }
+ }
+ return;
+ }
+ if (is_write) {
+ cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
+ }
+ qemu_vfree(bounce.buffer);
+ bounce.buffer = NULL;
+ cpu_notify_map_clients();
+}
+
+#endif /* !VBOX */
+
+/* warning: addr must be aligned */
+uint32_t ldl_phys(target_phys_addr_t addr)
+{
+ int io_index;
+ uint8_t *ptr;
+ uint32_t val;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (p)
+ addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+ } else {
+ /* RAM case */
+#ifndef VBOX
+ ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ val = ldl_p(ptr);
+#else
+ val = remR3PhysReadU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
+#endif
+ }
+ return val;
+}
+
+/* warning: addr must be aligned */
+uint64_t ldq_phys(target_phys_addr_t addr)
+{
+ int io_index;
+ uint8_t *ptr;
+ uint64_t val;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (p)
+ addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+#ifdef TARGET_WORDS_BIGENDIAN
+ val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
+ val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
+#else
+ val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+ val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
+#endif
+ } else {
+ /* RAM case */
+#ifndef VBOX
+ ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ val = ldq_p(ptr);
+#else
+ val = remR3PhysReadU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
+#endif
+ }
+ return val;
+}
+
+/* XXX: optimize */
+uint32_t ldub_phys(target_phys_addr_t addr)
+{
+ uint8_t val;
+ cpu_physical_memory_read(addr, &val, 1);
+ return val;
+}
+
+/* warning: addr must be aligned */
+uint32_t lduw_phys(target_phys_addr_t addr)
+{
+ int io_index;
+#ifndef VBOX
+ uint8_t *ptr;
+#endif
+ uint64_t val;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (p)
+ addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
+ } else {
+ /* RAM case */
+#ifndef VBOX
+ ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ val = lduw_p(ptr);
+#else
+ val = remR3PhysReadU16((pd & TARGET_PAGE_MASK) | (addr & ~TARGET_PAGE_MASK));
+#endif
+ }
+ return val;
+}
+
+/* warning: addr must be aligned. The ram page is not masked as dirty
+ and the code inside is not invalidated. It is useful if the dirty
+ bits are used to track modified PTEs */
+void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (p)
+ addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ } else {
+#ifndef VBOX
+ ram_addr_t addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr(addr1);
+ stl_p(ptr, val);
+#else
+ remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
+#endif
+
+#ifndef VBOX
+ if (unlikely(in_migration)) {
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
+ /* set dirty bit */
+ cpu_physical_memory_set_dirty_flags(
+ addr1, (0xff & ~CODE_DIRTY_FLAG));
+ }
+ }
+#endif /* !VBOX */
+ }
+}
+
+void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (p)
+ addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+#ifdef TARGET_WORDS_BIGENDIAN
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
+#else
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
+#endif
+ } else {
+#ifndef VBOX
+ ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ stq_p(ptr, val);
+#else
+ remR3PhysWriteU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
+#endif
+ }
+}
+
+/* warning: addr must be aligned */
+void stl_phys(target_phys_addr_t addr, uint32_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (p)
+ addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ } else {
+ ram_addr_t addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* RAM case */
+#ifndef VBOX
+ ptr = qemu_get_ram_ptr(addr1);
+ stl_p(ptr, val);
+#else
+ remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
+#endif
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
+ /* set dirty bit */
+ cpu_physical_memory_set_dirty_flags(addr1,
+ (0xff & ~CODE_DIRTY_FLAG));
+ }
+ }
+}
+
+/* XXX: optimize */
+void stb_phys(target_phys_addr_t addr, uint32_t val)
+{
+ uint8_t v = val;
+ cpu_physical_memory_write(addr, &v, 1);
+}
+
+/* warning: addr must be aligned */
+void stw_phys(target_phys_addr_t addr, uint32_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ ram_addr_t pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (p)
+ addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
+ } else {
+ ram_addr_t addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* RAM case */
+#ifndef VBOX
+ ptr = qemu_get_ram_ptr(addr1);
+ stw_p(ptr, val);
+#else
+ remR3PhysWriteU16(addr1, val); NOREF(ptr);
+#endif
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
+ /* set dirty bit */
+ cpu_physical_memory_set_dirty_flags(addr1,
+ (0xff & ~CODE_DIRTY_FLAG));
+ }
+ }
+}
+
+/* XXX: optimize */
+void stq_phys(target_phys_addr_t addr, uint64_t val)
+{
+ val = tswap64(val);
+ cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
+}
+
+#ifndef VBOX
+/* virtual memory access for debug (includes writing to ROM) */
+int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+ uint8_t *buf, int len, int is_write)
+{
+ int l;
+ target_phys_addr_t phys_addr;
+ target_ulong page;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ phys_addr = cpu_get_phys_page_debug(env, page);
+ /* if no physical page mapped, return an error */
+ if (phys_addr == -1)
+ return -1;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ phys_addr += (addr & ~TARGET_PAGE_MASK);
+ if (is_write)
+ cpu_physical_memory_write_rom(phys_addr, buf, l);
+ else
+ cpu_physical_memory_rw(phys_addr, buf, l, is_write);
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+ return 0;
+}
+#endif /* !VBOX */
+#endif
+
+/* in deterministic execution mode, instructions doing device I/Os
+ must be at the end of the TB */
+void cpu_io_recompile(CPUState *env, void *retaddr)
+{
+ TranslationBlock *tb;
+ uint32_t n, cflags;
+ target_ulong pc, cs_base;
+ uint64_t flags;
+
+ tb = tb_find_pc((uintptr_t)retaddr);
+ if (!tb) {
+ cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
+ retaddr);
+ }
+ n = env->icount_decr.u16.low + tb->icount;
+ cpu_restore_state(tb, env, (uintptr_t)retaddr, NULL);
+ /* Calculate how many instructions had been executed before the fault
+ occurred. */
+ n = n - env->icount_decr.u16.low;
+ /* Generate a new TB ending on the I/O insn. */
+ n++;
+ /* On MIPS and SH, delay slot instructions can only be restarted if
+ they were already the first instruction in the TB. If this is not
+ the first instruction in a TB then re-execute the preceding
+ branch. */
+#if defined(TARGET_MIPS)
+ if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
+ env->active_tc.PC -= 4;
+ env->icount_decr.u16.low++;
+ env->hflags &= ~MIPS_HFLAG_BMASK;
+ }
+#elif defined(TARGET_SH4)
+ if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
+ && n > 1) {
+ env->pc -= 2;
+ env->icount_decr.u16.low++;
+ env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
+ }
+#endif
+ /* This should never happen. */
+ if (n > CF_COUNT_MASK)
+ cpu_abort(env, "TB too big during recompile");
+
+ cflags = n | CF_LAST_IO;
+ pc = tb->pc;
+ cs_base = tb->cs_base;
+ flags = tb->flags;
+ tb_phys_invalidate(tb, -1);
+ /* FIXME: In theory this could raise an exception. In practice
+ we have already translated the block once so it's probably ok. */
+ tb_gen_code(env, pc, cs_base, flags, cflags);
+ /** @todo If env->pc != tb->pc (i.e. the faulting instruction was not
+ the first in the TB) then we end up generating a whole new TB and
+ repeating the fault, which is horribly inefficient.
+ Better would be to execute just this insn uncached, or generate a
+ second new TB. */
+ cpu_resume_from_signal(env, NULL);
+}
+
+#if !defined(CONFIG_USER_ONLY)
+
+#ifndef VBOX
+void dump_exec_info(FILE *f,
+ int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
+{
+ int i, target_code_size, max_target_code_size;
+ int direct_jmp_count, direct_jmp2_count, cross_page;
+ TranslationBlock *tb;
+
+ target_code_size = 0;
+ max_target_code_size = 0;
+ cross_page = 0;
+ direct_jmp_count = 0;
+ direct_jmp2_count = 0;
+ for(i = 0; i < nb_tbs; i++) {
+ tb = &tbs[i];
+ target_code_size += tb->size;
+ if (tb->size > max_target_code_size)
+ max_target_code_size = tb->size;
+ if (tb->page_addr[1] != -1)
+ cross_page++;
+ if (tb->tb_next_offset[0] != 0xffff) {
+ direct_jmp_count++;
+ if (tb->tb_next_offset[1] != 0xffff) {
+ direct_jmp2_count++;
+ }
+ }
+ }
+ /* XXX: avoid using doubles ? */
+ cpu_fprintf(f, "Translation buffer state:\n");
+ cpu_fprintf(f, "gen code size %ld/%ld\n",
+ code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
+ cpu_fprintf(f, "TB count %d/%d\n",
+ nb_tbs, code_gen_max_blocks);
+ cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
+ nb_tbs ? target_code_size / nb_tbs : 0,
+ max_target_code_size);
+ cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
+ nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
+ target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
+ cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
+ cross_page,
+ nb_tbs ? (cross_page * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
+ direct_jmp_count,
+ nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
+ direct_jmp2_count,
+ nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "\nStatistics:\n");
+ cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
+ cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
+ cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
+ tcg_dump_info(f, cpu_fprintf);
+}
+#endif /* !VBOX */
+
+#define MMUSUFFIX _cmmu
+#define GETPC() NULL
+#define env cpu_single_env
+#define SOFTMMU_CODE_ACCESS
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"
+
+#undef env
+
+#endif