diff options
Diffstat (limited to 'src/recompiler/exec.c')
-rw-r--r-- | src/recompiler/exec.c | 4586 |
1 files changed, 4586 insertions, 0 deletions
diff --git a/src/recompiler/exec.c b/src/recompiler/exec.c new file mode 100644 index 00000000..ca632372 --- /dev/null +++ b/src/recompiler/exec.c @@ -0,0 +1,4586 @@ +/* + * virtual page mapping and translated block handling + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +/* + * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice + * other than GPL or LGPL is available it will apply instead, Oracle elects to use only + * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where + * a choice of LGPL license versions is made available with the language indicating + * that LGPLv2 or any later version may be used, or where a choice of which version + * of the LGPL is applied is otherwise unspecified. + */ + +#include "config.h" +#ifndef VBOX +#ifdef _WIN32 +#include <windows.h> +#else +#include <sys/types.h> +#include <sys/mman.h> +#endif +#include <stdlib.h> +#include <stdio.h> +#include <stdarg.h> +#include <string.h> +#include <errno.h> +#include <unistd.h> +#include <inttypes.h> +#else /* VBOX */ +# include <stdlib.h> +# include <stdio.h> +# include <iprt/alloc.h> +# include <iprt/string.h> +# include <iprt/param.h> +# include <VBox/vmm/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */ +# include <iprt/errcore.h> +#endif /* VBOX */ + +#include "cpu.h" +#include "exec-all.h" +#include "qemu-common.h" +#include "tcg.h" +#ifndef VBOX +#include "hw/hw.h" +#include "hw/qdev.h" +#endif /* !VBOX */ +#include "osdep.h" +#include "kvm.h" +#include "qemu-timer.h" +#if defined(CONFIG_USER_ONLY) +#include <qemu.h> +#include <signal.h> +#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) +#include <sys/param.h> +#if __FreeBSD_version >= 700104 +#define HAVE_KINFO_GETVMMAP +#define sigqueue sigqueue_freebsd /* avoid redefinition */ +#include <sys/time.h> +#include <sys/proc.h> +#include <machine/profile.h> +#define _KERNEL +#include <sys/user.h> +#undef _KERNEL +#undef sigqueue +#include <libutil.h> +#endif +#endif +#endif + +//#define DEBUG_TB_INVALIDATE +//#define DEBUG_FLUSH +//#define DEBUG_TLB +//#define DEBUG_UNASSIGNED + +/* make various TB consistency checks */ +//#define DEBUG_TB_CHECK +//#define DEBUG_TLB_CHECK + +//#define DEBUG_IOPORT +//#define DEBUG_SUBPAGE + +#if !defined(CONFIG_USER_ONLY) +/* TB consistency checks only implemented for usermode emulation. */ +#undef DEBUG_TB_CHECK +#endif + +#define SMC_BITMAP_USE_THRESHOLD 10 + +static TranslationBlock *tbs; +static int code_gen_max_blocks; +TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; +static int nb_tbs; +/* any access to the tbs or the page table must use this lock */ +spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; + +#ifndef VBOX +#if defined(__arm__) || defined(__sparc_v9__) +/* The prologue must be reachable with a direct jump. ARM and Sparc64 + have limited branch ranges (possibly also PPC) so place it in a + section close to code segment. */ +#define code_gen_section \ + __attribute__((__section__(".gen_code"))) \ + __attribute__((aligned (32))) +#elif defined(_WIN32) +/* Maximum alignment for Win32 is 16. */ +#define code_gen_section \ + __attribute__((aligned (16))) +#else +#define code_gen_section \ + __attribute__((aligned (32))) +#endif + +uint8_t code_gen_prologue[1024] code_gen_section; +#else /* VBOX */ +extern uint8_t *code_gen_prologue; +#endif /* VBOX */ +static uint8_t *code_gen_buffer; +static size_t code_gen_buffer_size; +/* threshold to flush the translated code buffer */ +static size_t code_gen_buffer_max_size; +static uint8_t *code_gen_ptr; + +#if !defined(CONFIG_USER_ONLY) +# ifndef VBOX +int phys_ram_fd; +static int in_migration; +# endif /* !VBOX */ + +RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) }; +#endif + +CPUState *first_cpu; +/* current CPU in the current thread. It is only valid inside + cpu_exec() */ +CPUState *cpu_single_env; +/* 0 = Do not count executed instructions. + 1 = Precise instruction counting. + 2 = Adaptive rate instruction counting. */ +int use_icount = 0; +/* Current instruction counter. While executing translated code this may + include some instructions that have not yet been executed. */ +int64_t qemu_icount; + +typedef struct PageDesc { + /* list of TBs intersecting this ram page */ + TranslationBlock *first_tb; + /* in order to optimize self modifying code, we count the number + of lookups we do to a given page to use a bitmap */ + unsigned int code_write_count; + uint8_t *code_bitmap; +#if defined(CONFIG_USER_ONLY) + unsigned long flags; +#endif +} PageDesc; + +/* In system mode we want L1_MAP to be based on ram offsets, + while in user mode we want it to be based on virtual addresses. */ +#if !defined(CONFIG_USER_ONLY) +#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS +# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS +#else +# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS +#endif +#else +# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS +#endif + +/* Size of the L2 (and L3, etc) page tables. */ +#define L2_BITS 10 +#define L2_SIZE (1 << L2_BITS) + +/* The bits remaining after N lower levels of page tables. */ +#define P_L1_BITS_REM \ + ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS) +#define V_L1_BITS_REM \ + ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS) + +/* Size of the L1 page table. Avoid silly small sizes. */ +#if P_L1_BITS_REM < 4 +#define P_L1_BITS (P_L1_BITS_REM + L2_BITS) +#else +#define P_L1_BITS P_L1_BITS_REM +#endif + +#if V_L1_BITS_REM < 4 +#define V_L1_BITS (V_L1_BITS_REM + L2_BITS) +#else +#define V_L1_BITS V_L1_BITS_REM +#endif + +#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS) +#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS) + +#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS) +#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) + +size_t qemu_real_host_page_size; +size_t qemu_host_page_bits; +size_t qemu_host_page_size; +uintptr_t qemu_host_page_mask; + +/* This is a multi-level map on the virtual address space. + The bottom level has pointers to PageDesc. */ +static void *l1_map[V_L1_SIZE]; + +#if !defined(CONFIG_USER_ONLY) +typedef struct PhysPageDesc { + /* offset in host memory of the page + io_index in the low bits */ + ram_addr_t phys_offset; + ram_addr_t region_offset; +} PhysPageDesc; + +/* This is a multi-level map on the physical address space. + The bottom level has pointers to PhysPageDesc. */ +static void *l1_phys_map[P_L1_SIZE]; + +static void io_mem_init(void); + +/* io memory support */ +CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; +CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; +void *io_mem_opaque[IO_MEM_NB_ENTRIES]; +static char io_mem_used[IO_MEM_NB_ENTRIES]; +static int io_mem_watch; +#endif + +#ifndef VBOX +/* log support */ +#ifdef WIN32 +static const char *logfilename = "qemu.log"; +#else +static const char *logfilename = "/tmp/qemu.log"; +#endif +#endif /* !VBOX */ +FILE *logfile; +int loglevel; +#ifndef VBOX +static int log_append = 0; +#endif /* !VBOX */ + +/* statistics */ +#ifndef VBOX +#if !defined(CONFIG_USER_ONLY) +static int tlb_flush_count; +#endif +static int tb_flush_count; +static int tb_phys_invalidate_count; +#else /* VBOX - Resettable U32 stats, see VBoxRecompiler.c. */ +uint32_t tlb_flush_count; +uint32_t tb_flush_count; +uint32_t tb_phys_invalidate_count; +#endif /* VBOX */ + +#ifndef VBOX +#ifdef _WIN32 +static void map_exec(void *addr, size_t size) +{ + DWORD old_protect; + VirtualProtect(addr, size, + PAGE_EXECUTE_READWRITE, &old_protect); + +} +#else +static void map_exec(void *addr, size_t size) +{ + uintptr_t start, end, page_size; + + page_size = getpagesize(); + start = (uintptr_t)addr; + start &= ~(page_size - 1); + + end = (uintptr_t)addr + size; + end += page_size - 1; + end &= ~(page_size - 1); + + mprotect((void *)start, end - start, + PROT_READ | PROT_WRITE | PROT_EXEC); +} +#endif +#else /* VBOX */ +static void map_exec(void *addr, size_t size) +{ + RTMemProtect(addr, size, + RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE); +} +#endif /* VBOX */ + +static void page_init(void) +{ + /* NOTE: we can always suppose that qemu_host_page_size >= + TARGET_PAGE_SIZE */ +#ifdef VBOX + RTMemProtect(code_gen_buffer, code_gen_buffer_size, + RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE); + qemu_real_host_page_size = PAGE_SIZE; +#else /* !VBOX */ +#ifdef _WIN32 + { + SYSTEM_INFO system_info; + + GetSystemInfo(&system_info); + qemu_real_host_page_size = system_info.dwPageSize; + } +#else + qemu_real_host_page_size = getpagesize(); +#endif +#endif /* !VBOX */ + if (qemu_host_page_size == 0) + qemu_host_page_size = qemu_real_host_page_size; + if (qemu_host_page_size < TARGET_PAGE_SIZE) + qemu_host_page_size = TARGET_PAGE_SIZE; + qemu_host_page_bits = 0; + while ((1 << qemu_host_page_bits) < VBOX_ONLY((int))qemu_host_page_size) + qemu_host_page_bits++; + qemu_host_page_mask = ~(qemu_host_page_size - 1); + +#ifndef VBOX /* We use other means to set reserved bit on our pages */ +#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) + { +#ifdef HAVE_KINFO_GETVMMAP + struct kinfo_vmentry *freep; + int i, cnt; + + freep = kinfo_getvmmap(getpid(), &cnt); + if (freep) { + mmap_lock(); + for (i = 0; i < cnt; i++) { + uintptr_t startaddr, endaddr; + + startaddr = freep[i].kve_start; + endaddr = freep[i].kve_end; + if (h2g_valid(startaddr)) { + startaddr = h2g(startaddr) & TARGET_PAGE_MASK; + + if (h2g_valid(endaddr)) { + endaddr = h2g(endaddr); + page_set_flags(startaddr, endaddr, PAGE_RESERVED); + } else { +#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS + endaddr = ~0ul; + page_set_flags(startaddr, endaddr, PAGE_RESERVED); +#endif + } + } + } + free(freep); + mmap_unlock(); + } +#else + FILE *f; + + last_brk = (uintptr_t)sbrk(0); + + f = fopen("/compat/linux/proc/self/maps", "r"); + if (f) { + mmap_lock(); + + do { + uintptr_t startaddr, endaddr; + int n; + + n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); + + if (n == 2 && h2g_valid(startaddr)) { + startaddr = h2g(startaddr) & TARGET_PAGE_MASK; + + if (h2g_valid(endaddr)) { + endaddr = h2g(endaddr); + } else { + endaddr = ~0ul; + } + page_set_flags(startaddr, endaddr, PAGE_RESERVED); + } + } while (!feof(f)); + + fclose(f); + mmap_unlock(); + } +#endif + } +#endif +#endif /* !VBOX */ +} + +static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) +{ + PageDesc *pd; + void **lp; + int i; + +#if defined(CONFIG_USER_ONLY) + /* We can't use qemu_malloc because it may recurse into a locked mutex. */ +# define ALLOC(P, SIZE) \ + do { \ + P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \ + MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \ + } while (0) +#else +# define ALLOC(P, SIZE) \ + do { P = qemu_mallocz(SIZE); } while (0) +#endif + + /* Level 1. Always allocated. */ + lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); + + /* Level 2..N-1. */ + for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) { + void **p = *lp; + + if (p == NULL) { + if (!alloc) { + return NULL; + } + ALLOC(p, sizeof(void *) * L2_SIZE); + *lp = p; + } + + lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1)); + } + + pd = *lp; + if (pd == NULL) { + if (!alloc) { + return NULL; + } + ALLOC(pd, sizeof(PageDesc) * L2_SIZE); + *lp = pd; + } + +#undef ALLOC + + return pd + (index & (L2_SIZE - 1)); +} + +static inline PageDesc *page_find(tb_page_addr_t index) +{ + return page_find_alloc(index, 0); +} + +#if !defined(CONFIG_USER_ONLY) +static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) +{ + PhysPageDesc *pd; + void **lp; + int i; + + /* Level 1. Always allocated. */ + lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1)); + + /* Level 2..N-1. */ + for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) { + void **p = *lp; + if (p == NULL) { + if (!alloc) { + return NULL; + } + *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE); + } + lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1)); + } + + pd = *lp; + if (pd == NULL) { + int i; + + if (!alloc) { + return NULL; + } + + *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE); + + for (i = 0; i < L2_SIZE; i++) { + pd[i].phys_offset = IO_MEM_UNASSIGNED; + pd[i].region_offset = (index + i) << TARGET_PAGE_BITS; + } + } + + return pd + (index & (L2_SIZE - 1)); +} + +static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) +{ + return phys_page_find_alloc(index, 0); +} + +static void tlb_protect_code(ram_addr_t ram_addr); +static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, + target_ulong vaddr); +#define mmap_lock() do { } while(0) +#define mmap_unlock() do { } while(0) +#endif + +#ifdef VBOX /* We don't need such huge codegen buffer size, as execute + most of the code in raw or hm mode. */ +#define DEFAULT_CODE_GEN_BUFFER_SIZE (8 * 1024 * 1024) +#else /* !VBOX */ +#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) +#endif /* !VBOX */ + +#if defined(CONFIG_USER_ONLY) +/* Currently it is not recommended to allocate big chunks of data in + user mode. It will change when a dedicated libc will be used */ +#define USE_STATIC_CODE_GEN_BUFFER +#endif + +#if defined(VBOX) && defined(USE_STATIC_CODE_GEN_BUFFER) +# error "VBox allocates codegen buffer dynamically" +#endif + +#ifdef USE_STATIC_CODE_GEN_BUFFER +static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] + __attribute__((aligned (CODE_GEN_ALIGN))); +#endif + +static void code_gen_alloc(uintptr_t tb_size) +{ +#ifdef USE_STATIC_CODE_GEN_BUFFER + code_gen_buffer = static_code_gen_buffer; + code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; + map_exec(code_gen_buffer, code_gen_buffer_size); +#else +# ifdef VBOX + /* We cannot use phys_ram_size here, as it's 0 now, + * it only gets initialized once RAM registration callback + * (REMR3NotifyPhysRamRegister()) called. + */ + code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; +# else /* !VBOX */ + code_gen_buffer_size = tb_size; + if (code_gen_buffer_size == 0) { +#if defined(CONFIG_USER_ONLY) + /* in user mode, phys_ram_size is not meaningful */ + code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; +#else + /* XXX: needs adjustments */ + code_gen_buffer_size = (uintptr_t)(ram_size / 4); +#endif + } + if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) + code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; +# endif /* !VBOX */ + /* The code gen buffer location may have constraints depending on + the host cpu and OS */ +# ifdef VBOX + code_gen_buffer = RTMemExecAlloc(code_gen_buffer_size); + + if (!code_gen_buffer) { + LogRel(("REM: failed allocate codegen buffer %lld\n", + code_gen_buffer_size)); + return; + } +# else /* !VBOX */ +#if defined(__linux__) + { + int flags; + void *start = NULL; + + flags = MAP_PRIVATE | MAP_ANONYMOUS; +#if defined(__x86_64__) + flags |= MAP_32BIT; + /* Cannot map more than that */ + if (code_gen_buffer_size > (800 * 1024 * 1024)) + code_gen_buffer_size = (800 * 1024 * 1024); +#elif defined(__sparc_v9__) + // Map the buffer below 2G, so we can use direct calls and branches + flags |= MAP_FIXED; + start = (void *) 0x60000000UL; + if (code_gen_buffer_size > (512 * 1024 * 1024)) + code_gen_buffer_size = (512 * 1024 * 1024); +#elif defined(__arm__) + /* Map the buffer below 32M, so we can use direct calls and branches */ + flags |= MAP_FIXED; + start = (void *) 0x01000000UL; + if (code_gen_buffer_size > 16 * 1024 * 1024) + code_gen_buffer_size = 16 * 1024 * 1024; +#elif defined(__s390x__) + /* Map the buffer so that we can use direct calls and branches. */ + /* We have a +- 4GB range on the branches; leave some slop. */ + if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) { + code_gen_buffer_size = 3ul * 1024 * 1024 * 1024; + } + start = (void *)0x90000000UL; +#endif + code_gen_buffer = mmap(start, code_gen_buffer_size, + PROT_WRITE | PROT_READ | PROT_EXEC, + flags, -1, 0); + if (code_gen_buffer == MAP_FAILED) { + fprintf(stderr, "Could not allocate dynamic translator buffer\n"); + exit(1); + } + } +#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) + { + int flags; + void *addr = NULL; + flags = MAP_PRIVATE | MAP_ANONYMOUS; +#if defined(__x86_64__) + /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume + * 0x40000000 is free */ + flags |= MAP_FIXED; + addr = (void *)0x40000000; + /* Cannot map more than that */ + if (code_gen_buffer_size > (800 * 1024 * 1024)) + code_gen_buffer_size = (800 * 1024 * 1024); +#endif + code_gen_buffer = mmap(addr, code_gen_buffer_size, + PROT_WRITE | PROT_READ | PROT_EXEC, + flags, -1, 0); + if (code_gen_buffer == MAP_FAILED) { + fprintf(stderr, "Could not allocate dynamic translator buffer\n"); + exit(1); + } + } +#else + code_gen_buffer = qemu_malloc(code_gen_buffer_size); + map_exec(code_gen_buffer, code_gen_buffer_size); +#endif +# endif /* !VBOX */ +#endif /* !USE_STATIC_CODE_GEN_BUFFER */ +#ifndef VBOX /** @todo r=bird: why are we different? */ + map_exec(code_gen_prologue, sizeof(code_gen_prologue)); +#else + map_exec(code_gen_prologue, _1K); +#endif + code_gen_buffer_max_size = code_gen_buffer_size - + (TCG_MAX_OP_SIZE * OPC_MAX_SIZE); + code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; + tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); +} + +/* Must be called before using the QEMU cpus. 'tb_size' is the size + (in bytes) allocated to the translation buffer. Zero means default + size. */ +void cpu_exec_init_all(uintptr_t tb_size) +{ + cpu_gen_init(); + code_gen_alloc(tb_size); + code_gen_ptr = code_gen_buffer; + page_init(); +#if !defined(CONFIG_USER_ONLY) + io_mem_init(); +#endif +#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE) + /* There's no guest base to take into account, so go ahead and + initialize the prologue now. */ + tcg_prologue_init(&tcg_ctx); +#endif +} + +#ifndef VBOX +#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) + +static int cpu_common_post_load(void *opaque, int version_id) +{ + CPUState *env = opaque; + + /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the + version_id is increased. */ + env->interrupt_request &= ~0x01; + tlb_flush(env, 1); + + return 0; +} + +static const VMStateDescription vmstate_cpu_common = { + .name = "cpu_common", + .version_id = 1, + .minimum_version_id = 1, + .minimum_version_id_old = 1, + .post_load = cpu_common_post_load, + .fields = (VMStateField []) { + VMSTATE_UINT32(halted, CPUState), + VMSTATE_UINT32(interrupt_request, CPUState), + VMSTATE_END_OF_LIST() + } +}; +#endif + +CPUState *qemu_get_cpu(int cpu) +{ + CPUState *env = first_cpu; + + while (env) { + if (env->cpu_index == cpu) + break; + env = env->next_cpu; + } + + return env; +} + +#endif /* !VBOX */ + +void cpu_exec_init(CPUState *env) +{ + CPUState **penv; + int cpu_index; + +#if defined(CONFIG_USER_ONLY) + cpu_list_lock(); +#endif + env->next_cpu = NULL; + penv = &first_cpu; + cpu_index = 0; + while (*penv != NULL) { + penv = &(*penv)->next_cpu; + cpu_index++; + } + env->cpu_index = cpu_index; + env->numa_node = 0; + QTAILQ_INIT(&env->breakpoints); + QTAILQ_INIT(&env->watchpoints); + *penv = env; +#ifndef VBOX +#if defined(CONFIG_USER_ONLY) + cpu_list_unlock(); +#endif +#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) + vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env); + register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, + cpu_save, cpu_load, env); +#endif +#endif /* !VBOX */ +} + +static inline void invalidate_page_bitmap(PageDesc *p) +{ + if (p->code_bitmap) { + qemu_free(p->code_bitmap); + p->code_bitmap = NULL; + } + p->code_write_count = 0; +} + +/* Set to NULL all the 'first_tb' fields in all PageDescs. */ + +static void page_flush_tb_1 (int level, void **lp) +{ + int i; + + if (*lp == NULL) { + return; + } + if (level == 0) { + PageDesc *pd = *lp; + for (i = 0; i < L2_SIZE; ++i) { + pd[i].first_tb = NULL; + invalidate_page_bitmap(pd + i); + } + } else { + void **pp = *lp; + for (i = 0; i < L2_SIZE; ++i) { + page_flush_tb_1 (level - 1, pp + i); + } + } +} + +static void page_flush_tb(void) +{ + int i; + for (i = 0; i < V_L1_SIZE; i++) { + page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i); + } +} + +/* flush all the translation blocks */ +/* XXX: tb_flush is currently not thread safe */ +void tb_flush(CPUState *env1) +{ + CPUState *env; +#ifdef VBOX + STAM_PROFILE_START(&env1->StatTbFlush, a); +#endif +#if defined(DEBUG_FLUSH) + printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", + (unsigned long)(code_gen_ptr - code_gen_buffer), + nb_tbs, nb_tbs > 0 ? + ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); +#endif + if ((uintptr_t)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) + cpu_abort(env1, "Internal error: code buffer overflow\n"); + + nb_tbs = 0; + + for(env = first_cpu; env != NULL; env = env->next_cpu) { + memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); + } + + memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); + page_flush_tb(); + + code_gen_ptr = code_gen_buffer; + /* XXX: flush processor icache at this point if cache flush is + expensive */ + tb_flush_count++; +#ifdef VBOX + STAM_PROFILE_STOP(&env1->StatTbFlush, a); +#endif +} + +#ifdef DEBUG_TB_CHECK + +static void tb_invalidate_check(target_ulong address) +{ + TranslationBlock *tb; + int i; + address &= TARGET_PAGE_MASK; + for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { + for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { + if (!(address + TARGET_PAGE_SIZE <= tb->pc || + address >= tb->pc + tb->size)) { + printf("ERROR invalidate: address=" TARGET_FMT_lx + " PC=%08lx size=%04x\n", + address, (long)tb->pc, tb->size); + } + } + } +} + +/* verify that all the pages have correct rights for code */ +static void tb_page_check(void) +{ + TranslationBlock *tb; + int i, flags1, flags2; + + for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { + for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { + flags1 = page_get_flags(tb->pc); + flags2 = page_get_flags(tb->pc + tb->size - 1); + if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { + printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", + (long)tb->pc, tb->size, flags1, flags2); + } + } + } +} + +#endif + +/* invalidate one TB */ +static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, + int next_offset) +{ + TranslationBlock *tb1; + for(;;) { + tb1 = *ptb; + if (tb1 == tb) { + *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); + break; + } + ptb = (TranslationBlock **)((char *)tb1 + next_offset); + } +} + +static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) +{ + TranslationBlock *tb1; + unsigned int n1; + + for(;;) { + tb1 = *ptb; + n1 = (intptr_t)tb1 & 3; + tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3); + if (tb1 == tb) { + *ptb = tb1->page_next[n1]; + break; + } + ptb = &tb1->page_next[n1]; + } +} + +static inline void tb_jmp_remove(TranslationBlock *tb, int n) +{ + TranslationBlock *tb1, **ptb; + unsigned int n1; + + ptb = &tb->jmp_next[n]; + tb1 = *ptb; + if (tb1) { + /* find tb(n) in circular list */ + for(;;) { + tb1 = *ptb; + n1 = (intptr_t)tb1 & 3; + tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3); + if (n1 == n && tb1 == tb) + break; + if (n1 == 2) { + ptb = &tb1->jmp_first; + } else { + ptb = &tb1->jmp_next[n1]; + } + } + /* now we can suppress tb(n) from the list */ + *ptb = tb->jmp_next[n]; + + tb->jmp_next[n] = NULL; + } +} + +/* reset the jump entry 'n' of a TB so that it is not chained to + another TB */ +static inline void tb_reset_jump(TranslationBlock *tb, int n) +{ + tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n])); +} + +void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) +{ + CPUState *env; + PageDesc *p; + unsigned int h, n1; + tb_page_addr_t phys_pc; + TranslationBlock *tb1, *tb2; + + /* remove the TB from the hash list */ + phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); + h = tb_phys_hash_func(phys_pc); + tb_remove(&tb_phys_hash[h], tb, + offsetof(TranslationBlock, phys_hash_next)); + + /* remove the TB from the page list */ + if (tb->page_addr[0] != page_addr) { + p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); + tb_page_remove(&p->first_tb, tb); + invalidate_page_bitmap(p); + } + if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { + p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); + tb_page_remove(&p->first_tb, tb); + invalidate_page_bitmap(p); + } + + tb_invalidated_flag = 1; + + /* remove the TB from the hash list */ + h = tb_jmp_cache_hash_func(tb->pc); + for(env = first_cpu; env != NULL; env = env->next_cpu) { + if (env->tb_jmp_cache[h] == tb) + env->tb_jmp_cache[h] = NULL; + } + + /* suppress this TB from the two jump lists */ + tb_jmp_remove(tb, 0); + tb_jmp_remove(tb, 1); + + /* suppress any remaining jumps to this TB */ + tb1 = tb->jmp_first; + for(;;) { + n1 = (intptr_t)tb1 & 3; + if (n1 == 2) + break; + tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3); + tb2 = tb1->jmp_next[n1]; + tb_reset_jump(tb1, n1); + tb1->jmp_next[n1] = NULL; + tb1 = tb2; + } + tb->jmp_first = (TranslationBlock *)((intptr_t)tb | 2); /* fail safe */ + + tb_phys_invalidate_count++; +} + +#ifdef VBOX + +void tb_invalidate_virt(CPUState *env, uint32_t eip) +{ +# if 1 + tb_flush(env); +# else + uint8_t *cs_base, *pc; + unsigned int flags, h, phys_pc; + TranslationBlock *tb, **ptb; + + flags = env->hflags; + flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); + cs_base = env->segs[R_CS].base; + pc = cs_base + eip; + + tb = tb_find(&ptb, (uintptr_t)pc, (uintptr_t)cs_base, + flags); + + if(tb) + { +# ifdef DEBUG + printf("invalidating TB (%08X) at %08X\n", tb, eip); +# endif + tb_invalidate(tb); + //Note: this will leak TBs, but the whole cache will be flushed + // when it happens too often + tb->pc = 0; + tb->cs_base = 0; + tb->flags = 0; + } +# endif +} + +# ifdef VBOX_STRICT +/** + * Gets the page offset. + */ +ram_addr_t get_phys_page_offset(target_ulong addr) +{ + PhysPageDesc *p = phys_page_find(addr >> TARGET_PAGE_BITS); + return p ? p->phys_offset : 0; +} +# endif /* VBOX_STRICT */ + +#endif /* VBOX */ + +static inline void set_bits(uint8_t *tab, int start, int len) +{ + int end, mask, end1; + + end = start + len; + tab += start >> 3; + mask = 0xff << (start & 7); + if ((start & ~7) == (end & ~7)) { + if (start < end) { + mask &= ~(0xff << (end & 7)); + *tab |= mask; + } + } else { + *tab++ |= mask; + start = (start + 8) & ~7; + end1 = end & ~7; + while (start < end1) { + *tab++ = 0xff; + start += 8; + } + if (start < end) { + mask = ~(0xff << (end & 7)); + *tab |= mask; + } + } +} + +static void build_page_bitmap(PageDesc *p) +{ + int n, tb_start, tb_end; + TranslationBlock *tb; + + p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); + + tb = p->first_tb; + while (tb != NULL) { + n = (intptr_t)tb & 3; + tb = (TranslationBlock *)((intptr_t)tb & ~3); + /* NOTE: this is subtle as a TB may span two physical pages */ + if (n == 0) { + /* NOTE: tb_end may be after the end of the page, but + it is not a problem */ + tb_start = tb->pc & ~TARGET_PAGE_MASK; + tb_end = tb_start + tb->size; + if (tb_end > TARGET_PAGE_SIZE) + tb_end = TARGET_PAGE_SIZE; + } else { + tb_start = 0; + tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); + } + set_bits(p->code_bitmap, tb_start, tb_end - tb_start); + tb = tb->page_next[n]; + } +} + +TranslationBlock *tb_gen_code(CPUState *env, + target_ulong pc, target_ulong cs_base, + int flags, int cflags) +{ + TranslationBlock *tb; + uint8_t *tc_ptr; + tb_page_addr_t phys_pc, phys_page2; + target_ulong virt_page2; + int code_gen_size; + + phys_pc = get_page_addr_code(env, pc); + tb = tb_alloc(pc); + if (!tb) { + /* flush must be done */ + tb_flush(env); + /* cannot fail at this point */ + tb = tb_alloc(pc); + /* Don't forget to invalidate previous TB info. */ + tb_invalidated_flag = 1; + } + tc_ptr = code_gen_ptr; + tb->tc_ptr = tc_ptr; + tb->cs_base = cs_base; + tb->flags = flags; + tb->cflags = cflags; + cpu_gen_code(env, tb, &code_gen_size); + code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); + + /* check next page if needed */ + virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; + phys_page2 = -1; + if ((pc & TARGET_PAGE_MASK) != virt_page2) { + phys_page2 = get_page_addr_code(env, virt_page2); + } + tb_link_page(tb, phys_pc, phys_page2); + return tb; +} + +/* invalidate all TBs which intersect with the target physical page + starting in range [start;end[. NOTE: start and end must refer to + the same physical page. 'is_cpu_write_access' should be true if called + from a real cpu write access: the virtual CPU will exit the current + TB if code is modified inside this TB. */ +void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, + int is_cpu_write_access) +{ + TranslationBlock *tb, *tb_next, *saved_tb; + CPUState *env = cpu_single_env; + tb_page_addr_t tb_start, tb_end; + PageDesc *p; + int n; +#ifdef TARGET_HAS_PRECISE_SMC + int current_tb_not_found = is_cpu_write_access; + TranslationBlock *current_tb = NULL; + int current_tb_modified = 0; + target_ulong current_pc = 0; + target_ulong current_cs_base = 0; + int current_flags = 0; +#endif /* TARGET_HAS_PRECISE_SMC */ + + p = page_find(start >> TARGET_PAGE_BITS); + if (!p) + return; + if (!p->code_bitmap && + ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && + is_cpu_write_access) { + /* build code bitmap */ + build_page_bitmap(p); + } + + /* we remove all the TBs in the range [start, end[ */ + /* XXX: see if in some cases it could be faster to invalidate all the code */ + tb = p->first_tb; + while (tb != NULL) { + n = (intptr_t)tb & 3; + tb = (TranslationBlock *)((intptr_t)tb & ~3); + tb_next = tb->page_next[n]; + /* NOTE: this is subtle as a TB may span two physical pages */ + if (n == 0) { + /* NOTE: tb_end may be after the end of the page, but + it is not a problem */ + tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); + tb_end = tb_start + tb->size; + } else { + tb_start = tb->page_addr[1]; + tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); + } + if (!(tb_end <= start || tb_start >= end)) { +#ifdef TARGET_HAS_PRECISE_SMC + if (current_tb_not_found) { + current_tb_not_found = 0; + current_tb = NULL; + if (env->mem_io_pc) { + /* now we have a real cpu fault */ + current_tb = tb_find_pc(env->mem_io_pc); + } + } + if (current_tb == tb && + (current_tb->cflags & CF_COUNT_MASK) != 1) { + /* If we are modifying the current TB, we must stop + its execution. We could be more precise by checking + that the modification is after the current PC, but it + would require a specialized function to partially + restore the CPU state */ + + current_tb_modified = 1; + cpu_restore_state(current_tb, env, + env->mem_io_pc, NULL); + cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, + ¤t_flags); + } +#endif /* TARGET_HAS_PRECISE_SMC */ + /* we need to do that to handle the case where a signal + occurs while doing tb_phys_invalidate() */ + saved_tb = NULL; + if (env) { + saved_tb = env->current_tb; + env->current_tb = NULL; + } + tb_phys_invalidate(tb, -1); + if (env) { + env->current_tb = saved_tb; + if (env->interrupt_request && env->current_tb) + cpu_interrupt(env, env->interrupt_request); + } + } + tb = tb_next; + } +#if !defined(CONFIG_USER_ONLY) + /* if no code remaining, no need to continue to use slow writes */ + if (!p->first_tb) { + invalidate_page_bitmap(p); + if (is_cpu_write_access) { + tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); + } + } +#endif +#ifdef TARGET_HAS_PRECISE_SMC + if (current_tb_modified) { + /* we generate a block containing just the instruction + modifying the memory. It will ensure that it cannot modify + itself */ + env->current_tb = NULL; + tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); + cpu_resume_from_signal(env, NULL); + } +#endif +} + +/* len must be <= 8 and start must be a multiple of len */ +static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) +{ + PageDesc *p; + int offset, b; +#if 0 + if (1) { + qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", + cpu_single_env->mem_io_vaddr, len, + cpu_single_env->eip, + cpu_single_env->eip + (intptr_t)cpu_single_env->segs[R_CS].base); + } +#endif + p = page_find(start >> TARGET_PAGE_BITS); + if (!p) + return; + if (p->code_bitmap) { + offset = start & ~TARGET_PAGE_MASK; + b = p->code_bitmap[offset >> 3] >> (offset & 7); + if (b & ((1 << len) - 1)) + goto do_invalidate; + } else { + do_invalidate: + tb_invalidate_phys_page_range(start, start + len, 1); + } +} + +#if !defined(CONFIG_SOFTMMU) +static void tb_invalidate_phys_page(tb_page_addr_t addr, + uintptr_t pc, void *puc) +{ + TranslationBlock *tb; + PageDesc *p; + int n; +#ifdef TARGET_HAS_PRECISE_SMC + TranslationBlock *current_tb = NULL; + CPUState *env = cpu_single_env; + int current_tb_modified = 0; + target_ulong current_pc = 0; + target_ulong current_cs_base = 0; + int current_flags = 0; +#endif + + addr &= TARGET_PAGE_MASK; + p = page_find(addr >> TARGET_PAGE_BITS); + if (!p) + return; + tb = p->first_tb; +#ifdef TARGET_HAS_PRECISE_SMC + if (tb && pc != 0) { + current_tb = tb_find_pc(pc); + } +#endif + while (tb != NULL) { + n = (intptr_t)tb & 3; + tb = (TranslationBlock *)((intptr_t)tb & ~3); +#ifdef TARGET_HAS_PRECISE_SMC + if (current_tb == tb && + (current_tb->cflags & CF_COUNT_MASK) != 1) { + /* If we are modifying the current TB, we must stop + its execution. We could be more precise by checking + that the modification is after the current PC, but it + would require a specialized function to partially + restore the CPU state */ + + current_tb_modified = 1; + cpu_restore_state(current_tb, env, pc, puc); + cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, + ¤t_flags); + } +#endif /* TARGET_HAS_PRECISE_SMC */ + tb_phys_invalidate(tb, addr); + tb = tb->page_next[n]; + } + p->first_tb = NULL; +#ifdef TARGET_HAS_PRECISE_SMC + if (current_tb_modified) { + /* we generate a block containing just the instruction + modifying the memory. It will ensure that it cannot modify + itself */ + env->current_tb = NULL; + tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); + cpu_resume_from_signal(env, puc); + } +#endif +} +#endif + +/* add the tb in the target page and protect it if necessary */ +static inline void tb_alloc_page(TranslationBlock *tb, + unsigned int n, tb_page_addr_t page_addr) +{ + PageDesc *p; + TranslationBlock *last_first_tb; + + tb->page_addr[n] = page_addr; + p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); + tb->page_next[n] = p->first_tb; + last_first_tb = p->first_tb; + p->first_tb = (TranslationBlock *)((intptr_t)tb | n); + invalidate_page_bitmap(p); + +#if defined(TARGET_HAS_SMC) || 1 + +#if defined(CONFIG_USER_ONLY) + if (p->flags & PAGE_WRITE) { + target_ulong addr; + PageDesc *p2; + int prot; + + /* force the host page as non writable (writes will have a + page fault + mprotect overhead) */ + page_addr &= qemu_host_page_mask; + prot = 0; + for(addr = page_addr; addr < page_addr + qemu_host_page_size; + addr += TARGET_PAGE_SIZE) { + + p2 = page_find (addr >> TARGET_PAGE_BITS); + if (!p2) + continue; + prot |= p2->flags; + p2->flags &= ~PAGE_WRITE; + } + mprotect(g2h(page_addr), qemu_host_page_size, + (prot & PAGE_BITS) & ~PAGE_WRITE); +#ifdef DEBUG_TB_INVALIDATE + printf("protecting code page: 0x" TARGET_FMT_lx "\n", + page_addr); +#endif + } +#else + /* if some code is already present, then the pages are already + protected. So we handle the case where only the first TB is + allocated in a physical page */ + if (!last_first_tb) { + tlb_protect_code(page_addr); + } +#endif + +#endif /* TARGET_HAS_SMC */ +} + +/* Allocate a new translation block. Flush the translation buffer if + too many translation blocks or too much generated code. */ +TranslationBlock *tb_alloc(target_ulong pc) +{ + TranslationBlock *tb; + + if (nb_tbs >= code_gen_max_blocks || + (code_gen_ptr - code_gen_buffer) >= VBOX_ONLY((uintptr_t))code_gen_buffer_max_size) + return NULL; + tb = &tbs[nb_tbs++]; + tb->pc = pc; + tb->cflags = 0; + return tb; +} + +void tb_free(TranslationBlock *tb) +{ + /* In practice this is mostly used for single use temporary TB + Ignore the hard cases and just back up if this TB happens to + be the last one generated. */ + if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { + code_gen_ptr = tb->tc_ptr; + nb_tbs--; + } +} + +/* add a new TB and link it to the physical page tables. phys_page2 is + (-1) to indicate that only one page contains the TB. */ +void tb_link_page(TranslationBlock *tb, + tb_page_addr_t phys_pc, tb_page_addr_t phys_page2) +{ + unsigned int h; + TranslationBlock **ptb; + + /* Grab the mmap lock to stop another thread invalidating this TB + before we are done. */ + mmap_lock(); + /* add in the physical hash table */ + h = tb_phys_hash_func(phys_pc); + ptb = &tb_phys_hash[h]; + tb->phys_hash_next = *ptb; + *ptb = tb; + + /* add in the page list */ + tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); + if (phys_page2 != -1) + tb_alloc_page(tb, 1, phys_page2); + else + tb->page_addr[1] = -1; + + tb->jmp_first = (TranslationBlock *)((intptr_t)tb | 2); + tb->jmp_next[0] = NULL; + tb->jmp_next[1] = NULL; + + /* init original jump addresses */ + if (tb->tb_next_offset[0] != 0xffff) + tb_reset_jump(tb, 0); + if (tb->tb_next_offset[1] != 0xffff) + tb_reset_jump(tb, 1); + +#ifdef DEBUG_TB_CHECK + tb_page_check(); +#endif + mmap_unlock(); +} + +/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < + tb[1].tc_ptr. Return NULL if not found */ +TranslationBlock *tb_find_pc(uintptr_t tc_ptr) +{ + int m_min, m_max, m; + uintptr_t v; + TranslationBlock *tb; + + if (nb_tbs <= 0) + return NULL; + if (tc_ptr < (uintptr_t)code_gen_buffer || + tc_ptr >= (uintptr_t)code_gen_ptr) + return NULL; + /* binary search (cf Knuth) */ + m_min = 0; + m_max = nb_tbs - 1; + while (m_min <= m_max) { + m = (m_min + m_max) >> 1; + tb = &tbs[m]; + v = (uintptr_t)tb->tc_ptr; + if (v == tc_ptr) + return tb; + else if (tc_ptr < v) { + m_max = m - 1; + } else { + m_min = m + 1; + } + } + return &tbs[m_max]; +} + +static void tb_reset_jump_recursive(TranslationBlock *tb); + +static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) +{ + TranslationBlock *tb1, *tb_next, **ptb; + unsigned int n1; + + tb1 = tb->jmp_next[n]; + if (tb1 != NULL) { + /* find head of list */ + for(;;) { + n1 = (intptr_t)tb1 & 3; + tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3); + if (n1 == 2) + break; + tb1 = tb1->jmp_next[n1]; + } + /* we are now sure now that tb jumps to tb1 */ + tb_next = tb1; + + /* remove tb from the jmp_first list */ + ptb = &tb_next->jmp_first; + for(;;) { + tb1 = *ptb; + n1 = (intptr_t)tb1 & 3; + tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3); + if (n1 == n && tb1 == tb) + break; + ptb = &tb1->jmp_next[n1]; + } + *ptb = tb->jmp_next[n]; + tb->jmp_next[n] = NULL; + + /* suppress the jump to next tb in generated code */ + tb_reset_jump(tb, n); + + /* suppress jumps in the tb on which we could have jumped */ + tb_reset_jump_recursive(tb_next); + } +} + +static void tb_reset_jump_recursive(TranslationBlock *tb) +{ + tb_reset_jump_recursive2(tb, 0); + tb_reset_jump_recursive2(tb, 1); +} + +#if defined(TARGET_HAS_ICE) +#if defined(CONFIG_USER_ONLY) +static void breakpoint_invalidate(CPUState *env, target_ulong pc) +{ + tb_invalidate_phys_page_range(pc, pc + 1, 0); +} +#else +static void breakpoint_invalidate(CPUState *env, target_ulong pc) +{ + target_phys_addr_t addr; + target_ulong pd; + ram_addr_t ram_addr; + PhysPageDesc *p; + + addr = cpu_get_phys_page_debug(env, pc); + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); + tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); +} +#endif +#endif /* TARGET_HAS_ICE */ + +#if defined(CONFIG_USER_ONLY) +void cpu_watchpoint_remove_all(CPUState *env, int mask) + +{ +} + +int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, + int flags, CPUWatchpoint **watchpoint) +{ + return -ENOSYS; +} +#else +/* Add a watchpoint. */ +int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, + int flags, CPUWatchpoint **watchpoint) +{ + target_ulong len_mask = ~(len - 1); + CPUWatchpoint *wp; + + /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ + if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { + fprintf(stderr, "qemu: tried to set invalid watchpoint at " + TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); +#ifndef VBOX + return -EINVAL; +#else + return VERR_INVALID_PARAMETER; +#endif + } + wp = qemu_malloc(sizeof(*wp)); + + wp->vaddr = addr; + wp->len_mask = len_mask; + wp->flags = flags; + + /* keep all GDB-injected watchpoints in front */ + if (flags & BP_GDB) + QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); + else + QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); + + tlb_flush_page(env, addr); + + if (watchpoint) + *watchpoint = wp; + return 0; +} + +/* Remove a specific watchpoint. */ +int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, + int flags) +{ + target_ulong len_mask = ~(len - 1); + CPUWatchpoint *wp; + + QTAILQ_FOREACH(wp, &env->watchpoints, entry) { + if (addr == wp->vaddr && len_mask == wp->len_mask + && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { + cpu_watchpoint_remove_by_ref(env, wp); + return 0; + } + } +#ifndef VBOX + return -ENOENT; +#else + return VERR_NOT_FOUND; +#endif +} + +/* Remove a specific watchpoint by reference. */ +void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) +{ + QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry); + + tlb_flush_page(env, watchpoint->vaddr); + + qemu_free(watchpoint); +} + +/* Remove all matching watchpoints. */ +void cpu_watchpoint_remove_all(CPUState *env, int mask) +{ + CPUWatchpoint *wp, *next; + + QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { + if (wp->flags & mask) + cpu_watchpoint_remove_by_ref(env, wp); + } +} +#endif + +/* Add a breakpoint. */ +int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, + CPUBreakpoint **breakpoint) +{ +#if defined(TARGET_HAS_ICE) + CPUBreakpoint *bp; + + bp = qemu_malloc(sizeof(*bp)); + + bp->pc = pc; + bp->flags = flags; + + /* keep all GDB-injected breakpoints in front */ + if (flags & BP_GDB) + QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); + else + QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); + + breakpoint_invalidate(env, pc); + + if (breakpoint) + *breakpoint = bp; + return 0; +#else + return -ENOSYS; +#endif +} + +/* Remove a specific breakpoint. */ +int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) +{ +#if defined(TARGET_HAS_ICE) + CPUBreakpoint *bp; + + QTAILQ_FOREACH(bp, &env->breakpoints, entry) { + if (bp->pc == pc && bp->flags == flags) { + cpu_breakpoint_remove_by_ref(env, bp); + return 0; + } + } +# ifndef VBOX + return -ENOENT; +# else + return VERR_NOT_FOUND; +# endif +#else + return -ENOSYS; +#endif +} + +/* Remove a specific breakpoint by reference. */ +void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) +{ +#if defined(TARGET_HAS_ICE) + QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry); + + breakpoint_invalidate(env, breakpoint->pc); + + qemu_free(breakpoint); +#endif +} + +/* Remove all matching breakpoints. */ +void cpu_breakpoint_remove_all(CPUState *env, int mask) +{ +#if defined(TARGET_HAS_ICE) + CPUBreakpoint *bp, *next; + + QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { + if (bp->flags & mask) + cpu_breakpoint_remove_by_ref(env, bp); + } +#endif +} + +/* enable or disable single step mode. EXCP_DEBUG is returned by the + CPU loop after each instruction */ +void cpu_single_step(CPUState *env, int enabled) +{ +#if defined(TARGET_HAS_ICE) + if (env->singlestep_enabled != enabled) { + env->singlestep_enabled = enabled; + if (kvm_enabled()) + kvm_update_guest_debug(env, 0); + else { + /* must flush all the translated code to avoid inconsistencies */ + /* XXX: only flush what is necessary */ + tb_flush(env); + } + } +#endif +} + +#ifndef VBOX + +/* enable or disable low levels log */ +void cpu_set_log(int log_flags) +{ + loglevel = log_flags; + if (loglevel && !logfile) { + logfile = fopen(logfilename, log_append ? "a" : "w"); + if (!logfile) { + perror(logfilename); + _exit(1); + } +#if !defined(CONFIG_SOFTMMU) + /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ + { + static char logfile_buf[4096]; + setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); + } +#elif !defined(_WIN32) + /* Win32 doesn't support line-buffering and requires size >= 2 */ + setvbuf(logfile, NULL, _IOLBF, 0); +#endif + log_append = 1; + } + if (!loglevel && logfile) { + fclose(logfile); + logfile = NULL; + } +} + +void cpu_set_log_filename(const char *filename) +{ + logfilename = strdup(filename); + if (logfile) { + fclose(logfile); + logfile = NULL; + } + cpu_set_log(loglevel); +} + +#endif /* !VBOX */ + +static void cpu_unlink_tb(CPUState *env) +{ + /* FIXME: TB unchaining isn't SMP safe. For now just ignore the + problem and hope the cpu will stop of its own accord. For userspace + emulation this often isn't actually as bad as it sounds. Often + signals are used primarily to interrupt blocking syscalls. */ + TranslationBlock *tb; + static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; + + spin_lock(&interrupt_lock); + tb = env->current_tb; + /* if the cpu is currently executing code, we must unlink it and + all the potentially executing TB */ + if (tb) { + env->current_tb = NULL; + tb_reset_jump_recursive(tb); + } + spin_unlock(&interrupt_lock); +} + +/* mask must never be zero, except for A20 change call */ +void cpu_interrupt(CPUState *env, int mask) +{ + int old_mask; + + old_mask = env->interrupt_request; +#ifndef VBOX + env->interrupt_request |= mask; +#else /* VBOX */ + VM_ASSERT_EMT(env->pVM); + ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, mask); +#endif /* VBOX */ + +#ifndef VBOX +#ifndef CONFIG_USER_ONLY + /* + * If called from iothread context, wake the target cpu in + * case its halted. + */ + if (!qemu_cpu_self(env)) { + qemu_cpu_kick(env); + return; + } +#endif +#endif /* !VBOX */ + + if (use_icount) { + env->icount_decr.u16.high = 0xffff; +#ifndef CONFIG_USER_ONLY + if (!can_do_io(env) + && (mask & ~old_mask) != 0) { + cpu_abort(env, "Raised interrupt while not in I/O function"); + } +#endif + } else { + cpu_unlink_tb(env); + } +} + +void cpu_reset_interrupt(CPUState *env, int mask) +{ +#ifdef VBOX + /* + * Note: the current implementation can be executed by another thread without problems; make sure this remains true + * for future changes! + */ + ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~mask); +#else /* !VBOX */ + env->interrupt_request &= ~mask; +#endif /* !VBOX */ +} + +void cpu_exit(CPUState *env) +{ + env->exit_request = 1; + cpu_unlink_tb(env); +} + +#ifndef VBOX +const CPULogItem cpu_log_items[] = { + { CPU_LOG_TB_OUT_ASM, "out_asm", + "show generated host assembly code for each compiled TB" }, + { CPU_LOG_TB_IN_ASM, "in_asm", + "show target assembly code for each compiled TB" }, + { CPU_LOG_TB_OP, "op", + "show micro ops for each compiled TB" }, + { CPU_LOG_TB_OP_OPT, "op_opt", + "show micro ops " +#ifdef TARGET_I386 + "before eflags optimization and " +#endif + "after liveness analysis" }, + { CPU_LOG_INT, "int", + "show interrupts/exceptions in short format" }, + { CPU_LOG_EXEC, "exec", + "show trace before each executed TB (lots of logs)" }, + { CPU_LOG_TB_CPU, "cpu", + "show CPU state before block translation" }, +#ifdef TARGET_I386 + { CPU_LOG_PCALL, "pcall", + "show protected mode far calls/returns/exceptions" }, + { CPU_LOG_RESET, "cpu_reset", + "show CPU state before CPU resets" }, +#endif +#ifdef DEBUG_IOPORT + { CPU_LOG_IOPORT, "ioport", + "show all i/o ports accesses" }, +#endif + { 0, NULL, NULL }, +}; + +#ifndef CONFIG_USER_ONLY +static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list + = QLIST_HEAD_INITIALIZER(memory_client_list); + +static void cpu_notify_set_memory(target_phys_addr_t start_addr, + ram_addr_t size, + ram_addr_t phys_offset) +{ + CPUPhysMemoryClient *client; + QLIST_FOREACH(client, &memory_client_list, list) { + client->set_memory(client, start_addr, size, phys_offset); + } +} + +static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start, + target_phys_addr_t end) +{ + CPUPhysMemoryClient *client; + QLIST_FOREACH(client, &memory_client_list, list) { + int r = client->sync_dirty_bitmap(client, start, end); + if (r < 0) + return r; + } + return 0; +} + +static int cpu_notify_migration_log(int enable) +{ + CPUPhysMemoryClient *client; + QLIST_FOREACH(client, &memory_client_list, list) { + int r = client->migration_log(client, enable); + if (r < 0) + return r; + } + return 0; +} + +static void phys_page_for_each_1(CPUPhysMemoryClient *client, + int level, void **lp) +{ + int i; + + if (*lp == NULL) { + return; + } + if (level == 0) { + PhysPageDesc *pd = *lp; + for (i = 0; i < L2_SIZE; ++i) { + if (pd[i].phys_offset != IO_MEM_UNASSIGNED) { + client->set_memory(client, pd[i].region_offset, + TARGET_PAGE_SIZE, pd[i].phys_offset); + } + } + } else { + void **pp = *lp; + for (i = 0; i < L2_SIZE; ++i) { + phys_page_for_each_1(client, level - 1, pp + i); + } + } +} + +static void phys_page_for_each(CPUPhysMemoryClient *client) +{ + int i; + for (i = 0; i < P_L1_SIZE; ++i) { + phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1, + l1_phys_map + 1); + } +} + +void cpu_register_phys_memory_client(CPUPhysMemoryClient *client) +{ + QLIST_INSERT_HEAD(&memory_client_list, client, list); + phys_page_for_each(client); +} + +void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client) +{ + QLIST_REMOVE(client, list); +} +#endif + +static int cmp1(const char *s1, int n, const char *s2) +{ + if (strlen(s2) != n) + return 0; + return memcmp(s1, s2, n) == 0; +} + +/* takes a comma separated list of log masks. Return 0 if error. */ +int cpu_str_to_log_mask(const char *str) +{ + const CPULogItem *item; + int mask; + const char *p, *p1; + + p = str; + mask = 0; + for(;;) { + p1 = strchr(p, ','); + if (!p1) + p1 = p + strlen(p); + if(cmp1(p,p1-p,"all")) { + for(item = cpu_log_items; item->mask != 0; item++) { + mask |= item->mask; + } + } else { + for(item = cpu_log_items; item->mask != 0; item++) { + if (cmp1(p, p1 - p, item->name)) + goto found; + } + return 0; + } + found: + mask |= item->mask; + if (*p1 != ',') + break; + p = p1 + 1; + } + return mask; +} + +void cpu_abort(CPUState *env, const char *fmt, ...) +{ + va_list ap; + va_list ap2; + + va_start(ap, fmt); + va_copy(ap2, ap); + fprintf(stderr, "qemu: fatal: "); + vfprintf(stderr, fmt, ap); + fprintf(stderr, "\n"); +#ifdef TARGET_I386 + cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); +#else + cpu_dump_state(env, stderr, fprintf, 0); +#endif + if (qemu_log_enabled()) { + qemu_log("qemu: fatal: "); + qemu_log_vprintf(fmt, ap2); + qemu_log("\n"); +#ifdef TARGET_I386 + log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); +#else + log_cpu_state(env, 0); +#endif + qemu_log_flush(); + qemu_log_close(); + } + va_end(ap2); + va_end(ap); +#if defined(CONFIG_USER_ONLY) + { + struct sigaction act; + sigfillset(&act.sa_mask); + act.sa_handler = SIG_DFL; + sigaction(SIGABRT, &act, NULL); + } +#endif + abort(); +} + +CPUState *cpu_copy(CPUState *env) +{ + CPUState *new_env = cpu_init(env->cpu_model_str); + CPUState *next_cpu = new_env->next_cpu; + int cpu_index = new_env->cpu_index; +#if defined(TARGET_HAS_ICE) + CPUBreakpoint *bp; + CPUWatchpoint *wp; +#endif + + memcpy(new_env, env, sizeof(CPUState)); + + /* Preserve chaining and index. */ + new_env->next_cpu = next_cpu; + new_env->cpu_index = cpu_index; + + /* Clone all break/watchpoints. + Note: Once we support ptrace with hw-debug register access, make sure + BP_CPU break/watchpoints are handled correctly on clone. */ + QTAILQ_INIT(&env->breakpoints); + QTAILQ_INIT(&env->watchpoints); +#if defined(TARGET_HAS_ICE) + QTAILQ_FOREACH(bp, &env->breakpoints, entry) { + cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); + } + QTAILQ_FOREACH(wp, &env->watchpoints, entry) { + cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, + wp->flags, NULL); + } +#endif + + return new_env; +} + +#endif /* !VBOX */ +#if !defined(CONFIG_USER_ONLY) + +static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) +{ + unsigned int i; + + /* Discard jump cache entries for any tb which might potentially + overlap the flushed page. */ + i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); + memset (&env->tb_jmp_cache[i], 0, + TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); + + i = tb_jmp_cache_hash_page(addr); + memset (&env->tb_jmp_cache[i], 0, + TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); +#ifdef VBOX + + /* inform raw mode about TLB page flush */ + remR3FlushPage(env, addr); +#endif /* VBOX */ +} + +static CPUTLBEntry s_cputlb_empty_entry = { + .addr_read = -1, + .addr_write = -1, + .addr_code = -1, + .addend = -1, +}; + +/* NOTE: if flush_global is true, also flush global entries (not + implemented yet) */ +void tlb_flush(CPUState *env, int flush_global) +{ + int i; + +#ifdef VBOX + Assert(EMRemIsLockOwner(env->pVM)); + ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXTERNAL_FLUSH_TLB); +#endif + +#if defined(DEBUG_TLB) + printf("tlb_flush:\n"); +#endif + /* must reset current TB so that interrupts cannot modify the + links while we are modifying them */ + env->current_tb = NULL; + + for(i = 0; i < CPU_TLB_SIZE; i++) { + int mmu_idx; + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; + } + } + + memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); + + env->tlb_flush_addr = -1; + env->tlb_flush_mask = 0; + tlb_flush_count++; +#ifdef VBOX + + /* inform raw mode about TLB flush */ + remR3FlushTLB(env, flush_global); +#endif /* VBOX */ +} + +static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) +{ + if (addr == (tlb_entry->addr_read & + (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || + addr == (tlb_entry->addr_write & + (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || + addr == (tlb_entry->addr_code & + (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + *tlb_entry = s_cputlb_empty_entry; + } +} + +void tlb_flush_page(CPUState *env, target_ulong addr) +{ + int i; + int mmu_idx; + + Assert(EMRemIsLockOwner(env->pVM)); +#if defined(DEBUG_TLB) + printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); +#endif + /* Check if we need to flush due to large pages. */ + if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { +#if defined(DEBUG_TLB) + printf("tlb_flush_page: forced full flush (" + TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", + env->tlb_flush_addr, env->tlb_flush_mask); +#endif + tlb_flush(env, 1); + return; + } + /* must reset current TB so that interrupts cannot modify the + links while we are modifying them */ + env->current_tb = NULL; + + addr &= TARGET_PAGE_MASK; + i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) + tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); + + tlb_flush_jmp_cache(env, addr); +} + +/* update the TLBs so that writes to code in the virtual page 'addr' + can be detected */ +static void tlb_protect_code(ram_addr_t ram_addr) +{ + cpu_physical_memory_reset_dirty(ram_addr, + ram_addr + TARGET_PAGE_SIZE, + CODE_DIRTY_FLAG); +#if defined(VBOX) && defined(REM_MONITOR_CODE_PAGES) + /** @todo Retest this? This function has changed... */ + remR3ProtectCode(cpu_single_env, ram_addr); +#endif /* VBOX */ +} + +/* update the TLB so that writes in physical page 'phys_addr' are no longer + tested for self modifying code */ +static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, + target_ulong vaddr) +{ + cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG); +} + +static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, + uintptr_t start, uintptr_t length) +{ + uintptr_t addr; +#ifdef VBOX + + if (start & 3) + return; +#endif /* VBOX */ + if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { + addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; + if ((addr - start) < length) { + tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; + } + } +} + +/* Note: start and end must be within the same ram block. */ +void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, + int dirty_flags) +{ + CPUState *env; + uintptr_t length, start1; + int i; + + start &= TARGET_PAGE_MASK; + end = TARGET_PAGE_ALIGN(end); + + length = end - start; + if (length == 0) + return; + cpu_physical_memory_mask_dirty_range(start, length, dirty_flags); + + /* we modify the TLB cache so that the dirty bit will be set again + when accessing the range */ +#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB) + start1 = start; +#elif !defined(VBOX) + start1 = (uintptr_t)qemu_get_ram_ptr(start); + /* Chek that we don't span multiple blocks - this breaks the + address comparisons below. */ + if ((uintptr_t)qemu_get_ram_ptr(end - 1) - start1 + != (end - 1) - start) { + abort(); + } +#else + start1 = (uintptr_t)remR3TlbGCPhys2Ptr(first_cpu, start, 1 /*fWritable*/); /** @todo page replacing (sharing or read only) may cause trouble, fix interface/whatever. */ +#endif + + for(env = first_cpu; env != NULL; env = env->next_cpu) { + int mmu_idx; + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + for(i = 0; i < CPU_TLB_SIZE; i++) + tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], + start1, length); + } + } +} + +#ifndef VBOX + +int cpu_physical_memory_set_dirty_tracking(int enable) +{ + int ret = 0; + in_migration = enable; + ret = cpu_notify_migration_log(!!enable); + return ret; +} + +int cpu_physical_memory_get_dirty_tracking(void) +{ + return in_migration; +} + +#endif /* !VBOX */ + +int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, + target_phys_addr_t end_addr) +{ +#ifndef VBOX + int ret; + + ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr); + return ret; +#else /* VBOX */ + return 0; +#endif /* VBOX */ +} + +#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB) +DECLINLINE(void) tlb_update_dirty(CPUTLBEntry *tlb_entry, target_phys_addr_t phys_addend) +#else +static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) +#endif +{ + ram_addr_t ram_addr; +#ifndef VBOX + void *p; +#endif + + if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { +#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB) + ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; +#elif !defined(VBOX) + p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK) + + tlb_entry->addend); + ram_addr = qemu_ram_addr_from_host(p); +#else + Assert(phys_addend != -1); + ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + phys_addend; +#endif + if (!cpu_physical_memory_is_dirty(ram_addr)) { + tlb_entry->addr_write |= TLB_NOTDIRTY; + } + } +} + +/* update the TLB according to the current state of the dirty bits */ +void cpu_tlb_update_dirty(CPUState *env) +{ + int i; + int mmu_idx; + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + for(i = 0; i < CPU_TLB_SIZE; i++) +#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB) + tlb_update_dirty(&env->tlb_table[mmu_idx][i], env->phys_addends[mmu_idx][i]); +#else + tlb_update_dirty(&env->tlb_table[mmu_idx][i]); +#endif + } +} + +static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) +{ + if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) + tlb_entry->addr_write = vaddr; +} + +/* update the TLB corresponding to virtual page vaddr + so that it is no longer dirty */ +static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) +{ + int i; + int mmu_idx; + + vaddr &= TARGET_PAGE_MASK; + i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) + tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); +} + +/* Our TLB does not support large pages, so remember the area covered by + large pages and trigger a full TLB flush if these are invalidated. */ +static void tlb_add_large_page(CPUState *env, target_ulong vaddr, + target_ulong size) +{ + target_ulong mask = ~(size - 1); + + if (env->tlb_flush_addr == (target_ulong)-1) { + env->tlb_flush_addr = vaddr & mask; + env->tlb_flush_mask = mask; + return; + } + /* Extend the existing region to include the new page. + This is a compromise between unnecessary flushes and the cost + of maintaining a full variable size TLB. */ + mask &= env->tlb_flush_mask; + while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { + mask <<= 1; + } + env->tlb_flush_addr &= mask; + env->tlb_flush_mask = mask; +} + +/* Add a new TLB entry. At most one entry for a given virtual address + is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the + supplied size is only used by tlb_flush_page. */ +void tlb_set_page(CPUState *env, target_ulong vaddr, + target_phys_addr_t paddr, int prot, + int mmu_idx, target_ulong size) +{ + PhysPageDesc *p; + ram_addr_t pd; + unsigned int index; + target_ulong address; + target_ulong code_address; + uintptr_t addend; + CPUTLBEntry *te; + CPUWatchpoint *wp; + target_phys_addr_t iotlb; +#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB) + int read_mods = 0, write_mods = 0, code_mods = 0; +#endif + + assert(size >= TARGET_PAGE_SIZE); + if (size != TARGET_PAGE_SIZE) { + tlb_add_large_page(env, vaddr, size); + } + p = phys_page_find(paddr >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } +#if defined(DEBUG_TLB) + printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d size=" TARGET_FMT_lx " pd=0x%08lx\n", + vaddr, (int)paddr, prot, mmu_idx, size, (long)pd); +#endif + + address = vaddr; + if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { + /* IO memory case (romd handled later) */ + address |= TLB_MMIO; + } +#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB) + addend = pd & TARGET_PAGE_MASK; +#elif !defined(VBOX) + addend = (uintptr_t)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK); +#else + /** @todo this is racing the phys_page_find call above since it may register + * a new chunk of memory... */ + addend = (uintptr_t)remR3TlbGCPhys2Ptr(env, pd & TARGET_PAGE_MASK, !!(prot & PAGE_WRITE)); +#endif + + if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { + /* Normal RAM. */ + iotlb = pd & TARGET_PAGE_MASK; + if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) + iotlb |= IO_MEM_NOTDIRTY; + else + iotlb |= IO_MEM_ROM; + } else { + /* IO handlers are currently passed a physical address. + It would be nice to pass an offset from the base address + of that region. This would avoid having to special case RAM, + and avoid full address decoding in every device. + We can't use the high bits of pd for this because + IO_MEM_ROMD uses these as a ram address. */ + iotlb = (pd & ~TARGET_PAGE_MASK); + if (p) { + iotlb += p->region_offset; + } else { + iotlb += paddr; + } + } + + code_address = address; +#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB) + + if (addend & 0x3) + { + if (addend & 0x2) + { + /* catch write */ + if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) + write_mods |= TLB_MMIO; + } + else if (addend & 0x1) + { + /* catch all */ + if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) + { + read_mods |= TLB_MMIO; + write_mods |= TLB_MMIO; + code_mods |= TLB_MMIO; + } + } + if ((iotlb & ~TARGET_PAGE_MASK) == 0) + iotlb = env->pVM->rem.s.iHandlerMemType + paddr; + addend &= ~(target_ulong)0x3; + } + +#endif + /* Make accesses to pages with watchpoints go via the + watchpoint trap routines. */ + QTAILQ_FOREACH(wp, &env->watchpoints, entry) { + if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { + /* Avoid trapping reads of pages with a write breakpoint. */ + if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { + iotlb = io_mem_watch + paddr; + address |= TLB_MMIO; + break; + } + } + } + + index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + env->iotlb[mmu_idx][index] = iotlb - vaddr; + te = &env->tlb_table[mmu_idx][index]; + te->addend = addend - vaddr; + if (prot & PAGE_READ) { + te->addr_read = address; + } else { + te->addr_read = -1; + } + + if (prot & PAGE_EXEC) { + te->addr_code = code_address; + } else { + te->addr_code = -1; + } + if (prot & PAGE_WRITE) { + if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || + (pd & IO_MEM_ROMD)) { + /* Write access calls the I/O callback. */ + te->addr_write = address | TLB_MMIO; + } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && + !cpu_physical_memory_is_dirty(pd)) { + te->addr_write = address | TLB_NOTDIRTY; + } else { + te->addr_write = address; + } + } else { + te->addr_write = -1; + } + +#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB) + if (prot & PAGE_READ) + te->addr_read |= read_mods; + if (prot & PAGE_EXEC) + te->addr_code |= code_mods; + if (prot & PAGE_WRITE) + te->addr_write |= write_mods; + + env->phys_addends[mmu_idx][index] = (pd & TARGET_PAGE_MASK)- vaddr; +#endif + +#ifdef VBOX + /* inform raw mode about TLB page change */ + remR3FlushPage(env, vaddr); +#endif +} + +#else + +void tlb_flush(CPUState *env, int flush_global) +{ +} + +void tlb_flush_page(CPUState *env, target_ulong addr) +{ +} + +/* + * Walks guest process memory "regions" one by one + * and calls callback function 'fn' for each region. + */ + +struct walk_memory_regions_data +{ + walk_memory_regions_fn fn; + void *priv; + uintptr_t start; + int prot; +}; + +static int walk_memory_regions_end(struct walk_memory_regions_data *data, + abi_ulong end, int new_prot) +{ + if (data->start != -1ul) { + int rc = data->fn(data->priv, data->start, end, data->prot); + if (rc != 0) { + return rc; + } + } + + data->start = (new_prot ? end : -1ul); + data->prot = new_prot; + + return 0; +} + +static int walk_memory_regions_1(struct walk_memory_regions_data *data, + abi_ulong base, int level, void **lp) +{ + abi_ulong pa; + int i, rc; + + if (*lp == NULL) { + return walk_memory_regions_end(data, base, 0); + } + + if (level == 0) { + PageDesc *pd = *lp; + for (i = 0; i < L2_SIZE; ++i) { + int prot = pd[i].flags; + + pa = base | (i << TARGET_PAGE_BITS); + if (prot != data->prot) { + rc = walk_memory_regions_end(data, pa, prot); + if (rc != 0) { + return rc; + } + } + } + } else { + void **pp = *lp; + for (i = 0; i < L2_SIZE; ++i) { + pa = base | ((abi_ulong)i << + (TARGET_PAGE_BITS + L2_BITS * level)); + rc = walk_memory_regions_1(data, pa, level - 1, pp + i); + if (rc != 0) { + return rc; + } + } + } + + return 0; +} + +int walk_memory_regions(void *priv, walk_memory_regions_fn fn) +{ + struct walk_memory_regions_data data; + target_ulong i; + + data.fn = fn; + data.priv = priv; + data.start = -1ul; + data.prot = 0; + + for (i = 0; i < V_L1_SIZE; i++) { + int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT, + V_L1_SHIFT / L2_BITS - 1, l1_map + i); + if (rc != 0) { + return rc; + } + } + + return walk_memory_regions_end(&data, 0, 0); +} + +static int dump_region(void *priv, abi_ulong start, + abi_ulong end, unsigned long prot) +{ + FILE *f = (FILE *)priv; + + (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx + " "TARGET_ABI_FMT_lx" %c%c%c\n", + start, end, end - start, + ((prot & PAGE_READ) ? 'r' : '-'), + ((prot & PAGE_WRITE) ? 'w' : '-'), + ((prot & PAGE_EXEC) ? 'x' : '-')); + + return (0); +} + +/* dump memory mappings */ +void page_dump(FILE *f) +{ + (void) fprintf(f, "%-8s %-8s %-8s %s\n", + "start", "end", "size", "prot"); + walk_memory_regions(f, dump_region); +} + +int page_get_flags(target_ulong address) +{ + PageDesc *p; + + p = page_find(address >> TARGET_PAGE_BITS); + if (!p) + return 0; + return p->flags; +} + +/* Modify the flags of a page and invalidate the code if necessary. + The flag PAGE_WRITE_ORG is positioned automatically depending + on PAGE_WRITE. The mmap_lock should already be held. */ +void page_set_flags(target_ulong start, target_ulong end, int flags) +{ + target_ulong addr, len; + + /* This function should never be called with addresses outside the + guest address space. If this assert fires, it probably indicates + a missing call to h2g_valid. */ +#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS + assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); +#endif + assert(start < end); + + start = start & TARGET_PAGE_MASK; + end = TARGET_PAGE_ALIGN(end); + + if (flags & PAGE_WRITE) { + flags |= PAGE_WRITE_ORG; + } + +#ifdef VBOX + AssertMsgFailed(("We shouldn't be here, and if we should, we must have an env to do the proper locking!\n")); +#endif + for (addr = start, len = end - start; + len != 0; + len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { + PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); + + /* If the write protection bit is set, then we invalidate + the code inside. */ + if (!(p->flags & PAGE_WRITE) && + (flags & PAGE_WRITE) && + p->first_tb) { + tb_invalidate_phys_page(addr, 0, NULL); + } + p->flags = flags; + } +} + +int page_check_range(target_ulong start, target_ulong len, int flags) +{ + PageDesc *p; + target_ulong end; + target_ulong addr; + + /* This function should never be called with addresses outside the + guest address space. If this assert fires, it probably indicates + a missing call to h2g_valid. */ +#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS + assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); +#endif + + if (len == 0) { + return 0; + } + if (start + len - 1 < start) { + /* We've wrapped around. */ + return -1; + } + + end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ + start = start & TARGET_PAGE_MASK; + + for (addr = start, len = end - start; + len != 0; + len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { + p = page_find(addr >> TARGET_PAGE_BITS); + if( !p ) + return -1; + if( !(p->flags & PAGE_VALID) ) + return -1; + + if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) + return -1; + if (flags & PAGE_WRITE) { + if (!(p->flags & PAGE_WRITE_ORG)) + return -1; + /* unprotect the page if it was put read-only because it + contains translated code */ + if (!(p->flags & PAGE_WRITE)) { + if (!page_unprotect(addr, 0, NULL)) + return -1; + } + return 0; + } + } + return 0; +} + +/* called from signal handler: invalidate the code and unprotect the + page. Return TRUE if the fault was successfully handled. */ +int page_unprotect(target_ulong address, uintptr_t pc, void *puc) +{ + unsigned int prot; + PageDesc *p; + target_ulong host_start, host_end, addr; + + /* Technically this isn't safe inside a signal handler. However we + know this only ever happens in a synchronous SEGV handler, so in + practice it seems to be ok. */ + mmap_lock(); + + p = page_find(address >> TARGET_PAGE_BITS); + if (!p) { + mmap_unlock(); + return 0; + } + + /* if the page was really writable, then we change its + protection back to writable */ + if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { + host_start = address & qemu_host_page_mask; + host_end = host_start + qemu_host_page_size; + + prot = 0; + for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { + p = page_find(addr >> TARGET_PAGE_BITS); + p->flags |= PAGE_WRITE; + prot |= p->flags; + + /* and since the content will be modified, we must invalidate + the corresponding translated code. */ + tb_invalidate_phys_page(addr, pc, puc); +#ifdef DEBUG_TB_CHECK + tb_invalidate_check(addr); +#endif + } + mprotect((void *)g2h(host_start), qemu_host_page_size, + prot & PAGE_BITS); + + mmap_unlock(); + return 1; + } + mmap_unlock(); + return 0; +} + +static inline void tlb_set_dirty(CPUState *env, + uintptr_t addr, target_ulong vaddr) +{ +} +#endif /* defined(CONFIG_USER_ONLY) */ + +#if !defined(CONFIG_USER_ONLY) + +#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) +typedef struct subpage_t { + target_phys_addr_t base; + ram_addr_t sub_io_index[TARGET_PAGE_SIZE]; + ram_addr_t region_offset[TARGET_PAGE_SIZE]; +} subpage_t; + +static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, + ram_addr_t memory, ram_addr_t region_offset); +static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys, + ram_addr_t orig_memory, + ram_addr_t region_offset); +#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ + need_subpage) \ + do { \ + if (addr > start_addr) \ + start_addr2 = 0; \ + else { \ + start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ + if (start_addr2 > 0) \ + need_subpage = 1; \ + } \ + \ + if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ + end_addr2 = TARGET_PAGE_SIZE - 1; \ + else { \ + end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ + if (end_addr2 < TARGET_PAGE_SIZE - 1) \ + need_subpage = 1; \ + } \ + } while (0) + +/* register physical memory. + For RAM, 'size' must be a multiple of the target page size. + If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an + io memory page. The address used when calling the IO function is + the offset from the start of the region, plus region_offset. Both + start_addr and region_offset are rounded down to a page boundary + before calculating this offset. This should not be a problem unless + the low bits of start_addr and region_offset differ. */ +void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, + ram_addr_t size, + ram_addr_t phys_offset, + ram_addr_t region_offset) +{ + target_phys_addr_t addr, end_addr; + PhysPageDesc *p; + CPUState *env; + ram_addr_t orig_size = size; + subpage_t *subpage; + +#ifndef VBOX + cpu_notify_set_memory(start_addr, size, phys_offset); +#endif /* !VBOX */ + + if (phys_offset == IO_MEM_UNASSIGNED) { + region_offset = start_addr; + } + region_offset &= TARGET_PAGE_MASK; + size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; + end_addr = start_addr + (target_phys_addr_t)size; + for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (p && p->phys_offset != IO_MEM_UNASSIGNED) { + ram_addr_t orig_memory = p->phys_offset; + target_phys_addr_t start_addr2, end_addr2; + int need_subpage = 0; + + CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, + need_subpage); + if (need_subpage) { + if (!(orig_memory & IO_MEM_SUBPAGE)) { + subpage = subpage_init((addr & TARGET_PAGE_MASK), + &p->phys_offset, orig_memory, + p->region_offset); + } else { + subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) + >> IO_MEM_SHIFT]; + } + subpage_register(subpage, start_addr2, end_addr2, phys_offset, + region_offset); + p->region_offset = 0; + } else { + p->phys_offset = phys_offset; + if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || + (phys_offset & IO_MEM_ROMD)) + phys_offset += TARGET_PAGE_SIZE; + } + } else { + p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); + p->phys_offset = phys_offset; + p->region_offset = region_offset; + if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || + (phys_offset & IO_MEM_ROMD)) { + phys_offset += TARGET_PAGE_SIZE; + } else { + target_phys_addr_t start_addr2, end_addr2; + int need_subpage = 0; + + CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, + end_addr2, need_subpage); + + if (need_subpage) { + subpage = subpage_init((addr & TARGET_PAGE_MASK), + &p->phys_offset, IO_MEM_UNASSIGNED, + addr & TARGET_PAGE_MASK); + subpage_register(subpage, start_addr2, end_addr2, + phys_offset, region_offset); + p->region_offset = 0; + } + } + } + region_offset += TARGET_PAGE_SIZE; + } + + /* since each CPU stores ram addresses in its TLB cache, we must + reset the modified entries */ +#ifndef VBOX + /* XXX: slow ! */ + for(env = first_cpu; env != NULL; env = env->next_cpu) { + tlb_flush(env, 1); + } +#else + /* We have one thread per CPU, so, one of the other EMTs might be executing + code right now and flushing the TLB may crash it. */ + env = first_cpu; + if (EMRemIsLockOwner(env->pVM)) + tlb_flush(env, 1); + else + ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, + CPU_INTERRUPT_EXTERNAL_FLUSH_TLB); +#endif +} + +/* XXX: temporary until new memory mapping API */ +ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) +{ + PhysPageDesc *p; + + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (!p) + return IO_MEM_UNASSIGNED; + return p->phys_offset; +} + +#ifndef VBOX + +void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) +{ + if (kvm_enabled()) + kvm_coalesce_mmio_region(addr, size); +} + +void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) +{ + if (kvm_enabled()) + kvm_uncoalesce_mmio_region(addr, size); +} + +void qemu_flush_coalesced_mmio_buffer(void) +{ + if (kvm_enabled()) + kvm_flush_coalesced_mmio_buffer(); +} + +#if defined(__linux__) && !defined(TARGET_S390X) + +#include <sys/vfs.h> + +#define HUGETLBFS_MAGIC 0x958458f6 + +static size_t gethugepagesize(const char *path) +{ + struct statfs fs; + int ret; + + do { + ret = statfs(path, &fs); + } while (ret != 0 && errno == EINTR); + + if (ret != 0) { + perror(path); + return 0; + } + + if (fs.f_type != HUGETLBFS_MAGIC) + fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); + + return (size_t)fs.f_bsize; +} + +static void *file_ram_alloc(RAMBlock *block, + ram_addr_t memory, + const char *path) +{ + char *filename; + void *area; + int fd; +#ifdef MAP_POPULATE + int flags; +#endif + size_t hpagesize; + + hpagesize = gethugepagesize(path); + if (!hpagesize) { + return NULL; + } + + if (memory < hpagesize) { + return NULL; + } + + if (kvm_enabled() && !kvm_has_sync_mmu()) { + fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n"); + return NULL; + } + + if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) { + return NULL; + } + + fd = mkstemp(filename); + if (fd < 0) { + perror("unable to create backing store for hugepages"); + free(filename); + return NULL; + } + unlink(filename); + free(filename); + + memory = (memory+hpagesize-1) & ~(hpagesize-1); + + /* + * ftruncate is not supported by hugetlbfs in older + * hosts, so don't bother bailing out on errors. + * If anything goes wrong with it under other filesystems, + * mmap will fail. + */ + if (ftruncate(fd, memory)) + perror("ftruncate"); + +#ifdef MAP_POPULATE + /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case + * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED + * to sidestep this quirk. + */ + flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE; + area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0); +#else + area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); +#endif + if (area == MAP_FAILED) { + perror("file_ram_alloc: can't mmap RAM pages"); + close(fd); + return (NULL); + } + block->fd = fd; + return area; +} +#endif + +static ram_addr_t find_ram_offset(ram_addr_t size) +{ + RAMBlock *block, *next_block; + ram_addr_t offset = 0, mingap = ULONG_MAX; + + if (QLIST_EMPTY(&ram_list.blocks)) + return 0; + + QLIST_FOREACH(block, &ram_list.blocks, next) { + ram_addr_t end, next = ULONG_MAX; + + end = block->offset + block->length; + + QLIST_FOREACH(next_block, &ram_list.blocks, next) { + if (next_block->offset >= end) { + next = MIN(next, next_block->offset); + } + } + if (next - end >= size && next - end < mingap) { + offset = end; + mingap = next - end; + } + } + return offset; +} + +static ram_addr_t last_ram_offset(void) +{ + RAMBlock *block; + ram_addr_t last = 0; + + QLIST_FOREACH(block, &ram_list.blocks, next) + last = MAX(last, block->offset + block->length); + + return last; +} + +ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name, + ram_addr_t size, void *host) +{ + RAMBlock *new_block, *block; + + size = TARGET_PAGE_ALIGN(size); + new_block = qemu_mallocz(sizeof(*new_block)); + + if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) { + char *id = dev->parent_bus->info->get_dev_path(dev); + if (id) { + snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); + qemu_free(id); + } + } + pstrcat(new_block->idstr, sizeof(new_block->idstr), name); + + QLIST_FOREACH(block, &ram_list.blocks, next) { + if (!strcmp(block->idstr, new_block->idstr)) { + fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", + new_block->idstr); + abort(); + } + } + + new_block->host = host; + + new_block->offset = find_ram_offset(size); + new_block->length = size; + + QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next); + + ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty, + last_ram_offset() >> TARGET_PAGE_BITS); + memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS), + 0xff, size >> TARGET_PAGE_BITS); + + if (kvm_enabled()) + kvm_setup_guest_memory(new_block->host, size); + + return new_block->offset; +} + +ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size) +{ + RAMBlock *new_block, *block; + + size = TARGET_PAGE_ALIGN(size); + new_block = qemu_mallocz(sizeof(*new_block)); + + if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) { + char *id = dev->parent_bus->info->get_dev_path(dev); + if (id) { + snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); + qemu_free(id); + } + } + pstrcat(new_block->idstr, sizeof(new_block->idstr), name); + + QLIST_FOREACH(block, &ram_list.blocks, next) { + if (!strcmp(block->idstr, new_block->idstr)) { + fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", + new_block->idstr); + abort(); + } + } + + if (mem_path) { +#if defined (__linux__) && !defined(TARGET_S390X) + new_block->host = file_ram_alloc(new_block, size, mem_path); + if (!new_block->host) { + new_block->host = qemu_vmalloc(size); +#ifdef MADV_MERGEABLE + madvise(new_block->host, size, MADV_MERGEABLE); +#endif + } +#else + fprintf(stderr, "-mem-path option unsupported\n"); + exit(1); +#endif + } else { +#if defined(TARGET_S390X) && defined(CONFIG_KVM) + /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */ + new_block->host = mmap((void*)0x1000000, size, + PROT_EXEC|PROT_READ|PROT_WRITE, + MAP_SHARED | MAP_ANONYMOUS, -1, 0); +#else + new_block->host = qemu_vmalloc(size); +#endif +#ifdef MADV_MERGEABLE + madvise(new_block->host, size, MADV_MERGEABLE); +#endif + } + new_block->offset = find_ram_offset(size); + new_block->length = size; + + QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next); + + ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty, + last_ram_offset() >> TARGET_PAGE_BITS); + memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS), + 0xff, size >> TARGET_PAGE_BITS); + + if (kvm_enabled()) + kvm_setup_guest_memory(new_block->host, size); + + return new_block->offset; +} + +void qemu_ram_free(ram_addr_t addr) +{ + RAMBlock *block; + + QLIST_FOREACH(block, &ram_list.blocks, next) { + if (addr == block->offset) { + QLIST_REMOVE(block, next); + if (mem_path) { +#if defined (__linux__) && !defined(TARGET_S390X) + if (block->fd) { + munmap(block->host, block->length); + close(block->fd); + } else { + qemu_vfree(block->host); + } +#endif + } else { +#if defined(TARGET_S390X) && defined(CONFIG_KVM) + munmap(block->host, block->length); +#else + qemu_vfree(block->host); +#endif + } + qemu_free(block); + return; + } + } + +} + +/* Return a host pointer to ram allocated with qemu_ram_alloc. + With the exception of the softmmu code in this file, this should + only be used for local memory (e.g. video ram) that the device owns, + and knows it isn't going to access beyond the end of the block. + + It should not be used for general purpose DMA. + Use cpu_physical_memory_map/cpu_physical_memory_rw instead. + */ +void *qemu_get_ram_ptr(ram_addr_t addr) +{ + RAMBlock *block; + + QLIST_FOREACH(block, &ram_list.blocks, next) { + if (addr - block->offset < block->length) { + QLIST_REMOVE(block, next); + QLIST_INSERT_HEAD(&ram_list.blocks, block, next); + return block->host + (addr - block->offset); + } + } + + fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); + abort(); + + return NULL; +} + +/* Some of the softmmu routines need to translate from a host pointer + (typically a TLB entry) back to a ram offset. */ +ram_addr_t qemu_ram_addr_from_host(void *ptr) +{ + RAMBlock *block; + uint8_t *host = ptr; + + QLIST_FOREACH(block, &ram_list.blocks, next) { + if (host - block->host < block->length) { + return block->offset + (host - block->host); + } + } + + fprintf(stderr, "Bad ram pointer %p\n", ptr); + abort(); + + return 0; +} + +#endif /* !VBOX */ + +static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) +{ +#ifdef DEBUG_UNASSIGNED + printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); +#endif +#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) + do_unassigned_access(addr, 0, 0, 0, 1); +#endif + return 0; +} + +static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) +{ +#ifdef DEBUG_UNASSIGNED + printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); +#endif +#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) + do_unassigned_access(addr, 0, 0, 0, 2); +#endif + return 0; +} + +static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) +{ +#ifdef DEBUG_UNASSIGNED + printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); +#endif +#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) + do_unassigned_access(addr, 0, 0, 0, 4); +#endif + return 0; +} + +static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) +{ +#ifdef DEBUG_UNASSIGNED + printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); +#endif +#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) + do_unassigned_access(addr, 1, 0, 0, 1); +#endif +} + +static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) +{ +#ifdef DEBUG_UNASSIGNED + printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); +#endif +#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) + do_unassigned_access(addr, 1, 0, 0, 2); +#endif +} + +static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) +{ +#ifdef DEBUG_UNASSIGNED + printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); +#endif +#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) + do_unassigned_access(addr, 1, 0, 0, 4); +#endif +} + +static CPUReadMemoryFunc * const unassigned_mem_read[3] = { + unassigned_mem_readb, + unassigned_mem_readw, + unassigned_mem_readl, +}; + +static CPUWriteMemoryFunc * const unassigned_mem_write[3] = { + unassigned_mem_writeb, + unassigned_mem_writew, + unassigned_mem_writel, +}; + +static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, + uint32_t val) +{ + int dirty_flags; + dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); + if (!(dirty_flags & CODE_DIRTY_FLAG)) { +#if !defined(CONFIG_USER_ONLY) + tb_invalidate_phys_page_fast(ram_addr, 1); + dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); +#endif + } +#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB) + remR3PhysWriteU8(ram_addr, val); +#else + stb_p(qemu_get_ram_ptr(ram_addr), val); +#endif + dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); + cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); + /* we remove the notdirty callback only if the code has been + flushed */ + if (dirty_flags == 0xff) + tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); +} + +static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, + uint32_t val) +{ + int dirty_flags; + dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); + if (!(dirty_flags & CODE_DIRTY_FLAG)) { +#if !defined(CONFIG_USER_ONLY) + tb_invalidate_phys_page_fast(ram_addr, 2); + dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); +#endif + } +#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB) + remR3PhysWriteU16(ram_addr, val); +#else + stw_p(qemu_get_ram_ptr(ram_addr), val); +#endif + dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); + cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); + /* we remove the notdirty callback only if the code has been + flushed */ + if (dirty_flags == 0xff) + tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); +} + +static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, + uint32_t val) +{ + int dirty_flags; + dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); + if (!(dirty_flags & CODE_DIRTY_FLAG)) { +#if !defined(CONFIG_USER_ONLY) + tb_invalidate_phys_page_fast(ram_addr, 4); + dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); +#endif + } +#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB) + remR3PhysWriteU32(ram_addr, val); +#else + stl_p(qemu_get_ram_ptr(ram_addr), val); +#endif + dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); + cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); + /* we remove the notdirty callback only if the code has been + flushed */ + if (dirty_flags == 0xff) + tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); +} + +static CPUReadMemoryFunc * const error_mem_read[3] = { + NULL, /* never used */ + NULL, /* never used */ + NULL, /* never used */ +}; + +static CPUWriteMemoryFunc * const notdirty_mem_write[3] = { + notdirty_mem_writeb, + notdirty_mem_writew, + notdirty_mem_writel, +}; + +/* Generate a debug exception if a watchpoint has been hit. */ +static void check_watchpoint(int offset, int len_mask, int flags) +{ + CPUState *env = cpu_single_env; + target_ulong pc, cs_base; + TranslationBlock *tb; + target_ulong vaddr; + CPUWatchpoint *wp; + int cpu_flags; + + if (env->watchpoint_hit) { + /* We re-entered the check after replacing the TB. Now raise + * the debug interrupt so that is will trigger after the + * current instruction. */ + cpu_interrupt(env, CPU_INTERRUPT_DEBUG); + return; + } + vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; + QTAILQ_FOREACH(wp, &env->watchpoints, entry) { + if ((vaddr == (wp->vaddr & len_mask) || + (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { + wp->flags |= BP_WATCHPOINT_HIT; + if (!env->watchpoint_hit) { + env->watchpoint_hit = wp; + tb = tb_find_pc(env->mem_io_pc); + if (!tb) { + cpu_abort(env, "check_watchpoint: could not find TB for " + "pc=%p", (void *)env->mem_io_pc); + } + cpu_restore_state(tb, env, env->mem_io_pc, NULL); + tb_phys_invalidate(tb, -1); + if (wp->flags & BP_STOP_BEFORE_ACCESS) { + env->exception_index = EXCP_DEBUG; + } else { + cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); + tb_gen_code(env, pc, cs_base, cpu_flags, 1); + } + cpu_resume_from_signal(env, NULL); + } + } else { + wp->flags &= ~BP_WATCHPOINT_HIT; + } + } +} + +/* Watchpoint access routines. Watchpoints are inserted using TLB tricks, + so these check for a hit then pass through to the normal out-of-line + phys routines. */ +static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) +{ + check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); + return ldub_phys(addr); +} + +static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) +{ + check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); + return lduw_phys(addr); +} + +static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) +{ + check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); + return ldl_phys(addr); +} + +static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, + uint32_t val) +{ + check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); + stb_phys(addr, val); +} + +static void watch_mem_writew(void *opaque, target_phys_addr_t addr, + uint32_t val) +{ + check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); + stw_phys(addr, val); +} + +static void watch_mem_writel(void *opaque, target_phys_addr_t addr, + uint32_t val) +{ + check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); + stl_phys(addr, val); +} + +static CPUReadMemoryFunc * const watch_mem_read[3] = { + watch_mem_readb, + watch_mem_readw, + watch_mem_readl, +}; + +static CPUWriteMemoryFunc * const watch_mem_write[3] = { + watch_mem_writeb, + watch_mem_writew, + watch_mem_writel, +}; + +static inline uint32_t subpage_readlen (subpage_t *mmio, + target_phys_addr_t addr, + unsigned int len) +{ + unsigned int idx = SUBPAGE_IDX(addr); +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, + mmio, len, addr, idx); +#endif + + addr += mmio->region_offset[idx]; + idx = mmio->sub_io_index[idx]; + return io_mem_read[idx][len](io_mem_opaque[idx], addr); +} + +static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, + uint32_t value, unsigned int len) +{ + unsigned int idx = SUBPAGE_IDX(addr); +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", + __func__, mmio, len, addr, idx, value); +#endif + + addr += mmio->region_offset[idx]; + idx = mmio->sub_io_index[idx]; + io_mem_write[idx][len](io_mem_opaque[idx], addr, value); +} + +static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) +{ + return subpage_readlen(opaque, addr, 0); +} + +static void subpage_writeb (void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + subpage_writelen(opaque, addr, value, 0); +} + +static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) +{ + return subpage_readlen(opaque, addr, 1); +} + +static void subpage_writew (void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + subpage_writelen(opaque, addr, value, 1); +} + +static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) +{ + return subpage_readlen(opaque, addr, 2); +} + +static void subpage_writel (void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + subpage_writelen(opaque, addr, value, 2); +} + +static CPUReadMemoryFunc * const subpage_read[] = { + &subpage_readb, + &subpage_readw, + &subpage_readl, +}; + +static CPUWriteMemoryFunc * const subpage_write[] = { + &subpage_writeb, + &subpage_writew, + &subpage_writel, +}; + +static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, + ram_addr_t memory, ram_addr_t region_offset) +{ + int idx, eidx; + + if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) + return -1; + idx = SUBPAGE_IDX(start); + eidx = SUBPAGE_IDX(end); +#if defined(DEBUG_SUBPAGE) + printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, + mmio, start, end, idx, eidx, memory); +#endif + memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + for (; idx <= eidx; idx++) { + mmio->sub_io_index[idx] = memory; + mmio->region_offset[idx] = region_offset; + } + + return 0; +} + +static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys, + ram_addr_t orig_memory, + ram_addr_t region_offset) +{ + subpage_t *mmio; + int subpage_memory; + + mmio = qemu_mallocz(sizeof(subpage_t)); + + mmio->base = base; + subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio); +#if defined(DEBUG_SUBPAGE) + printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, + mmio, base, TARGET_PAGE_SIZE, subpage_memory); +#endif + *phys = subpage_memory | IO_MEM_SUBPAGE; + subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset); + + return mmio; +} + +static int get_free_io_mem_idx(void) +{ + int i; + + for (i = 0; i<IO_MEM_NB_ENTRIES; i++) + if (!io_mem_used[i]) { + io_mem_used[i] = 1; + return i; + } + fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES); + return -1; +} + +/* mem_read and mem_write are arrays of functions containing the + function to access byte (index 0), word (index 1) and dword (index + 2). Functions can be omitted with a NULL function pointer. + If io_index is non zero, the corresponding io zone is + modified. If it is zero, a new io zone is allocated. The return + value can be used with cpu_register_physical_memory(). (-1) is + returned if error. */ +static int cpu_register_io_memory_fixed(int io_index, + CPUReadMemoryFunc * const *mem_read, + CPUWriteMemoryFunc * const *mem_write, + void *opaque) +{ + int i; + + if (io_index <= 0) { + io_index = get_free_io_mem_idx(); + if (io_index == -1) + return io_index; + } else { + io_index >>= IO_MEM_SHIFT; + if (io_index >= IO_MEM_NB_ENTRIES) + return -1; + } + + for (i = 0; i < 3; ++i) { + io_mem_read[io_index][i] + = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]); + } + for (i = 0; i < 3; ++i) { + io_mem_write[io_index][i] + = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]); + } + io_mem_opaque[io_index] = opaque; + + return (io_index << IO_MEM_SHIFT); +} + +int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read, + CPUWriteMemoryFunc * const *mem_write, + void *opaque) +{ + return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque); +} + +void cpu_unregister_io_memory(int io_table_address) +{ + int i; + int io_index = io_table_address >> IO_MEM_SHIFT; + + for (i=0;i < 3; i++) { + io_mem_read[io_index][i] = unassigned_mem_read[i]; + io_mem_write[io_index][i] = unassigned_mem_write[i]; + } + io_mem_opaque[io_index] = NULL; + io_mem_used[io_index] = 0; +} + +static void io_mem_init(void) +{ + int i; + + cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL); + cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL); + cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL); + for (i=0; i<5; i++) + io_mem_used[i] = 1; + + io_mem_watch = cpu_register_io_memory(watch_mem_read, + watch_mem_write, NULL); +} + +#endif /* !defined(CONFIG_USER_ONLY) */ + +/* physical memory access (slow version, mainly for debug) */ +#if defined(CONFIG_USER_ONLY) +int cpu_memory_rw_debug(CPUState *env, target_ulong addr, + uint8_t *buf, int len, int is_write) +{ + int l, flags; + target_ulong page; + void * p; + + while (len > 0) { + page = addr & TARGET_PAGE_MASK; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + flags = page_get_flags(page); + if (!(flags & PAGE_VALID)) + return -1; + if (is_write) { + if (!(flags & PAGE_WRITE)) + return -1; + /* XXX: this code should not depend on lock_user */ + if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) + return -1; + memcpy(p, buf, l); + unlock_user(p, addr, l); + } else { + if (!(flags & PAGE_READ)) + return -1; + /* XXX: this code should not depend on lock_user */ + if (!(p = lock_user(VERIFY_READ, addr, l, 1))) + return -1; + memcpy(buf, p, l); + unlock_user(p, addr, 0); + } + len -= l; + buf += l; + addr += l; + } + return 0; +} + +#else +void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, + int len, int is_write) +{ + int l, io_index; + uint8_t *ptr; + uint32_t val; + target_phys_addr_t page; + ram_addr_t pd; + PhysPageDesc *p; + + while (len > 0) { + page = addr & TARGET_PAGE_MASK; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + p = phys_page_find(page >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if (is_write) { + if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { + target_phys_addr_t addr1 = addr; + io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + if (p) + addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; + /* XXX: could force cpu_single_env to NULL to avoid + potential bugs */ + if (l >= 4 && ((addr1 & 3) == 0)) { + /* 32 bit write access */ +#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB) + val = ldl_p(buf); +#else + val = *(const uint32_t *)buf; +#endif + io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val); + l = 4; + } else if (l >= 2 && ((addr1 & 1) == 0)) { + /* 16 bit write access */ +#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB) + val = lduw_p(buf); +#else + val = *(const uint16_t *)buf; +#endif + io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val); + l = 2; + } else { + /* 8 bit write access */ +#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB) + val = ldub_p(buf); +#else + val = *(const uint8_t *)buf; +#endif + io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val); + l = 1; + } + } else { + ram_addr_t addr1; + addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); + /* RAM case */ +#ifdef VBOX + remR3PhysWrite(addr1, buf, l); NOREF(ptr); +#else + ptr = qemu_get_ram_ptr(addr1); + memcpy(ptr, buf, l); +#endif + if (!cpu_physical_memory_is_dirty(addr1)) { + /* invalidate code */ + tb_invalidate_phys_page_range(addr1, addr1 + l, 0); + /* set dirty bit */ + cpu_physical_memory_set_dirty_flags( + addr1, (0xff & ~CODE_DIRTY_FLAG)); + } + } + } else { + if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && + !(pd & IO_MEM_ROMD)) { + target_phys_addr_t addr1 = addr; + /* I/O case */ + io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + if (p) + addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; + if (l >= 4 && ((addr1 & 3) == 0)) { + /* 32 bit read access */ + val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1); +#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB) + stl_p(buf, val); +#else + *(uint32_t *)buf = val; +#endif + l = 4; + } else if (l >= 2 && ((addr1 & 1) == 0)) { + /* 16 bit read access */ + val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1); +#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB) + stw_p(buf, val); +#else + *(uint16_t *)buf = val; +#endif + l = 2; + } else { + /* 8 bit read access */ + val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1); +#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB) + stb_p(buf, val); +#else + *(uint8_t *)buf = val; +#endif + l = 1; + } + } else { + /* RAM case */ +#ifdef VBOX + remR3PhysRead((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), buf, l); NOREF(ptr); +#else + ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + + (addr & ~TARGET_PAGE_MASK); + memcpy(buf, ptr, l); +#endif + } + } + len -= l; + buf += l; + addr += l; + } +} + +#ifndef VBOX + +/* used for ROM loading : can write in RAM and ROM */ +void cpu_physical_memory_write_rom(target_phys_addr_t addr, + const uint8_t *buf, int len) +{ + int l; + uint8_t *ptr; + target_phys_addr_t page; + ram_addr_t pd; + PhysPageDesc *p; + + while (len > 0) { + page = addr & TARGET_PAGE_MASK; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + p = phys_page_find(page >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && + (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && + !(pd & IO_MEM_ROMD)) { + /* do nothing */ + } else { + ram_addr_t addr1; + addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); + /* ROM/RAM case */ + ptr = qemu_get_ram_ptr(addr1); + memcpy(ptr, buf, l); + } + len -= l; + buf += l; + addr += l; + } +} + +typedef struct { + void *buffer; + target_phys_addr_t addr; + target_phys_addr_t len; +} BounceBuffer; + +static BounceBuffer bounce; + +typedef struct MapClient { + void *opaque; + void (*callback)(void *opaque); + QLIST_ENTRY(MapClient) link; +} MapClient; + +static QLIST_HEAD(map_client_list, MapClient) map_client_list + = QLIST_HEAD_INITIALIZER(map_client_list); + +void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) +{ + MapClient *client = qemu_malloc(sizeof(*client)); + + client->opaque = opaque; + client->callback = callback; + QLIST_INSERT_HEAD(&map_client_list, client, link); + return client; +} + +void cpu_unregister_map_client(void *_client) +{ + MapClient *client = (MapClient *)_client; + + QLIST_REMOVE(client, link); + qemu_free(client); +} + +static void cpu_notify_map_clients(void) +{ + MapClient *client; + + while (!QLIST_EMPTY(&map_client_list)) { + client = QLIST_FIRST(&map_client_list); + client->callback(client->opaque); + cpu_unregister_map_client(client); + } +} + +/* Map a physical memory region into a host virtual address. + * May map a subset of the requested range, given by and returned in *plen. + * May return NULL if resources needed to perform the mapping are exhausted. + * Use only for reads OR writes - not for read-modify-write operations. + * Use cpu_register_map_client() to know when retrying the map operation is + * likely to succeed. + */ +void *cpu_physical_memory_map(target_phys_addr_t addr, + target_phys_addr_t *plen, + int is_write) +{ + target_phys_addr_t len = *plen; + target_phys_addr_t done = 0; + int l; + uint8_t *ret = NULL; + uint8_t *ptr; + target_phys_addr_t page; + ram_addr_t pd; + PhysPageDesc *p; + ram_addr_t addr1; + + while (len > 0) { + page = addr & TARGET_PAGE_MASK; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + p = phys_page_find(page >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { + if (done || bounce.buffer) { + break; + } + bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); + bounce.addr = addr; + bounce.len = l; + if (!is_write) { + cpu_physical_memory_rw(addr, bounce.buffer, l, 0); + } + ptr = bounce.buffer; + } else { + addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); + ptr = qemu_get_ram_ptr(addr1); + } + if (!done) { + ret = ptr; + } else if (ret + done != ptr) { + break; + } + + len -= l; + addr += l; + done += l; + } + *plen = done; + return ret; +} + +/* Unmaps a memory region previously mapped by cpu_physical_memory_map(). + * Will also mark the memory as dirty if is_write == 1. access_len gives + * the amount of memory that was actually read or written by the caller. + */ +void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, + int is_write, target_phys_addr_t access_len) +{ + if (buffer != bounce.buffer) { + if (is_write) { + ram_addr_t addr1 = qemu_ram_addr_from_host(buffer); + while (access_len) { + unsigned l; + l = TARGET_PAGE_SIZE; + if (l > access_len) + l = access_len; + if (!cpu_physical_memory_is_dirty(addr1)) { + /* invalidate code */ + tb_invalidate_phys_page_range(addr1, addr1 + l, 0); + /* set dirty bit */ + cpu_physical_memory_set_dirty_flags( + addr1, (0xff & ~CODE_DIRTY_FLAG)); + } + addr1 += l; + access_len -= l; + } + } + return; + } + if (is_write) { + cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); + } + qemu_vfree(bounce.buffer); + bounce.buffer = NULL; + cpu_notify_map_clients(); +} + +#endif /* !VBOX */ + +/* warning: addr must be aligned */ +uint32_t ldl_phys(target_phys_addr_t addr) +{ + int io_index; + uint8_t *ptr; + uint32_t val; + ram_addr_t pd; + PhysPageDesc *p; + + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && + !(pd & IO_MEM_ROMD)) { + /* I/O case */ + io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + if (p) + addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; + val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); + } else { + /* RAM case */ +#ifndef VBOX + ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + + (addr & ~TARGET_PAGE_MASK); + val = ldl_p(ptr); +#else + val = remR3PhysReadU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr); +#endif + } + return val; +} + +/* warning: addr must be aligned */ +uint64_t ldq_phys(target_phys_addr_t addr) +{ + int io_index; + uint8_t *ptr; + uint64_t val; + ram_addr_t pd; + PhysPageDesc *p; + + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && + !(pd & IO_MEM_ROMD)) { + /* I/O case */ + io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + if (p) + addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; +#ifdef TARGET_WORDS_BIGENDIAN + val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; + val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); +#else + val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); + val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; +#endif + } else { + /* RAM case */ +#ifndef VBOX + ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + + (addr & ~TARGET_PAGE_MASK); + val = ldq_p(ptr); +#else + val = remR3PhysReadU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr); +#endif + } + return val; +} + +/* XXX: optimize */ +uint32_t ldub_phys(target_phys_addr_t addr) +{ + uint8_t val; + cpu_physical_memory_read(addr, &val, 1); + return val; +} + +/* warning: addr must be aligned */ +uint32_t lduw_phys(target_phys_addr_t addr) +{ + int io_index; +#ifndef VBOX + uint8_t *ptr; +#endif + uint64_t val; + ram_addr_t pd; + PhysPageDesc *p; + + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && + !(pd & IO_MEM_ROMD)) { + /* I/O case */ + io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + if (p) + addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; + val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr); + } else { + /* RAM case */ +#ifndef VBOX + ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + + (addr & ~TARGET_PAGE_MASK); + val = lduw_p(ptr); +#else + val = remR3PhysReadU16((pd & TARGET_PAGE_MASK) | (addr & ~TARGET_PAGE_MASK)); +#endif + } + return val; +} + +/* warning: addr must be aligned. The ram page is not masked as dirty + and the code inside is not invalidated. It is useful if the dirty + bits are used to track modified PTEs */ +void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) +{ + int io_index; + uint8_t *ptr; + ram_addr_t pd; + PhysPageDesc *p; + + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { + io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + if (p) + addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; + io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); + } else { +#ifndef VBOX + ram_addr_t addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); + ptr = qemu_get_ram_ptr(addr1); + stl_p(ptr, val); +#else + remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr); +#endif + +#ifndef VBOX + if (unlikely(in_migration)) { + if (!cpu_physical_memory_is_dirty(addr1)) { + /* invalidate code */ + tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); + /* set dirty bit */ + cpu_physical_memory_set_dirty_flags( + addr1, (0xff & ~CODE_DIRTY_FLAG)); + } + } +#endif /* !VBOX */ + } +} + +void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) +{ + int io_index; + uint8_t *ptr; + ram_addr_t pd; + PhysPageDesc *p; + + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { + io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + if (p) + addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; +#ifdef TARGET_WORDS_BIGENDIAN + io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); + io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); +#else + io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); + io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); +#endif + } else { +#ifndef VBOX + ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + + (addr & ~TARGET_PAGE_MASK); + stq_p(ptr, val); +#else + remR3PhysWriteU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr); +#endif + } +} + +/* warning: addr must be aligned */ +void stl_phys(target_phys_addr_t addr, uint32_t val) +{ + int io_index; + uint8_t *ptr; + ram_addr_t pd; + PhysPageDesc *p; + + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { + io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + if (p) + addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; + io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); + } else { + ram_addr_t addr1; + addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); + /* RAM case */ +#ifndef VBOX + ptr = qemu_get_ram_ptr(addr1); + stl_p(ptr, val); +#else + remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr); +#endif + if (!cpu_physical_memory_is_dirty(addr1)) { + /* invalidate code */ + tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); + /* set dirty bit */ + cpu_physical_memory_set_dirty_flags(addr1, + (0xff & ~CODE_DIRTY_FLAG)); + } + } +} + +/* XXX: optimize */ +void stb_phys(target_phys_addr_t addr, uint32_t val) +{ + uint8_t v = val; + cpu_physical_memory_write(addr, &v, 1); +} + +/* warning: addr must be aligned */ +void stw_phys(target_phys_addr_t addr, uint32_t val) +{ + int io_index; + uint8_t *ptr; + ram_addr_t pd; + PhysPageDesc *p; + + p = phys_page_find(addr >> TARGET_PAGE_BITS); + if (!p) { + pd = IO_MEM_UNASSIGNED; + } else { + pd = p->phys_offset; + } + + if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { + io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); + if (p) + addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; + io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val); + } else { + ram_addr_t addr1; + addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); + /* RAM case */ +#ifndef VBOX + ptr = qemu_get_ram_ptr(addr1); + stw_p(ptr, val); +#else + remR3PhysWriteU16(addr1, val); NOREF(ptr); +#endif + if (!cpu_physical_memory_is_dirty(addr1)) { + /* invalidate code */ + tb_invalidate_phys_page_range(addr1, addr1 + 2, 0); + /* set dirty bit */ + cpu_physical_memory_set_dirty_flags(addr1, + (0xff & ~CODE_DIRTY_FLAG)); + } + } +} + +/* XXX: optimize */ +void stq_phys(target_phys_addr_t addr, uint64_t val) +{ + val = tswap64(val); + cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); +} + +#ifndef VBOX +/* virtual memory access for debug (includes writing to ROM) */ +int cpu_memory_rw_debug(CPUState *env, target_ulong addr, + uint8_t *buf, int len, int is_write) +{ + int l; + target_phys_addr_t phys_addr; + target_ulong page; + + while (len > 0) { + page = addr & TARGET_PAGE_MASK; + phys_addr = cpu_get_phys_page_debug(env, page); + /* if no physical page mapped, return an error */ + if (phys_addr == -1) + return -1; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + phys_addr += (addr & ~TARGET_PAGE_MASK); + if (is_write) + cpu_physical_memory_write_rom(phys_addr, buf, l); + else + cpu_physical_memory_rw(phys_addr, buf, l, is_write); + len -= l; + buf += l; + addr += l; + } + return 0; +} +#endif /* !VBOX */ +#endif + +/* in deterministic execution mode, instructions doing device I/Os + must be at the end of the TB */ +void cpu_io_recompile(CPUState *env, void *retaddr) +{ + TranslationBlock *tb; + uint32_t n, cflags; + target_ulong pc, cs_base; + uint64_t flags; + + tb = tb_find_pc((uintptr_t)retaddr); + if (!tb) { + cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", + retaddr); + } + n = env->icount_decr.u16.low + tb->icount; + cpu_restore_state(tb, env, (uintptr_t)retaddr, NULL); + /* Calculate how many instructions had been executed before the fault + occurred. */ + n = n - env->icount_decr.u16.low; + /* Generate a new TB ending on the I/O insn. */ + n++; + /* On MIPS and SH, delay slot instructions can only be restarted if + they were already the first instruction in the TB. If this is not + the first instruction in a TB then re-execute the preceding + branch. */ +#if defined(TARGET_MIPS) + if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { + env->active_tc.PC -= 4; + env->icount_decr.u16.low++; + env->hflags &= ~MIPS_HFLAG_BMASK; + } +#elif defined(TARGET_SH4) + if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 + && n > 1) { + env->pc -= 2; + env->icount_decr.u16.low++; + env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); + } +#endif + /* This should never happen. */ + if (n > CF_COUNT_MASK) + cpu_abort(env, "TB too big during recompile"); + + cflags = n | CF_LAST_IO; + pc = tb->pc; + cs_base = tb->cs_base; + flags = tb->flags; + tb_phys_invalidate(tb, -1); + /* FIXME: In theory this could raise an exception. In practice + we have already translated the block once so it's probably ok. */ + tb_gen_code(env, pc, cs_base, flags, cflags); + /** @todo If env->pc != tb->pc (i.e. the faulting instruction was not + the first in the TB) then we end up generating a whole new TB and + repeating the fault, which is horribly inefficient. + Better would be to execute just this insn uncached, or generate a + second new TB. */ + cpu_resume_from_signal(env, NULL); +} + +#if !defined(CONFIG_USER_ONLY) + +#ifndef VBOX +void dump_exec_info(FILE *f, + int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) +{ + int i, target_code_size, max_target_code_size; + int direct_jmp_count, direct_jmp2_count, cross_page; + TranslationBlock *tb; + + target_code_size = 0; + max_target_code_size = 0; + cross_page = 0; + direct_jmp_count = 0; + direct_jmp2_count = 0; + for(i = 0; i < nb_tbs; i++) { + tb = &tbs[i]; + target_code_size += tb->size; + if (tb->size > max_target_code_size) + max_target_code_size = tb->size; + if (tb->page_addr[1] != -1) + cross_page++; + if (tb->tb_next_offset[0] != 0xffff) { + direct_jmp_count++; + if (tb->tb_next_offset[1] != 0xffff) { + direct_jmp2_count++; + } + } + } + /* XXX: avoid using doubles ? */ + cpu_fprintf(f, "Translation buffer state:\n"); + cpu_fprintf(f, "gen code size %ld/%ld\n", + code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); + cpu_fprintf(f, "TB count %d/%d\n", + nb_tbs, code_gen_max_blocks); + cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", + nb_tbs ? target_code_size / nb_tbs : 0, + max_target_code_size); + cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", + nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, + target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); + cpu_fprintf(f, "cross page TB count %d (%d%%)\n", + cross_page, + nb_tbs ? (cross_page * 100) / nb_tbs : 0); + cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", + direct_jmp_count, + nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, + direct_jmp2_count, + nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); + cpu_fprintf(f, "\nStatistics:\n"); + cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); + cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); + cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); + tcg_dump_info(f, cpu_fprintf); +} +#endif /* !VBOX */ + +#define MMUSUFFIX _cmmu +#define GETPC() NULL +#define env cpu_single_env +#define SOFTMMU_CODE_ACCESS + +#define SHIFT 0 +#include "softmmu_template.h" + +#define SHIFT 1 +#include "softmmu_template.h" + +#define SHIFT 2 +#include "softmmu_template.h" + +#define SHIFT 3 +#include "softmmu_template.h" + +#undef env + +#endif |