/* $Id: tcp_input.c $ */ /** @file * NAT - TCP input. */ /* * Copyright (C) 2006-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /* * This code is based on: * * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94 * tcp_input.c,v 1.10 1994/10/13 18:36:32 wollman Exp */ /* * Changes and additions relating to SLiRP * Copyright (c) 1995 Danny Gasparovski. * * Please read the file COPYRIGHT for the * terms and conditions of the copyright. */ #include #include "ip_icmp.h" #if 0 /* code using this macroses is commented out */ # define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ) /* for modulo comparisons of timestamps */ # define TSTMP_LT(a, b) ((int)((a)-(b)) < 0) # define TSTMP_GEQ(a, b) ((int)((a)-(b)) >= 0) #endif #ifndef TCP_ACK_HACK #define DELAY_ACK(tp, ti) \ if (ti->ti_flags & TH_PUSH) \ tp->t_flags |= TF_ACKNOW; \ else \ tp->t_flags |= TF_DELACK; #else /* !TCP_ACK_HACK */ #define DELAY_ACK(tp, ign) \ tp->t_flags |= TF_DELACK; #endif /* TCP_ACK_HACK */ /* * deps: netinet/tcp_reass.c * tcp_reass_maxqlen = 48 (deafault) * tcp_reass_maxseg = nmbclusters/16 (nmbclusters = 1024 + maxusers * 64 from kern/kern_mbuf.c let's say 256) */ int tcp_reass(PNATState pData, struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m) { struct tseg_qent *q; struct tseg_qent *p = NULL; struct tseg_qent *nq; struct tseg_qent *te = NULL; struct socket *so = tp->t_socket; int flags; STAM_PROFILE_START(&pData->StatTCP_reassamble, tcp_reassamble); LogFlowFunc(("ENTER: pData:%p, tp:%R[tcpcb793], th:%p, tlenp:%p, m:%p\n", pData, tp, th, tlenp, m)); /* * XXX: tcp_reass() is rather inefficient with its data structures * and should be rewritten (see NetBSD for optimizations). While * doing that it should move to its own file tcp_reass.c. */ /* * Call with th==NULL after become established to * force pre-ESTABLISHED data up to user socket. */ if (th == NULL) { LogFlowFunc(("%d -> present\n", __LINE__)); goto present; } /* * Limit the number of segments in the reassembly queue to prevent * holding on to too many segments (and thus running out of mbufs). * Make sure to let the missing segment through which caused this * queue. Always keep one global queue entry spare to be able to * process the missing segment. */ if ( th->th_seq != tp->rcv_nxt && ( tcp_reass_qsize + 1 >= tcp_reass_maxseg || tp->t_segqlen >= tcp_reass_maxqlen)) { tcp_reass_overflows++; tcpstat.tcps_rcvmemdrop++; m_freem(pData, m); *tlenp = 0; STAM_PROFILE_STOP(&pData->StatTCP_reassamble, tcp_reassamble); LogFlowFuncLeave(); return (0); } /* * Allocate a new queue entry. If we can't, or hit the zone limit * just drop the pkt. */ te = RTMemAlloc(sizeof(struct tseg_qent)); if (te == NULL) { tcpstat.tcps_rcvmemdrop++; m_freem(pData, m); *tlenp = 0; STAM_PROFILE_STOP(&pData->StatTCP_reassamble, tcp_reassamble); LogFlowFuncLeave(); return (0); } tp->t_segqlen++; tcp_reass_qsize++; /* * Find a segment which begins after this one does. */ LIST_FOREACH(q, &tp->t_segq, tqe_q) { if (SEQ_GT(q->tqe_th->th_seq, th->th_seq)) break; p = q; } /* * If there is a preceding segment, it may provide some of * our data already. If so, drop the data from the incoming * segment. If it provides all of our data, drop us. */ if (p != NULL) { int i; /* conversion to int (in i) handles seq wraparound */ i = p->tqe_th->th_seq + p->tqe_len - th->th_seq; if (i > 0) { if (i >= *tlenp) { tcpstat.tcps_rcvduppack++; tcpstat.tcps_rcvdupbyte += *tlenp; m_freem(pData, m); RTMemFree(te); tp->t_segqlen--; tcp_reass_qsize--; /* * Try to present any queued data * at the left window edge to the user. * This is needed after the 3-WHS * completes. */ LogFlowFunc(("%d -> present\n", __LINE__)); goto present; /* ??? */ } m_adj(m, i); *tlenp -= i; th->th_seq += i; } } tcpstat.tcps_rcvoopack++; tcpstat.tcps_rcvoobyte += *tlenp; /* * While we overlap succeeding segments trim them or, * if they are completely covered, dequeue them. */ while (q) { int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq; if (i <= 0) break; if (i < q->tqe_len) { q->tqe_th->th_seq += i; q->tqe_len -= i; m_adj(q->tqe_m, i); break; } nq = LIST_NEXT(q, tqe_q); LIST_REMOVE(q, tqe_q); m_freem(pData, q->tqe_m); RTMemFree(q); tp->t_segqlen--; tcp_reass_qsize--; q = nq; } /* Insert the new segment queue entry into place. */ te->tqe_m = m; te->tqe_th = th; te->tqe_len = *tlenp; if (p == NULL) { LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q); } else { LIST_INSERT_AFTER(p, te, tqe_q); } present: /* * Present data to user, advancing rcv_nxt through * completed sequence space. */ if (!TCPS_HAVEESTABLISHED(tp->t_state)) { STAM_PROFILE_STOP(&pData->StatTCP_reassamble, tcp_reassamble); return (0); } q = LIST_FIRST(&tp->t_segq); if (!q || q->tqe_th->th_seq != tp->rcv_nxt) { STAM_PROFILE_STOP(&pData->StatTCP_reassamble, tcp_reassamble); return (0); } do { tp->rcv_nxt += q->tqe_len; flags = q->tqe_th->th_flags & TH_FIN; nq = LIST_NEXT(q, tqe_q); LIST_REMOVE(q, tqe_q); /* XXX: This place should be checked for the same code in * original BSD code for Slirp and current BSD used SS_FCANTRCVMORE */ if (so->so_state & SS_FCANTSENDMORE) m_freem(pData, q->tqe_m); else sbappend(pData, so, q->tqe_m); RTMemFree(q); tp->t_segqlen--; tcp_reass_qsize--; q = nq; } while (q && q->tqe_th->th_seq == tp->rcv_nxt); STAM_PROFILE_STOP(&pData->StatTCP_reassamble, tcp_reassamble); return flags; } /* * TCP input routine, follows pages 65-76 of the * protocol specification dated September, 1981 very closely. */ void tcp_input(PNATState pData, register struct mbuf *m, int iphlen, struct socket *inso) { struct ip *ip, *save_ip; register struct tcpiphdr *ti; caddr_t optp = NULL; int optlen = 0; int len, off; int tlen = 0; /* Shut up MSC (didn't check whether MSC was right). */ register struct tcpcb *tp = 0; register int tiflags; struct socket *so = 0; int todrop, acked, ourfinisacked, needoutput = 0; /* int dropsocket = 0; */ int iss = 0; u_long tiwin; /* int ts_present = 0; */ unsigned ohdrlen; uint8_t ohdr[60 + 8]; /* max IP header plus 8 bytes of payload for icmp */ STAM_PROFILE_START(&pData->StatTCP_input, counter_input); LogFlow(("tcp_input: m = %p, iphlen = %2d, inso = %R[natsock]\n", m, iphlen, inso)); if (inso != NULL) { QSOCKET_LOCK(tcb); SOCKET_LOCK(inso); QSOCKET_UNLOCK(tcb); } /* * If called with m == 0, then we're continuing the connect */ if (m == NULL) { so = inso; Log4(("NAT: tcp_input: %R[natsock]\n", so)); /* Re-set a few variables */ tp = sototcpcb(so); m = so->so_m; so->so_m = 0; if (RT_LIKELY(so->so_ohdr != NULL)) { RTMemFree(so->so_ohdr); so->so_ohdr = NULL; } ti = so->so_ti; /** @todo (vvl) clarify why it might happens */ if (ti == NULL) { LogRel(("NAT: ti is null. can't do any reseting connection actions\n")); /* mbuf should be cleared in sofree called from tcp_close */ tcp_close(pData, tp); STAM_PROFILE_STOP(&pData->StatTCP_input, counter_input); LogFlowFuncLeave(); return; } tiwin = ti->ti_win; tiflags = ti->ti_flags; LogFlowFunc(("%d -> cont_conn\n", __LINE__)); goto cont_conn; } tcpstat.tcps_rcvtotal++; ip = mtod(m, struct ip *); /* ip_input() subtracts iphlen from ip::ip_len */ AssertStmt(ip->ip_len + iphlen == (ssize_t)m_length(m, NULL), goto drop); if (RT_UNLIKELY(ip->ip_len < sizeof(struct tcphdr))) { /* tcps_rcvshort++; */ goto drop; } /* * Save a copy of the IP header in case we want to restore it for * sending an ICMP error message in response. * * XXX: This function should really be fixed to not strip IP * options, to not overwrite IP header and to use "tlen" local * variable (instead of ti->ti_len), then "m" could be passed to * icmp_error() directly. */ ohdrlen = iphlen + 8; m_copydata(m, 0, ohdrlen, (caddr_t)ohdr); save_ip = (struct ip *)ohdr; save_ip->ip_len += iphlen; /* undo change by ip_input() */ /* * Get IP and TCP header together in first mbuf. * Note: IP leaves IP header in first mbuf. */ ti = mtod(m, struct tcpiphdr *); if (iphlen > sizeof(struct ip)) { ip_stripoptions(m, (struct mbuf *)0); iphlen = sizeof(struct ip); } /* * Checksum extended TCP header and data. */ tlen = ((struct ip *)ti)->ip_len; memset(ti->ti_x1, 0, 9); ti->ti_len = RT_H2N_U16((u_int16_t)tlen); len = sizeof(struct ip) + tlen; /* keep checksum for ICMP reply * ti->ti_sum = cksum(m, len); * if (ti->ti_sum) { */ if (cksum(m, len)) { tcpstat.tcps_rcvbadsum++; LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } /* * Check that TCP offset makes sense, * pull out TCP options and adjust length. XXX */ off = ti->ti_off << 2; if ( off < sizeof (struct tcphdr) || off > tlen) { tcpstat.tcps_rcvbadoff++; LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } tlen -= off; ti->ti_len = tlen; if (off > sizeof (struct tcphdr)) { optlen = off - sizeof (struct tcphdr); optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr); /* * Do quick retrieval of timestamp options ("options * prediction?"). If timestamp is the only option and it's * formatted as recommended in RFC 1323 appendix A, we * quickly get the values now and not bother calling * tcp_dooptions(), etc. */ #if 0 if (( optlen == TCPOLEN_TSTAMP_APPA || ( optlen > TCPOLEN_TSTAMP_APPA && optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) && *(u_int32_t *)optp == RT_H2N_U32_C(TCPOPT_TSTAMP_HDR) && (ti->ti_flags & TH_SYN) == 0) { ts_present = 1; ts_val = RT_N2H_U32(*(u_int32_t *)(optp + 4)); ts_ecr = RT_N2H_U32(*(u_int32_t *)(optp + 8)); optp = NULL; / * we have parsed the options * / } #endif } tiflags = ti->ti_flags; /* * Convert TCP protocol specific fields to host format. */ NTOHL(ti->ti_seq); NTOHL(ti->ti_ack); NTOHS(ti->ti_win); NTOHS(ti->ti_urp); /* * Drop TCP, IP headers and TCP options. */ m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); /* * Locate pcb for segment. */ findso: LogFlowFunc(("(enter) findso: %R[natsock]\n", so)); if (so != NULL && so != &tcb) SOCKET_UNLOCK(so); QSOCKET_LOCK(tcb); so = tcp_last_so; if ( so->so_fport != ti->ti_dport || so->so_lport != ti->ti_sport || so->so_laddr.s_addr != ti->ti_src.s_addr || so->so_faddr.s_addr != ti->ti_dst.s_addr) { QSOCKET_UNLOCK(tcb); /** @todo fix SOLOOKUP macrodefinition to be usable here */ so = solookup(&tcb, ti->ti_src, ti->ti_sport, ti->ti_dst, ti->ti_dport); if (so) { tcp_last_so = so; } ++tcpstat.tcps_socachemiss; } else { SOCKET_LOCK(so); QSOCKET_UNLOCK(tcb); } LogFlowFunc(("(leave) findso: %R[natsock]\n", so)); /* * If the state is CLOSED (i.e., TCB does not exist) then * all data in the incoming segment is discarded. * If the TCB exists but is in CLOSED state, it is embryonic, * but should either do a listen or a connect soon. * * state == CLOSED means we've done socreate() but haven't * attached it to a protocol yet... * * XXX If a TCB does not exist, and the TH_SYN flag is * the only flag set, then create a session, mark it * as if it was LISTENING, and continue... */ if (so == 0) { if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN) { LogFlowFunc(("%d -> dropwithreset\n", __LINE__)); goto dropwithreset; } if ((so = socreate()) == NULL) { LogFlowFunc(("%d -> dropwithreset\n", __LINE__)); goto dropwithreset; } if (tcp_attach(pData, so) < 0) { RTMemFree(so); /* Not sofree (if it failed, it's not insqued) */ LogFlowFunc(("%d -> dropwithreset\n", __LINE__)); goto dropwithreset; } SOCKET_LOCK(so); sbreserve(pData, &so->so_snd, tcp_sndspace); sbreserve(pData, &so->so_rcv, tcp_rcvspace); /* tcp_last_so = so; */ /* XXX ? */ /* tp = sototcpcb(so); */ so->so_laddr = ti->ti_src; so->so_lport = ti->ti_sport; so->so_faddr = ti->ti_dst; so->so_fport = ti->ti_dport; so->so_iptos = ((struct ip *)ti)->ip_tos; tp = sototcpcb(so); TCP_STATE_SWITCH_TO(tp, TCPS_LISTEN); } /* * If this is a still-connecting socket, this probably * a retransmit of the SYN. Whether it's a retransmit SYN * or something else, we nuke it. */ if (so->so_state & SS_ISFCONNECTING) { LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } tp = sototcpcb(so); /* XXX Should never fail */ if (tp == 0) { LogFlowFunc(("%d -> dropwithreset\n", __LINE__)); goto dropwithreset; } if (tp->t_state == TCPS_CLOSED) { LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } /* Unscale the window into a 32-bit value. */ /* if ((tiflags & TH_SYN) == 0) * tiwin = ti->ti_win << tp->snd_scale; * else */ tiwin = ti->ti_win; /* * Segment received on connection. * Reset idle time and keep-alive timer. */ tp->t_idle = 0; if (so_options) tp->t_timer[TCPT_KEEP] = tcp_keepintvl; else tp->t_timer[TCPT_KEEP] = tcp_keepidle; /* * Process options if not in LISTEN state, * else do it below (after getting remote address). */ if (optp && tp->t_state != TCPS_LISTEN) tcp_dooptions(pData, tp, (u_char *)optp, optlen, ti); /* , */ /* &ts_present, &ts_val, &ts_ecr); */ /* * Header prediction: check for the two common cases * of a uni-directional data xfer. If the packet has * no control flags, is in-sequence, the window didn't * change and we're not retransmitting, it's a * candidate. If the length is zero and the ack moved * forward, we're the sender side of the xfer. Just * free the data acked & wake any higher level process * that was blocked waiting for space. If the length * is non-zero and the ack didn't move, we're the * receiver side. If we're getting packets in-order * (the reassembly queue is empty), add the data to * the socket buffer and note that we need a delayed ack. * * XXX Some of these tests are not needed * eg: the tiwin == tp->snd_wnd prevents many more * predictions.. with no *real* advantage.. */ if ( tp->t_state == TCPS_ESTABLISHED && (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK /* && (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) */ && ti->ti_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd && tp->snd_nxt == tp->snd_max) { /* * If last ACK falls within this segment's sequence numbers, * record the timestamp. */ #if 0 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) && SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) { tp->ts_recent_age = tcp_now; tp->ts_recent = ts_val; } #endif if (ti->ti_len == 0) { if ( SEQ_GT(ti->ti_ack, tp->snd_una) && SEQ_LEQ(ti->ti_ack, tp->snd_max) && tp->snd_cwnd >= tp->snd_wnd) { /* * this is a pure ack for outstanding data. */ ++tcpstat.tcps_predack; #if 0 if (ts_present) tcp_xmit_timer(tp, tcp_now-ts_ecr+1); else #endif if ( tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) tcp_xmit_timer(pData, tp, tp->t_rtt); acked = ti->ti_ack - tp->snd_una; tcpstat.tcps_rcvackpack++; tcpstat.tcps_rcvackbyte += acked; sbdrop(&so->so_snd, acked); tp->snd_una = ti->ti_ack; m_freem(pData, m); /* * If all outstanding data are acked, stop * retransmit timer, otherwise restart timer * using current (possibly backed-off) value. * If process is waiting for space, * wakeup/selwakeup/signal. If data * are ready to send, let tcp_output * decide between more output or persist. */ if (tp->snd_una == tp->snd_max) tp->t_timer[TCPT_REXMT] = 0; else if (tp->t_timer[TCPT_PERSIST] == 0) tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; /* * There's room in so_snd, sowwakup will read() * from the socket if we can */ #if 0 if (so->so_snd.sb_flags & SB_NOTIFY) sowwakeup(so); #endif /* * This is called because sowwakeup might have * put data into so_snd. Since we don't so sowwakeup, * we don't need this.. XXX??? */ if (SBUF_LEN(&so->so_snd)) (void) tcp_output(pData, tp); SOCKET_UNLOCK(so); STAM_PROFILE_STOP(&pData->StatTCP_input, counter_input); return; } } else if ( ti->ti_ack == tp->snd_una && LIST_EMPTY(&tp->t_segq) && ti->ti_len <= sbspace(&so->so_rcv)) { /* * this is a pure, in-sequence data packet * with nothing on the reassembly queue and * we have enough buffer space to take it. */ ++tcpstat.tcps_preddat; tp->rcv_nxt += ti->ti_len; tcpstat.tcps_rcvpack++; tcpstat.tcps_rcvbyte += ti->ti_len; /* * Add data to socket buffer. */ sbappend(pData, so, m); /* * XXX This is called when data arrives. Later, check * if we can actually write() to the socket * XXX Need to check? It's be NON_BLOCKING */ /* sorwakeup(so); */ /* * If this is a short packet, then ACK now - with Nagel * congestion avoidance sender won't send more until * he gets an ACK. * * It is better to not delay acks at all to maximize * TCP throughput. See RFC 2581. */ tp->t_flags |= TF_ACKNOW; tcp_output(pData, tp); SOCKET_UNLOCK(so); STAM_PROFILE_STOP(&pData->StatTCP_input, counter_input); return; } } /* header prediction */ /* * Calculate amount of space in receive window, * and then do TCP input processing. * Receive window is amount of space in rcv queue, * but not less than advertised window. */ { int win; win = sbspace(&so->so_rcv); if (win < 0) win = 0; tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt)); } switch (tp->t_state) { /* * If the state is LISTEN then ignore segment if it contains an RST. * If the segment contains an ACK then it is bad and send a RST. * If it does not contain a SYN then it is not interesting; drop it. * Don't bother responding if the destination was a broadcast. * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial * tp->iss, and send a segment: * * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. * Fill in remote peer address fields if not previously specified. * Enter SYN_RECEIVED state, and process any other fields of this * segment in this state. */ case TCPS_LISTEN: { if (tiflags & TH_RST) { LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } if (tiflags & TH_ACK) { LogFlowFunc(("%d -> dropwithreset\n", __LINE__)); goto dropwithreset; } if ((tiflags & TH_SYN) == 0) { LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } /* * This has way too many gotos... * But a bit of spaghetti code never hurt anybody :) */ if ( (tcp_fconnect(pData, so) == -1) && errno != EINPROGRESS && errno != EWOULDBLOCK) { u_char code = ICMP_UNREACH_NET; Log2((" tcp fconnect errno = %d (%s)\n", errno, strerror(errno))); if (errno == ECONNREFUSED) { /* ACK the SYN, send RST to refuse the connection */ tcp_respond(pData, tp, ti, m, ti->ti_seq+1, (tcp_seq)0, TH_RST|TH_ACK); } else { if (errno == EHOSTUNREACH) code = ICMP_UNREACH_HOST; HTONL(ti->ti_seq); /* restore tcp header */ HTONL(ti->ti_ack); HTONS(ti->ti_win); HTONS(ti->ti_urp); m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); m->m_len += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); *ip = *save_ip; icmp_error(pData, m, ICMP_UNREACH, code, 0, strerror(errno)); tp->t_socket->so_m = NULL; } tp = tcp_close(pData, tp); } else { /* * Haven't connected yet, save the current mbuf * and ti, and return * XXX Some OS's don't tell us whether the connect() * succeeded or not. So we must time it out. */ so->so_m = m; so->so_ti = ti; so->so_ohdr = RTMemDup(ohdr, ohdrlen); tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; TCP_STATE_SWITCH_TO(tp, TCPS_SYN_RECEIVED); } SOCKET_UNLOCK(so); STAM_PROFILE_STOP(&pData->StatTCP_input, counter_input); LogFlowFuncLeave(); return; cont_conn: /* m==NULL * Check if the connect succeeded */ LogFlowFunc(("cont_conn:\n")); if (so->so_state & SS_NOFDREF) { tp = tcp_close(pData, tp); LogFlowFunc(("%d -> dropwithreset\n", __LINE__)); goto dropwithreset; } tcp_template(tp); if (optp) tcp_dooptions(pData, tp, (u_char *)optp, optlen, ti); if (iss) tp->iss = iss; else tp->iss = tcp_iss; tcp_iss += TCP_ISSINCR/2; tp->irs = ti->ti_seq; tcp_sendseqinit(tp); tcp_rcvseqinit(tp); tp->t_flags |= TF_ACKNOW; TCP_STATE_SWITCH_TO(tp, TCPS_SYN_RECEIVED); tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; tcpstat.tcps_accepts++; LogFlowFunc(("%d -> trimthenstep6\n", __LINE__)); goto trimthenstep6; } /* case TCPS_LISTEN */ /* * If the state is SYN_SENT: * if seg contains an ACK, but not for our SYN, drop the input. * if seg contains a RST, then drop the connection. * if seg does not contain SYN, then drop it. * Otherwise this is an acceptable SYN segment * initialize tp->rcv_nxt and tp->irs * if seg contains ack then advance tp->snd_una * if SYN has been acked change to ESTABLISHED else SYN_RCVD state * arrange for segment to be acked (eventually) * continue processing rest of data/controls, beginning with URG */ case TCPS_SYN_SENT: if ( (tiflags & TH_ACK) && ( SEQ_LEQ(ti->ti_ack, tp->iss) || SEQ_GT(ti->ti_ack, tp->snd_max))) { LogFlowFunc(("%d -> dropwithreset\n", __LINE__)); goto dropwithreset; } if (tiflags & TH_RST) { if (tiflags & TH_ACK) tp = tcp_drop(pData, tp, 0); /* XXX Check t_softerror! */ LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } if ((tiflags & TH_SYN) == 0) { LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } if (tiflags & TH_ACK) { tp->snd_una = ti->ti_ack; if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; } tp->t_timer[TCPT_REXMT] = 0; tp->irs = ti->ti_seq; tcp_rcvseqinit(tp); tp->t_flags |= TF_ACKNOW; if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) { tcpstat.tcps_connects++; soisfconnected(so); TCP_STATE_SWITCH_TO(tp, TCPS_ESTABLISHED); /* Do window scaling on this connection? */ #if 0 if (( tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->snd_scale = tp->requested_s_scale; tp->rcv_scale = tp->request_r_scale; } #endif (void) tcp_reass(pData, tp, (struct tcphdr *)0, NULL, (struct mbuf *)0); /* * if we didn't have to retransmit the SYN, * use its rtt as our initial srtt & rtt var. */ if (tp->t_rtt) tcp_xmit_timer(pData, tp, tp->t_rtt); } else TCP_STATE_SWITCH_TO(tp, TCPS_SYN_RECEIVED); trimthenstep6: LogFlowFunc(("trimthenstep6:\n")); /* * Advance ti->ti_seq to correspond to first data byte. * If data, trim to stay within window, * dropping FIN if necessary. */ ti->ti_seq++; if (ti->ti_len > tp->rcv_wnd) { todrop = ti->ti_len - tp->rcv_wnd; m_adj(m, -todrop); ti->ti_len = tp->rcv_wnd; tiflags &= ~TH_FIN; tcpstat.tcps_rcvpackafterwin++; tcpstat.tcps_rcvbyteafterwin += todrop; } tp->snd_wl1 = ti->ti_seq - 1; tp->rcv_up = ti->ti_seq; LogFlowFunc(("%d -> step6\n", __LINE__)); goto step6; } /* switch tp->t_state */ /* * States other than LISTEN or SYN_SENT. * First check timestamp, if present. * Then check that at least some bytes of segment are within * receive window. If segment begins before rcv_nxt, * drop leading data (and SYN); if nothing left, just ack. * * RFC 1323 PAWS: If we have a timestamp reply on this segment * and it's less than ts_recent, drop it. */ #if 0 if ( ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent && TSTMP_LT(ts_val, tp->ts_recent)) { /* Check to see if ts_recent is over 24 days old. */ if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) { /* * Invalidate ts_recent. If this segment updates * ts_recent, the age will be reset later and ts_recent * will get a valid value. If it does not, setting * ts_recent to zero will at least satisfy the * requirement that zero be placed in the timestamp * echo reply when ts_recent isn't valid. The * age isn't reset until we get a valid ts_recent * because we don't want out-of-order segments to be * dropped when ts_recent is old. */ tp->ts_recent = 0; } else { tcpstat.tcps_rcvduppack++; tcpstat.tcps_rcvdupbyte += ti->ti_len; tcpstat.tcps_pawsdrop++; goto dropafterack; } } #endif todrop = tp->rcv_nxt - ti->ti_seq; if (todrop > 0) { if (tiflags & TH_SYN) { tiflags &= ~TH_SYN; ti->ti_seq++; if (ti->ti_urp > 1) ti->ti_urp--; else tiflags &= ~TH_URG; todrop--; } /* * Following if statement from Stevens, vol. 2, p. 960. */ if ( todrop > ti->ti_len || ( todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) { /* * Any valid FIN must be to the left of the window. * At this point the FIN must be a duplicate or out * of sequence; drop it. */ tiflags &= ~TH_FIN; /* * Send an ACK to resynchronize and drop any data. * But keep on processing for RST or ACK. */ tp->t_flags |= TF_ACKNOW; todrop = ti->ti_len; tcpstat.tcps_rcvduppack++; tcpstat.tcps_rcvdupbyte += todrop; } else { tcpstat.tcps_rcvpartduppack++; tcpstat.tcps_rcvpartdupbyte += todrop; } m_adj(m, todrop); ti->ti_seq += todrop; ti->ti_len -= todrop; if (ti->ti_urp > todrop) ti->ti_urp -= todrop; else { tiflags &= ~TH_URG; ti->ti_urp = 0; } } /* * If new data are received on a connection after the * user processes are gone, then RST the other end. */ if ( (so->so_state & SS_NOFDREF) && tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) { tp = tcp_close(pData, tp); tcpstat.tcps_rcvafterclose++; LogFlowFunc(("%d -> dropwithreset\n", __LINE__)); goto dropwithreset; } /* * If segment ends after window, drop trailing data * (and PUSH and FIN); if nothing left, just ACK. */ todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd); if (todrop > 0) { tcpstat.tcps_rcvpackafterwin++; if (todrop >= ti->ti_len) { tcpstat.tcps_rcvbyteafterwin += ti->ti_len; /* * If a new connection request is received * while in TIME_WAIT, drop the old connection * and start over if the sequence numbers * are above the previous ones. */ if ( tiflags & TH_SYN && tp->t_state == TCPS_TIME_WAIT && SEQ_GT(ti->ti_seq, tp->rcv_nxt)) { iss = tp->rcv_nxt + TCP_ISSINCR; tp = tcp_close(pData, tp); SOCKET_UNLOCK(tp->t_socket); LogFlowFunc(("%d -> findso\n", __LINE__)); goto findso; } /* * If window is closed can only take segments at * window edge, and have to drop data and PUSH from * incoming segments. Continue processing, but * remember to ack. Otherwise, drop segment * and ack. */ if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) { tp->t_flags |= TF_ACKNOW; tcpstat.tcps_rcvwinprobe++; } else { LogFlowFunc(("%d -> dropafterack\n", __LINE__)); goto dropafterack; } } else tcpstat.tcps_rcvbyteafterwin += todrop; m_adj(m, -todrop); ti->ti_len -= todrop; tiflags &= ~(TH_PUSH|TH_FIN); } /* * If last ACK falls within this segment's sequence numbers, * record its timestamp. */ #if 0 if ( ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) && SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len + ((tiflags & (TH_SYN|TH_FIN)) != 0))) { tp->ts_recent_age = tcp_now; tp->ts_recent = ts_val; } #endif /* * If the RST bit is set examine the state: * SYN_RECEIVED STATE: * If passive open, return to LISTEN state. * If active open, inform user that connection was refused. * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: * Inform user that connection was reset, and close tcb. * CLOSING, LAST_ACK, TIME_WAIT STATES * Close the tcb. */ if (tiflags&TH_RST) switch (tp->t_state) { case TCPS_SYN_RECEIVED: /* so->so_error = ECONNREFUSED; */ LogFlowFunc(("%d -> close\n", __LINE__)); goto close; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: /* so->so_error = ECONNRESET; */ close: LogFlowFunc(("close:\n")); TCP_STATE_SWITCH_TO(tp, TCPS_CLOSED); tcpstat.tcps_drops++; tp = tcp_close(pData, tp); LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: tp = tcp_close(pData, tp); LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } /* * If a SYN is in the window, then this is an * error and we send an RST and drop the connection. */ if (tiflags & TH_SYN) { tp = tcp_drop(pData, tp, 0); LogFlowFunc(("%d -> dropwithreset\n", __LINE__)); goto dropwithreset; } /* * If the ACK bit is off we drop the segment and return. */ if ((tiflags & TH_ACK) == 0) { LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } /* * Ack processing. */ switch (tp->t_state) { /* * In SYN_RECEIVED state if the ack ACKs our SYN then enter * ESTABLISHED state and continue processing, otherwise * send an RST. una<=ack<=max */ case TCPS_SYN_RECEIVED: LogFlowFunc(("%d -> TCPS_SYN_RECEIVED\n", __LINE__)); if ( SEQ_GT(tp->snd_una, ti->ti_ack) || SEQ_GT(ti->ti_ack, tp->snd_max)) goto dropwithreset; tcpstat.tcps_connects++; TCP_STATE_SWITCH_TO(tp, TCPS_ESTABLISHED); /* * The sent SYN is ack'ed with our sequence number +1 * The first data byte already in the buffer will get * lost if no correction is made. This is only needed for * SS_CTL since the buffer is empty otherwise. * tp->snd_una++; or: */ tp->snd_una = ti->ti_ack; soisfconnected(so); /* Do window scaling? */ #if 0 if ( (tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->snd_scale = tp->requested_s_scale; tp->rcv_scale = tp->request_r_scale; } #endif (void) tcp_reass(pData, tp, (struct tcphdr *)0, (int *)0, (struct mbuf *)0); tp->snd_wl1 = ti->ti_seq - 1; /* Avoid ack processing; snd_una==ti_ack => dup ack */ LogFlowFunc(("%d -> synrx_to_est\n", __LINE__)); goto synrx_to_est; /* fall into ... */ /* * In ESTABLISHED state: drop duplicate ACKs; ACK out of range * ACKs. If the ack is in the range * tp->snd_una < ti->ti_ack <= tp->snd_max * then advance tp->snd_una to ti->ti_ack and drop * data from the retransmission queue. If this ACK reflects * more up to date window information we update our window information. */ case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: LogFlowFunc(("%d -> TCPS_ESTABLISHED|TCPS_FIN_WAIT_1|TCPS_FIN_WAIT_2|TCPS_CLOSE_WAIT|" "TCPS_CLOSING|TCPS_LAST_ACK|TCPS_TIME_WAIT\n", __LINE__)); if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) { if (ti->ti_len == 0 && tiwin == tp->snd_wnd) { tcpstat.tcps_rcvdupack++; Log2((" dup ack m = %p, so = %p\n", m, so)); /* * If we have outstanding data (other than * a window probe), this is a completely * duplicate ack (ie, window info didn't * change), the ack is the biggest we've * seen and we've seen exactly our rexmt * threshold of them, assume a packet * has been dropped and retransmit it. * Kludge snd_nxt & the congestion * window so we send only this one * packet. * * We know we're losing at the current * window size so do congestion avoidance * (set ssthresh to half the current window * and pull our congestion window back to * the new ssthresh). * * Dup acks mean that packets have left the * network (they're now cached at the receiver) * so bump cwnd by the amount in the receiver * to keep a constant cwnd packets in the * network. */ if ( tp->t_timer[TCPT_REXMT] == 0 || ti->ti_ack != tp->snd_una) tp->t_dupacks = 0; else if (++tp->t_dupacks == tcprexmtthresh) { tcp_seq onxt = tp->snd_nxt; u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg; if (win < 2) win = 2; tp->snd_ssthresh = win * tp->t_maxseg; tp->t_timer[TCPT_REXMT] = 0; tp->t_rtt = 0; tp->snd_nxt = ti->ti_ack; tp->snd_cwnd = tp->t_maxseg; (void) tcp_output(pData, tp); tp->snd_cwnd = tp->snd_ssthresh + tp->t_maxseg * tp->t_dupacks; if (SEQ_GT(onxt, tp->snd_nxt)) tp->snd_nxt = onxt; LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } else if (tp->t_dupacks > tcprexmtthresh) { tp->snd_cwnd += tp->t_maxseg; (void) tcp_output(pData, tp); LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } } else tp->t_dupacks = 0; break; } synrx_to_est: LogFlowFunc(("synrx_to_est:\n")); /* * If the congestion window was inflated to account * for the other side's cached packets, retract it. */ if ( tp->t_dupacks > tcprexmtthresh && tp->snd_cwnd > tp->snd_ssthresh) tp->snd_cwnd = tp->snd_ssthresh; tp->t_dupacks = 0; if (SEQ_GT(ti->ti_ack, tp->snd_max)) { tcpstat.tcps_rcvacktoomuch++; LogFlowFunc(("%d -> dropafterack\n", __LINE__)); goto dropafterack; } acked = ti->ti_ack - tp->snd_una; tcpstat.tcps_rcvackpack++; tcpstat.tcps_rcvackbyte += acked; /* * If we have a timestamp reply, update smoothed * round trip time. If no timestamp is present but * transmit timer is running and timed sequence * number was acked, update smoothed round trip time. * Since we now have an rtt measurement, cancel the * timer backoff (cf., Phil Karn's retransmit alg.). * Recompute the initial retransmit timer. */ #if 0 if (ts_present) tcp_xmit_timer(tp, tcp_now-ts_ecr+1); else #endif if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) tcp_xmit_timer(pData, tp, tp->t_rtt); /* * If all outstanding data is acked, stop retransmit * timer and remember to restart (more output or persist). * If there is more data to be acked, restart retransmit * timer, using current (possibly backed-off) value. */ if (ti->ti_ack == tp->snd_max) { tp->t_timer[TCPT_REXMT] = 0; needoutput = 1; } else if (tp->t_timer[TCPT_PERSIST] == 0) tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; /* * When new data is acked, open the congestion window. * If the window gives us less than ssthresh packets * in flight, open exponentially (maxseg per packet). * Otherwise open linearly: maxseg per window * (maxseg^2 / cwnd per packet). */ { register u_int cw = tp->snd_cwnd; register u_int incr = tp->t_maxseg; if (cw > tp->snd_ssthresh) incr = incr * incr / cw; tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<snd_scale); } if (acked > SBUF_LEN(&so->so_snd)) { tp->snd_wnd -= SBUF_LEN(&so->so_snd); sbdrop(&so->so_snd, (int)so->so_snd.sb_cc); ourfinisacked = 1; } else { sbdrop(&so->so_snd, acked); tp->snd_wnd -= acked; ourfinisacked = 0; } /* * XXX sowwakup is called when data is acked and there's room for * for more data... it should read() the socket */ #if 0 if (so->so_snd.sb_flags & SB_NOTIFY) sowwakeup(so); #endif tp->snd_una = ti->ti_ack; if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; switch (tp->t_state) { /* * In FIN_WAIT_1 STATE in addition to the processing * for the ESTABLISHED state if our FIN is now acknowledged * then enter FIN_WAIT_2. */ case TCPS_FIN_WAIT_1: if (ourfinisacked) { /* * If we can't receive any more * data, then closing user can proceed. * Starting the timer is contrary to the * specification, but if we don't get a FIN * we'll hang forever. */ if (so->so_state & SS_FCANTRCVMORE) { soisfdisconnected(so); tp->t_timer[TCPT_2MSL] = tcp_maxidle; } TCP_STATE_SWITCH_TO(tp, TCPS_FIN_WAIT_2); } break; /* * In CLOSING STATE in addition to the processing for * the ESTABLISHED state if the ACK acknowledges our FIN * then enter the TIME-WAIT state, otherwise ignore * the segment. */ case TCPS_CLOSING: if (ourfinisacked) { TCP_STATE_SWITCH_TO(tp, TCPS_TIME_WAIT); tcp_canceltimers(tp); tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; soisfdisconnected(so); } break; /* * In LAST_ACK, we may still be waiting for data to drain * and/or to be acked, as well as for the ack of our FIN. * If our FIN is now acknowledged, delete the TCB, * enter the closed state and return. */ case TCPS_LAST_ACK: if (ourfinisacked) { tp = tcp_close(pData, tp); LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } break; /* * In TIME_WAIT state the only thing that should arrive * is a retransmission of the remote FIN. Acknowledge * it and restart the finack timer. */ case TCPS_TIME_WAIT: tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; LogFlowFunc(("%d -> dropafterack\n", __LINE__)); goto dropafterack; } } /* switch(tp->t_state) */ step6: LogFlowFunc(("step6:\n")); /* * Update window information. * Don't look at window if no ACK: TAC's send garbage on first SYN. */ if ( (tiflags & TH_ACK) && ( SEQ_LT(tp->snd_wl1, ti->ti_seq) || ( tp->snd_wl1 == ti->ti_seq && ( SEQ_LT(tp->snd_wl2, ti->ti_ack) || ( tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) { /* keep track of pure window updates */ if ( ti->ti_len == 0 && tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd) tcpstat.tcps_rcvwinupd++; tp->snd_wnd = tiwin; tp->snd_wl1 = ti->ti_seq; tp->snd_wl2 = ti->ti_ack; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; needoutput = 1; } /* * Process segments with URG. */ if ((tiflags & TH_URG) && ti->ti_urp && TCPS_HAVERCVDFIN(tp->t_state) == 0) { /* * This is a kludge, but if we receive and accept * random urgent pointers, we'll crash in * soreceive. It's hard to imagine someone * actually wanting to send this much urgent data. */ if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) { ti->ti_urp = 0; tiflags &= ~TH_URG; LogFlowFunc(("%d -> dodata\n", __LINE__)); goto dodata; } /* * If this segment advances the known urgent pointer, * then mark the data stream. This should not happen * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since * a FIN has been received from the remote side. * In these states we ignore the URG. * * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section as the original * spec states (in one of two places). */ if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) { tp->rcv_up = ti->ti_seq + ti->ti_urp; so->so_urgc = SBUF_LEN(&so->so_rcv) + (tp->rcv_up - tp->rcv_nxt); /* -1; */ tp->rcv_up = ti->ti_seq + ti->ti_urp; } } else /* * If no out of band data is expected, * pull receive urgent pointer along * with the receive window. */ if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) tp->rcv_up = tp->rcv_nxt; dodata: LogFlowFunc(("dodata:\n")); /* * If this is a small packet, then ACK now - with Nagel * congestion avoidance sender won't send more until * he gets an ACK. * * XXX: In case you wonder... The magic "27" below is ESC that * presumably starts a terminal escape-sequence and that we want * to ACK ASAP. [Original slirp code had three different * heuristics to chose from here and in the header prediction case * above, but the commented out alternatives were lost and the * header prediction case that had an expanded comment about this * has been modified to always send an ACK]. */ if ( ti->ti_len && (unsigned)ti->ti_len <= 5 && ((struct tcpiphdr_2 *)ti)->first_char == (char)27) { tp->t_flags |= TF_ACKNOW; } /* * Process the segment text, merging it into the TCP sequencing queue, * and arranging for acknowledgment of receipt if necessary. * This process logically involves adjusting tp->rcv_wnd as data * is presented to the user (this happens in tcp_usrreq.c, * case PRU_RCVD). If a FIN has already been received on this * connection then we just ignore the text. */ if ( (ti->ti_len || (tiflags&TH_FIN)) && TCPS_HAVERCVDFIN(tp->t_state) == 0) { if ( ti->ti_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq) && tp->t_state == TCPS_ESTABLISHED) { DELAY_ACK(tp, ti); /* little bit different from BSD declaration see netinet/tcp_input.c */ tp->rcv_nxt += tlen; tiflags = ti->ti_t.th_flags & TH_FIN; tcpstat.tcps_rcvpack++; tcpstat.tcps_rcvbyte += tlen; if (so->so_state & SS_FCANTRCVMORE) m_freem(pData, m); else sbappend(pData, so, m); } else { tiflags = tcp_reass(pData, tp, &ti->ti_t, &tlen, m); tp->t_flags |= TF_ACKNOW; } /* * Note the amount of data that peer has sent into * our window, in order to estimate the sender's * buffer size. */ len = SBUF_SIZE(&so->so_rcv) - (tp->rcv_adv - tp->rcv_nxt); } else { m_freem(pData, m); tiflags &= ~TH_FIN; } /* * If FIN is received ACK the FIN and let the user know * that the connection is closing. */ if (tiflags & TH_FIN) { if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { /* * If we receive a FIN we can't send more data, * set it SS_FDRAIN * Shutdown the socket if there is no rx data in the * buffer. * soread() is called on completion of shutdown() and * will got to TCPS_LAST_ACK, and use tcp_output() * to send the FIN. */ /* sofcantrcvmore(so); */ sofwdrain(so); tp->t_flags |= TF_ACKNOW; tp->rcv_nxt++; } switch (tp->t_state) { /* * In SYN_RECEIVED and ESTABLISHED STATES * enter the CLOSE_WAIT state. */ case TCPS_SYN_RECEIVED: case TCPS_ESTABLISHED: TCP_STATE_SWITCH_TO(tp, TCPS_CLOSE_WAIT); break; /* * If still in FIN_WAIT_1 STATE FIN has not been acked so * enter the CLOSING state. */ case TCPS_FIN_WAIT_1: TCP_STATE_SWITCH_TO(tp, TCPS_CLOSING); break; /* * In FIN_WAIT_2 state enter the TIME_WAIT state, * starting the time-wait timer, turning off the other * standard timers. */ case TCPS_FIN_WAIT_2: TCP_STATE_SWITCH_TO(tp, TCPS_TIME_WAIT); tcp_canceltimers(tp); tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; soisfdisconnected(so); break; /* * In TIME_WAIT state restart the 2 MSL time_wait timer. */ case TCPS_TIME_WAIT: tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; break; } } /* * Return any desired output. */ if (needoutput || (tp->t_flags & TF_ACKNOW)) tcp_output(pData, tp); SOCKET_UNLOCK(so); STAM_PROFILE_STOP(&pData->StatTCP_input, counter_input); LogFlowFuncLeave(); return; dropafterack: LogFlowFunc(("dropafterack:\n")); /* * Generate an ACK dropping incoming segment if it occupies * sequence space, where the ACK reflects our state. */ if (tiflags & TH_RST) { LogFlowFunc(("%d -> drop\n", __LINE__)); goto drop; } m_freem(pData, m); tp->t_flags |= TF_ACKNOW; (void) tcp_output(pData, tp); SOCKET_UNLOCK(so); STAM_PROFILE_STOP(&pData->StatTCP_input, counter_input); LogFlowFuncLeave(); return; dropwithreset: LogFlowFunc(("dropwithreset:\n")); /* reuses m if m!=NULL, m_free() unnecessary */ if (tiflags & TH_ACK) tcp_respond(pData, tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST); else { if (tiflags & TH_SYN) ti->ti_len++; tcp_respond(pData, tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0, TH_RST|TH_ACK); } if (so != &tcb) SOCKET_UNLOCK(so); STAM_PROFILE_STOP(&pData->StatTCP_input, counter_input); LogFlowFuncLeave(); return; drop: LogFlowFunc(("drop:\n")); /* * Drop space held by incoming segment and return. */ m_freem(pData, m); #ifdef VBOX_WITH_SLIRP_MT if (RTCritSectIsOwned(&so->so_mutex)) { SOCKET_UNLOCK(so); } #endif STAM_PROFILE_STOP(&pData->StatTCP_input, counter_input); LogFlowFuncLeave(); return; } void tcp_fconnect_failed(PNATState pData, struct socket *so, int sockerr) { struct tcpcb *tp; int code; Log2(("NAT: connect error %d %R[natsock]\n", sockerr, so)); Assert(so->so_state & SS_ISFCONNECTING); so->so_state = SS_NOFDREF; if (sockerr == ECONNREFUSED || sockerr == ECONNRESET) { /* hand off to tcp_input():cont_conn to send RST */ TCP_INPUT(pData, NULL, 0, so); return; } tp = sototcpcb(so); if (RT_UNLIKELY(tp == NULL)) /* should never happen */ { LogRel(("NAT: tp == NULL %R[natsock]\n", so)); sofree(pData, so); return; } if (sockerr == ENETUNREACH || sockerr == ENETDOWN) code = ICMP_UNREACH_NET; else if (sockerr == EHOSTUNREACH || sockerr == EHOSTDOWN) code = ICMP_UNREACH_HOST; else code = -1; if (code >= 0) { struct ip *oip; unsigned ohdrlen; struct mbuf *m; if (RT_UNLIKELY(so->so_ohdr == NULL)) goto out; oip = (struct ip *)so->so_ohdr; ohdrlen = oip->ip_hl * 4 + 8; m = m_gethdr(pData, M_NOWAIT, MT_HEADER); if (RT_UNLIKELY(m == NULL)) goto out; m_copyback(pData, m, 0, ohdrlen, (caddr_t)so->so_ohdr); m->m_pkthdr.header = mtod(m, void *); icmp_error(pData, m, ICMP_UNREACH, code, 0, NULL); } out: tcp_close(pData, tp); } void tcp_dooptions(PNATState pData, struct tcpcb *tp, u_char *cp, int cnt, struct tcpiphdr *ti) { u_int16_t mss; int opt, optlen; LogFlowFunc(("tcp_dooptions: tp = %R[tcpcb793], cnt=%i\n", tp, cnt)); for (; cnt > 0; cnt -= optlen, cp += optlen) { opt = cp[0]; if (opt == TCPOPT_EOL) break; if (opt == TCPOPT_NOP) optlen = 1; else { optlen = cp[1]; if (optlen <= 0) break; } switch (opt) { default: continue; case TCPOPT_MAXSEG: if (optlen != TCPOLEN_MAXSEG) continue; if (!(ti->ti_flags & TH_SYN)) continue; memcpy((char *) &mss, (char *) cp + 2, sizeof(mss)); NTOHS(mss); (void) tcp_mss(pData, tp, mss); /* sets t_maxseg */ break; #if 0 case TCPOPT_WINDOW: if (optlen != TCPOLEN_WINDOW) continue; if (!(ti->ti_flags & TH_SYN)) continue; tp->t_flags |= TF_RCVD_SCALE; tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT); break; case TCPOPT_TIMESTAMP: if (optlen != TCPOLEN_TIMESTAMP) continue; *ts_present = 1; memcpy((char *) ts_val, (char *)cp + 2, sizeof(*ts_val)); NTOHL(*ts_val); memcpy((char *) ts_ecr, (char *)cp + 6, sizeof(*ts_ecr)); NTOHL(*ts_ecr); /* * A timestamp received in a SYN makes * it ok to send timestamp requests and replies. */ if (ti->ti_flags & TH_SYN) { tp->t_flags |= TF_RCVD_TSTMP; tp->ts_recent = *ts_val; tp->ts_recent_age = tcp_now; } break; #endif } } } /* * Pull out of band byte out of a segment so * it doesn't appear in the user's data queue. * It is still reflected in the segment length for * sequencing purposes. */ #if 0 void tcp_pulloutofband(struct socket *so, struct tcpiphdr *ti, struct mbuf *m) { int cnt = ti->ti_urp - 1; while (cnt >= 0) { if (m->m_len > cnt) { char *cp = mtod(m, caddr_t) + cnt; struct tcpcb *tp = sototcpcb(so); tp->t_iobc = *cp; tp->t_oobflags |= TCPOOB_HAVEDATA; memcpy(sp, cp+1, (unsigned)(m->m_len - cnt - 1)); m->m_len--; return; } cnt -= m->m_len; m = m->m_next; /* XXX WRONG! Fix it! */ if (m == 0) break; } panic("tcp_pulloutofband"); } #endif /* * Collect new round-trip time estimate * and update averages and current timeout. */ void tcp_xmit_timer(PNATState pData, register struct tcpcb *tp, int rtt) { register short delta; LogFlowFunc(("ENTER: tcp_xmit_timer: tp = %R[tcpcb793] rtt = %d\n", tp, rtt)); tcpstat.tcps_rttupdated++; if (tp->t_srtt != 0) { /* * srtt is stored as fixed point with 3 bits after the * binary point (i.e., scaled by 8). The following magic * is equivalent to the smoothing algorithm in rfc793 with * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed * point). Adjust rtt to origin 0. */ delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT); if ((tp->t_srtt += delta) <= 0) tp->t_srtt = 1; /* * We accumulate a smoothed rtt variance (actually, a * smoothed mean difference), then set the retransmit * timer to smoothed rtt + 4 times the smoothed variance. * rttvar is stored as fixed point with 2 bits after the * binary point (scaled by 4). The following is * equivalent to rfc793 smoothing with an alpha of .75 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces * rfc793's wired-in beta. */ if (delta < 0) delta = -delta; delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT); if ((tp->t_rttvar += delta) <= 0) tp->t_rttvar = 1; } else { /* * No rtt measurement yet - use the unsmoothed rtt. * Set the variance to half the rtt (so our first * retransmit happens at 3*rtt). */ tp->t_srtt = rtt << TCP_RTT_SHIFT; tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); } tp->t_rtt = 0; tp->t_rxtshift = 0; /* * the retransmit should happen at rtt + 4 * rttvar. * Because of the way we do the smoothing, srtt and rttvar * will each average +1/2 tick of bias. When we compute * the retransmit timer, we want 1/2 tick of rounding and * 1 extra tick because of +-1/2 tick uncertainty in the * firing of the timer. The bias will give us exactly the * 1.5 tick we need. But, because the bias is * statistical, we have to test that we don't drop below * the minimum feasible timer (which is 2 ticks). */ TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), (short)tp->t_rttmin, TCPTV_REXMTMAX); /* XXX */ /* * We received an ack for a packet that wasn't retransmitted; * it is probably safe to discard any error indications we've * received recently. This isn't quite right, but close enough * for now (a route might have failed after we sent a segment, * and the return path might not be symmetrical). */ tp->t_softerror = 0; } /* * Determine a reasonable value for maxseg size. * If the route is known, check route for mtu. * If none, use an mss that can be handled on the outgoing * interface without forcing IP to fragment; if bigger than * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES * to utilize large mbufs. If no route is found, route has no mtu, * or the destination isn't local, use a default, hopefully conservative * size (usually 512 or the default IP max size, but no more than the mtu * of the interface), as we can't discover anything about intervening * gateways or networks. We also initialize the congestion/slow start * window to be a single segment if the destination isn't local. * While looking at the routing entry, we also initialize other path-dependent * parameters from pre-set or cached values in the routing entry. */ int tcp_mss(PNATState pData, register struct tcpcb *tp, u_int offer) { struct socket *so = tp->t_socket; int mss; LogFlowFunc(("ENTER: tcp_mss: tp = %R[tcpcb793], offer = %d\n", tp, offer)); mss = min(if_mtu, if_mru) - sizeof(struct tcpiphdr); if (offer) mss = min(mss, offer); mss = max(mss, 32); if (mss < tp->t_maxseg || offer != 0) tp->t_maxseg = mss; tp->snd_cwnd = mss; sbreserve(pData, &so->so_snd, tcp_sndspace+((tcp_sndspace%mss)?(mss-(tcp_sndspace%mss)):0)); sbreserve(pData, &so->so_rcv, tcp_rcvspace+((tcp_rcvspace%mss)?(mss-(tcp_rcvspace%mss)):0)); Log2((" returning mss = %d\n", mss)); return mss; }