#include #include #include "cr_matrix.h" #include "cr_mem.h" #ifndef M_PI #define M_PI 3.14159265358979323846 #endif static const CRmatrix identity_matrix = { 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 }; /* * Initialize the given matrix to the identity. */ void crMatrixInit(CRmatrix *m) { *m = identity_matrix; } /* * Parse a string of 16 floats to initialize a matrix (row major order). * If there's a parsing error, initialize the matrix to the identity. */ void crMatrixInitFromString(CRmatrix *m, const char *s) { const char *fmt = "%f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f"; const char *fmtb = "[ %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f ]"; int n = sscanf(s, (s[0] == '[' ? fmtb : fmt), &m->m00, &m->m01, &m->m02, &m->m03, &m->m10, &m->m11, &m->m12, &m->m13, &m->m20, &m->m21, &m->m22, &m->m23, &m->m30, &m->m31, &m->m32, &m->m33); if (n != 16) { /* insufficient parameters */ crMatrixInit(m); } } /* * Initialize a matrix from an array of 16 values. */ void crMatrixInitFromFloats(CRmatrix *m, const float *v) { m->m00 = v[0]; m->m01 = v[1]; m->m02 = v[2]; m->m03 = v[3]; m->m10 = v[4]; m->m11 = v[5]; m->m12 = v[6]; m->m13 = v[7]; m->m20 = v[8]; m->m21 = v[9]; m->m22 = v[10]; m->m23 = v[11]; m->m30 = v[12]; m->m31 = v[13]; m->m32 = v[14]; m->m33 = v[15]; } void crMatrixInitFromDoubles(CRmatrix *m, const double *v) { m->m00 = (float) v[0]; m->m01 = (float) v[1]; m->m02 = (float) v[2]; m->m03 = (float) v[3]; m->m10 = (float) v[4]; m->m11 = (float) v[5]; m->m12 = (float) v[6]; m->m13 = (float) v[7]; m->m20 = (float) v[8]; m->m21 = (float) v[9]; m->m22 = (float) v[10]; m->m23 = (float) v[11]; m->m30 = (float) v[12]; m->m31 = (float) v[13]; m->m32 = (float) v[14]; m->m33 = (float) v[15]; } /* useful for debugging */ void crMatrixPrint(const char *msg, const CRmatrix *m) { printf("%s\n", msg); printf(" %f %f %f %f\n", m->m00, m->m10, m->m20, m->m30); printf(" %f %f %f %f\n", m->m01, m->m11, m->m21, m->m31); printf(" %f %f %f %f\n", m->m02, m->m12, m->m22, m->m32); printf(" %f %f %f %f\n", m->m03, m->m13, m->m23, m->m33); } void crMatrixGetFloats(float *values, const CRmatrix *m) { values[0] = m->m00; values[1] = m->m01; values[2] = m->m02; values[3] = m->m03; values[4] = m->m10; values[5] = m->m11; values[6] = m->m12; values[7] = m->m13; values[8] = m->m20; values[9] = m->m21; values[10] = m->m22; values[11] = m->m23; values[12] = m->m30; values[13] = m->m31; values[14] = m->m32; values[15] = m->m33; } /* Return 1 if the matrices are equal, return 0 otherwise. */ int crMatrixIsEqual(const CRmatrix *m, const CRmatrix *n) { return crMemcmp(m, n, sizeof(CRmatrix)) == 0; } /* * Test if matrix is identity */ int crMatrixIsIdentity(const CRmatrix *m) { return crMemcmp(m, &identity_matrix, sizeof(CRmatrix)) == 0; } /* * Test if matrix is orthographic projection matrix. */ int crMatrixIsOrthographic(const CRmatrix *m) { return m->m33 != 0.0; } void crMatrixCopy(CRmatrix *dest, const CRmatrix *src) { crMemcpy(dest, src, sizeof(CRmatrix)); } /* * Compute p = a * b */ void crMatrixMultiply(CRmatrix *p, const CRmatrix *a, const CRmatrix *b) { CRmatrix t; /* temporary result, in case p = a or p = b */ t.m00 = a->m00 * b->m00 + a->m10 * b->m01 + a->m20 * b->m02 + a->m30 * b->m03; t.m01 = a->m01 * b->m00 + a->m11 * b->m01 + a->m21 * b->m02 + a->m31 * b->m03; t.m02 = a->m02 * b->m00 + a->m12 * b->m01 + a->m22 * b->m02 + a->m32 * b->m03; t.m03 = a->m03 * b->m00 + a->m13 * b->m01 + a->m23 * b->m02 + a->m33 * b->m03; t.m10 = a->m00 * b->m10 + a->m10 * b->m11 + a->m20 * b->m12 + a->m30 * b->m13; t.m11 = a->m01 * b->m10 + a->m11 * b->m11 + a->m21 * b->m12 + a->m31 * b->m13; t.m12 = a->m02 * b->m10 + a->m12 * b->m11 + a->m22 * b->m12 + a->m32 * b->m13; t.m13 = a->m03 * b->m10 + a->m13 * b->m11 + a->m23 * b->m12 + a->m33 * b->m13; t.m20 = a->m00 * b->m20 + a->m10 * b->m21 + a->m20 * b->m22 + a->m30 * b->m23; t.m21 = a->m01 * b->m20 + a->m11 * b->m21 + a->m21 * b->m22 + a->m31 * b->m23; t.m22 = a->m02 * b->m20 + a->m12 * b->m21 + a->m22 * b->m22 + a->m32 * b->m23; t.m23 = a->m03 * b->m20 + a->m13 * b->m21 + a->m23 * b->m22 + a->m33 * b->m23; t.m30 = a->m00 * b->m30 + a->m10 * b->m31 + a->m20 * b->m32 + a->m30 * b->m33; t.m31 = a->m01 * b->m30 + a->m11 * b->m31 + a->m21 * b->m32 + a->m31 * b->m33; t.m32 = a->m02 * b->m30 + a->m12 * b->m31 + a->m22 * b->m32 + a->m32 * b->m33; t.m33 = a->m03 * b->m30 + a->m13 * b->m31 + a->m23 * b->m32 + a->m33 * b->m33; *p = t; } void crMatrixTransformPointf(const CRmatrix *m, GLvectorf *p) { float x = p->x; float y = p->y; float z = p->z; float w = p->w; p->x = m->m00*x + m->m10*y + m->m20*z + m->m30*w; p->y = m->m01*x + m->m11*y + m->m21*z + m->m31*w; p->z = m->m02*x + m->m12*y + m->m22*z + m->m32*w; p->w = m->m03*x + m->m13*y + m->m23*z + m->m33*w; } void crMatrixTransformPointd(const CRmatrix *m, GLvectord *p) { double x = p->x; double y = p->y; double z = p->z; double w = p->w; p->x = (double) (m->m00*x + m->m10*y + m->m20*z + m->m30*w); p->y = (double) (m->m01*x + m->m11*y + m->m21*z + m->m31*w); p->z = (double) (m->m02*x + m->m12*y + m->m22*z + m->m32*w); p->w = (double) (m->m03*x + m->m13*y + m->m23*z + m->m33*w); } void crMatrixInvertTranspose(CRmatrix *inv, const CRmatrix *mat) { /* Taken from Pomegranate code, trans.c. * Note: We have our data structures reversed */ const float m00 = mat->m00; const float m01 = mat->m10; const float m02 = mat->m20; const float m03 = mat->m30; const float m10 = mat->m01; const float m11 = mat->m11; const float m12 = mat->m21; const float m13 = mat->m31; const float m20 = mat->m02; const float m21 = mat->m12; const float m22 = mat->m22; const float m23 = mat->m32; const float m30 = mat->m03; const float m31 = mat->m13; const float m32 = mat->m23; const float m33 = mat->m33; #define det3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3) \ (a1 * (b2 * c3 - b3 * c2) + \ b1 * (c2 * a3 - a2 * c3) + \ c1 * (a2 * b3 - a3 * b2)) const float cof00 = det3x3( m11, m12, m13, m21, m22, m23, m31, m32, m33 ); const float cof01 = -det3x3( m12, m13, m10, m22, m23, m20, m32, m33, m30 ); const float cof02 = det3x3( m13, m10, m11, m23, m20, m21, m33, m30, m31 ); const float cof03 = -det3x3( m10, m11, m12, m20, m21, m22, m30, m31, m32 ); const float inv_det = 1.0f / ( m00 * cof00 + m01 * cof01 + m02 * cof02 + m03 * cof03 ); const float cof10 = -det3x3( m21, m22, m23, m31, m32, m33, m01, m02, m03 ); const float cof11 = det3x3( m22, m23, m20, m32, m33, m30, m02, m03, m00 ); const float cof12 = -det3x3( m23, m20, m21, m33, m30, m31, m03, m00, m01 ); const float cof13 = det3x3( m20, m21, m22, m30, m31, m32, m00, m01, m02 ); const float cof20 = det3x3( m31, m32, m33, m01, m02, m03, m11, m12, m13 ); const float cof21 = -det3x3( m32, m33, m30, m02, m03, m00, m12, m13, m10 ); const float cof22 = det3x3( m33, m30, m31, m03, m00, m01, m13, m10, m11 ); const float cof23 = -det3x3( m30, m31, m32, m00, m01, m02, m10, m11, m12 ); const float cof30 = -det3x3( m01, m02, m03, m11, m12, m13, m21, m22, m23 ); const float cof31 = det3x3( m02, m03, m00, m12, m13, m10, m22, m23, m20 ); const float cof32 = -det3x3( m03, m00, m01, m13, m10, m11, m23, m20, m21 ); const float cof33 = det3x3( m00, m01, m02, m10, m11, m12, m20, m21, m22 ); #undef det3x3 /* Perform transpose in asignment */ inv->m00 = cof00 * inv_det; inv->m10 = cof01 * inv_det; inv->m20 = cof02 * inv_det; inv->m30 = cof03 * inv_det; inv->m01 = cof10 * inv_det; inv->m11 = cof11 * inv_det; inv->m21 = cof12 * inv_det; inv->m31 = cof13 * inv_det; inv->m02 = cof20 * inv_det; inv->m12 = cof21 * inv_det; inv->m22 = cof22 * inv_det; inv->m32 = cof23 * inv_det; inv->m03 = cof30 * inv_det; inv->m13 = cof31 * inv_det; inv->m23 = cof32 * inv_det; inv->m33 = cof33 * inv_det; } void crMatrixTranspose(CRmatrix *t, const CRmatrix *m) { CRmatrix c; c.m00 = m->m00; c.m10 = m->m01; c.m20 = m->m02; c.m30 = m->m03; c.m01 = m->m10; c.m11 = m->m11; c.m21 = m->m12; c.m31 = m->m13; c.m02 = m->m20; c.m12 = m->m21; c.m22 = m->m22; c.m32 = m->m23; c.m03 = m->m30; c.m13 = m->m31; c.m23 = m->m32; c.m33 = m->m33; *t = c; } /* * Apply a translation to the given matrix. */ void crMatrixTranslate(CRmatrix *m, float x, float y, float z) { m->m30 = m->m00 * x + m->m10 * y + m->m20 * z + m->m30; m->m31 = m->m01 * x + m->m11 * y + m->m21 * z + m->m31; m->m32 = m->m02 * x + m->m12 * y + m->m22 * z + m->m32; m->m33 = m->m03 * x + m->m13 * y + m->m23 * z + m->m33; } /* * Apply a rotation to the given matrix. */ void crMatrixRotate(CRmatrix *m, float angle, float x, float y, float z) { const float c = (float) cos(angle * M_PI / 180.0f); const float one_minus_c = 1.0f - c; const float s = (float) sin(angle * M_PI / 180.0f); const float v_len = (float) sqrt (x*x + y*y + z*z); float x_one_minus_c; float y_one_minus_c; float z_one_minus_c; CRmatrix rot; /* Begin/end Checking and flushing will be done by MultMatrix. */ if (v_len == 0.0f) return; /* Normalize the vector */ if (v_len != 1.0f) { x /= v_len; y /= v_len; z /= v_len; } /* compute some common values */ x_one_minus_c = x * one_minus_c; y_one_minus_c = y * one_minus_c; z_one_minus_c = z * one_minus_c; /* Generate the terms of the rotation matrix ** from pg 325 OGL 1.1 Blue Book. */ rot.m00 = x * x_one_minus_c + c; rot.m01 = x * y_one_minus_c + z * s; rot.m02 = x * z_one_minus_c - y * s; rot.m03 = 0.0f; rot.m10 = y * x_one_minus_c - z * s; rot.m11 = y * y_one_minus_c + c; rot.m12 = y * z_one_minus_c + x * s; rot.m13 = 0.0f; rot.m20 = z * x_one_minus_c + y * s; rot.m21 = z * y_one_minus_c - x * s; rot.m22 = z * z_one_minus_c + c; rot.m23 = 0.0f; rot.m30 = 0.0f; rot.m31 = 0.0f; rot.m32 = 0.0f; rot.m33 = 1.0f; crMatrixMultiply(m, m, &rot); } /* * Apply a scale to the given matrix. */ void crMatrixScale(CRmatrix *m, float x, float y, float z) { m->m00 *= x; m->m01 *= x; m->m02 *= x; m->m03 *= x; m->m10 *= y; m->m11 *= y; m->m12 *= y; m->m13 *= y; m->m20 *= z; m->m21 *= z; m->m22 *= z; m->m23 *= z; } /* * Make a projection matrix from frustum parameters. */ void crMatrixFrustum(CRmatrix *m, float left, float right, float bottom, float top, float zNear, float zFar) { CRmatrix f; f.m00 = (2.0f * zNear) / (right - left); f.m01 = 0.0; f.m02 = 0.0; f.m03 = 0.0; f.m10 = 0.0; f.m11 = (2.0f * zNear) / (top - bottom); f.m12 = 0.0; f.m13 = 0.0; f.m20 = (right + left) / (right - left); f.m21 = (top + bottom) / (top - bottom); f.m22 = (-zNear - zFar) / (zFar - zNear); f.m23 = -1.0; f.m30 = 0.0; f.m31 = 0.0; f.m32 = (2.0f * zFar * zNear) / (zNear - zFar); f.m33 = 0.0; crMatrixMultiply(m, m, &f); } void crMatrixOrtho(CRmatrix *m, float left, float right, float bottom, float top, float znear, float zfar) { CRmatrix ortho; ortho.m00 = 2.0f / (right - left); ortho.m01 = 0.0; ortho.m02 = 0.0; ortho.m03 = 0.0; ortho.m10 = 0.0; ortho.m11 = 2.0f / (top - bottom); ortho.m12 = 0.0; ortho.m13 = 0.0; ortho.m20 = 0.0; ortho.m21 = 0.0; ortho.m22 = -2.0f / (zfar - znear); ortho.m23 = 0.0; ortho.m30 = -(right + left) / (right - left); ortho.m31 = -(top + bottom) / (top - bottom); ortho.m32= -(zfar + znear) / (zfar - znear); ortho.m33 = 1.0; crMatrixMultiply(m, m, &ortho); }