/* $Id: alt-sha512.cpp $ */ /** @file * IPRT - SHA-512 and SHA-384 hash functions, Alternative Implementation. */ /* * Copyright (C) 2009-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The SHA-512 block size (in bytes). */ #define RTSHA512_BLOCK_SIZE 128U /** Enables the unrolled code. */ #define RTSHA512_UNROLLED 1 /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "internal/iprt.h" #include #include #include #include /** Our private context structure. */ typedef struct RTSHA512ALTPRIVATECTX { /** The W array. * Buffering happens in the first 16 words, converted from big endian to host * endian immediately before processing. The amount of buffered data is kept * in the 6 least significant bits of cbMessage. */ uint64_t auW[80]; /** The message length (in bytes). */ RTUINT128U cbMessage; /** The 8 hash values. */ uint64_t auH[8]; } RTSHA512ALTPRIVATECTX; #define RT_SHA512_PRIVATE_ALT_CONTEXT #include AssertCompile(RT_SIZEOFMEMB(RTSHA512CONTEXT, abPadding) >= RT_SIZEOFMEMB(RTSHA512CONTEXT, AltPrivate)); AssertCompileMemberSize(RTSHA512ALTPRIVATECTX, auH, RTSHA512_HASH_SIZE); /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ #ifndef RTSHA512_UNROLLED /** The K constants. */ static uint64_t const g_auKs[] = { UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817), }; #endif /* !RTSHA512_UNROLLED */ RTDECL(void) RTSha512Init(PRTSHA512CONTEXT pCtx) { pCtx->AltPrivate.cbMessage.s.Lo = 0; pCtx->AltPrivate.cbMessage.s.Hi = 0; pCtx->AltPrivate.auH[0] = UINT64_C(0x6a09e667f3bcc908); pCtx->AltPrivate.auH[1] = UINT64_C(0xbb67ae8584caa73b); pCtx->AltPrivate.auH[2] = UINT64_C(0x3c6ef372fe94f82b); pCtx->AltPrivate.auH[3] = UINT64_C(0xa54ff53a5f1d36f1); pCtx->AltPrivate.auH[4] = UINT64_C(0x510e527fade682d1); pCtx->AltPrivate.auH[5] = UINT64_C(0x9b05688c2b3e6c1f); pCtx->AltPrivate.auH[6] = UINT64_C(0x1f83d9abfb41bd6b); pCtx->AltPrivate.auH[7] = UINT64_C(0x5be0cd19137e2179); } RT_EXPORT_SYMBOL(RTSha512Init); /** Function 4.8. */ DECL_FORCE_INLINE(uint64_t) rtSha512Ch(uint64_t uX, uint64_t uY, uint64_t uZ) { #if 1 /* Optimization that saves one operation and probably a temporary variable. */ uint64_t uResult = uY; uResult ^= uZ; uResult &= uX; uResult ^= uZ; return uResult; #else /* The original. */ uint64_t uResult = uX & uY; uResult ^= ~uX & uZ; return uResult; #endif } /** Function 4.9. */ DECL_FORCE_INLINE(uint64_t) rtSha512Maj(uint64_t uX, uint64_t uY, uint64_t uZ) { #if 1 /* Optimization that save one operation and probably a temporary variable. */ uint64_t uResult = uY; uResult ^= uZ; uResult &= uX; uResult ^= uY & uZ; return uResult; #else /* The original. */ uint64_t uResult = uX & uY; uResult ^= uX & uZ; uResult ^= uY & uZ; return uResult; #endif } /** Function 4.10. */ DECL_FORCE_INLINE(uint64_t) rtSha512CapitalSigma0(uint64_t uX) { uint64_t uResult = uX = ASMRotateRightU64(uX, 28); uX = ASMRotateRightU64(uX, 34 - 28); uResult ^= uX; uX = ASMRotateRightU64(uX, 39 - 34); uResult ^= uX; return uResult; } /** Function 4.11. */ DECL_FORCE_INLINE(uint64_t) rtSha512CapitalSigma1(uint64_t uX) { uint64_t uResult = uX = ASMRotateRightU64(uX, 14); uX = ASMRotateRightU64(uX, 18 - 14); uResult ^= uX; uX = ASMRotateRightU64(uX, 41 - 18); uResult ^= uX; return uResult; } /** Function 4.12. */ DECL_FORCE_INLINE(uint64_t) rtSha512SmallSigma0(uint64_t uX) { uint64_t uResult = uX >> 7; uX = ASMRotateRightU64(uX, 1); uResult ^= uX; uX = ASMRotateRightU64(uX, 8 - 1); uResult ^= uX; return uResult; } /** Function 4.13. */ DECL_FORCE_INLINE(uint64_t) rtSha512SmallSigma1(uint64_t uX) { uint64_t uResult = uX >> 6; uX = ASMRotateRightU64(uX, 19); uResult ^= uX; uX = ASMRotateRightU64(uX, 61 - 19); uResult ^= uX; return uResult; } /** * Initializes the auW array from the specfied input block. * * @param pCtx The SHA-512 context. * @param pbBlock The block. Must be 64-bit aligned. */ DECLINLINE(void) rtSha512BlockInit(PRTSHA512CONTEXT pCtx, uint8_t const *pbBlock) { #ifdef RTSHA512_UNROLLED uint64_t const *puSrc = (uint64_t const *)pbBlock; uint64_t *puW = &pCtx->AltPrivate.auW[0]; Assert(!((uintptr_t)puSrc & 7)); Assert(!((uintptr_t)puW & 7)); /* Copy and byte-swap the block. Initializing the rest of the Ws are done in the processing loop. */ # ifdef RT_LITTLE_ENDIAN *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); *puW++ = ASMByteSwapU64(*puSrc++); # else memcpy(puW, puSrc, RTSHA512_BLOCK_SIZE); # endif #else /* !RTSHA512_UNROLLED */ uint64_t const *pu32Block = (uint64_t const *)pbBlock; Assert(!((uintptr_t)pu32Block & 3)); unsigned iWord; for (iWord = 0; iWord < 16; iWord++) pCtx->AltPrivate.auW[iWord] = RT_BE2H_U64(pu32Block[iWord]); for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) { uint64_t u64 = rtSha512SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]); u64 += rtSha512SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]); u64 += pCtx->AltPrivate.auW[iWord - 7]; u64 += pCtx->AltPrivate.auW[iWord - 16]; pCtx->AltPrivate.auW[iWord] = u64; } #endif /* !RTSHA512_UNROLLED */ } /** * Initializes the auW array from data buffered in the first part of the array. * * @param pCtx The SHA-512 context. */ DECLINLINE(void) rtSha512BlockInitBuffered(PRTSHA512CONTEXT pCtx) { #ifdef RTSHA512_UNROLLED uint64_t *puW = &pCtx->AltPrivate.auW[0]; Assert(!((uintptr_t)puW & 7)); /* Do the byte swap if necessary. Initializing the rest of the Ws are done in the processing loop. */ # ifdef RT_LITTLE_ENDIAN *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; *puW = ASMByteSwapU64(*puW); puW++; # endif #else /* !RTSHA512_UNROLLED */ unsigned iWord; for (iWord = 0; iWord < 16; iWord++) pCtx->AltPrivate.auW[iWord] = RT_BE2H_U64(pCtx->AltPrivate.auW[iWord]); for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) { uint64_t u64 = rtSha512SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]); u64 += rtSha512SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]); u64 += pCtx->AltPrivate.auW[iWord - 7]; u64 += pCtx->AltPrivate.auW[iWord - 16]; pCtx->AltPrivate.auW[iWord] = u64; } #endif /* !RTSHA512_UNROLLED */ } /** * Process the current block. * * Requires one of the rtSha512BlockInit functions to be called first. * * @param pCtx The SHA-512 context. */ static void rtSha512BlockProcess(PRTSHA512CONTEXT pCtx) { uint64_t uA = pCtx->AltPrivate.auH[0]; uint64_t uB = pCtx->AltPrivate.auH[1]; uint64_t uC = pCtx->AltPrivate.auH[2]; uint64_t uD = pCtx->AltPrivate.auH[3]; uint64_t uE = pCtx->AltPrivate.auH[4]; uint64_t uF = pCtx->AltPrivate.auH[5]; uint64_t uG = pCtx->AltPrivate.auH[6]; uint64_t uH = pCtx->AltPrivate.auH[7]; #ifdef RTSHA512_UNROLLED uint64_t *puW = &pCtx->AltPrivate.auW[0]; # define RTSHA512_BODY(a_iWord, a_uK, a_uA, a_uB, a_uC, a_uD, a_uE, a_uF, a_uG, a_uH) \ do { \ if ((a_iWord) < 16) \ a_uH += *puW++; \ else \ { \ uint64_t u64 = puW[-16]; \ u64 += rtSha512SmallSigma0(puW[-15]); \ u64 += puW[-7]; \ u64 += rtSha512SmallSigma1(puW[-2]); \ if (a_iWord < 80-2) *puW++ = u64; else puW++; \ a_uH += u64; \ } \ \ a_uH += rtSha512CapitalSigma1(a_uE); \ a_uH += a_uK; \ a_uH += rtSha512Ch(a_uE, a_uF, a_uG); \ a_uD += a_uH; \ \ a_uH += rtSha512CapitalSigma0(a_uA); \ a_uH += rtSha512Maj(a_uA, a_uB, a_uC); \ } while (0) # define RTSHA512_EIGHT(a_uK0, a_uK1, a_uK2, a_uK3, a_uK4, a_uK5, a_uK6, a_uK7, a_iFirst) \ do { \ RTSHA512_BODY(a_iFirst + 0, a_uK0, uA, uB, uC, uD, uE, uF, uG, uH); \ RTSHA512_BODY(a_iFirst + 1, a_uK1, uH, uA, uB, uC, uD, uE, uF, uG); \ RTSHA512_BODY(a_iFirst + 2, a_uK2, uG, uH, uA, uB, uC, uD, uE, uF); \ RTSHA512_BODY(a_iFirst + 3, a_uK3, uF, uG, uH, uA, uB, uC, uD, uE); \ RTSHA512_BODY(a_iFirst + 4, a_uK4, uE, uF, uG, uH, uA, uB, uC, uD); \ RTSHA512_BODY(a_iFirst + 5, a_uK5, uD, uE, uF, uG, uH, uA, uB, uC); \ RTSHA512_BODY(a_iFirst + 6, a_uK6, uC, uD, uE, uF, uG, uH, uA, uB); \ RTSHA512_BODY(a_iFirst + 7, a_uK7, uB, uC, uD, uE, uF, uG, uH, uA); \ } while (0) RTSHA512_EIGHT(UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), 0); RTSHA512_EIGHT(UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), 8); RTSHA512_EIGHT(UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), 16); RTSHA512_EIGHT(UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), 24); RTSHA512_EIGHT(UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), 32); RTSHA512_EIGHT(UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), 40); RTSHA512_EIGHT(UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), 48); RTSHA512_EIGHT(UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), 56); RTSHA512_EIGHT(UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), 64); RTSHA512_EIGHT(UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817), 72); #else for (unsigned iWord = 0; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) { uint64_t uT1 = uH; uT1 += rtSha512CapitalSigma1(uE); uT1 += rtSha512Ch(uE, uF, uG); uT1 += g_auKs[iWord]; uT1 += pCtx->AltPrivate.auW[iWord]; uint64_t uT2 = rtSha512CapitalSigma0(uA); uT2 += rtSha512Maj(uA, uB, uC); uH = uG; uG = uF; uF = uE; uE = uD + uT1; uD = uC; uC = uB; uB = uA; uA = uT1 + uT2; } #endif pCtx->AltPrivate.auH[0] += uA; pCtx->AltPrivate.auH[1] += uB; pCtx->AltPrivate.auH[2] += uC; pCtx->AltPrivate.auH[3] += uD; pCtx->AltPrivate.auH[4] += uE; pCtx->AltPrivate.auH[5] += uF; pCtx->AltPrivate.auH[6] += uG; pCtx->AltPrivate.auH[7] += uH; } RTDECL(void) RTSha512Update(PRTSHA512CONTEXT pCtx, const void *pvBuf, size_t cbBuf) { Assert(pCtx->AltPrivate.cbMessage.s.Hi < UINT64_MAX / 8); uint8_t const *pbBuf = (uint8_t const *)pvBuf; /* * Deal with buffered bytes first. */ size_t cbBuffered = (size_t)pCtx->AltPrivate.cbMessage.s.Lo & (RTSHA512_BLOCK_SIZE - 1U); if (cbBuffered) { size_t cbMissing = RTSHA512_BLOCK_SIZE - cbBuffered; if (cbBuf >= cbMissing) { memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbMissing); pCtx->AltPrivate.cbMessage.s.Lo += cbMissing; if (!pCtx->AltPrivate.cbMessage.s.Lo) pCtx->AltPrivate.cbMessage.s.Hi++; pbBuf += cbMissing; cbBuf -= cbMissing; rtSha512BlockInitBuffered(pCtx); rtSha512BlockProcess(pCtx); } else { memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbBuf); pCtx->AltPrivate.cbMessage.s.Lo += cbBuf; return; } } if (!((uintptr_t)pbBuf & 7)) { /* * Process full blocks directly from the input buffer. */ while (cbBuf >= RTSHA512_BLOCK_SIZE) { rtSha512BlockInit(pCtx, pbBuf); rtSha512BlockProcess(pCtx); pCtx->AltPrivate.cbMessage.s.Lo += RTSHA512_BLOCK_SIZE; if (!pCtx->AltPrivate.cbMessage.s.Lo) pCtx->AltPrivate.cbMessage.s.Hi++; pbBuf += RTSHA512_BLOCK_SIZE; cbBuf -= RTSHA512_BLOCK_SIZE; } } else { /* * Unaligned input, so buffer it. */ while (cbBuf >= RTSHA512_BLOCK_SIZE) { memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, RTSHA512_BLOCK_SIZE); rtSha512BlockInitBuffered(pCtx); rtSha512BlockProcess(pCtx); pCtx->AltPrivate.cbMessage.s.Lo += RTSHA512_BLOCK_SIZE; if (!pCtx->AltPrivate.cbMessage.s.Lo) pCtx->AltPrivate.cbMessage.s.Hi++; pbBuf += RTSHA512_BLOCK_SIZE; cbBuf -= RTSHA512_BLOCK_SIZE; } } /* * Stash any remaining bytes into the context buffer. */ if (cbBuf > 0) { memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, cbBuf); pCtx->AltPrivate.cbMessage.s.Lo += cbBuf; if (!pCtx->AltPrivate.cbMessage.s.Lo) pCtx->AltPrivate.cbMessage.s.Hi++; } } RT_EXPORT_SYMBOL(RTSha512Update); /** * Internal worker for RTSha512Final and RTSha384Final that finalizes the * computation but does not copy out the hash value. * * @param pCtx The SHA-512 context. */ static void rtSha512FinalInternal(PRTSHA512CONTEXT pCtx) { Assert(pCtx->AltPrivate.cbMessage.s.Hi < UINT64_MAX / 8); /* * Complete the message by adding a single bit (0x80), padding till * the next 448-bit boundrary, the add the message length. */ RTUINT128U cMessageBits = pCtx->AltPrivate.cbMessage; cMessageBits.s.Hi <<= 3; cMessageBits.s.Hi |= cMessageBits.s.Lo >> 61; cMessageBits.s.Lo <<= 3; unsigned cbMissing = RTSHA512_BLOCK_SIZE - ((unsigned)pCtx->AltPrivate.cbMessage.s.Lo & (RTSHA512_BLOCK_SIZE - 1U)); static uint8_t const s_abSingleBitAndSomePadding[20] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}; if (cbMissing < 1U + 16U) /* Less than 64+16 bits left in the current block, force a new block. */ RTSha512Update(pCtx, &s_abSingleBitAndSomePadding, sizeof(s_abSingleBitAndSomePadding)); else RTSha512Update(pCtx, &s_abSingleBitAndSomePadding, 1); unsigned cbBuffered = (unsigned)pCtx->AltPrivate.cbMessage.s.Lo & (RTSHA512_BLOCK_SIZE - 1U); cbMissing = RTSHA512_BLOCK_SIZE - cbBuffered; Assert(cbMissing >= 16); memset((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, 0, cbMissing - 16); pCtx->AltPrivate.auW[14] = RT_H2BE_U64(cMessageBits.s.Hi); pCtx->AltPrivate.auW[15] = RT_H2BE_U64(cMessageBits.s.Lo); /* * Process the last buffered block constructed/completed above. */ rtSha512BlockInitBuffered(pCtx); rtSha512BlockProcess(pCtx); /* * Convert the byte order of the hash words and we're done. */ pCtx->AltPrivate.auH[0] = RT_H2BE_U64(pCtx->AltPrivate.auH[0]); pCtx->AltPrivate.auH[1] = RT_H2BE_U64(pCtx->AltPrivate.auH[1]); pCtx->AltPrivate.auH[2] = RT_H2BE_U64(pCtx->AltPrivate.auH[2]); pCtx->AltPrivate.auH[3] = RT_H2BE_U64(pCtx->AltPrivate.auH[3]); pCtx->AltPrivate.auH[4] = RT_H2BE_U64(pCtx->AltPrivate.auH[4]); pCtx->AltPrivate.auH[5] = RT_H2BE_U64(pCtx->AltPrivate.auH[5]); pCtx->AltPrivate.auH[6] = RT_H2BE_U64(pCtx->AltPrivate.auH[6]); pCtx->AltPrivate.auH[7] = RT_H2BE_U64(pCtx->AltPrivate.auH[7]); RT_ZERO(pCtx->AltPrivate.auW); pCtx->AltPrivate.cbMessage.s.Lo = UINT64_MAX; pCtx->AltPrivate.cbMessage.s.Hi = UINT64_MAX; } RT_EXPORT_SYMBOL(RTSha512Final); RTDECL(void) RTSha512Final(PRTSHA512CONTEXT pCtx, uint8_t pabDigest[RTSHA512_HASH_SIZE]) { rtSha512FinalInternal(pCtx); memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA512_HASH_SIZE); RT_ZERO(pCtx->AltPrivate.auH); } RT_EXPORT_SYMBOL(RTSha512Final); RTDECL(void) RTSha512(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA512_HASH_SIZE]) { RTSHA512CONTEXT Ctx; RTSha512Init(&Ctx); RTSha512Update(&Ctx, pvBuf, cbBuf); RTSha512Final(&Ctx, pabDigest); } RT_EXPORT_SYMBOL(RTSha512); RTDECL(bool) RTSha512Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA512_HASH_SIZE]) { RTSHA512CONTEXT Ctx; RTSha512Init(&Ctx); RTSha512Update(&Ctx, pvBuf, cbBuf); rtSha512FinalInternal(&Ctx); bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA512_HASH_SIZE) == 0; RT_ZERO(Ctx.AltPrivate.auH); return fRet; } RT_EXPORT_SYMBOL(RTSha512Check); /* * SHA-384 is just SHA-512 with different initial values an a truncated result. */ RTDECL(void) RTSha384Init(PRTSHA384CONTEXT pCtx) { pCtx->AltPrivate.cbMessage.s.Lo = 0; pCtx->AltPrivate.cbMessage.s.Hi = 0; pCtx->AltPrivate.auH[0] = UINT64_C(0xcbbb9d5dc1059ed8); pCtx->AltPrivate.auH[1] = UINT64_C(0x629a292a367cd507); pCtx->AltPrivate.auH[2] = UINT64_C(0x9159015a3070dd17); pCtx->AltPrivate.auH[3] = UINT64_C(0x152fecd8f70e5939); pCtx->AltPrivate.auH[4] = UINT64_C(0x67332667ffc00b31); pCtx->AltPrivate.auH[5] = UINT64_C(0x8eb44a8768581511); pCtx->AltPrivate.auH[6] = UINT64_C(0xdb0c2e0d64f98fa7); pCtx->AltPrivate.auH[7] = UINT64_C(0x47b5481dbefa4fa4); } RT_EXPORT_SYMBOL(RTSha384Init); RTDECL(void) RTSha384Update(PRTSHA384CONTEXT pCtx, const void *pvBuf, size_t cbBuf) { RTSha512Update(pCtx, pvBuf, cbBuf); } RT_EXPORT_SYMBOL(RTSha384Update); RTDECL(void) RTSha384Final(PRTSHA384CONTEXT pCtx, uint8_t pabDigest[RTSHA384_HASH_SIZE]) { rtSha512FinalInternal(pCtx); memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA384_HASH_SIZE); RT_ZERO(pCtx->AltPrivate.auH); } RT_EXPORT_SYMBOL(RTSha384Final); RTDECL(void) RTSha384(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA384_HASH_SIZE]) { RTSHA384CONTEXT Ctx; RTSha384Init(&Ctx); RTSha384Update(&Ctx, pvBuf, cbBuf); RTSha384Final(&Ctx, pabDigest); } RT_EXPORT_SYMBOL(RTSha384); RTDECL(bool) RTSha384Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA384_HASH_SIZE]) { RTSHA384CONTEXT Ctx; RTSha384Init(&Ctx); RTSha384Update(&Ctx, pvBuf, cbBuf); rtSha512FinalInternal(&Ctx); bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA384_HASH_SIZE) == 0; RT_ZERO(Ctx.AltPrivate.auH); return fRet; } RT_EXPORT_SYMBOL(RTSha384Check); /* * SHA-512/224 is just SHA-512 with different initial values an a truncated result. */ RTDECL(void) RTSha512t224Init(PRTSHA512T224CONTEXT pCtx) { pCtx->AltPrivate.cbMessage.s.Lo = 0; pCtx->AltPrivate.cbMessage.s.Hi = 0; pCtx->AltPrivate.auH[0] = UINT64_C(0x8c3d37c819544da2); pCtx->AltPrivate.auH[1] = UINT64_C(0x73e1996689dcd4d6); pCtx->AltPrivate.auH[2] = UINT64_C(0x1dfab7ae32ff9c82); pCtx->AltPrivate.auH[3] = UINT64_C(0x679dd514582f9fcf); pCtx->AltPrivate.auH[4] = UINT64_C(0x0f6d2b697bd44da8); pCtx->AltPrivate.auH[5] = UINT64_C(0x77e36f7304c48942); pCtx->AltPrivate.auH[6] = UINT64_C(0x3f9d85a86a1d36c8); pCtx->AltPrivate.auH[7] = UINT64_C(0x1112e6ad91d692a1); } RT_EXPORT_SYMBOL(RTSha512t224Init); RTDECL(void) RTSha512t224Update(PRTSHA512T224CONTEXT pCtx, const void *pvBuf, size_t cbBuf) { RTSha512Update(pCtx, pvBuf, cbBuf); } RT_EXPORT_SYMBOL(RTSha512t224Update); RTDECL(void) RTSha512t224Final(PRTSHA512T224CONTEXT pCtx, uint8_t pabDigest[RTSHA512T224_HASH_SIZE]) { rtSha512FinalInternal(pCtx); memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA512T224_HASH_SIZE); RT_ZERO(pCtx->AltPrivate.auH); } RT_EXPORT_SYMBOL(RTSha512t224Final); RTDECL(void) RTSha512t224(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA512T224_HASH_SIZE]) { RTSHA512T224CONTEXT Ctx; RTSha512t224Init(&Ctx); RTSha512t224Update(&Ctx, pvBuf, cbBuf); RTSha512t224Final(&Ctx, pabDigest); } RT_EXPORT_SYMBOL(RTSha512t224); RTDECL(bool) RTSha512t224Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA512T224_HASH_SIZE]) { RTSHA512T224CONTEXT Ctx; RTSha512t224Init(&Ctx); RTSha512t224Update(&Ctx, pvBuf, cbBuf); rtSha512FinalInternal(&Ctx); bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA512T224_HASH_SIZE) == 0; RT_ZERO(Ctx.AltPrivate.auH); return fRet; } RT_EXPORT_SYMBOL(RTSha512t224Check); /* * SHA-512/256 is just SHA-512 with different initial values an a truncated result. */ RTDECL(void) RTSha512t256Init(PRTSHA512T256CONTEXT pCtx) { pCtx->AltPrivate.cbMessage.s.Lo = 0; pCtx->AltPrivate.cbMessage.s.Hi = 0; pCtx->AltPrivate.auH[0] = UINT64_C(0x22312194fc2bf72c); pCtx->AltPrivate.auH[1] = UINT64_C(0x9f555fa3c84c64c2); pCtx->AltPrivate.auH[2] = UINT64_C(0x2393b86b6f53b151); pCtx->AltPrivate.auH[3] = UINT64_C(0x963877195940eabd); pCtx->AltPrivate.auH[4] = UINT64_C(0x96283ee2a88effe3); pCtx->AltPrivate.auH[5] = UINT64_C(0xbe5e1e2553863992); pCtx->AltPrivate.auH[6] = UINT64_C(0x2b0199fc2c85b8aa); pCtx->AltPrivate.auH[7] = UINT64_C(0x0eb72ddc81c52ca2); } RT_EXPORT_SYMBOL(RTSha512t256Init); RTDECL(void) RTSha512t256Update(PRTSHA512T256CONTEXT pCtx, const void *pvBuf, size_t cbBuf) { RTSha512Update(pCtx, pvBuf, cbBuf); } RT_EXPORT_SYMBOL(RTSha512t256Update); RTDECL(void) RTSha512t256Final(PRTSHA512T256CONTEXT pCtx, uint8_t pabDigest[RTSHA512T256_HASH_SIZE]) { rtSha512FinalInternal(pCtx); memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA512T256_HASH_SIZE); RT_ZERO(pCtx->AltPrivate.auH); } RT_EXPORT_SYMBOL(RTSha512t256Final); RTDECL(void) RTSha512t256(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA512T256_HASH_SIZE]) { RTSHA512T256CONTEXT Ctx; RTSha512t256Init(&Ctx); RTSha512t256Update(&Ctx, pvBuf, cbBuf); RTSha512t256Final(&Ctx, pabDigest); } RT_EXPORT_SYMBOL(RTSha512t256); RTDECL(bool) RTSha512t256Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA512T256_HASH_SIZE]) { RTSHA512T256CONTEXT Ctx; RTSha512t256Init(&Ctx); RTSha512t256Update(&Ctx, pvBuf, cbBuf); rtSha512FinalInternal(&Ctx); bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA512T256_HASH_SIZE) == 0; RT_ZERO(Ctx.AltPrivate.auH); return fRet; } RT_EXPORT_SYMBOL(RTSha512t256Check);