/* $Id: timer-generic.cpp $ */ /** @file * IPRT - Timers, Generic. */ /* * Copyright (C) 2006-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include "internal/iprt.h" #include #include #include #include #include #include #include #include #include "internal/magics.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * The internal representation of a timer handle. */ typedef struct RTTIMER { /** Magic. * This is RTTIMER_MAGIC, but changes to something else before the timer * is destroyed to indicate clearly that thread should exit. */ uint32_t volatile u32Magic; /** Flag indicating the timer is suspended. */ uint8_t volatile fSuspended; /** Flag indicating that the timer has been destroyed. */ uint8_t volatile fDestroyed; /** Callback. */ PFNRTTIMER pfnTimer; /** User argument. */ void *pvUser; /** The timer thread. */ RTTHREAD Thread; /** Event semaphore on which the thread is blocked. */ RTSEMEVENT Event; /** The timer interval. 0 if one-shot. */ uint64_t u64NanoInterval; /** The start of the current run (ns). * This is used to calculate when the timer ought to fire the next time. */ uint64_t volatile u64StartTS; /** The start of the current run (ns). * This is used to calculate when the timer ought to fire the next time. */ uint64_t volatile u64NextTS; /** The current tick number (since u64StartTS). */ uint64_t volatile iTick; } RTTIMER; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static DECLCALLBACK(int) rtTimerThread(RTTHREAD Thread, void *pvUser); RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser) { *ppTimer = NULL; /* * We don't support the fancy MP features. */ if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) return VERR_NOT_SUPPORTED; /* * Allocate and initialize the timer handle. */ PRTTIMER pTimer = (PRTTIMER)RTMemAlloc(sizeof(*pTimer)); if (!pTimer) return VERR_NO_MEMORY; pTimer->u32Magic = RTTIMER_MAGIC; pTimer->fSuspended = true; pTimer->fDestroyed = false; pTimer->pfnTimer = pfnTimer; pTimer->pvUser = pvUser; pTimer->Thread = NIL_RTTHREAD; pTimer->Event = NIL_RTSEMEVENT; pTimer->u64NanoInterval = u64NanoInterval; pTimer->u64StartTS = 0; int rc = RTSemEventCreate(&pTimer->Event); if (RT_SUCCESS(rc)) { rc = RTThreadCreate(&pTimer->Thread, rtTimerThread, pTimer, 0, RTTHREADTYPE_TIMER, RTTHREADFLAGS_WAITABLE, "Timer"); if (RT_SUCCESS(rc)) { *ppTimer = pTimer; return VINF_SUCCESS; } pTimer->u32Magic = 0; RTSemEventDestroy(pTimer->Event); pTimer->Event = NIL_RTSEMEVENT; } RTMemFree(pTimer); return rc; } RT_EXPORT_SYMBOL(RTTimerCreateEx); /** * Validates the timer handle. * * @returns true if valid, false if invalid. * @param pTimer The handle. */ DECLINLINE(bool) rtTimerIsValid(PRTTIMER pTimer) { AssertReturn(VALID_PTR(pTimer), false); AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, false); AssertReturn(!pTimer->fDestroyed, false); return true; } RTDECL(int) RTTimerDestroy(PRTTIMER pTimer) { /* It's ok to pass NULL pointer. */ if (pTimer == /*NIL_RTTIMER*/ NULL) return VINF_SUCCESS; if (!rtTimerIsValid(pTimer)) return VERR_INVALID_HANDLE; /* * If the timer is active, we stop and destruct it in one go, to avoid * unnecessary waiting for the next tick. If it's suspended we can safely * set the destroy flag and signal it. */ RTTHREAD Thread = pTimer->Thread; if (!pTimer->fSuspended) ASMAtomicXchgU8(&pTimer->fSuspended, true); ASMAtomicXchgU8(&pTimer->fDestroyed, true); int rc = RTSemEventSignal(pTimer->Event); if (rc == VERR_ALREADY_POSTED) rc = VINF_SUCCESS; AssertRC(rc); RTThreadWait(Thread, 250, NULL); return VINF_SUCCESS; } RT_EXPORT_SYMBOL(RTTimerDestroy); RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First) { if (!rtTimerIsValid(pTimer)) return VERR_INVALID_HANDLE; if (!pTimer->fSuspended) return VERR_TIMER_ACTIVE; /* * Calc when it should start firing and give the thread a kick so it get going. */ u64First += RTTimeNanoTS(); ASMAtomicXchgU64(&pTimer->iTick, 0); ASMAtomicXchgU64(&pTimer->u64StartTS, u64First); ASMAtomicXchgU64(&pTimer->u64NextTS, u64First); ASMAtomicXchgU8(&pTimer->fSuspended, false); int rc = RTSemEventSignal(pTimer->Event); if (rc == VERR_ALREADY_POSTED) rc = VINF_SUCCESS; AssertRC(rc); return rc; } RT_EXPORT_SYMBOL(RTTimerStart); RTDECL(int) RTTimerStop(PRTTIMER pTimer) { if (!rtTimerIsValid(pTimer)) return VERR_INVALID_HANDLE; if (pTimer->fSuspended) return VERR_TIMER_SUSPENDED; /* * Mark it as suspended and kick the thread. */ ASMAtomicXchgU8(&pTimer->fSuspended, true); int rc = RTSemEventSignal(pTimer->Event); if (rc == VERR_ALREADY_POSTED) rc = VINF_SUCCESS; AssertRC(rc); return rc; } RT_EXPORT_SYMBOL(RTTimerStop); RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval) { if (!rtTimerIsValid(pTimer)) return VERR_INVALID_HANDLE; NOREF(u64NanoInterval); return VERR_NOT_SUPPORTED; } RT_EXPORT_SYMBOL(RTTimerChangeInterval); static DECLCALLBACK(int) rtTimerThread(RTTHREAD hThreadSelf, void *pvUser) { PRTTIMER pTimer = (PRTTIMER)pvUser; NOREF(hThreadSelf); /* * The loop. */ while (!pTimer->fDestroyed) { if (pTimer->fSuspended) { int rc = RTSemEventWait(pTimer->Event, RT_INDEFINITE_WAIT); if (RT_FAILURE(rc) && rc != VERR_INTERRUPTED) { AssertRC(rc); RTThreadSleep(1000); /* Don't cause trouble! */ } } else { const uint64_t u64NanoTS = RTTimeNanoTS(); if (u64NanoTS >= pTimer->u64NextTS) { pTimer->iTick++; /* one shot? */ if (!pTimer->u64NanoInterval) ASMAtomicXchgU8(&pTimer->fSuspended, true); pTimer->pfnTimer(pTimer, pTimer->pvUser, pTimer->iTick); /* status changed? */ if (pTimer->fSuspended || pTimer->fDestroyed) continue; /* calc the next time we should fire. */ pTimer->u64NextTS = pTimer->u64StartTS + pTimer->iTick * pTimer->u64NanoInterval; if (pTimer->u64NextTS < u64NanoTS) #ifdef IN_RING3 /* In ring-3 we'll catch up lost ticks immediately. */ pTimer->u64NextTS = u64NanoTS + 1; #else pTimer->u64NextTS = u64NanoTS + RTTimerGetSystemGranularity() / 2; #endif } /* block. */ uint64_t cNanoSeconds = pTimer->u64NextTS - u64NanoTS; #ifdef IN_RING3 /* In ring-3 we'll catch up lost ticks immediately. */ if (cNanoSeconds > 10) #endif { int rc = RTSemEventWait(pTimer->Event, cNanoSeconds < 1000000 ? 1 : cNanoSeconds / 1000000); if (RT_FAILURE(rc) && rc != VERR_INTERRUPTED && rc != VERR_TIMEOUT) { AssertRC(rc); RTThreadSleep(1000); /* Don't cause trouble! */ } } } } /* * Release the timer resources. */ ASMAtomicIncU32(&pTimer->u32Magic); /* make the handle invalid. */ int rc = RTSemEventDestroy(pTimer->Event); AssertRC(rc); pTimer->Event = NIL_RTSEMEVENT; pTimer->Thread = NIL_RTTHREAD; RTMemFree(pTimer); return VINF_SUCCESS; } RTDECL(uint32_t) RTTimerGetSystemGranularity(void) { return 10000000; /* 10ms */ } RT_EXPORT_SYMBOL(RTTimerGetSystemGranularity); RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted) { NOREF(u32Request); NOREF(pu32Granted); return VERR_NOT_SUPPORTED; } RT_EXPORT_SYMBOL(RTTimerRequestSystemGranularity); RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted) { NOREF(u32Granted); return VERR_NOT_SUPPORTED; } RT_EXPORT_SYMBOL(RTTimerReleaseSystemGranularity); RTDECL(bool) RTTimerCanDoHighResolution(void) { return false; } RT_EXPORT_SYMBOL(RTTimerCanDoHighResolution);