/* $Id: DBGFCoreWrite.cpp $ */ /** @file * DBGF - Debugger Facility, Guest Core Dump. */ /* * Copyright (C) 2010-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @page pg_dbgf_vmcore VMCore Format * * The VirtualBox VMCore Format: * [ ELF 64 Header] -- Only 1 * * [ PT_NOTE ] -- Only 1 * - Offset into CoreDescriptor followed by list of Notes (Note Hdr + data) of VBox CPUs. * - (Any Additional custom Note sections). * * [ PT_LOAD ] -- One for each contiguous memory chunk * - Memory offset (physical). * - File offset. * * CoreDescriptor * - Magic, VBox version. * - Number of CPus. * * Per-CPU register dump * - CPU 1 Note Hdr + Data. * - CPU 2 Note Hdr + Data. * ... * (Additional custom notes Hdr+data) * - VBox 1 Note Hdr + Data. * - VBox 2 Note Hdr + Data. * ... * Memory dump * */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DBGF #include #include #include #include #include "DBGFInternal.h" #include #include #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #define DBGFLOG_NAME "DBGFCoreWrite" /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ static const int g_NoteAlign = 8; static const int g_cbNoteName = 16; /* The size of these strings (incl. NULL terminator) must align to 8 bytes (g_NoteAlign) and -not- 4 bytes. */ static const char *g_pcszCoreVBoxCore = "VBCORE"; static const char *g_pcszCoreVBoxCpu = "VBCPU"; /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * Guest core writer data. * * Used to pass parameters from DBGFR3CoreWrite to dbgfR3CoreWriteRendezvous(). */ typedef struct DBGFCOREDATA { /** The name of the file to write the file to. */ const char *pszFilename; /** Whether to replace (/overwrite) any existing file. */ bool fReplaceFile; } DBGFCOREDATA; /** Pointer to the guest core writer data. */ typedef DBGFCOREDATA *PDBGFCOREDATA; /** * ELF function to write 64-bit ELF header. * * @param hFile The file to write to. * @param cProgHdrs Number of program headers. * @param cSecHdrs Number of section headers. * * @return IPRT status code. */ static int Elf64WriteElfHdr(RTFILE hFile, uint16_t cProgHdrs, uint16_t cSecHdrs) { Elf64_Ehdr ElfHdr; RT_ZERO(ElfHdr); ElfHdr.e_ident[EI_MAG0] = ELFMAG0; ElfHdr.e_ident[EI_MAG1] = ELFMAG1; ElfHdr.e_ident[EI_MAG2] = ELFMAG2; ElfHdr.e_ident[EI_MAG3] = ELFMAG3; ElfHdr.e_ident[EI_DATA] = ELFDATA2LSB; ElfHdr.e_type = ET_CORE; ElfHdr.e_version = EV_CURRENT; ElfHdr.e_ident[EI_CLASS] = ELFCLASS64; /* 32-bit builds will produce cores with e_machine EM_386. */ #ifdef RT_ARCH_AMD64 ElfHdr.e_machine = EM_X86_64; #else ElfHdr.e_machine = EM_386; #endif ElfHdr.e_phnum = cProgHdrs; ElfHdr.e_shnum = cSecHdrs; ElfHdr.e_ehsize = sizeof(ElfHdr); ElfHdr.e_phoff = sizeof(ElfHdr); ElfHdr.e_phentsize = sizeof(Elf64_Phdr); ElfHdr.e_shentsize = sizeof(Elf64_Shdr); return RTFileWrite(hFile, &ElfHdr, sizeof(ElfHdr), NULL /* all */); } /** * ELF function to write 64-bit program header. * * @param hFile The file to write to. * @param Type Type of program header (PT_*). * @param fFlags Flags (access permissions, PF_*). * @param offFileData File offset of contents. * @param cbFileData Size of contents in the file. * @param cbMemData Size of contents in memory. * @param Phys Physical address, pass zero if not applicable. * * @return IPRT status code. */ static int Elf64WriteProgHdr(RTFILE hFile, uint32_t Type, uint32_t fFlags, uint64_t offFileData, uint64_t cbFileData, uint64_t cbMemData, RTGCPHYS Phys) { Elf64_Phdr ProgHdr; RT_ZERO(ProgHdr); ProgHdr.p_type = Type; ProgHdr.p_flags = fFlags; ProgHdr.p_offset = offFileData; ProgHdr.p_filesz = cbFileData; ProgHdr.p_memsz = cbMemData; ProgHdr.p_paddr = Phys; return RTFileWrite(hFile, &ProgHdr, sizeof(ProgHdr), NULL /* all */); } /** * Returns the size of the NOTE section given the name and size of the data. * * @param pszName Name of the note section. * @param cbData Size of the data portion of the note section. * * @return The size of the NOTE section as rounded to the file alignment. */ static uint64_t Elf64NoteSectionSize(const char *pszName, uint64_t cbData) { uint64_t cbNote = sizeof(Elf64_Nhdr); size_t cbName = strlen(pszName) + 1; size_t cbNameAlign = RT_ALIGN_Z(cbName, g_NoteAlign); cbNote += cbNameAlign; cbNote += RT_ALIGN_64(cbData, g_NoteAlign); return cbNote; } /** * Elf function to write 64-bit note header. * * @param hFile The file to write to. * @param Type Type of this section. * @param pszName Name of this section. * @param pvData Opaque pointer to the data, if NULL only computes size. * @param cbData Size of the data. * * @returns IPRT status code. */ static int Elf64WriteNoteHdr(RTFILE hFile, uint16_t Type, const char *pszName, const void *pvData, uint64_t cbData) { AssertReturn(pvData, VERR_INVALID_POINTER); AssertReturn(cbData > 0, VERR_NO_DATA); char szNoteName[g_cbNoteName]; RT_ZERO(szNoteName); RTStrCopy(szNoteName, sizeof(szNoteName), pszName); size_t cbName = strlen(szNoteName) + 1; size_t cbNameAlign = RT_ALIGN_Z(cbName, g_NoteAlign); uint64_t cbDataAlign = RT_ALIGN_64(cbData, g_NoteAlign); /* * Yell loudly and bail if we are going to be writing a core file that is not compatible with * both Solaris and the 64-bit ELF spec. which dictates 8-byte alignment. See @bugref{5211#c3}. */ if (cbNameAlign - cbName > 3) { LogRel((DBGFLOG_NAME ": Elf64WriteNoteHdr pszName=%s cbName=%u cbNameAlign=%u, cbName aligns to 4 not 8-bytes!\n", pszName, cbName, cbNameAlign)); return VERR_INVALID_PARAMETER; } if (cbDataAlign - cbData > 3) { LogRel((DBGFLOG_NAME ": Elf64WriteNoteHdr pszName=%s cbData=%u cbDataAlign=%u, cbData aligns to 4 not 8-bytes!\n", pszName, cbData, cbDataAlign)); return VERR_INVALID_PARAMETER; } static const char s_achPad[7] = { 0, 0, 0, 0, 0, 0, 0 }; AssertCompile(sizeof(s_achPad) >= g_NoteAlign - 1); Elf64_Nhdr ElfNoteHdr; RT_ZERO(ElfNoteHdr); ElfNoteHdr.n_namesz = (Elf64_Word)cbName - 1; /* Again, a discrepancy between ELF-64 and Solaris, we will follow ELF-64, see @bugref{5211#c3}. */ ElfNoteHdr.n_type = Type; ElfNoteHdr.n_descsz = (Elf64_Word)cbDataAlign; /* * Write note header. */ int rc = RTFileWrite(hFile, &ElfNoteHdr, sizeof(ElfNoteHdr), NULL /* all */); if (RT_SUCCESS(rc)) { /* * Write note name. */ rc = RTFileWrite(hFile, szNoteName, cbName, NULL /* all */); if (RT_SUCCESS(rc)) { /* * Write note name padding if required. */ if (cbNameAlign > cbName) rc = RTFileWrite(hFile, s_achPad, cbNameAlign - cbName, NULL); if (RT_SUCCESS(rc)) { /* * Write note data. */ rc = RTFileWrite(hFile, pvData, cbData, NULL /* all */); if (RT_SUCCESS(rc)) { /* * Write note data padding if required. */ if (cbDataAlign > cbData) rc = RTFileWrite(hFile, s_achPad, cbDataAlign - cbData, NULL /* all*/); } } } } if (RT_FAILURE(rc)) LogRel((DBGFLOG_NAME ": RTFileWrite failed. rc=%Rrc pszName=%s cbName=%u cbNameAlign=%u cbData=%u cbDataAlign=%u\n", rc, pszName, cbName, cbNameAlign, cbData, cbDataAlign)); return rc; } /** * Count the number of memory ranges that go into the core file. * * We cannot do a page-by-page dump of the entire guest memory as there will be * way too many program header entries. Also we don't want to dump MMIO regions * which means we cannot have a 1:1 mapping between core file offset and memory * offset. Instead we dump the memory in ranges. A memory range is a contiguous * memory area suitable for dumping to a core file. * * @param pVM The cross context VM structure. * * @return Number of memory ranges */ static uint32_t dbgfR3GetRamRangeCount(PVM pVM) { return PGMR3PhysGetRamRangeCount(pVM); } /** * Gets the guest-CPU context suitable for dumping into the core file. * * @param pVCpu The cross context virtual CPU structure. * @param pDbgfCpu Where to dump the guest-CPU data. */ static void dbgfR3GetCoreCpu(PVMCPU pVCpu, PDBGFCORECPU pDbgfCpu) { #define DBGFCOPYSEL(a_dbgfsel, a_cpumselreg) \ do { \ (a_dbgfsel).uBase = (a_cpumselreg).u64Base; \ (a_dbgfsel).uLimit = (a_cpumselreg).u32Limit; \ (a_dbgfsel).uAttr = (a_cpumselreg).Attr.u; \ (a_dbgfsel).uSel = (a_cpumselreg).Sel; \ } while (0) PVM pVM = pVCpu->CTX_SUFF(pVM); PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); pDbgfCpu->rax = pCtx->rax; pDbgfCpu->rbx = pCtx->rbx; pDbgfCpu->rcx = pCtx->rcx; pDbgfCpu->rdx = pCtx->rdx; pDbgfCpu->rsi = pCtx->rsi; pDbgfCpu->rdi = pCtx->rdi; pDbgfCpu->r8 = pCtx->r8; pDbgfCpu->r9 = pCtx->r9; pDbgfCpu->r10 = pCtx->r10; pDbgfCpu->r11 = pCtx->r11; pDbgfCpu->r12 = pCtx->r12; pDbgfCpu->r13 = pCtx->r13; pDbgfCpu->r14 = pCtx->r14; pDbgfCpu->r15 = pCtx->r15; pDbgfCpu->rip = pCtx->rip; pDbgfCpu->rsp = pCtx->rsp; pDbgfCpu->rbp = pCtx->rbp; pDbgfCpu->rflags = pCtx->rflags.u; DBGFCOPYSEL(pDbgfCpu->cs, pCtx->cs); DBGFCOPYSEL(pDbgfCpu->ds, pCtx->ds); DBGFCOPYSEL(pDbgfCpu->es, pCtx->es); DBGFCOPYSEL(pDbgfCpu->fs, pCtx->fs); DBGFCOPYSEL(pDbgfCpu->gs, pCtx->gs); DBGFCOPYSEL(pDbgfCpu->ss, pCtx->ss); pDbgfCpu->cr0 = pCtx->cr0; pDbgfCpu->cr2 = pCtx->cr2; pDbgfCpu->cr3 = pCtx->cr3; pDbgfCpu->cr4 = pCtx->cr4; AssertCompile(RT_ELEMENTS(pDbgfCpu->dr) == RT_ELEMENTS(pCtx->dr)); for (unsigned i = 0; i < RT_ELEMENTS(pDbgfCpu->dr); i++) pDbgfCpu->dr[i] = pCtx->dr[i]; pDbgfCpu->gdtr.uAddr = pCtx->gdtr.pGdt; pDbgfCpu->gdtr.cb = pCtx->gdtr.cbGdt; pDbgfCpu->idtr.uAddr = pCtx->idtr.pIdt; pDbgfCpu->idtr.cb = pCtx->idtr.cbIdt; DBGFCOPYSEL(pDbgfCpu->ldtr, pCtx->ldtr); DBGFCOPYSEL(pDbgfCpu->tr, pCtx->tr); pDbgfCpu->sysenter.cs = pCtx->SysEnter.cs; pDbgfCpu->sysenter.eip = pCtx->SysEnter.eip; pDbgfCpu->sysenter.esp = pCtx->SysEnter.esp; pDbgfCpu->msrEFER = pCtx->msrEFER; pDbgfCpu->msrSTAR = pCtx->msrSTAR; pDbgfCpu->msrPAT = pCtx->msrPAT; pDbgfCpu->msrLSTAR = pCtx->msrLSTAR; pDbgfCpu->msrCSTAR = pCtx->msrCSTAR; pDbgfCpu->msrSFMASK = pCtx->msrSFMASK; pDbgfCpu->msrKernelGSBase = pCtx->msrKERNELGSBASE; pDbgfCpu->msrApicBase = APICGetBaseMsrNoCheck(pVCpu); pDbgfCpu->aXcr[0] = pCtx->aXcr[0]; pDbgfCpu->aXcr[1] = pCtx->aXcr[1]; AssertCompile(sizeof(pDbgfCpu->ext) == sizeof(*pCtx->pXStateR3)); pDbgfCpu->cbExt = pVM->cpum.ro.GuestFeatures.cbMaxExtendedState; if (RT_LIKELY(pDbgfCpu->cbExt)) memcpy(&pDbgfCpu->ext, pCtx->pXStateR3, pDbgfCpu->cbExt); #undef DBGFCOPYSEL } /** * Worker function for dbgfR3CoreWrite() which does the writing. * * @returns VBox status code * @param pVM The cross context VM structure. * @param hFile The file to write to. Caller closes this. */ static int dbgfR3CoreWriteWorker(PVM pVM, RTFILE hFile) { /* * Collect core information. */ uint32_t const cu32MemRanges = dbgfR3GetRamRangeCount(pVM); uint16_t const cMemRanges = cu32MemRanges < UINT16_MAX - 1 ? cu32MemRanges : UINT16_MAX - 1; /* One PT_NOTE Program header */ uint16_t const cProgHdrs = cMemRanges + 1; DBGFCOREDESCRIPTOR CoreDescriptor; RT_ZERO(CoreDescriptor); CoreDescriptor.u32Magic = DBGFCORE_MAGIC; CoreDescriptor.u32FmtVersion = DBGFCORE_FMT_VERSION; CoreDescriptor.cbSelf = sizeof(CoreDescriptor); CoreDescriptor.u32VBoxVersion = VBOX_FULL_VERSION; CoreDescriptor.u32VBoxRevision = VMMGetSvnRev(); CoreDescriptor.cCpus = pVM->cCpus; Log((DBGFLOG_NAME ": CoreDescriptor Version=%u Revision=%u\n", CoreDescriptor.u32VBoxVersion, CoreDescriptor.u32VBoxRevision)); /* * Compute the file layout (see pg_dbgf_vmcore). */ uint64_t const offElfHdr = RTFileTell(hFile); uint64_t const offNoteSection = offElfHdr + sizeof(Elf64_Ehdr); uint64_t const offLoadSections = offNoteSection + sizeof(Elf64_Phdr); uint64_t const cbLoadSections = cMemRanges * sizeof(Elf64_Phdr); uint64_t const offCoreDescriptor = offLoadSections + cbLoadSections; uint64_t const cbCoreDescriptor = Elf64NoteSectionSize(g_pcszCoreVBoxCore, sizeof(CoreDescriptor)); uint64_t const offCpuDumps = offCoreDescriptor + cbCoreDescriptor; uint64_t const cbCpuDumps = pVM->cCpus * Elf64NoteSectionSize(g_pcszCoreVBoxCpu, sizeof(DBGFCORECPU)); uint64_t const offMemory = offCpuDumps + cbCpuDumps; uint64_t const offNoteSectionData = offCoreDescriptor; uint64_t const cbNoteSectionData = cbCoreDescriptor + cbCpuDumps; /* * Write ELF header. */ int rc = Elf64WriteElfHdr(hFile, cProgHdrs, 0 /* cSecHdrs */); if (RT_FAILURE(rc)) { LogRel((DBGFLOG_NAME ": Elf64WriteElfHdr failed. rc=%Rrc\n", rc)); return rc; } /* * Write PT_NOTE program header. */ Assert(RTFileTell(hFile) == offNoteSection); rc = Elf64WriteProgHdr(hFile, PT_NOTE, PF_R, offNoteSectionData, /* file offset to contents */ cbNoteSectionData, /* size in core file */ cbNoteSectionData, /* size in memory */ 0); /* physical address */ if (RT_FAILURE(rc)) { LogRel((DBGFLOG_NAME ": Elf64WritreProgHdr failed for PT_NOTE. rc=%Rrc\n", rc)); return rc; } /* * Write PT_LOAD program header for each memory range. */ Assert(RTFileTell(hFile) == offLoadSections); uint64_t offMemRange = offMemory; for (uint16_t iRange = 0; iRange < cMemRanges; iRange++) { RTGCPHYS GCPhysStart; RTGCPHYS GCPhysEnd; bool fIsMmio; rc = PGMR3PhysGetRange(pVM, iRange, &GCPhysStart, &GCPhysEnd, NULL /* pszDesc */, &fIsMmio); if (RT_FAILURE(rc)) { LogRel((DBGFLOG_NAME ": PGMR3PhysGetRange failed for iRange(%u) rc=%Rrc\n", iRange, rc)); return rc; } uint64_t cbMemRange = GCPhysEnd - GCPhysStart + 1; uint64_t cbFileRange = fIsMmio ? 0 : cbMemRange; Log((DBGFLOG_NAME ": PGMR3PhysGetRange iRange=%u GCPhysStart=%#x GCPhysEnd=%#x cbMemRange=%u\n", iRange, GCPhysStart, GCPhysEnd, cbMemRange)); rc = Elf64WriteProgHdr(hFile, PT_LOAD, PF_R, offMemRange, /* file offset to contents */ cbFileRange, /* size in core file */ cbMemRange, /* size in memory */ GCPhysStart); /* physical address */ if (RT_FAILURE(rc)) { LogRel((DBGFLOG_NAME ": Elf64WriteProgHdr failed for memory range(%u) cbFileRange=%u cbMemRange=%u rc=%Rrc\n", iRange, cbFileRange, cbMemRange, rc)); return rc; } offMemRange += cbFileRange; } /* * Write the Core descriptor note header and data. */ Assert(RTFileTell(hFile) == offCoreDescriptor); rc = Elf64WriteNoteHdr(hFile, NT_VBOXCORE, g_pcszCoreVBoxCore, &CoreDescriptor, sizeof(CoreDescriptor)); if (RT_FAILURE(rc)) { LogRel((DBGFLOG_NAME ": Elf64WriteNoteHdr failed for Note '%s' rc=%Rrc\n", g_pcszCoreVBoxCore, rc)); return rc; } /* * Write the CPU context note headers and data. * We allocate the DBGFCORECPU struct. rather than using the stack as it can be pretty large due to X86XSAVEAREA. */ Assert(RTFileTell(hFile) == offCpuDumps); PDBGFCORECPU pDbgfCoreCpu = (PDBGFCORECPU)RTMemAlloc(sizeof(*pDbgfCoreCpu)); if (RT_UNLIKELY(!pDbgfCoreCpu)) { LogRel((DBGFLOG_NAME ": Failed to alloc %u bytes for DBGFCORECPU\n", sizeof(*pDbgfCoreCpu))); return VERR_NO_MEMORY; } for (uint32_t iCpu = 0; iCpu < pVM->cCpus; iCpu++) { PVMCPU pVCpu = &pVM->aCpus[iCpu]; RT_BZERO(pDbgfCoreCpu, sizeof(*pDbgfCoreCpu)); dbgfR3GetCoreCpu(pVCpu, pDbgfCoreCpu); rc = Elf64WriteNoteHdr(hFile, NT_VBOXCPU, g_pcszCoreVBoxCpu, pDbgfCoreCpu, sizeof(*pDbgfCoreCpu)); if (RT_FAILURE(rc)) { LogRel((DBGFLOG_NAME ": Elf64WriteNoteHdr failed for vCPU[%u] rc=%Rrc\n", iCpu, rc)); RTMemFree(pDbgfCoreCpu); return rc; } } RTMemFree(pDbgfCoreCpu); pDbgfCoreCpu = NULL; /* * Write memory ranges. */ Assert(RTFileTell(hFile) == offMemory); for (uint16_t iRange = 0; iRange < cMemRanges; iRange++) { RTGCPHYS GCPhysStart; RTGCPHYS GCPhysEnd; bool fIsMmio; rc = PGMR3PhysGetRange(pVM, iRange, &GCPhysStart, &GCPhysEnd, NULL /* pszDesc */, &fIsMmio); if (RT_FAILURE(rc)) { LogRel((DBGFLOG_NAME ": PGMR3PhysGetRange(2) failed for iRange(%u) rc=%Rrc\n", iRange, rc)); return rc; } if (fIsMmio) continue; /* * Write page-by-page of this memory range. * * The read function may fail on MMIO ranges, we write these as zero * pages for now (would be nice to have the VGA bits there though). */ uint64_t cbMemRange = GCPhysEnd - GCPhysStart + 1; uint64_t cPages = cbMemRange >> PAGE_SHIFT; for (uint64_t iPage = 0; iPage < cPages; iPage++) { uint8_t abPage[PAGE_SIZE]; rc = PGMPhysSimpleReadGCPhys(pVM, abPage, GCPhysStart + (iPage << PAGE_SHIFT), sizeof(abPage)); if (RT_FAILURE(rc)) { if (rc != VERR_PGM_PHYS_PAGE_RESERVED) LogRel((DBGFLOG_NAME ": PGMPhysRead failed for iRange=%u iPage=%u. rc=%Rrc. Ignoring...\n", iRange, iPage, rc)); RT_ZERO(abPage); } rc = RTFileWrite(hFile, abPage, sizeof(abPage), NULL /* all */); if (RT_FAILURE(rc)) { LogRel((DBGFLOG_NAME ": RTFileWrite failed. iRange=%u iPage=%u rc=%Rrc\n", iRange, iPage, rc)); return rc; } } } return rc; } /** * EMT Rendezvous worker function for DBGFR3CoreWrite(). * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pvData Opaque data. * * @return VBox status code. */ static DECLCALLBACK(VBOXSTRICTRC) dbgfR3CoreWriteRendezvous(PVM pVM, PVMCPU pVCpu, void *pvData) { /* * Validate input. */ AssertReturn(pVM, VERR_INVALID_VM_HANDLE); AssertReturn(pVCpu, VERR_INVALID_VMCPU_HANDLE); AssertReturn(pvData, VERR_INVALID_POINTER); PDBGFCOREDATA pDbgfData = (PDBGFCOREDATA)pvData; /* * Create the core file. */ uint32_t fFlags = (pDbgfData->fReplaceFile ? RTFILE_O_CREATE_REPLACE : RTFILE_O_CREATE) | RTFILE_O_WRITE | RTFILE_O_DENY_ALL | (0600 << RTFILE_O_CREATE_MODE_SHIFT); RTFILE hFile; int rc = RTFileOpen(&hFile, pDbgfData->pszFilename, fFlags); if (RT_SUCCESS(rc)) { rc = dbgfR3CoreWriteWorker(pVM, hFile); RTFileClose(hFile); } else LogRel((DBGFLOG_NAME ": RTFileOpen failed for '%s' rc=%Rrc\n", pDbgfData->pszFilename, rc)); return rc; } /** * Write core dump of the guest. * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param pszFilename The name of the file to which the guest core * dump should be written. * @param fReplaceFile Whether to replace the file or not. * * @remarks The VM may need to be suspended before calling this function in * order to truly stop all device threads and drivers. This function * only synchronizes EMTs. */ VMMR3DECL(int) DBGFR3CoreWrite(PUVM pUVM, const char *pszFilename, bool fReplaceFile) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); AssertReturn(pszFilename, VERR_INVALID_HANDLE); /* * Pass the core write request down to EMT rendezvous which makes sure * other EMTs, if any, are not running. IO threads could still be running * but we don't care about them. */ DBGFCOREDATA CoreData; RT_ZERO(CoreData); CoreData.pszFilename = pszFilename; CoreData.fReplaceFile = fReplaceFile; int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, dbgfR3CoreWriteRendezvous, &CoreData); if (RT_SUCCESS(rc)) LogRel((DBGFLOG_NAME ": Successfully wrote guest core dump '%s'\n", pszFilename)); else LogRel((DBGFLOG_NAME ": Failed to write guest core dump '%s'. rc=%Rrc\n", pszFilename, rc)); return rc; }