/* $Id: PGMMap.cpp $ */ /** @file * PGM - Page Manager, Guest Context Mappings. */ /* * Copyright (C) 2006-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM #include #include #include "PGMInternal.h" #include #include "PGMInline.h" #include #include #include #include #include /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ #ifndef PGM_WITHOUT_MAPPINGS static void pgmR3MapClearPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iOldPDE); static void pgmR3MapSetPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE); static int pgmR3MapIntermediateCheckOne(PVM pVM, uintptr_t uAddress, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault); static void pgmR3MapIntermediateDoOne(PVM pVM, uintptr_t uAddress, RTHCPHYS HCPhys, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault); #else # define pgmR3MapClearPDEs(pVM, pMap, iNewPDE) do { } while (0) # define pgmR3MapSetPDEs(pVM, pMap, iNewPDE) do { } while (0) #endif /** * Creates a page table based mapping in GC. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPtr Virtual Address. (Page table aligned!) * @param cb Size of the range. Must be a 4MB aligned! * @param fFlags PGMR3MAPPT_FLAGS_UNMAPPABLE or 0. * @param pfnRelocate Relocation callback function. * @param pvUser User argument to the callback. * @param pszDesc Pointer to description string. This must not be freed. */ VMMR3DECL(int) PGMR3MapPT(PVM pVM, RTGCPTR GCPtr, uint32_t cb, uint32_t fFlags, PFNPGMRELOCATE pfnRelocate, void *pvUser, const char *pszDesc) { LogFlow(("PGMR3MapPT: GCPtr=%#x cb=%d fFlags=%#x pfnRelocate=%p pvUser=%p pszDesc=%s\n", GCPtr, cb, fFlags, pfnRelocate, pvUser, pszDesc)); AssertMsg(pVM->pgm.s.pInterPD, ("Paging isn't initialized, init order problems!\n")); /* * Validate input. * Note! The lower limit (1 MB) matches how pgmR3PhysMMIOExCreate works. */ Assert(!fFlags || fFlags == PGMR3MAPPT_FLAGS_UNMAPPABLE); AssertMsgReturn(cb >= _1M && cb <= _64M, ("Seriously? cb=%d (%#x)\n", cb, cb), VERR_OUT_OF_RANGE); cb = RT_ALIGN_32(cb, _4M); RTGCPTR GCPtrLast = GCPtr + cb - 1; AssertMsgReturn(GCPtrLast >= GCPtr, ("Range wraps! GCPtr=%x GCPtrLast=%x\n", GCPtr, GCPtrLast), VERR_INVALID_PARAMETER); AssertMsgReturn(!pVM->pgm.s.fMappingsFixed, ("Mappings are fixed! It's not possible to add new mappings at this time!\n"), VERR_PGM_MAPPINGS_FIXED); AssertPtrReturn(pfnRelocate, VERR_INVALID_PARAMETER); /* * Find list location. */ PPGMMAPPING pPrev = NULL; PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; while (pCur) { if (pCur->GCPtrLast >= GCPtr && pCur->GCPtr <= GCPtrLast) { AssertMsgFailed(("Address is already in use by %s. req %#x-%#x take %#x-%#x\n", pCur->pszDesc, GCPtr, GCPtrLast, pCur->GCPtr, pCur->GCPtrLast)); LogRel(("VERR_PGM_MAPPING_CONFLICT: Address is already in use by %s. req %#x-%#x take %#x-%#x\n", pCur->pszDesc, GCPtr, GCPtrLast, pCur->GCPtr, pCur->GCPtrLast)); return VERR_PGM_MAPPING_CONFLICT; } if (pCur->GCPtr > GCPtr) break; pPrev = pCur; pCur = pCur->pNextR3; } /* * Check for conflicts with intermediate mappings. */ const unsigned iPageDir = GCPtr >> X86_PD_SHIFT; const unsigned cPTs = cb >> X86_PD_SHIFT; if (pVM->pgm.s.fFinalizedMappings) { for (unsigned i = 0; i < cPTs; i++) if (pVM->pgm.s.pInterPD->a[iPageDir + i].n.u1Present) { AssertMsgFailed(("Address %#x is already in use by an intermediate mapping.\n", GCPtr + (i << PAGE_SHIFT))); LogRel(("VERR_PGM_MAPPING_CONFLICT: Address %#x is already in use by an intermediate mapping.\n", GCPtr + (i << PAGE_SHIFT))); return VERR_PGM_MAPPING_CONFLICT; } /** @todo AMD64: add check in PAE structures too, so we can remove all the 32-Bit paging stuff there. */ } /* * Allocate and initialize the new list node. */ PPGMMAPPING pNew; int rc; if (fFlags & PGMR3MAPPT_FLAGS_UNMAPPABLE) rc = MMHyperAlloc( pVM, RT_UOFFSETOF_DYN(PGMMAPPING, aPTs[cPTs]), 0, MM_TAG_PGM_MAPPINGS, (void **)&pNew); else rc = MMR3HyperAllocOnceNoRel(pVM, RT_UOFFSETOF_DYN(PGMMAPPING, aPTs[cPTs]), 0, MM_TAG_PGM_MAPPINGS, (void **)&pNew); if (RT_FAILURE(rc)) return rc; pNew->GCPtr = GCPtr; pNew->GCPtrLast = GCPtrLast; pNew->cb = cb; pNew->pfnRelocate = pfnRelocate; pNew->pvUser = pvUser; pNew->pszDesc = pszDesc; pNew->cPTs = cPTs; /* * Allocate page tables and insert them into the page directories. * (One 32-bit PT and two PAE PTs.) */ uint8_t *pbPTs; if (fFlags & PGMR3MAPPT_FLAGS_UNMAPPABLE) rc = MMHyperAlloc( pVM, PAGE_SIZE * 3 * cPTs, PAGE_SIZE, MM_TAG_PGM_MAPPINGS, (void **)&pbPTs); else rc = MMR3HyperAllocOnceNoRel(pVM, PAGE_SIZE * 3 * cPTs, PAGE_SIZE, MM_TAG_PGM_MAPPINGS, (void **)&pbPTs); if (RT_FAILURE(rc)) { MMHyperFree(pVM, pNew); return VERR_NO_MEMORY; } /* * Init the page tables and insert them into the page directories. */ Log4(("PGMR3MapPT: GCPtr=%RGv cPTs=%u pbPTs=%p\n", GCPtr, cPTs, pbPTs)); for (unsigned i = 0; i < cPTs; i++) { /* * 32-bit. */ pNew->aPTs[i].pPTR3 = (PX86PT)pbPTs; pNew->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pNew->aPTs[i].pPTR3); pNew->aPTs[i].pPTR0 = MMHyperR3ToR0(pVM, pNew->aPTs[i].pPTR3); pNew->aPTs[i].HCPhysPT = MMR3HyperHCVirt2HCPhys(pVM, pNew->aPTs[i].pPTR3); pbPTs += PAGE_SIZE; Log4(("PGMR3MapPT: i=%d: pPTR3=%RHv pPTRC=%RRv pPRTR0=%RHv HCPhysPT=%RHp\n", i, pNew->aPTs[i].pPTR3, pNew->aPTs[i].pPTRC, pNew->aPTs[i].pPTR0, pNew->aPTs[i].HCPhysPT)); /* * PAE. */ pNew->aPTs[i].HCPhysPaePT0 = MMR3HyperHCVirt2HCPhys(pVM, pbPTs); pNew->aPTs[i].HCPhysPaePT1 = MMR3HyperHCVirt2HCPhys(pVM, pbPTs + PAGE_SIZE); pNew->aPTs[i].paPaePTsR3 = (PPGMSHWPTPAE)pbPTs; pNew->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pbPTs); pNew->aPTs[i].paPaePTsR0 = MMHyperR3ToR0(pVM, pbPTs); pbPTs += PAGE_SIZE * 2; Log4(("PGMR3MapPT: i=%d: paPaePTsR#=%RHv paPaePTsRC=%RRv paPaePTsR#=%RHv HCPhysPaePT0=%RHp HCPhysPaePT1=%RHp\n", i, pNew->aPTs[i].paPaePTsR3, pNew->aPTs[i].paPaePTsRC, pNew->aPTs[i].paPaePTsR0, pNew->aPTs[i].HCPhysPaePT0, pNew->aPTs[i].HCPhysPaePT1)); } if (pVM->pgm.s.fFinalizedMappings) pgmR3MapSetPDEs(pVM, pNew, iPageDir); /* else PGMR3FinalizeMappings() */ /* * Insert the new mapping. */ pNew->pNextR3 = pCur; pNew->pNextRC = pCur ? MMHyperR3ToRC(pVM, pCur) : NIL_RTRCPTR; pNew->pNextR0 = pCur ? MMHyperR3ToR0(pVM, pCur) : NIL_RTR0PTR; if (pPrev) { pPrev->pNextR3 = pNew; pPrev->pNextRC = MMHyperR3ToRC(pVM, pNew); pPrev->pNextR0 = MMHyperR3ToR0(pVM, pNew); } else { pVM->pgm.s.pMappingsR3 = pNew; pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pNew); pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pNew); } for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); } return VINF_SUCCESS; } #ifdef VBOX_WITH_UNUSED_CODE /** * Removes a page table based mapping. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPtr Virtual Address. (Page table aligned!) * * @remarks Don't call this without passing PGMR3MAPPT_FLAGS_UNMAPPABLE to * PGMR3MapPT or you'll burn in the heap. */ VMMR3DECL(int) PGMR3UnmapPT(PVM pVM, RTGCPTR GCPtr) { LogFlow(("PGMR3UnmapPT: GCPtr=%#x\n", GCPtr)); AssertReturn(pVM->pgm.s.fFinalizedMappings, VERR_WRONG_ORDER); /* * Find it. */ PPGMMAPPING pPrev = NULL; PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; while (pCur) { if (pCur->GCPtr == GCPtr) { /* * Unlink it. */ if (pPrev) { pPrev->pNextR3 = pCur->pNextR3; pPrev->pNextRC = pCur->pNextRC; pPrev->pNextR0 = pCur->pNextR0; } else { pVM->pgm.s.pMappingsR3 = pCur->pNextR3; pVM->pgm.s.pMappingsRC = pCur->pNextRC; pVM->pgm.s.pMappingsR0 = pCur->pNextR0; } /* * Free the page table memory, clear page directory entries * and free the page tables and node memory. */ MMHyperFree(pVM, pCur->aPTs[0].pPTR3); if (pCur->GCPtr != NIL_RTGCPTR) pgmR3MapClearPDEs(pVM, pCur, pCur->GCPtr >> X86_PD_SHIFT); MMHyperFree(pVM, pCur); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); } return VINF_SUCCESS; } /* done? */ if (pCur->GCPtr > GCPtr) break; /* next */ pPrev = pCur; pCur = pCur->pNextR3; } AssertMsgFailed(("No mapping for %#x found!\n", GCPtr)); return VERR_INVALID_PARAMETER; } #endif /* unused */ /** * Checks whether a range of PDEs in the intermediate * memory context are unused. * * We're talking 32-bit PDEs here. * * @returns true/false. * @param pVM The cross context VM structure. * @param iPD The first PDE in the range. * @param cPTs The number of PDEs in the range. */ DECLINLINE(bool) pgmR3AreIntermediatePDEsUnused(PVM pVM, unsigned iPD, unsigned cPTs) { if (pVM->pgm.s.pInterPD->a[iPD].n.u1Present) return false; while (cPTs > 1) { iPD++; if (pVM->pgm.s.pInterPD->a[iPD].n.u1Present) return false; cPTs--; } return true; } /** * Unlinks the mapping. * * The mapping *must* be in the list. * * @param pVM The cross context VM structure. * @param pMapping The mapping to unlink. */ static void pgmR3MapUnlink(PVM pVM, PPGMMAPPING pMapping) { PPGMMAPPING pAfterThis = pVM->pgm.s.pMappingsR3; if (pAfterThis == pMapping) { /* head */ pVM->pgm.s.pMappingsR3 = pMapping->pNextR3; pVM->pgm.s.pMappingsRC = pMapping->pNextRC; pVM->pgm.s.pMappingsR0 = pMapping->pNextR0; } else { /* in the list */ while (pAfterThis->pNextR3 != pMapping) { pAfterThis = pAfterThis->pNextR3; AssertReleaseReturnVoid(pAfterThis); } pAfterThis->pNextR3 = pMapping->pNextR3; pAfterThis->pNextRC = pMapping->pNextRC; pAfterThis->pNextR0 = pMapping->pNextR0; } } /** * Links the mapping. * * @param pVM The cross context VM structure. * @param pMapping The mapping to linked. */ static void pgmR3MapLink(PVM pVM, PPGMMAPPING pMapping) { /* * Find the list location (it's sorted by GCPhys) and link it in. */ if ( !pVM->pgm.s.pMappingsR3 || pVM->pgm.s.pMappingsR3->GCPtr > pMapping->GCPtr) { /* head */ pMapping->pNextR3 = pVM->pgm.s.pMappingsR3; pMapping->pNextRC = pVM->pgm.s.pMappingsRC; pMapping->pNextR0 = pVM->pgm.s.pMappingsR0; pVM->pgm.s.pMappingsR3 = pMapping; pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pMapping); pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pMapping); } else { /* in the list */ PPGMMAPPING pAfterThis = pVM->pgm.s.pMappingsR3; PPGMMAPPING pBeforeThis = pAfterThis->pNextR3; while (pBeforeThis && pBeforeThis->GCPtr <= pMapping->GCPtr) { pAfterThis = pBeforeThis; pBeforeThis = pBeforeThis->pNextR3; } pMapping->pNextR3 = pAfterThis->pNextR3; pMapping->pNextRC = pAfterThis->pNextRC; pMapping->pNextR0 = pAfterThis->pNextR0; pAfterThis->pNextR3 = pMapping; pAfterThis->pNextRC = MMHyperR3ToRC(pVM, pMapping); pAfterThis->pNextR0 = MMHyperR3ToR0(pVM, pMapping); } } /** * Finalizes the intermediate context. * * This is called at the end of the ring-3 init and will construct the * intermediate paging structures, relocating all the mappings in the process. * * @returns VBox status code. * @param pVM The cross context VM structure. * @thread EMT(0) */ VMMR3DECL(int) PGMR3FinalizeMappings(PVM pVM) { AssertReturn(!pVM->pgm.s.fFinalizedMappings, VERR_WRONG_ORDER); pVM->pgm.s.fFinalizedMappings = true; /* * Loop until all mappings have been finalized. */ #if 0 unsigned iPDNext = UINT32_C(0xc0000000) >> X86_PD_SHIFT; /* makes CSAM/PATM freak out booting linux. :-/ */ #elif 0 unsigned iPDNext = MM_HYPER_AREA_ADDRESS >> X86_PD_SHIFT; #else unsigned iPDNext = 1 << X86_PD_SHIFT; /* no hint, map them from the top. */ #endif PPGMMAPPING pCur; do { pCur = pVM->pgm.s.pMappingsR3; while (pCur) { if (!pCur->fFinalized) { /* * Find a suitable location. */ RTGCPTR const GCPtrOld = pCur->GCPtr; const unsigned cPTs = pCur->cPTs; unsigned iPDNew = iPDNext; if ( iPDNew + cPTs >= X86_PG_ENTRIES /* exclude the last PD */ || !pgmR3AreIntermediatePDEsUnused(pVM, iPDNew, cPTs) || !pCur->pfnRelocate(pVM, GCPtrOld, (RTGCPTR)iPDNew << X86_PD_SHIFT, PGMRELOCATECALL_SUGGEST, pCur->pvUser)) { /* No luck, just scan down from 4GB-4MB, giving up at 4MB. */ iPDNew = X86_PG_ENTRIES - cPTs - 1; while ( iPDNew > 0 && ( !pgmR3AreIntermediatePDEsUnused(pVM, iPDNew, cPTs) || !pCur->pfnRelocate(pVM, GCPtrOld, (RTGCPTR)iPDNew << X86_PD_SHIFT, PGMRELOCATECALL_SUGGEST, pCur->pvUser)) ) iPDNew--; AssertLogRelReturn(iPDNew != 0, VERR_PGM_INTERMEDIATE_PAGING_CONFLICT); } /* * Relocate it (something akin to pgmR3MapRelocate). */ pgmR3MapSetPDEs(pVM, pCur, iPDNew); /* unlink the mapping, update the entry and relink it. */ pgmR3MapUnlink(pVM, pCur); RTGCPTR const GCPtrNew = (RTGCPTR)iPDNew << X86_PD_SHIFT; pCur->GCPtr = GCPtrNew; pCur->GCPtrLast = GCPtrNew + pCur->cb - 1; pCur->fFinalized = true; pgmR3MapLink(pVM, pCur); /* Finally work the callback. */ pCur->pfnRelocate(pVM, GCPtrOld, GCPtrNew, PGMRELOCATECALL_RELOCATE, pCur->pvUser); /* * The list order might have changed, start from the beginning again. */ iPDNext = iPDNew + cPTs; break; } /* next */ pCur = pCur->pNextR3; } } while (pCur); return VINF_SUCCESS; } /** * Gets the size of the current guest mappings if they were to be * put next to one another. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pcb Where to store the size. */ VMMR3DECL(int) PGMR3MappingsSize(PVM pVM, uint32_t *pcb) { RTGCPTR cb = 0; #ifndef PGM_WITHOUT_MAPPINGS for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3) cb += pCur->cb; #else RT_NOREF(pVM); #endif *pcb = cb; AssertReturn(*pcb == cb, VERR_NUMBER_TOO_BIG); Log(("PGMR3MappingsSize: return %d (%#x) bytes\n", cb, cb)); return VINF_SUCCESS; } /** * Fixates the guest context mappings in a range reserved from the Guest OS. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPtrBase The address of the reserved range of guest memory. * @param cb The size of the range starting at GCPtrBase. */ VMMR3DECL(int) PGMR3MappingsFix(PVM pVM, RTGCPTR GCPtrBase, uint32_t cb) { Log(("PGMR3MappingsFix: GCPtrBase=%RGv cb=%#x (fMappingsFixed=%RTbool MappingEnabled=%RTbool)\n", GCPtrBase, cb, pVM->pgm.s.fMappingsFixed, pgmMapAreMappingsEnabled(pVM))); #ifndef PGM_WITHOUT_MAPPINGS if (pgmMapAreMappingsEnabled(pVM)) { /* * Only applies to VCPU 0 as we don't support SMP guests with raw mode. */ Assert(pVM->cCpus == 1); PVMCPU pVCpu = &pVM->aCpus[0]; /* * Before we do anything we'll do a forced PD sync to try make sure any * pending relocations because of these mappings have been resolved. */ PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true); return pgmR3MappingsFixInternal(pVM, GCPtrBase, cb); } #else /* PGM_WITHOUT_MAPPINGS */ RT_NOREF(pVM, GCPtrBase, cb); #endif /* PGM_WITHOUT_MAPPINGS */ Assert(!VM_IS_RAW_MODE_ENABLED(pVM)); return VINF_SUCCESS; } #ifndef PGM_WITHOUT_MAPPINGS /** * Internal worker for PGMR3MappingsFix and pgmR3Load. * * (This does not perform a SyncCR3 before the fixation like PGMR3MappingsFix.) * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPtrBase The address of the reserved range of guest memory. * @param cb The size of the range starting at GCPtrBase. */ int pgmR3MappingsFixInternal(PVM pVM, RTGCPTR GCPtrBase, uint32_t cb) { /* * Check input arguments and pre-conditions. */ AssertMsgReturn(!(GCPtrBase & X86_PAGE_4M_OFFSET_MASK), ("GCPtrBase (%#x) has to be aligned on a 4MB address!\n", GCPtrBase), VERR_INVALID_PARAMETER); AssertMsgReturn(cb && !(cb & X86_PAGE_4M_OFFSET_MASK), ("cb (%#x) is 0 or not aligned on a 4MB address!\n", cb), VERR_INVALID_PARAMETER); AssertReturn(pgmMapAreMappingsEnabled(pVM), VERR_PGM_MAPPINGS_DISABLED); AssertReturn(pVM->cCpus == 1, VERR_PGM_MAPPINGS_SMP); /* * Check that it's not conflicting with a core code mapping in the intermediate page table. */ unsigned iPDNew = GCPtrBase >> X86_PD_SHIFT; unsigned i = cb >> X86_PD_SHIFT; while (i-- > 0) { if (pVM->pgm.s.pInterPD->a[iPDNew + i].n.u1Present) { /* Check that it's not one or our mappings. */ PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; while (pCur) { if (iPDNew + i - (pCur->GCPtr >> X86_PD_SHIFT) < (pCur->cb >> X86_PD_SHIFT)) break; pCur = pCur->pNextR3; } if (!pCur) { LogRel(("PGMR3MappingsFix: Conflicts with intermediate PDE %#x (GCPtrBase=%RGv cb=%#zx). The guest should retry.\n", iPDNew + i, GCPtrBase, cb)); return VERR_PGM_MAPPINGS_FIX_CONFLICT; } } } /* * In PAE / PAE mode, make sure we don't cross page directories. */ PVMCPU pVCpu = &pVM->aCpus[0]; if ( ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX) && ( pVCpu->pgm.s.enmShadowMode == PGMMODE_PAE || pVCpu->pgm.s.enmShadowMode == PGMMODE_PAE_NX)) { unsigned iPdptBase = GCPtrBase >> X86_PDPT_SHIFT; unsigned iPdptLast = (GCPtrBase + cb - 1) >> X86_PDPT_SHIFT; if (iPdptBase != iPdptLast) { LogRel(("PGMR3MappingsFix: Crosses PD boundary; iPdptBase=%#x iPdptLast=%#x (GCPtrBase=%RGv cb=%#zx). The guest should retry.\n", iPdptBase, iPdptLast, GCPtrBase, cb)); return VERR_PGM_MAPPINGS_FIX_CONFLICT; } } /* * Loop the mappings and check that they all agree on their new locations. */ RTGCPTR GCPtrCur = GCPtrBase; PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; while (pCur) { if (!pCur->pfnRelocate(pVM, pCur->GCPtr, GCPtrCur, PGMRELOCATECALL_SUGGEST, pCur->pvUser)) { AssertMsgFailed(("The suggested fixed address %#x was rejected by '%s'!\n", GCPtrCur, pCur->pszDesc)); return VERR_PGM_MAPPINGS_FIX_REJECTED; } /* next */ GCPtrCur += pCur->cb; pCur = pCur->pNextR3; } if (GCPtrCur > GCPtrBase + cb) { AssertMsgFailed(("cb (%#x) is less than the required range %#x!\n", cb, GCPtrCur - GCPtrBase)); return VERR_PGM_MAPPINGS_FIX_TOO_SMALL; } /* * Loop the table assigning the mappings to the passed in memory * and call their relocator callback. */ GCPtrCur = GCPtrBase; pCur = pVM->pgm.s.pMappingsR3; while (pCur) { RTGCPTR const GCPtrOld = pCur->GCPtr; /* * Relocate the page table(s). */ if (pCur->GCPtr != NIL_RTGCPTR) pgmR3MapClearPDEs(pVM, pCur, GCPtrOld >> X86_PD_SHIFT); pgmR3MapSetPDEs(pVM, pCur, GCPtrCur >> X86_PD_SHIFT); /* * Update the entry. */ pCur->GCPtr = GCPtrCur; pCur->GCPtrLast = GCPtrCur + pCur->cb - 1; /* * Callback to execute the relocation. */ pCur->pfnRelocate(pVM, GCPtrOld, GCPtrCur, PGMRELOCATECALL_RELOCATE, pCur->pvUser); /* * Advance. */ GCPtrCur += pCur->cb; pCur = pCur->pNextR3; } /* * Mark the mappings as fixed at this new location and return. */ pVM->pgm.s.fMappingsFixed = true; pVM->pgm.s.fMappingsFixedRestored = false; pVM->pgm.s.GCPtrMappingFixed = GCPtrBase; pVM->pgm.s.cbMappingFixed = cb; for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3; VMCPU_FF_SET(&pVM->aCpus[idCpu], VMCPU_FF_PGM_SYNC_CR3); } return VINF_SUCCESS; } #endif /*!PGM_WITHOUT_MAPPINGS*/ /** * Unfixes the mappings. * * Unless PGMR3MappingsDisable is in effect, mapping conflict detection will be * enabled after this call. If the mappings are fixed, a full CR3 resync will * take place afterwards. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) PGMR3MappingsUnfix(PVM pVM) { Log(("PGMR3MappingsUnfix: fMappingsFixed=%RTbool MappingsEnabled=%RTbool\n", pVM->pgm.s.fMappingsFixed, pgmMapAreMappingsEnabled(pVM))); if ( pgmMapAreMappingsEnabled(pVM) && ( pVM->pgm.s.fMappingsFixed || pVM->pgm.s.fMappingsFixedRestored) ) { bool const fResyncCR3 = pVM->pgm.s.fMappingsFixed; pVM->pgm.s.fMappingsFixed = false; pVM->pgm.s.fMappingsFixedRestored = false; pVM->pgm.s.GCPtrMappingFixed = 0; pVM->pgm.s.cbMappingFixed = 0; if (fResyncCR3) for (VMCPUID i = 0; i < pVM->cCpus; i++) VMCPU_FF_SET(&pVM->aCpus[i], VMCPU_FF_PGM_SYNC_CR3); } return VINF_SUCCESS; } /** * Checks if the mappings needs re-fixing after a restore. * * @returns true if they need, false if not. * @param pVM The cross context VM structure. */ VMMR3DECL(bool) PGMR3MappingsNeedReFixing(PVM pVM) { VM_ASSERT_VALID_EXT_RETURN(pVM, false); return pVM->pgm.s.fMappingsFixedRestored; } #ifndef PGM_WITHOUT_MAPPINGS /** * Map pages into the intermediate context (switcher code). * * These pages are mapped at both the give virtual address and at the physical * address (for identity mapping). * * @returns VBox status code. * @param pVM The cross context VM structure. * @param Addr Intermediate context address of the mapping. * @param HCPhys Start of the range of physical pages. This must be entriely below 4GB! * @param cbPages Number of bytes to map. * * @remark This API shall not be used to anything but mapping the switcher code. */ VMMR3DECL(int) PGMR3MapIntermediate(PVM pVM, RTUINTPTR Addr, RTHCPHYS HCPhys, unsigned cbPages) { LogFlow(("PGMR3MapIntermediate: Addr=%RTptr HCPhys=%RHp cbPages=%#x\n", Addr, HCPhys, cbPages)); /* * Adjust input. */ cbPages += (uint32_t)HCPhys & PAGE_OFFSET_MASK; cbPages = RT_ALIGN(cbPages, PAGE_SIZE); HCPhys &= X86_PTE_PAE_PG_MASK; Addr &= PAGE_BASE_MASK; /* We only care about the first 4GB, because on AMD64 we'll be repeating them all over the address space. */ uint32_t uAddress = (uint32_t)Addr; /* * Assert input and state. */ AssertMsg(pVM->pgm.s.offVM, ("Bad init order\n")); AssertMsg(pVM->pgm.s.pInterPD, ("Bad init order, paging.\n")); AssertMsg(cbPages <= (512 << PAGE_SHIFT), ("The mapping is too big %d bytes\n", cbPages)); AssertMsg(HCPhys < _4G && HCPhys + cbPages < _4G, ("Addr=%RTptr HCPhys=%RHp cbPages=%d\n", Addr, HCPhys, cbPages)); AssertReturn(!pVM->pgm.s.fFinalizedMappings, VERR_WRONG_ORDER); /* * Check for internal conflicts between the virtual address and the physical address. * A 1:1 mapping is fine, but partial overlapping is a no-no. */ if ( uAddress != HCPhys && ( uAddress < HCPhys ? HCPhys - uAddress < cbPages : uAddress - HCPhys < cbPages ) ) AssertLogRelMsgFailedReturn(("Addr=%RTptr HCPhys=%RHp cbPages=%d\n", Addr, HCPhys, cbPages), VERR_PGM_INTERMEDIATE_PAGING_CONFLICT); const unsigned cPages = cbPages >> PAGE_SHIFT; int rc = pgmR3MapIntermediateCheckOne(pVM, uAddress, cPages, pVM->pgm.s.apInterPTs[0], pVM->pgm.s.apInterPaePTs[0]); if (RT_FAILURE(rc)) return rc; rc = pgmR3MapIntermediateCheckOne(pVM, (uintptr_t)HCPhys, cPages, pVM->pgm.s.apInterPTs[1], pVM->pgm.s.apInterPaePTs[1]); if (RT_FAILURE(rc)) return rc; /* * Everythings fine, do the mapping. */ pgmR3MapIntermediateDoOne(pVM, uAddress, HCPhys, cPages, pVM->pgm.s.apInterPTs[0], pVM->pgm.s.apInterPaePTs[0]); pgmR3MapIntermediateDoOne(pVM, (uintptr_t)HCPhys, HCPhys, cPages, pVM->pgm.s.apInterPTs[1], pVM->pgm.s.apInterPaePTs[1]); return VINF_SUCCESS; } /** * Validates that there are no conflicts for this mapping into the intermediate context. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param uAddress Address of the mapping. * @param cPages Number of pages. * @param pPTDefault Pointer to the default page table for this mapping. * @param pPTPaeDefault Pointer to the default page table for this mapping. */ static int pgmR3MapIntermediateCheckOne(PVM pVM, uintptr_t uAddress, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault) { AssertMsg((uAddress >> X86_PD_SHIFT) + cPages <= 1024, ("64-bit fixme uAddress=%RGv cPages=%u\n", uAddress, cPages)); /* * Check that the ranges are available. * (This code doesn't have to be fast.) */ while (cPages > 0) { /* * 32-Bit. */ unsigned iPDE = (uAddress >> X86_PD_SHIFT) & X86_PD_MASK; unsigned iPTE = (uAddress >> X86_PT_SHIFT) & X86_PT_MASK; PX86PT pPT = pPTDefault; if (pVM->pgm.s.pInterPD->a[iPDE].u) { RTHCPHYS HCPhysPT = pVM->pgm.s.pInterPD->a[iPDE].u & X86_PDE_PG_MASK; if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0])) pPT = pVM->pgm.s.apInterPTs[0]; else if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1])) pPT = pVM->pgm.s.apInterPTs[1]; else { /** @todo this must be handled with a relocation of the conflicting mapping! * Which of course cannot be done because we're in the middle of the initialization. bad design! */ AssertLogRelMsgFailedReturn(("Conflict between core code and PGMR3Mapping(). uAddress=%RHv\n", uAddress), VERR_PGM_INTERMEDIATE_PAGING_CONFLICT); } } if (pPT->a[iPTE].u) AssertLogRelMsgFailedReturn(("Conflict iPTE=%#x iPDE=%#x uAddress=%RHv pPT->a[iPTE].u=%RX32\n", iPTE, iPDE, uAddress, pPT->a[iPTE].u), VERR_PGM_INTERMEDIATE_PAGING_CONFLICT); /* * PAE. */ const unsigned iPDPE= (uAddress >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; iPDE = (uAddress >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; iPTE = (uAddress >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK; Assert(iPDPE < 4); Assert(pVM->pgm.s.apInterPaePDs[iPDPE]); PX86PTPAE pPTPae = pPTPaeDefault; if (pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u) { RTHCPHYS HCPhysPT = pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u & X86_PDE_PAE_PG_MASK; if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0])) pPTPae = pVM->pgm.s.apInterPaePTs[0]; else if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0])) pPTPae = pVM->pgm.s.apInterPaePTs[1]; else { /** @todo this must be handled with a relocation of the conflicting mapping! * Which of course cannot be done because we're in the middle of the initialization. bad design! */ AssertLogRelMsgFailedReturn(("Conflict between core code and PGMR3Mapping(). uAddress=%RHv\n", uAddress), VERR_PGM_INTERMEDIATE_PAGING_CONFLICT); } } if (pPTPae->a[iPTE].u) AssertLogRelMsgFailedReturn(("Conflict iPTE=%#x iPDE=%#x uAddress=%RHv pPTPae->a[iPTE].u=%#RX64\n", iPTE, iPDE, uAddress, pPTPae->a[iPTE].u), VERR_PGM_INTERMEDIATE_PAGING_CONFLICT); /* next */ uAddress += PAGE_SIZE; cPages--; } return VINF_SUCCESS; } /** * Sets up the intermediate page tables for a verified mapping. * * @param pVM The cross context VM structure. * @param uAddress Address of the mapping. * @param HCPhys The physical address of the page range. * @param cPages Number of pages. * @param pPTDefault Pointer to the default page table for this mapping. * @param pPTPaeDefault Pointer to the default page table for this mapping. */ static void pgmR3MapIntermediateDoOne(PVM pVM, uintptr_t uAddress, RTHCPHYS HCPhys, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault) { while (cPages > 0) { /* * 32-Bit. */ unsigned iPDE = (uAddress >> X86_PD_SHIFT) & X86_PD_MASK; unsigned iPTE = (uAddress >> X86_PT_SHIFT) & X86_PT_MASK; PX86PT pPT; if (pVM->pgm.s.pInterPD->a[iPDE].u) pPT = (PX86PT)MMPagePhys2Page(pVM, pVM->pgm.s.pInterPD->a[iPDE].u & X86_PDE_PG_MASK); else { pVM->pgm.s.pInterPD->a[iPDE].u = X86_PDE_P | X86_PDE_A | X86_PDE_RW | (uint32_t)MMPage2Phys(pVM, pPTDefault); pPT = pPTDefault; } pPT->a[iPTE].u = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D | (uint32_t)HCPhys; /* * PAE */ const unsigned iPDPE= (uAddress >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE; iPDE = (uAddress >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; iPTE = (uAddress >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK; Assert(iPDPE < 4); Assert(pVM->pgm.s.apInterPaePDs[iPDPE]); PX86PTPAE pPTPae; if (pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u) pPTPae = (PX86PTPAE)MMPagePhys2Page(pVM, pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u & X86_PDE_PAE_PG_MASK); else { pPTPae = pPTPaeDefault; pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u = X86_PDE_P | X86_PDE_A | X86_PDE_RW | MMPage2Phys(pVM, pPTPaeDefault); } pPTPae->a[iPTE].u = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D | HCPhys; /* next */ cPages--; HCPhys += PAGE_SIZE; uAddress += PAGE_SIZE; } } /** * Clears all PDEs involved with the mapping in the shadow and intermediate page tables. * * @param pVM The cross context VM structure. * @param pMap Pointer to the mapping in question. * @param iOldPDE The index of the 32-bit PDE corresponding to the base of the mapping. */ static void pgmR3MapClearPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iOldPDE) { unsigned i = pMap->cPTs; PVMCPU pVCpu = VMMGetCpu(pVM); pgmLock(pVM); /* to avoid assertions */ pgmMapClearShadowPDEs(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pMap, iOldPDE, false /*fDeactivateCR3*/); iOldPDE += i; while (i-- > 0) { iOldPDE--; /* * 32-bit. */ pVM->pgm.s.pInterPD->a[iOldPDE].u = 0; /* * PAE. */ const unsigned iPD = iOldPDE / 256; /* iOldPDE * 2 / 512; iOldPDE is in 4 MB pages */ unsigned iPDE = iOldPDE * 2 % 512; pVM->pgm.s.apInterPaePDs[iPD]->a[iPDE].u = 0; iPDE++; AssertFatal(iPDE < 512); pVM->pgm.s.apInterPaePDs[iPD]->a[iPDE].u = 0; } pgmUnlock(pVM); } /** * Sets all PDEs involved with the mapping in the shadow and intermediate page tables. * * @param pVM The cross context VM structure. * @param pMap Pointer to the mapping in question. * @param iNewPDE The index of the 32-bit PDE corresponding to the base of the mapping. */ static void pgmR3MapSetPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE) { PPGM pPGM = &pVM->pgm.s; #ifdef VBOX_STRICT PVMCPU pVCpu = VMMGetCpu(pVM); #endif pgmLock(pVM); /* to avoid assertions */ Assert(!pgmMapAreMappingsEnabled(pVM) || PGMGetGuestMode(pVCpu) <= PGMMODE_PAE_NX); pgmMapSetShadowPDEs(pVM, pMap, iNewPDE); /* * Init the page tables and insert them into the page directories. */ unsigned i = pMap->cPTs; iNewPDE += i; while (i-- > 0) { iNewPDE--; /* * 32-bit. */ X86PDE Pde; /* Default mapping page directory flags are read/write and supervisor; individual page attributes determine the final flags */ Pde.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | (uint32_t)pMap->aPTs[i].HCPhysPT; pPGM->pInterPD->a[iNewPDE] = Pde; /* * PAE. */ const unsigned iPD = iNewPDE / 256; unsigned iPDE = iNewPDE * 2 % 512; X86PDEPAE PdePae0; PdePae0.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | pMap->aPTs[i].HCPhysPaePT0; pPGM->apInterPaePDs[iPD]->a[iPDE] = PdePae0; iPDE++; AssertFatal(iPDE < 512); X86PDEPAE PdePae1; PdePae1.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | pMap->aPTs[i].HCPhysPaePT1; pPGM->apInterPaePDs[iPD]->a[iPDE] = PdePae1; } pgmUnlock(pVM); } /** * Relocates a mapping to a new address. * * @param pVM The cross context VM structure. * @param pMapping The mapping to relocate. * @param GCPtrOldMapping The address of the start of the old mapping. * NIL_RTGCPTR if not currently mapped. * @param GCPtrNewMapping The address of the start of the new mapping. */ static void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping) { Log(("PGM: Relocating %s from %RGv to %RGv\n", pMapping->pszDesc, GCPtrOldMapping, GCPtrNewMapping)); AssertMsg(GCPtrOldMapping == pMapping->GCPtr, ("%RGv vs %RGv\n", GCPtrOldMapping, pMapping->GCPtr)); AssertMsg((GCPtrOldMapping >> X86_PD_SHIFT) < X86_PG_ENTRIES, ("%RGv\n", GCPtrOldMapping)); AssertMsg((GCPtrNewMapping >> X86_PD_SHIFT) < X86_PG_ENTRIES, ("%RGv\n", GCPtrOldMapping)); /* * Relocate the page table(s). */ if (GCPtrOldMapping != NIL_RTGCPTR) pgmR3MapClearPDEs(pVM, pMapping, GCPtrOldMapping >> X86_PD_SHIFT); pgmR3MapSetPDEs(pVM, pMapping, GCPtrNewMapping >> X86_PD_SHIFT); /* * Update and resort the mapping list. */ /* Find previous mapping for pMapping, put result into pPrevMap. */ PPGMMAPPING pPrevMap = NULL; PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; while (pCur && pCur != pMapping) { /* next */ pPrevMap = pCur; pCur = pCur->pNextR3; } Assert(pCur); /* Find mapping which >= than pMapping. */ RTGCPTR GCPtrNew = GCPtrNewMapping; PPGMMAPPING pPrev = NULL; pCur = pVM->pgm.s.pMappingsR3; while (pCur && pCur->GCPtr < GCPtrNew) { /* next */ pPrev = pCur; pCur = pCur->pNextR3; } if (pCur != pMapping && pPrev != pMapping) { /* * Unlink. */ if (pPrevMap) { pPrevMap->pNextR3 = pMapping->pNextR3; pPrevMap->pNextRC = pMapping->pNextRC; pPrevMap->pNextR0 = pMapping->pNextR0; } else { pVM->pgm.s.pMappingsR3 = pMapping->pNextR3; pVM->pgm.s.pMappingsRC = pMapping->pNextRC; pVM->pgm.s.pMappingsR0 = pMapping->pNextR0; } /* * Link */ pMapping->pNextR3 = pCur; if (pPrev) { pMapping->pNextRC = pPrev->pNextRC; pMapping->pNextR0 = pPrev->pNextR0; pPrev->pNextR3 = pMapping; pPrev->pNextRC = MMHyperR3ToRC(pVM, pMapping); pPrev->pNextR0 = MMHyperR3ToR0(pVM, pMapping); } else { pMapping->pNextRC = pVM->pgm.s.pMappingsRC; pMapping->pNextR0 = pVM->pgm.s.pMappingsR0; pVM->pgm.s.pMappingsR3 = pMapping; pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pMapping); pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pMapping); } } /* * Update the entry. */ pMapping->GCPtr = GCPtrNew; pMapping->GCPtrLast = GCPtrNew + pMapping->cb - 1; /* * Callback to execute the relocation. */ pMapping->pfnRelocate(pVM, GCPtrOldMapping, GCPtrNewMapping, PGMRELOCATECALL_RELOCATE, pMapping->pvUser); } /** * Checks if a new mapping address wasn't previously used and caused a clash with guest mappings. * * @returns VBox status code. * @param pMapping The mapping which conflicts. * @param GCPtr New mapping address to try */ bool pgmR3MapIsKnownConflictAddress(PPGMMAPPING pMapping, RTGCPTR GCPtr) { for (unsigned i = 0; i < RT_ELEMENTS(pMapping->aGCPtrConflicts); i++) { if (GCPtr == pMapping->aGCPtrConflicts[i]) return true; } return false; } /** * Resolves a conflict between a page table based GC mapping and * the Guest OS page tables. (32 bits version) * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pMapping The mapping which conflicts. * @param pPDSrc The page directory of the guest OS. * @param GCPtrOldMapping The address of the start of the current mapping. */ int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping) { STAM_REL_COUNTER_INC(&pVM->pgm.s.cRelocations); STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a); /* Raw mode only which implies one VCPU. */ Assert(pVM->cCpus == 1); pMapping->aGCPtrConflicts[pMapping->cConflicts & (PGMMAPPING_CONFLICT_MAX-1)] = GCPtrOldMapping; pMapping->cConflicts++; /* * Scan for free page directory entries. * * Note that we do not support mappings at the very end of the * address space since that will break our GCPtrEnd assumptions. */ const unsigned cPTs = pMapping->cPTs; unsigned iPDNew = RT_ELEMENTS(pPDSrc->a) - cPTs; /* (+ 1 - 1) */ while (iPDNew-- > 0) { if (pPDSrc->a[iPDNew].n.u1Present) continue; if (pgmR3MapIsKnownConflictAddress(pMapping, iPDNew << X86_PD_SHIFT)) continue; if (cPTs > 1) { bool fOk = true; for (unsigned i = 1; fOk && i < cPTs; i++) if (pPDSrc->a[iPDNew + i].n.u1Present) fOk = false; if (!fOk) continue; } /* * Check that it's not conflicting with an intermediate page table mapping. */ bool fOk = true; unsigned i = cPTs; while (fOk && i-- > 0) fOk = !pVM->pgm.s.pInterPD->a[iPDNew + i].n.u1Present; if (!fOk) continue; /** @todo AMD64 should check the PAE directories and skip the 32bit stuff. */ /* * Ask for the mapping. */ RTGCPTR GCPtrNewMapping = (RTGCPTR32)iPDNew << X86_PD_SHIFT; if (pMapping->pfnRelocate(pVM, GCPtrOldMapping, GCPtrNewMapping, PGMRELOCATECALL_SUGGEST, pMapping->pvUser)) { pgmR3MapRelocate(pVM, pMapping, GCPtrOldMapping, GCPtrNewMapping); STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a); return VINF_SUCCESS; } } STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a); #ifdef DEBUG_bird /* * Ended up here frequently recently with an NT4.0 VM (using SMP kernel). * * The problem is when enabling large pages (i.e. updating CR4) using the * _Ki386EnableCurrentLargePage@8 assembly routine (address 0x801c97ad-9). * The routine loads a sparsely popuplated page tables with identiy mappings * of its own code, most entries are whatever ExAllocatePool returned, which * is documented as undefined but all 0xffffffff in this case. Once loaded, * it jumps to the physical code address, disables paging, set CR4.PSE=1, * re-enables paging, restore the original page table and returns successfully. * * Theory: if CSAM/PATM patches the pushf;cli;mov eax,cr3; sequence, at the * start of that function we're apparently in trouble, if CSAM/PATM doesn't * we're switching back to REM and doing disabling of paging there instead. * * Normal PD: CR3=00030000; Problematic identity mapped PD: CR3=0x5fa000. */ DBGFSTOP(pVM); #endif AssertMsgFailed(("Failed to relocate page table mapping '%s' from %#x! (cPTs=%d)\n", pMapping->pszDesc, GCPtrOldMapping, cPTs)); return VERR_PGM_NO_HYPERVISOR_ADDRESS; } /** * Resolves a conflict between a page table based GC mapping and * the Guest OS page tables. (PAE bits version) * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pMapping The mapping which conflicts. * @param GCPtrOldMapping The address of the start of the current mapping. */ int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping) { STAM_REL_COUNTER_INC(&pVM->pgm.s.cRelocations); STAM_PROFILE_START(&pVM->pgm.s.StatR3ResolveConflict, a); /* Raw mode only which implies one VCPU. */ Assert(pVM->cCpus == 1); PVMCPU pVCpu = VMMGetCpu(pVM); pMapping->aGCPtrConflicts[pMapping->cConflicts & (PGMMAPPING_CONFLICT_MAX-1)] = GCPtrOldMapping; pMapping->cConflicts++; for (int iPDPTE = X86_PG_PAE_PDPE_ENTRIES - 1; iPDPTE >= 0; iPDPTE--) { unsigned iPDSrc; PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, (RTGCPTR32)iPDPTE << X86_PDPT_SHIFT, &iPDSrc, NULL); /* * Scan for free page directory entries. * * Note that we do not support mappings at the very end of the * address space since that will break our GCPtrEnd assumptions. * Nor do we support mappings crossing page directories. */ const unsigned cPTs = pMapping->cb >> X86_PD_PAE_SHIFT; unsigned iPDNew = RT_ELEMENTS(pPDSrc->a) - cPTs; /* (+ 1 - 1) */ while (iPDNew-- > 0) { /* Ugly assumption that mappings start on a 4 MB boundary. */ if (iPDNew & 1) continue; if (pgmR3MapIsKnownConflictAddress(pMapping, ((RTGCPTR32)iPDPTE << X86_PDPT_SHIFT) + (iPDNew << X86_PD_PAE_SHIFT))) continue; if (pPDSrc) { if (pPDSrc->a[iPDNew].n.u1Present) continue; if (cPTs > 1) { bool fOk = true; for (unsigned i = 1; fOk && i < cPTs; i++) if (pPDSrc->a[iPDNew + i].n.u1Present) fOk = false; if (!fOk) continue; } } /* * Check that it's not conflicting with an intermediate page table mapping. */ bool fOk = true; unsigned i = cPTs; while (fOk && i-- > 0) fOk = !pVM->pgm.s.apInterPaePDs[iPDPTE]->a[iPDNew + i].n.u1Present; if (!fOk) continue; /* * Ask for the mapping. */ RTGCPTR GCPtrNewMapping = ((RTGCPTR32)iPDPTE << X86_PDPT_SHIFT) + ((RTGCPTR32)iPDNew << X86_PD_PAE_SHIFT); if (pMapping->pfnRelocate(pVM, GCPtrOldMapping, GCPtrNewMapping, PGMRELOCATECALL_SUGGEST, pMapping->pvUser)) { pgmR3MapRelocate(pVM, pMapping, GCPtrOldMapping, GCPtrNewMapping); STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a); return VINF_SUCCESS; } } } STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatR3ResolveConflict, a); AssertMsgFailed(("Failed to relocate page table mapping '%s' from %#x! (cPTs=%d)\n", pMapping->pszDesc, GCPtrOldMapping, pMapping->cb >> X86_PD_PAE_SHIFT)); return VERR_PGM_NO_HYPERVISOR_ADDRESS; } #endif /* !PGM_WITHOUT_MAPPINGS */ /** * Read memory from the guest mappings. * * This will use the page tables associated with the mappings to * read the memory. This means that not all kind of memory is readable * since we don't necessarily know how to convert that physical address * to a HC virtual one. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pvDst The destination address (HC of course). * @param GCPtrSrc The source address (GC virtual address). * @param cb Number of bytes to read. * * @remarks The is indirectly for DBGF only. * @todo Consider renaming it to indicate it's special usage, or just * reimplement it in MMR3HyperReadGCVirt. */ VMMR3DECL(int) PGMR3MapRead(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb) { /* * Simplicity over speed... Chop the request up into chunks * which don't cross pages. */ if (cb + (GCPtrSrc & PAGE_OFFSET_MASK) > PAGE_SIZE) { for (;;) { size_t cbRead = RT_MIN(cb, PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK)); int rc = PGMR3MapRead(pVM, pvDst, GCPtrSrc, cbRead); if (RT_FAILURE(rc)) return rc; cb -= cbRead; if (!cb) break; pvDst = (char *)pvDst + cbRead; GCPtrSrc += cbRead; } return VINF_SUCCESS; } /* * Find the mapping. */ PPGMMAPPING pCur = pVM->pgm.s.CTX_SUFF(pMappings); while (pCur) { RTGCPTR off = GCPtrSrc - pCur->GCPtr; if (off < pCur->cb) { if (off + cb > pCur->cb) { AssertMsgFailed(("Invalid page range %RGv LB%#x. mapping '%s' %RGv to %RGv\n", GCPtrSrc, cb, pCur->pszDesc, pCur->GCPtr, pCur->GCPtrLast)); return VERR_INVALID_PARAMETER; } unsigned iPT = off >> X86_PD_SHIFT; unsigned iPTE = (off >> PAGE_SHIFT) & X86_PT_MASK; while (cb > 0 && iPTE < RT_ELEMENTS(CTXALLSUFF(pCur->aPTs[iPT].pPT)->a)) { PCPGMSHWPTEPAE pPte = &pCur->aPTs[iPT].CTXALLSUFF(paPaePTs)[iPTE / 512].a[iPTE % 512]; if (!PGMSHWPTEPAE_IS_P(*pPte)) return VERR_PAGE_NOT_PRESENT; RTHCPHYS HCPhys = PGMSHWPTEPAE_GET_HCPHYS(*pPte); /* * Get the virtual page from the physical one. */ void *pvPage; int rc = MMR3HCPhys2HCVirt(pVM, HCPhys, &pvPage); if (RT_FAILURE(rc)) return rc; memcpy(pvDst, (char *)pvPage + (GCPtrSrc & PAGE_OFFSET_MASK), cb); return VINF_SUCCESS; } } /* next */ pCur = CTXALLSUFF(pCur->pNext); } return VERR_INVALID_POINTER; } /** * Info callback for 'pgmhandlers'. * * @param pVM The cross context VM structure. * @param pHlp The output helpers. * @param pszArgs The arguments. phys or virt. */ DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); if (!pgmMapAreMappingsEnabled(pVM)) pHlp->pfnPrintf(pHlp, "\nThe mappings are DISABLED.\n"); else if (pVM->pgm.s.fMappingsFixed) pHlp->pfnPrintf(pHlp, "\nThe mappings are FIXED: %RGv-%RGv\n", pVM->pgm.s.GCPtrMappingFixed, pVM->pgm.s.GCPtrMappingFixed + pVM->pgm.s.cbMappingFixed - 1); else if (pVM->pgm.s.fMappingsFixedRestored) pHlp->pfnPrintf(pHlp, "\nThe mappings are FLOATING-RESTORED-FIXED: %RGv-%RGv\n", pVM->pgm.s.GCPtrMappingFixed, pVM->pgm.s.GCPtrMappingFixed + pVM->pgm.s.cbMappingFixed - 1); else pHlp->pfnPrintf(pHlp, "\nThe mappings are FLOATING.\n"); PPGMMAPPING pCur; for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3) { pHlp->pfnPrintf(pHlp, "%RGv - %RGv %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc); if (pCur->cConflicts > 0) { pHlp->pfnPrintf(pHlp, " %u conflict%s: ", pCur->cConflicts, pCur->cConflicts == 1 ? "" : "s"); uint32_t cLeft = RT_MIN(pCur->cConflicts, RT_ELEMENTS(pCur->aGCPtrConflicts)); uint32_t i = pCur->cConflicts; while (cLeft-- > 0) { i = (i - 1) & (PGMMAPPING_CONFLICT_MAX - 1); pHlp->pfnPrintf(pHlp, cLeft ? "%RGv, " : "%RGv\n", pCur->aGCPtrConflicts[i]); } } } }