1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
|
/** @file
* IPRT - Memory Management and Manipulation.
*/
/*
* Copyright (C) 2006-2019 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
#ifndef IPRT_INCLUDED_mem_h
#define IPRT_INCLUDED_mem_h
#ifndef RT_WITHOUT_PRAGMA_ONCE
# pragma once
#endif
#include <iprt/cdefs.h>
#include <iprt/types.h>
#ifdef IPRT_WITH_GCC_SANITIZER
# include <sanitizer/lsan_interface.h>
#endif
#ifdef IN_RC
# error "There are no RTMem APIs available Guest Context!"
#endif
/** @defgroup grp_rt_mem RTMem - Memory Management and Manipulation
* @ingroup grp_rt
* @{
*/
RT_C_DECLS_BEGIN
/** @def RTMEM_ALIGNMENT
* The alignment of the memory blocks returned by RTMemAlloc(), RTMemAllocZ(),
* RTMemRealloc(), RTMemTmpAlloc() and RTMemTmpAllocZ() for allocations greater
* than RTMEM_ALIGNMENT.
*
* @note This alignment is not forced if the electric fence is active!
*/
#if defined(RT_OS_OS2)
# define RTMEM_ALIGNMENT 4
#else
# define RTMEM_ALIGNMENT 8
#endif
/** @def RTMEM_TAG
* The default allocation tag used by the RTMem allocation APIs.
*
* When not defined before the inclusion of iprt/mem.h or iprt/memobj.h, this
* will default to the pointer to the current file name. The memory API will
* make of use of this as pointer to a volatile but read-only string.
* The alternative tag includes the line number for a more-detailed analysis.
*/
#ifndef RTMEM_TAG
# if 0
# define RTMEM_TAG (__FILE__ ":" RT_XSTR(__LINE__))
# else
# define RTMEM_TAG (__FILE__)
# endif
#endif
/** @name Allocate temporary memory.
* @{ */
/**
* Allocates temporary memory with default tag.
*
* Temporary memory blocks are used for not too large memory blocks which
* are believed not to stick around for too long. Using this API instead
* of RTMemAlloc() not only gives the heap manager room for optimization
* but makes the code easier to read.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure, assertion raised in strict builds.
* @param cb Size in bytes of the memory block to allocated.
*/
#define RTMemTmpAlloc(cb) RTMemTmpAllocTag((cb), RTMEM_TAG)
/**
* Allocates temporary memory with custom tag.
*
* Temporary memory blocks are used for not too large memory blocks which
* are believed not to stick around for too long. Using this API instead
* of RTMemAlloc() not only gives the heap manager room for optimization
* but makes the code easier to read.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure, assertion raised in strict builds.
* @param cb Size in bytes of the memory block to allocated.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemTmpAllocTag(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Allocates zero'd temporary memory with default tag.
*
* Same as RTMemTmpAlloc() but the memory will be zero'd.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure, assertion raised in strict builds.
* @param cb Size in bytes of the memory block to allocated.
*/
#define RTMemTmpAllocZ(cb) RTMemTmpAllocZTag((cb), RTMEM_TAG)
/**
* Allocates zero'd temporary memory with custom tag.
*
* Same as RTMemTmpAlloc() but the memory will be zero'd.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure, assertion raised in strict builds.
* @param cb Size in bytes of the memory block to allocated.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemTmpAllocZTag(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Free temporary memory.
*
* @param pv Pointer to memory block.
*/
RTDECL(void) RTMemTmpFree(void *pv) RT_NO_THROW_PROTO;
/** @} */
/**
* Allocates memory with default tag.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure, assertion raised in strict builds.
* @param cb Size in bytes of the memory block to allocated.
*/
#define RTMemAlloc(cb) RTMemAllocTag((cb), RTMEM_TAG)
/**
* Allocates memory with custom tag.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure, assertion raised in strict builds.
* @param cb Size in bytes of the memory block to allocated.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemAllocTag(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Allocates zero'd memory with default tag.
*
* Instead of memset(pv, 0, sizeof()) use this when you want zero'd
* memory. This keeps the code smaller and the heap can skip the memset
* in about 0.42% of calls :-).
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param cb Size in bytes of the memory block to allocated.
*/
#define RTMemAllocZ(cb) RTMemAllocZTag((cb), RTMEM_TAG)
/**
* Allocates zero'd memory with custom tag.
*
* Instead of memset(pv, 0, sizeof()) use this when you want zero'd
* memory. This keeps the code smaller and the heap can skip the memset
* in about 0.42% of calls :-).
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param cb Size in bytes of the memory block to allocated.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemAllocZTag(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Wrapper around RTMemAlloc for automatically aligning variable sized
* allocations so that the various electric fence heaps works correctly.
*
* @returns See RTMemAlloc.
* @param cbUnaligned The unaligned size.
*/
#define RTMemAllocVar(cbUnaligned) RTMemAllocVarTag((cbUnaligned), RTMEM_TAG)
/**
* Wrapper around RTMemAllocTag for automatically aligning variable sized
* allocations so that the various electric fence heaps works correctly.
*
* @returns See RTMemAlloc.
* @param cbUnaligned The unaligned size.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemAllocVarTag(size_t cbUnaligned, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Wrapper around RTMemAllocZ for automatically aligning variable sized
* allocations so that the various electric fence heaps works correctly.
*
* @returns See RTMemAllocZ.
* @param cbUnaligned The unaligned size.
*/
#define RTMemAllocZVar(cbUnaligned) RTMemAllocZVarTag((cbUnaligned), RTMEM_TAG)
/**
* Wrapper around RTMemAllocZTag for automatically aligning variable sized
* allocations so that the various electric fence heaps works correctly.
*
* @returns See RTMemAllocZ.
* @param cbUnaligned The unaligned size.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemAllocZVarTag(size_t cbUnaligned, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Duplicates a chunk of memory into a new heap block (default tag).
*
* @returns New heap block with the duplicate data.
* @returns NULL if we're out of memory.
* @param pvSrc The memory to duplicate.
* @param cb The amount of memory to duplicate.
*/
#define RTMemDup(pvSrc, cb) RTMemDupTag((pvSrc), (cb), RTMEM_TAG)
/**
* Duplicates a chunk of memory into a new heap block (custom tag).
*
* @returns New heap block with the duplicate data.
* @returns NULL if we're out of memory.
* @param pvSrc The memory to duplicate.
* @param cb The amount of memory to duplicate.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemDupTag(const void *pvSrc, size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Duplicates a chunk of memory into a new heap block with some additional
* zeroed memory (default tag).
*
* @returns New heap block with the duplicate data.
* @returns NULL if we're out of memory.
* @param pvSrc The memory to duplicate.
* @param cbSrc The amount of memory to duplicate.
* @param cbExtra The amount of extra memory to allocate and zero.
*/
#define RTMemDupEx(pvSrc, cbSrc, cbExtra) RTMemDupExTag((pvSrc), (cbSrc), (cbExtra), RTMEM_TAG)
/**
* Duplicates a chunk of memory into a new heap block with some additional
* zeroed memory (default tag).
*
* @returns New heap block with the duplicate data.
* @returns NULL if we're out of memory.
* @param pvSrc The memory to duplicate.
* @param cbSrc The amount of memory to duplicate.
* @param cbExtra The amount of extra memory to allocate and zero.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemDupExTag(const void *pvSrc, size_t cbSrc, size_t cbExtra, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Reallocates memory with default tag.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param pvOld The memory block to reallocate.
* @param cbNew The new block size (in bytes).
*/
#define RTMemRealloc(pvOld, cbNew) RTMemReallocTag((pvOld), (cbNew), RTMEM_TAG)
/**
* Reallocates memory with custom tag.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param pvOld The memory block to reallocate.
* @param cbNew The new block size (in bytes).
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemReallocTag(void *pvOld, size_t cbNew, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Frees memory.
*
* @param pv Pointer to memory block.
*/
RTDECL(void) RTMemFree(void *pv) RT_NO_THROW_PROTO;
/** @name RTR0MemAllocEx and RTR0MemAllocExTag flags.
* @{ */
/** The returned memory should be zeroed. */
#define RTMEMALLOCEX_FLAGS_ZEROED RT_BIT(0)
/** It must be load code into the returned memory block and execute it. */
#define RTMEMALLOCEX_FLAGS_EXEC RT_BIT(1)
/** Allocation from any context.
* Will return VERR_NOT_SUPPORTED if not supported. */
#define RTMEMALLOCEX_FLAGS_ANY_CTX_ALLOC RT_BIT(2)
/** Allocate the memory such that it can be freed from any context.
* Will return VERR_NOT_SUPPORTED if not supported. */
#define RTMEMALLOCEX_FLAGS_ANY_CTX_FREE RT_BIT(3)
/** Allocate and free from any context.
* Will return VERR_NOT_SUPPORTED if not supported. */
#define RTMEMALLOCEX_FLAGS_ANY_CTX (RTMEMALLOCEX_FLAGS_ANY_CTX_ALLOC | RTMEMALLOCEX_FLAGS_ANY_CTX_FREE)
/** Reachable by 16-bit address.
* Will return VERR_NOT_SUPPORTED if not supported. */
#define RTMEMALLOCEX_FLAGS_16BIT_REACH RT_BIT(4)
/** Reachable by 32-bit address.
* Will return VERR_NOT_SUPPORTED if not supported. */
#define RTMEMALLOCEX_FLAGS_32BIT_REACH RT_BIT(5)
/** Mask of valid flags. */
#define RTMEMALLOCEX_FLAGS_VALID_MASK UINT32_C(0x0000003f)
/** Mask of valid flags for ring-0. */
#define RTMEMALLOCEX_FLAGS_VALID_MASK_R0 UINT32_C(0x0000000f)
/** @} */
/**
* Extended heap allocation API, default tag.
*
* @returns IPRT status code.
* @retval VERR_NO_MEMORY if we're out of memory.
* @retval VERR_NO_EXEC_MEMORY if we're out of executable memory.
* @retval VERR_NOT_SUPPORTED if any of the specified flags are unsupported.
*
* @param cb The amount of memory to allocate.
* @param cbAlignment The alignment requirements. Use 0 to indicate
* default alignment.
* @param fFlags A combination of the RTMEMALLOCEX_FLAGS_XXX
* defines.
* @param ppv Where to return the memory.
*/
#define RTMemAllocEx(cb, cbAlignment, fFlags, ppv) RTMemAllocExTag((cb), (cbAlignment), (fFlags), RTMEM_TAG, (ppv))
/**
* Extended heap allocation API, custom tag.
*
* Depending on the implementation, using this function may add extra overhead,
* so use the simpler APIs where ever possible.
*
* @returns IPRT status code.
* @retval VERR_NO_MEMORY if we're out of memory.
* @retval VERR_NO_EXEC_MEMORY if we're out of executable memory.
* @retval VERR_NOT_SUPPORTED if any of the specified flags are unsupported.
*
* @param cb The amount of memory to allocate.
* @param cbAlignment The alignment requirements. Use 0 to indicate
* default alignment.
* @param fFlags A combination of the RTMEMALLOCEX_FLAGS_XXX
* defines.
* @param pszTag The tag.
* @param ppv Where to return the memory.
*/
RTDECL(int) RTMemAllocExTag(size_t cb, size_t cbAlignment, uint32_t fFlags, const char *pszTag, void **ppv) RT_NO_THROW_PROTO;
/**
* For freeing memory allocated by RTMemAllocEx or RTMemAllocExTag.
*
* @param pv What to free, NULL is fine.
* @param cb The amount of allocated memory.
*/
RTDECL(void) RTMemFreeEx(void *pv, size_t cb) RT_NO_THROW_PROTO;
/**
* Allocates memory which may contain code (default tag).
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param cb Size in bytes of the memory block to allocate.
*/
#define RTMemExecAlloc(cb) RTMemExecAllocTag((cb), RTMEM_TAG)
/**
* Allocates memory which may contain code (custom tag).
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param cb Size in bytes of the memory block to allocate.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemExecAllocTag(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Free executable/read/write memory allocated by RTMemExecAlloc().
*
* @param pv Pointer to memory block.
* @param cb The allocation size.
*/
RTDECL(void) RTMemExecFree(void *pv, size_t cb) RT_NO_THROW_PROTO;
#if defined(IN_RING0) && defined(RT_ARCH_AMD64) && defined(RT_OS_LINUX)
/**
* Donate read+write+execute memory to the exec heap.
*
* This API is specific to AMD64 and Linux/GNU. A kernel module that desires to
* use RTMemExecAlloc on AMD64 Linux/GNU will have to donate some statically
* allocated memory in the module if it wishes for GCC generated code to work.
* GCC can only generate modules that work in the address range ~2GB to ~0
* currently.
*
* The API only accept one single donation.
*
* @returns IPRT status code.
* @param pvMemory Pointer to the memory block.
* @param cb The size of the memory block.
*/
RTR0DECL(int) RTR0MemExecDonate(void *pvMemory, size_t cb) RT_NO_THROW_PROTO;
#endif /* R0+AMD64+LINUX */
/**
* Allocate page aligned memory with default tag.
*
* @returns Pointer to the allocated memory.
* @returns NULL if we're out of memory.
* @param cb Size of the memory block. Will be rounded up to page size.
*/
#define RTMemPageAlloc(cb) RTMemPageAllocTag((cb), RTMEM_TAG)
/**
* Allocate page aligned memory with custom tag.
*
* @returns Pointer to the allocated memory.
* @returns NULL if we're out of memory.
* @param cb Size of the memory block. Will be rounded up to page size.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemPageAllocTag(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Allocate zero'd page aligned memory with default tag.
*
* @returns Pointer to the allocated memory.
* @returns NULL if we're out of memory.
* @param cb Size of the memory block. Will be rounded up to page size.
*/
#define RTMemPageAllocZ(cb) RTMemPageAllocZTag((cb), RTMEM_TAG)
/**
* Allocate zero'd page aligned memory with custom tag.
*
* @returns Pointer to the allocated memory.
* @returns NULL if we're out of memory.
* @param cb Size of the memory block. Will be rounded up to page size.
* @param pszTag Allocation tag used for statistics and such.
*/
RTDECL(void *) RTMemPageAllocZTag(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Free a memory block allocated with RTMemPageAlloc() or RTMemPageAllocZ().
*
* @param pv Pointer to the block as it was returned by the allocation function.
* NULL will be ignored.
* @param cb The allocation size. Will be rounded up to page size.
* Ignored if @a pv is NULL.
*/
RTDECL(void) RTMemPageFree(void *pv, size_t cb) RT_NO_THROW_PROTO;
/** Page level protection flags for RTMemProtect().
* @{
*/
/** No access at all. */
#define RTMEM_PROT_NONE 0
/** Read access. */
#define RTMEM_PROT_READ 1
/** Write access. */
#define RTMEM_PROT_WRITE 2
/** Execute access. */
#define RTMEM_PROT_EXEC 4
/** @} */
/**
* Change the page level protection of a memory region.
*
* @returns iprt status code.
* @param pv Start of the region. Will be rounded down to nearest page boundary.
* @param cb Size of the region. Will be rounded up to the nearest page boundary.
* @param fProtect The new protection, a combination of the RTMEM_PROT_* defines.
*/
RTDECL(int) RTMemProtect(void *pv, size_t cb, unsigned fProtect) RT_NO_THROW_PROTO;
/**
* Goes thru some pains to make sure the specified memory block is thoroughly
* scrambled.
*
* @param pv The start of the memory block.
* @param cb The size of the memory block.
* @param cMinPasses The minimum number of passes to make.
*/
RTDECL(void) RTMemWipeThoroughly(void *pv, size_t cb, size_t cMinPasses) RT_NO_THROW_PROTO;
/** @def RTMEM_WILL_LEAK
* Macro for hinting that a memory allocation @a a_pv will leak.
*
* @note This shall only be used in code that doesn't allocate the object.
* Code allocating memory knowing it will leak shall start the allocation
* tag string with 'will-leak:'.
*/
/** @def RTMEM_MAY_LEAK
* Macro for hinting that a memory allocation @a a_pv may leak.
*
* @note This shall only be used in code that doesn't allocate the object.
* Code allocating memory knowing it may leak shall start the allocation
* tag string with 'may-leak:'.
*/
#ifdef IPRT_WITH_GCC_SANITIZER
# define RTMEM_WILL_LEAK(a_pv) __lsan_ignore_object(a_pv)
# define RTMEM_MAY_LEAK(a_pv) __lsan_ignore_object(a_pv)
#else
# define RTMEM_WILL_LEAK(a_pv) do { } while (0)
# define RTMEM_MAY_LEAK(a_pv) do { } while (0)
#endif
#ifdef IN_RING0
/**
* Allocates physical contiguous memory (below 4GB).
* The allocation is page aligned and the content is undefined.
*
* @returns Pointer to the memory block. This is page aligned.
* @param pPhys Where to store the physical address.
* @param cb The allocation size in bytes. This is always
* rounded up to PAGE_SIZE.
*/
RTR0DECL(void *) RTMemContAlloc(PRTCCPHYS pPhys, size_t cb) RT_NO_THROW_PROTO;
/**
* Frees memory allocated ysing RTMemContAlloc().
*
* @param pv Pointer to return from RTMemContAlloc().
* @param cb The cb parameter passed to RTMemContAlloc().
*/
RTR0DECL(void) RTMemContFree(void *pv, size_t cb) RT_NO_THROW_PROTO;
/**
* Copy memory from an user mode buffer into a kernel buffer.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_ACCESS_DENIED on error.
*
* @param pvDst The kernel mode destination address.
* @param R3PtrSrc The user mode source address.
* @param cb The number of bytes to copy.
*/
RTR0DECL(int) RTR0MemUserCopyFrom(void *pvDst, RTR3PTR R3PtrSrc, size_t cb);
/**
* Copy memory from a kernel buffer into a user mode one.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_ACCESS_DENIED on error.
*
* @param R3PtrDst The user mode destination address.
* @param pvSrc The kernel mode source address.
* @param cb The number of bytes to copy.
*/
RTR0DECL(int) RTR0MemUserCopyTo(RTR3PTR R3PtrDst, void const *pvSrc, size_t cb);
/**
* Tests if the specified address is in the user addressable range.
*
* This function does not check whether the memory at that address is accessible
* or anything of that sort, only if the address it self is in the user mode
* range.
*
* @returns true if it's in the user addressable range. false if not.
* @param R3Ptr The user mode pointer to test.
*
* @remarks Some systems may have overlapping kernel and user address ranges.
* One prominent example of this is the x86 version of Mac OS X. Use
* RTR0MemAreKrnlAndUsrDifferent() to check.
*/
RTR0DECL(bool) RTR0MemUserIsValidAddr(RTR3PTR R3Ptr);
/**
* Tests if the specified address is in the kernel mode range.
*
* This function does not check whether the memory at that address is accessible
* or anything of that sort, only if the address it self is in the kernel mode
* range.
*
* @returns true if it's in the kernel range. false if not.
* @param pv The alleged kernel mode pointer.
*
* @remarks Some systems may have overlapping kernel and user address ranges.
* One prominent example of this is the x86 version of Mac OS X. Use
* RTR0MemAreKrnlAndUsrDifferent() to check.
*/
RTR0DECL(bool) RTR0MemKernelIsValidAddr(void *pv);
/**
* Are user mode and kernel mode address ranges distinctly different.
*
* This determines whether RTR0MemKernelIsValidAddr and RTR0MemUserIsValidAddr
* can be used for deciding whether some arbitrary address is a user mode or a
* kernel mode one.
*
* @returns true if they are, false if not.
*/
RTR0DECL(bool) RTR0MemAreKrnlAndUsrDifferent(void);
/**
* Copy memory from an potentially unsafe kernel mode location and into a safe
* (kernel) buffer.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_ACCESS_DENIED on error.
* @retval VERR_NOT_SUPPORTED if not (yet) supported.
*
* @param pvDst The destination address (safe).
* @param pvSrc The source address (potentially unsafe).
* @param cb The number of bytes to copy.
*/
RTR0DECL(int) RTR0MemKernelCopyFrom(void *pvDst, void const *pvSrc, size_t cb);
/**
* Copy from a safe (kernel) buffer and to a potentially unsafe kenrel mode
* location.
*
* @retval VINF_SUCCESS on success.
* @retval VERR_ACCESS_DENIED on error.
* @retval VERR_NOT_SUPPORTED if not (yet) supported.
*
* @param pvDst The destination address (potentially unsafe).
* @param pvSrc The source address (safe).
* @param cb The number of bytes to copy.
*/
RTR0DECL(int) RTR0MemKernelCopyTo(void *pvDst, void const *pvSrc, size_t cb);
#endif /* IN_RING0 */
/** @name Electrical Fence Version of some APIs.
* @{
*/
/**
* Same as RTMemTmpAllocTag() except that it's fenced.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param cb Size in bytes of the memory block to allocate.
* @param pszTag Allocation tag used for statistics and such.
* @param SRC_POS The source position where call is being made from.
* Use RT_SRC_POS when possible. Optional.
*/
RTDECL(void *) RTMemEfTmpAlloc(size_t cb, const char *pszTag, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Same as RTMemTmpAllocZTag() except that it's fenced.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param cb Size in bytes of the memory block to allocate.
* @param pszTag Allocation tag used for statistics and such.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void *) RTMemEfTmpAllocZ(size_t cb, const char *pszTag, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Same as RTMemTmpFree() except that it's for fenced memory.
*
* @param pv Pointer to memory block.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void) RTMemEfTmpFree(void *pv, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Same as RTMemAllocTag() except that it's fenced.
*
* @returns Pointer to the allocated memory. Free with RTMemEfFree().
* @returns NULL on failure.
* @param cb Size in bytes of the memory block to allocate.
* @param pszTag Allocation tag used for statistics and such.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void *) RTMemEfAlloc(size_t cb, const char *pszTag, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Same as RTMemAllocZTag() except that it's fenced.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param cb Size in bytes of the memory block to allocate.
* @param pszTag Allocation tag used for statistics and such.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void *) RTMemEfAllocZ(size_t cb, const char *pszTag, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Same as RTMemAllocVarTag() except that it's fenced.
*
* @returns Pointer to the allocated memory. Free with RTMemEfFree().
* @returns NULL on failure.
* @param cbUnaligned Size in bytes of the memory block to allocate.
* @param pszTag Allocation tag used for statistics and such.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void *) RTMemEfAllocVar(size_t cbUnaligned, const char *pszTag, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Same as RTMemAllocZVarTag() except that it's fenced.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param cbUnaligned Size in bytes of the memory block to allocate.
* @param pszTag Allocation tag used for statistics and such.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void *) RTMemEfAllocZVar(size_t cbUnaligned, const char *pszTag, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Same as RTMemReallocTag() except that it's fenced.
*
* @returns Pointer to the allocated memory.
* @returns NULL on failure.
* @param pvOld The memory block to reallocate.
* @param cbNew The new block size (in bytes).
* @param pszTag Allocation tag used for statistics and such.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void *) RTMemEfRealloc(void *pvOld, size_t cbNew, const char *pszTag, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Free memory allocated by any of the RTMemEf* allocators.
*
* @param pv Pointer to memory block.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void) RTMemEfFree(void *pv, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Same as RTMemDupTag() except that it's fenced.
*
* @returns New heap block with the duplicate data.
* @returns NULL if we're out of memory.
* @param pvSrc The memory to duplicate.
* @param cb The amount of memory to duplicate.
* @param pszTag Allocation tag used for statistics and such.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void *) RTMemEfDup(const void *pvSrc, size_t cb, const char *pszTag, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/**
* Same as RTMemEfDupExTag except that it's fenced.
*
* @returns New heap block with the duplicate data.
* @returns NULL if we're out of memory.
* @param pvSrc The memory to duplicate.
* @param cbSrc The amount of memory to duplicate.
* @param cbExtra The amount of extra memory to allocate and zero.
* @param pszTag Allocation tag used for statistics and such.
* @param SRC_POS The source position where call is being made from. Use
* RT_SRC_POS when possible. Optional.
*/
RTDECL(void *) RTMemEfDupEx(const void *pvSrc, size_t cbSrc, size_t cbExtra, const char *pszTag, RT_SRC_POS_DECL) RT_NO_THROW_PROTO;
/** @def RTMEM_WRAP_SOME_NEW_AND_DELETE_TO_EF
* Define RTMEM_WRAP_SOME_NEW_AND_DELETE_TO_EF to enable electric fence new and
* delete operators for classes which uses the RTMEMEF_NEW_AND_DELETE_OPERATORS
* macro.
*/
/** @def RTMEMEF_NEW_AND_DELETE_OPERATORS
* Defines the electric fence new and delete operators for a class when
* RTMEM_WRAP_SOME_NEW_AND_DELETE_TO_EF is define.
*/
/** @def RTR0MEMEF_NEW_AND_DELETE_OPERATORS_IOKIT
* Defines the electric fence new and delete operators for an IOKit class when
* RTMEM_WRAP_SOME_NEW_AND_DELETE_TO_EF is define.
*
* This differs from RTMEMEF_NEW_AND_DELETE_OPERATORS in that the memory we
* allocate is initialized to zero. It is also assuming we don't have nothrow
* variants and exceptions, so fewer variations.
*/
#if defined(RTMEM_WRAP_SOME_NEW_AND_DELETE_TO_EF) && !defined(RTMEM_NO_WRAP_SOME_NEW_AND_DELETE_TO_EF)
# if defined(RT_EXCEPTIONS_ENABLED)
# define RTMEMEF_NEW_AND_DELETE_OPERATORS() \
void *operator new(size_t cb) RT_THROW(std::bad_alloc) \
{ \
void *pv = RTMemEfAlloc(cb, RTMEM_TAG, RT_SRC_POS); \
if (RT_LIKELY(pv)) \
return pv; \
throw std::bad_alloc(); \
} \
void *operator new(size_t cb, const std::nothrow_t ¬hrow_constant) RT_NO_THROW_DEF \
{ \
NOREF(nothrow_constant); \
return RTMemEfAlloc(cb, RTMEM_TAG, RT_SRC_POS); \
} \
void *operator new[](size_t cb) RT_THROW(std::bad_alloc) \
{ \
void *pv = RTMemEfAlloc(cb, RTMEM_TAG, RT_SRC_POS); \
if (RT_LIKELY(pv)) \
return pv; \
throw std::bad_alloc(); \
} \
void *operator new[](size_t cb, const std::nothrow_t ¬hrow_constant) RT_NO_THROW_DEF \
{ \
NOREF(nothrow_constant); \
return RTMemEfAlloc(cb, RTMEM_TAG, RT_SRC_POS); \
} \
\
void operator delete(void *pv) RT_NO_THROW_DEF \
{ \
RTMemEfFree(pv, RT_SRC_POS); \
} \
void operator delete(void *pv, const std::nothrow_t ¬hrow_constant) RT_NO_THROW_DEF \
{ \
NOREF(nothrow_constant); \
RTMemEfFree(pv, RT_SRC_POS); \
} \
void operator delete[](void *pv) RT_NO_THROW_DEF \
{ \
RTMemEfFree(pv, RT_SRC_POS); \
} \
void operator delete[](void *pv, const std::nothrow_t ¬hrow_constant) RT_NO_THROW_DEF \
{ \
NOREF(nothrow_constant); \
RTMemEfFree(pv, RT_SRC_POS); \
} \
\
typedef int UsingElectricNewAndDeleteOperators
# else
# define RTMEMEF_NEW_AND_DELETE_OPERATORS() \
void *operator new(size_t cb) \
{ \
return RTMemEfAlloc(cb, RTMEM_TAG, RT_SRC_POS); \
} \
void *operator new(size_t cb, const std::nothrow_t ¬hrow_constant) \
{ \
NOREF(nothrow_constant); \
return RTMemEfAlloc(cb, RTMEM_TAG, RT_SRC_POS); \
} \
void *operator new[](size_t cb) \
{ \
return RTMemEfAlloc(cb, RTMEM_TAG, RT_SRC_POS); \
} \
void *operator new[](size_t cb, const std::nothrow_t ¬hrow_constant) \
{ \
NOREF(nothrow_constant); \
return RTMemEfAlloc(cb, RTMEM_TAG, RT_SRC_POS); \
} \
\
void operator delete(void *pv) \
{ \
RTMemEfFree(pv, RT_SRC_POS); \
} \
void operator delete(void *pv, const std::nothrow_t ¬hrow_constant) \
{ \
NOREF(nothrow_constant); \
RTMemEfFree(pv, RT_SRC_POS); \
} \
void operator delete[](void *pv) \
{ \
RTMemEfFree(pv, RT_SRC_POS); \
} \
void operator delete[](void *pv, const std::nothrow_t ¬hrow_constant) \
{ \
NOREF(nothrow_constant); \
RTMemEfFree(pv, RT_SRC_POS); \
} \
\
typedef int UsingElectricNewAndDeleteOperators
# endif
# define RTR0MEMEF_NEW_AND_DELETE_OPERATORS_IOKIT() \
void *operator new(size_t cb) \
{ \
return RTMemEfAllocZ(cb, RTMEM_TAG, RT_SRC_POS); \
} \
void *operator new[](size_t cb) \
{ \
return RTMemEfAllocZ(cb, RTMEM_TAG, RT_SRC_POS); \
} \
\
void operator delete(void *pv) \
{ \
RTMemEfFree(pv, RT_SRC_POS); \
} \
void operator delete[](void *pv) \
{ \
RTMemEfFree(pv, RT_SRC_POS); \
} \
\
typedef int UsingElectricNewAndDeleteOperators
#else
# define RTMEMEF_NEW_AND_DELETE_OPERATORS() \
typedef int UsingDefaultNewAndDeleteOperators
# define RTR0MEMEF_NEW_AND_DELETE_OPERATORS_IOKIT() \
typedef int UsingDefaultNewAndDeleteOperators
#endif
#ifdef DOXYGEN_RUNNING
# define RTMEM_WRAP_SOME_NEW_AND_DELETE_TO_EF
#endif
/** @def RTMEM_WRAP_TO_EF_APIS
* Define RTMEM_WRAP_TO_EF_APIS to wrap RTMem APIs to RTMemEf APIs.
*/
#if defined(RTMEM_WRAP_TO_EF_APIS) && !defined(RTMEM_NO_WRAP_TO_EF_APIS) \
&& ( defined(IN_RING3) || ( defined(IN_RING0) && !defined(IN_RING0_AGNOSTIC) && (defined(RT_OS_DARWIN) || 0) ) )
# define RTMemTmpAllocTag(cb, pszTag) RTMemEfTmpAlloc((cb), (pszTag), RT_SRC_POS)
# define RTMemTmpAllocZTag(cb, pszTag) RTMemEfTmpAllocZ((cb), (pszTag), RT_SRC_POS)
# define RTMemTmpFree(pv) RTMemEfTmpFree((pv), RT_SRC_POS)
# define RTMemAllocTag(cb, pszTag) RTMemEfAlloc((cb), (pszTag), RT_SRC_POS)
# define RTMemAllocZTag(cb, pszTag) RTMemEfAllocZ((cb), (pszTag), RT_SRC_POS)
# define RTMemAllocVarTag(cbUnaligned, pszTag) RTMemEfAllocVar((cbUnaligned), (pszTag), RT_SRC_POS)
# define RTMemAllocZVarTag(cbUnaligned, pszTag) RTMemEfAllocZVar((cbUnaligned), (pszTag), RT_SRC_POS)
# define RTMemReallocTag(pvOld, cbNew, pszTag) RTMemEfRealloc((pvOld), (cbNew), (pszTag), RT_SRC_POS)
# define RTMemFree(pv) RTMemEfFree((pv), RT_SRC_POS)
# define RTMemDupTag(pvSrc, cb, pszTag) RTMemEfDup((pvSrc), (cb), (pszTag), RT_SRC_POS)
# define RTMemDupExTag(pvSrc, cbSrc, cbExtra, pszTag) RTMemEfDupEx((pvSrc), (cbSrc), (cbExtra), (pszTag), RT_SRC_POS)
#endif
#ifdef DOXYGEN_RUNNING
# define RTMEM_WRAP_TO_EF_APIS
#endif
/**
* Fenced drop-in replacement for RTMemTmpAllocTag.
* @copydoc RTMemTmpAllocTag
*/
RTDECL(void *) RTMemEfTmpAllocNP(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemTmpAllocZTag.
* @copydoc RTMemTmpAllocZTag
*/
RTDECL(void *) RTMemEfTmpAllocZNP(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemTmpFreeTag.
* @copydoc RTMemTmpFree
*/
RTDECL(void) RTMemEfTmpFreeNP(void *pv) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemAllocTag.
* @copydoc RTMemAllocTag
*/
RTDECL(void *) RTMemEfAllocNP(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemAllocZTag.
* @copydoc RTMemAllocZTag
*/
RTDECL(void *) RTMemEfAllocZNP(size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemAllocVarTag
* @copydoc RTMemAllocVarTag
*/
RTDECL(void *) RTMemEfAllocVarNP(size_t cbUnaligned, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemAllocZVarTag.
* @copydoc RTMemAllocZVarTag
*/
RTDECL(void *) RTMemEfAllocZVarNP(size_t cbUnaligned, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemReallocTag.
* @copydoc RTMemReallocTag
*/
RTDECL(void *) RTMemEfReallocNP(void *pvOld, size_t cbNew, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemFree.
* @copydoc RTMemFree
*/
RTDECL(void) RTMemEfFreeNP(void *pv) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemDupExTag.
* @copydoc RTMemDupTag
*/
RTDECL(void *) RTMemEfDupNP(const void *pvSrc, size_t cb, const char *pszTag) RT_NO_THROW_PROTO;
/**
* Fenced drop-in replacement for RTMemDupExTag.
* @copydoc RTMemDupExTag
*/
RTDECL(void *) RTMemEfDupExNP(const void *pvSrc, size_t cbSrc, size_t cbExtra, const char *pszTag) RT_NO_THROW_PROTO;
/** @} */
RT_C_DECLS_END
/** @} */
#endif /* !IPRT_INCLUDED_mem_h */
|