1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
/* $Id: DevHDACommon.cpp $ */
/** @file
* DevHDACommon.cpp - Shared HDA device functions.
*/
/*
* Copyright (C) 2017-2019 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include <iprt/assert.h>
#include <iprt/errcore.h>
#define LOG_GROUP LOG_GROUP_DEV_HDA
#include <VBox/log.h>
#include "DrvAudio.h"
#include "DevHDA.h"
#include "DevHDACommon.h"
#include "HDAStream.h"
#ifndef LOG_ENABLED
/**
* Processes (de/asserts) the interrupt according to the HDA's current state.
*
* @returns IPRT status code.
* @param pThis HDA state.
*/
int hdaProcessInterrupt(PHDASTATE pThis)
#else
/**
* Processes (de/asserts) the interrupt according to the HDA's current state.
* Debug version.
*
* @returns IPRT status code.
* @param pThis HDA state.
* @param pszSource Caller information.
*/
int hdaProcessInterrupt(PHDASTATE pThis, const char *pszSource)
#endif
{
uint32_t uIntSts = hdaGetINTSTS(pThis);
HDA_REG(pThis, INTSTS) = uIntSts;
/* NB: It is possible to have GIS set even when CIE/SIEn are all zero; the GIS bit does
* not control the interrupt signal. See Figure 4 on page 54 of the HDA 1.0a spec.
*/
/* Global Interrupt Enable (GIE) set? */
if ( (HDA_REG(pThis, INTCTL) & HDA_INTCTL_GIE)
&& (HDA_REG(pThis, INTSTS) & HDA_REG(pThis, INTCTL) & (HDA_INTCTL_CIE | HDA_STRMINT_MASK)))
{
Log3Func(("Asserted (%s)\n", pszSource));
PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0, 1 /* Assert */);
pThis->u8IRQL = 1;
#ifdef DEBUG
pThis->Dbg.IRQ.tsAssertedNs = RTTimeNanoTS();
pThis->Dbg.IRQ.tsProcessedLastNs = pThis->Dbg.IRQ.tsAssertedNs;
#endif
}
else
{
Log3Func(("Deasserted (%s)\n", pszSource));
PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0, 0 /* Deassert */);
pThis->u8IRQL = 0;
}
return VINF_SUCCESS;
}
/**
* Retrieves the currently set value for the wall clock.
*
* @return IPRT status code.
* @return Currently set wall clock value.
* @param pThis HDA state.
*
* @remark Operation is atomic.
*/
uint64_t hdaWalClkGetCurrent(PHDASTATE pThis)
{
return ASMAtomicReadU64(&pThis->u64WalClk);
}
#ifdef IN_RING3
/**
* Sets the actual WALCLK register to the specified wall clock value.
* The specified wall clock value only will be set (unless fForce is set to true) if all
* handled HDA streams have passed (in time) that value. This guarantees that the WALCLK
* register stays in sync with all handled HDA streams.
*
* @return true if the WALCLK register has been updated, false if not.
* @param pThis HDA state.
* @param u64WalClk Wall clock value to set WALCLK register to.
* @param fForce Whether to force setting the wall clock value or not.
*/
bool hdaR3WalClkSet(PHDASTATE pThis, uint64_t u64WalClk, bool fForce)
{
const bool fFrontPassed = hdaR3StreamPeriodHasPassedAbsWalClk (&hdaR3GetStreamFromSink(pThis, &pThis->SinkFront)->State.Period,
u64WalClk);
const uint64_t u64FrontAbsWalClk = hdaR3StreamPeriodGetAbsElapsedWalClk(&hdaR3GetStreamFromSink(pThis, &pThis->SinkFront)->State.Period);
# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
# error "Implement me!"
# endif
const bool fLineInPassed = hdaR3StreamPeriodHasPassedAbsWalClk (&hdaR3GetStreamFromSink(pThis, &pThis->SinkLineIn)->State.Period, u64WalClk);
const uint64_t u64LineInAbsWalClk = hdaR3StreamPeriodGetAbsElapsedWalClk(&hdaR3GetStreamFromSink(pThis, &pThis->SinkLineIn)->State.Period);
# ifdef VBOX_WITH_HDA_MIC_IN
const bool fMicInPassed = hdaR3StreamPeriodHasPassedAbsWalClk (&hdaR3GetStreamFromSink(pThis, &pThis->SinkMicIn)->State.Period, u64WalClk);
const uint64_t u64MicInAbsWalClk = hdaR3StreamPeriodGetAbsElapsedWalClk(&hdaR3GetStreamFromSink(pThis, &pThis->SinkMicIn)->State.Period);
# endif
# ifdef VBOX_STRICT
const uint64_t u64WalClkCur = ASMAtomicReadU64(&pThis->u64WalClk);
# endif
/* Only drive the WALCLK register forward if all (active) stream periods have passed
* the specified point in time given by u64WalClk. */
if ( ( fFrontPassed
# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
# error "Implement me!"
# endif
&& fLineInPassed
# ifdef VBOX_WITH_HDA_MIC_IN
&& fMicInPassed
# endif
)
|| fForce)
{
if (!fForce)
{
/* Get the maximum value of all periods we need to handle.
* Not the most elegant solution, but works for now ... */
u64WalClk = RT_MAX(u64WalClk, u64FrontAbsWalClk);
# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
# error "Implement me!"
# endif
u64WalClk = RT_MAX(u64WalClk, u64LineInAbsWalClk);
# ifdef VBOX_WITH_HDA_MIC_IN
u64WalClk = RT_MAX(u64WalClk, u64MicInAbsWalClk);
# endif
# ifdef VBOX_STRICT
AssertMsg(u64WalClk >= u64WalClkCur,
("Setting WALCLK to a value going backwards does not make any sense (old %RU64 vs. new %RU64)\n",
u64WalClkCur, u64WalClk));
if (u64WalClk == u64WalClkCur) /* Setting a stale value? */
{
if (pThis->u8WalClkStaleCnt++ > 3)
AssertMsgFailed(("Setting WALCLK to a stale value (%RU64) too often isn't a good idea really. "
"Good luck with stuck audio stuff.\n", u64WalClk));
}
else
pThis->u8WalClkStaleCnt = 0;
# endif
}
/* Set the new WALCLK value. */
ASMAtomicWriteU64(&pThis->u64WalClk, u64WalClk);
}
const uint64_t u64WalClkNew = hdaWalClkGetCurrent(pThis);
Log3Func(("Cur: %RU64, New: %RU64 (force %RTbool) -> %RU64 %s\n",
u64WalClkCur, u64WalClk, fForce,
u64WalClkNew, u64WalClkNew == u64WalClk ? "[OK]" : "[DELAYED]"));
return (u64WalClkNew == u64WalClk);
}
/**
* Returns the default (mixer) sink from a given SD#.
* Returns NULL if no sink is found.
*
* @return PHDAMIXERSINK
* @param pThis HDA state.
* @param uSD SD# to return mixer sink for.
* NULL if not found / handled.
*/
PHDAMIXERSINK hdaR3GetDefaultSink(PHDASTATE pThis, uint8_t uSD)
{
if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN)
{
const uint8_t uFirstSDI = 0;
if (uSD == uFirstSDI) /* First SDI. */
return &pThis->SinkLineIn;
# ifdef VBOX_WITH_AUDIO_HDA_MIC_IN
if (uSD == uFirstSDI + 1)
return &pThis->SinkMicIn;
# else
/* If we don't have a dedicated Mic-In sink, use the always present Line-In sink. */
return &pThis->SinkLineIn;
# endif
}
else
{
const uint8_t uFirstSDO = HDA_MAX_SDI;
if (uSD == uFirstSDO)
return &pThis->SinkFront;
# ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND
if (uSD == uFirstSDO + 1)
return &pThis->SinkCenterLFE;
if (uSD == uFirstSDO + 2)
return &pThis->SinkRear;
# endif
}
return NULL;
}
#endif /* IN_RING3 */
/**
* Returns the audio direction of a specified stream descriptor.
*
* The register layout specifies that input streams (SDI) come first,
* followed by the output streams (SDO). So every stream ID below HDA_MAX_SDI
* is an input stream, whereas everything >= HDA_MAX_SDI is an output stream.
*
* Note: SDnFMT register does not provide that information, so we have to judge
* for ourselves.
*
* @return Audio direction.
*/
PDMAUDIODIR hdaGetDirFromSD(uint8_t uSD)
{
AssertReturn(uSD < HDA_MAX_STREAMS, PDMAUDIODIR_UNKNOWN);
if (uSD < HDA_MAX_SDI)
return PDMAUDIODIR_IN;
return PDMAUDIODIR_OUT;
}
/**
* Returns the HDA stream of specified stream descriptor number.
*
* @return Pointer to HDA stream, or NULL if none found.
*/
PHDASTREAM hdaGetStreamFromSD(PHDASTATE pThis, uint8_t uSD)
{
AssertPtrReturn(pThis, NULL);
AssertReturn(uSD < HDA_MAX_STREAMS, NULL);
if (uSD >= HDA_MAX_STREAMS)
{
AssertMsgFailed(("Invalid / non-handled SD%RU8\n", uSD));
return NULL;
}
return &pThis->aStreams[uSD];
}
#ifdef IN_RING3
/**
* Returns the HDA stream of specified HDA sink.
*
* @return Pointer to HDA stream, or NULL if none found.
*/
PHDASTREAM hdaR3GetStreamFromSink(PHDASTATE pThis, PHDAMIXERSINK pSink)
{
AssertPtrReturn(pThis, NULL);
AssertPtrReturn(pSink, NULL);
/** @todo Do something with the channel mapping here? */
return pSink->pStream;
}
/**
* Reads DMA data from a given HDA output stream.
*
* @return IPRT status code.
* @param pThis HDA state.
* @param pStream HDA output stream to read DMA data from.
* @param pvBuf Where to store the read data.
* @param cbBuf How much to read in bytes.
* @param pcbRead Returns read bytes from DMA. Optional.
*/
int hdaR3DMARead(PHDASTATE pThis, PHDASTREAM pStream, void *pvBuf, uint32_t cbBuf, uint32_t *pcbRead)
{
AssertPtrReturn(pThis, VERR_INVALID_POINTER);
AssertPtrReturn(pStream, VERR_INVALID_POINTER);
/* pcbRead is optional. */
PHDABDLE pBDLE = &pStream->State.BDLE;
int rc = VINF_SUCCESS;
uint32_t cbReadTotal = 0;
uint32_t cbLeft = RT_MIN(cbBuf, pBDLE->Desc.u32BufSize - pBDLE->State.u32BufOff);
# ifdef HDA_DEBUG_SILENCE
uint64_t csSilence = 0;
pStream->Dbg.cSilenceThreshold = 100;
pStream->Dbg.cbSilenceReadMin = _1M;
# endif
RTGCPHYS addrChunk = pBDLE->Desc.u64BufAddr + pBDLE->State.u32BufOff;
while (cbLeft)
{
uint32_t cbChunk = RT_MIN(cbLeft, pStream->u16FIFOS);
rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), addrChunk, (uint8_t *)pvBuf + cbReadTotal, cbChunk);
if (RT_FAILURE(rc))
break;
# ifdef HDA_DEBUG_SILENCE
uint16_t *pu16Buf = (uint16_t *)pvBuf;
for (size_t i = 0; i < cbChunk / sizeof(uint16_t); i++)
{
if (*pu16Buf == 0)
csSilence++;
else
break;
pu16Buf++;
}
# endif
if (pStream->Dbg.Runtime.fEnabled)
DrvAudioHlpFileWrite(pStream->Dbg.Runtime.pFileDMARaw, (uint8_t *)pvBuf + cbReadTotal, cbChunk, 0 /* fFlags */);
STAM_COUNTER_ADD(&pThis->StatBytesRead, cbChunk);
addrChunk = (addrChunk + cbChunk) % pBDLE->Desc.u32BufSize;
Assert(cbLeft >= cbChunk);
cbLeft -= cbChunk;
cbReadTotal += cbChunk;
}
# ifdef HDA_DEBUG_SILENCE
if (csSilence)
pStream->Dbg.csSilence += csSilence;
if ( csSilence == 0
&& pStream->Dbg.csSilence > pStream->Dbg.cSilenceThreshold
&& pStream->Dbg.cbReadTotal >= pStream->Dbg.cbSilenceReadMin)
{
LogFunc(("Silent block detected: %RU64 audio samples\n", pStream->Dbg.csSilence));
pStream->Dbg.csSilence = 0;
}
# endif
if (RT_SUCCESS(rc))
{
if (pcbRead)
*pcbRead = cbReadTotal;
}
return rc;
}
/**
* Writes audio data from an HDA input stream's FIFO to its associated DMA area.
*
* @return IPRT status code.
* @param pThis HDA state.
* @param pStream HDA input stream to write audio data to.
* @param pvBuf Data to write.
* @param cbBuf How much (in bytes) to write.
* @param pcbWritten Returns written bytes on success. Optional.
*/
int hdaR3DMAWrite(PHDASTATE pThis, PHDASTREAM pStream, const void *pvBuf, uint32_t cbBuf, uint32_t *pcbWritten)
{
AssertPtrReturn(pThis, VERR_INVALID_POINTER);
AssertPtrReturn(pStream, VERR_INVALID_POINTER);
/* pcbWritten is optional. */
PHDABDLE pBDLE = &pStream->State.BDLE;
int rc = VINF_SUCCESS;
uint32_t cbWrittenTotal = 0;
uint32_t cbLeft = RT_MIN(cbBuf, pBDLE->Desc.u32BufSize - pBDLE->State.u32BufOff);
RTGCPHYS addrChunk = pBDLE->Desc.u64BufAddr + pBDLE->State.u32BufOff;
while (cbLeft)
{
uint32_t cbChunk = RT_MIN(cbLeft, pStream->u16FIFOS);
/* Sanity checks. */
Assert(cbChunk <= pBDLE->Desc.u32BufSize - pBDLE->State.u32BufOff);
if (pStream->Dbg.Runtime.fEnabled)
DrvAudioHlpFileWrite(pStream->Dbg.Runtime.pFileDMARaw, (uint8_t *)pvBuf + cbWrittenTotal, cbChunk, 0 /* fFlags */);
rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns),
addrChunk, (uint8_t *)pvBuf + cbWrittenTotal, cbChunk);
if (RT_FAILURE(rc))
break;
STAM_COUNTER_ADD(&pThis->StatBytesWritten, cbChunk);
addrChunk = (addrChunk + cbChunk) % pBDLE->Desc.u32BufSize;
Assert(cbLeft >= cbChunk);
cbLeft -= (uint32_t)cbChunk;
cbWrittenTotal += (uint32_t)cbChunk;
}
if (RT_SUCCESS(rc))
{
if (pcbWritten)
*pcbWritten = cbWrittenTotal;
}
else
LogFunc(("Failed with %Rrc\n", rc));
return rc;
}
#endif /* IN_RING3 */
/**
* Returns a new INTSTS value based on the current device state.
*
* @returns Determined INTSTS register value.
* @param pThis HDA state.
*
* @remark This function does *not* set INTSTS!
*/
uint32_t hdaGetINTSTS(PHDASTATE pThis)
{
uint32_t intSts = 0;
/* Check controller interrupts (RIRB, STATEST). */
if (HDA_REG(pThis, RIRBSTS) & HDA_REG(pThis, RIRBCTL) & (HDA_RIRBCTL_ROIC | HDA_RIRBCTL_RINTCTL))
{
intSts |= HDA_INTSTS_CIS; /* Set the Controller Interrupt Status (CIS). */
}
/* Check SDIN State Change Status Flags. */
if (HDA_REG(pThis, STATESTS) & HDA_REG(pThis, WAKEEN))
{
intSts |= HDA_INTSTS_CIS; /* Touch Controller Interrupt Status (CIS). */
}
/* For each stream, check if any interrupt status bit is set and enabled. */
for (uint8_t iStrm = 0; iStrm < HDA_MAX_STREAMS; ++iStrm)
{
if (HDA_STREAM_REG(pThis, STS, iStrm) & HDA_STREAM_REG(pThis, CTL, iStrm) & (HDA_SDCTL_DEIE | HDA_SDCTL_FEIE | HDA_SDCTL_IOCE))
{
Log3Func(("[SD%d] interrupt status set\n", iStrm));
intSts |= RT_BIT(iStrm);
}
}
if (intSts)
intSts |= HDA_INTSTS_GIS; /* Set the Global Interrupt Status (GIS). */
Log3Func(("-> 0x%x\n", intSts));
return intSts;
}
#ifdef IN_RING3
/**
* Converts an HDA stream's SDFMT register into a given PCM properties structure.
*
* @return IPRT status code.
* @param u16SDFMT The HDA stream's SDFMT value to convert.
* @param pProps PCM properties structure to hold converted result on success.
*/
int hdaR3SDFMTToPCMProps(uint16_t u16SDFMT, PPDMAUDIOPCMPROPS pProps)
{
AssertPtrReturn(pProps, VERR_INVALID_POINTER);
# define EXTRACT_VALUE(v, mask, shift) ((v & ((mask) << (shift))) >> (shift))
int rc = VINF_SUCCESS;
uint32_t u32Hz = EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_BASE_RATE_MASK, HDA_SDFMT_BASE_RATE_SHIFT)
? 44100 : 48000;
uint32_t u32HzMult = 1;
uint32_t u32HzDiv = 1;
switch (EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT))
{
case 0: u32HzMult = 1; break;
case 1: u32HzMult = 2; break;
case 2: u32HzMult = 3; break;
case 3: u32HzMult = 4; break;
default:
LogFunc(("Unsupported multiplier %x\n",
EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT)));
rc = VERR_NOT_SUPPORTED;
break;
}
switch (EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT))
{
case 0: u32HzDiv = 1; break;
case 1: u32HzDiv = 2; break;
case 2: u32HzDiv = 3; break;
case 3: u32HzDiv = 4; break;
case 4: u32HzDiv = 5; break;
case 5: u32HzDiv = 6; break;
case 6: u32HzDiv = 7; break;
case 7: u32HzDiv = 8; break;
default:
LogFunc(("Unsupported divisor %x\n",
EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT)));
rc = VERR_NOT_SUPPORTED;
break;
}
uint8_t cBytes = 0;
switch (EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT))
{
case 0:
cBytes = 1;
break;
case 1:
cBytes = 2;
break;
case 4:
cBytes = 4;
break;
default:
AssertMsgFailed(("Unsupported bits per sample %x\n",
EXTRACT_VALUE(u16SDFMT, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT)));
rc = VERR_NOT_SUPPORTED;
break;
}
if (RT_SUCCESS(rc))
{
RT_BZERO(pProps, sizeof(PDMAUDIOPCMPROPS));
pProps->cBytes = cBytes;
pProps->fSigned = true;
pProps->cChannels = (u16SDFMT & 0xf) + 1;
pProps->uHz = u32Hz * u32HzMult / u32HzDiv;
pProps->cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pProps->cBytes, pProps->cChannels);
}
# undef EXTRACT_VALUE
return rc;
}
# ifdef LOG_ENABLED
void hdaR3BDLEDumpAll(PHDASTATE pThis, uint64_t u64BDLBase, uint16_t cBDLE)
{
LogFlowFunc(("BDLEs @ 0x%x (%RU16):\n", u64BDLBase, cBDLE));
if (!u64BDLBase)
return;
uint32_t cbBDLE = 0;
for (uint16_t i = 0; i < cBDLE; i++)
{
HDABDLEDESC bd;
PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BDLBase + i * sizeof(HDABDLEDESC), &bd, sizeof(bd));
LogFunc(("\t#%03d BDLE(adr:0x%llx, size:%RU32, ioc:%RTbool)\n",
i, bd.u64BufAddr, bd.u32BufSize, bd.fFlags & HDA_BDLE_FLAG_IOC));
cbBDLE += bd.u32BufSize;
}
LogFlowFunc(("Total: %RU32 bytes\n", cbBDLE));
if (!pThis->u64DPBase) /* No DMA base given? Bail out. */
return;
LogFlowFunc(("DMA counters:\n"));
for (int i = 0; i < cBDLE; i++)
{
uint32_t uDMACnt;
PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + (i * 2 * sizeof(uint32_t)),
&uDMACnt, sizeof(uDMACnt));
LogFlowFunc(("\t#%03d DMA @ 0x%x\n", i , uDMACnt));
}
}
# endif /* LOG_ENABLED */
/**
* Fetches a Bundle Descriptor List Entry (BDLE) from the DMA engine.
*
* @param pThis Pointer to HDA state.
* @param pBDLE Where to store the fetched result.
* @param u64BaseDMA Address base of DMA engine to use.
* @param u16Entry BDLE entry to fetch.
*/
int hdaR3BDLEFetch(PHDASTATE pThis, PHDABDLE pBDLE, uint64_t u64BaseDMA, uint16_t u16Entry)
{
AssertPtrReturn(pThis, VERR_INVALID_POINTER);
AssertPtrReturn(pBDLE, VERR_INVALID_POINTER);
AssertReturn(u64BaseDMA, VERR_INVALID_PARAMETER);
if (!u64BaseDMA)
{
LogRel2(("HDA: Unable to fetch BDLE #%RU16 - no base DMA address set (yet)\n", u16Entry));
return VERR_NOT_FOUND;
}
/** @todo Compare u16Entry with LVI. */
int rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + (u16Entry * sizeof(HDABDLEDESC)),
&pBDLE->Desc, sizeof(pBDLE->Desc));
if (RT_SUCCESS(rc))
{
/* Reset internal state. */
RT_ZERO(pBDLE->State);
pBDLE->State.u32BDLIndex = u16Entry;
}
Log3Func(("Entry #%d @ 0x%x: %R[bdle], rc=%Rrc\n", u16Entry, u64BaseDMA + (u16Entry * sizeof(HDABDLEDESC)), pBDLE, rc));
return VINF_SUCCESS;
}
/**
* Tells whether a given BDLE is complete or not.
*
* @return true if BDLE is complete, false if not.
* @param pBDLE BDLE to retrieve status for.
*/
bool hdaR3BDLEIsComplete(PHDABDLE pBDLE)
{
bool fIsComplete = false;
if ( !pBDLE->Desc.u32BufSize /* There can be BDLEs with 0 size. */
|| (pBDLE->State.u32BufOff >= pBDLE->Desc.u32BufSize))
{
Assert(pBDLE->State.u32BufOff == pBDLE->Desc.u32BufSize);
fIsComplete = true;
}
Log3Func(("%R[bdle] => %s\n", pBDLE, fIsComplete ? "COMPLETE" : "INCOMPLETE"));
return fIsComplete;
}
/**
* Tells whether a given BDLE needs an interrupt or not.
*
* @return true if BDLE needs an interrupt, false if not.
* @param pBDLE BDLE to retrieve status for.
*/
bool hdaR3BDLENeedsInterrupt(PHDABDLE pBDLE)
{
return (pBDLE->Desc.fFlags & HDA_BDLE_FLAG_IOC);
}
/**
* Sets the virtual device timer to a new expiration time.
*
* @returns Whether the new expiration time was set or not.
* @param pThis HDA state.
* @param pStream HDA stream to set timer for.
* @param tsExpire New (virtual) expiration time to set.
* @param fForce Whether to force setting the expiration time or not.
*
* @remark This function takes all active HDA streams and their
* current timing into account. This is needed to make sure
* that all streams can match their needed timing.
*
* To achieve this, the earliest (lowest) timestamp of all
* active streams found will be used for the next scheduling slot.
*
* Forcing a new expiration time will override the above mechanism.
*/
bool hdaR3TimerSet(PHDASTATE pThis, PHDASTREAM pStream, uint64_t tsExpire, bool fForce)
{
AssertPtrReturn(pThis, false);
AssertPtrReturn(pStream, false);
uint64_t tsExpireMin = tsExpire;
if (!fForce)
{
if (hdaR3StreamTransferIsScheduled(pStream))
tsExpireMin = RT_MIN(tsExpireMin, hdaR3StreamTransferGetNext(pStream));
}
AssertPtr(pThis->pTimer[pStream->u8SD]);
const uint64_t tsNow = TMTimerGet(pThis->pTimer[pStream->u8SD]);
/*
* Make sure to not go backwards in time, as this will assert in TMTimerSet().
* This in theory could happen in hdaR3StreamTransferGetNext() from above.
*/
if (tsExpireMin < tsNow)
tsExpireMin = tsNow;
int rc = TMTimerSet(pThis->pTimer[pStream->u8SD], tsExpireMin);
AssertRC(rc);
return RT_SUCCESS(rc);
}
#endif /* IN_RING3 */
|