1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
|
/* $Id: memobj-r0drv-darwin.cpp $ */
/** @file
* IPRT - Ring-0 Memory Objects, Darwin.
*/
/*
* Copyright (C) 2006-2019 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define RTMEM_NO_WRAP_TO_EF_APIS /* circular dependency otherwise. */
#include "the-darwin-kernel.h"
#include "internal/iprt.h"
#include <iprt/memobj.h>
#include <iprt/asm.h>
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/x86.h>
# include <iprt/asm-amd64-x86.h>
#endif
#include <iprt/assert.h>
#include <iprt/log.h>
#include <iprt/mem.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#include "internal/memobj.h"
/*#define USE_VM_MAP_WIRE - may re-enable later when non-mapped allocations are added. */
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* The Darwin version of the memory object structure.
*/
typedef struct RTR0MEMOBJDARWIN
{
/** The core structure. */
RTR0MEMOBJINTERNAL Core;
/** Pointer to the memory descriptor created for allocated and locked memory. */
IOMemoryDescriptor *pMemDesc;
/** Pointer to the memory mapping object for mapped memory. */
IOMemoryMap *pMemMap;
} RTR0MEMOBJDARWIN, *PRTR0MEMOBJDARWIN;
/**
* Touch the pages to force the kernel to create or write-enable the page table
* entries.
*
* This is necessary since the kernel gets upset if we take a page fault when
* preemption is disabled and/or we own a simple lock (same thing). It has no
* problems with us disabling interrupts when taking the traps, weird stuff.
*
* (This is basically a way of invoking vm_fault on a range of pages.)
*
* @param pv Pointer to the first page.
* @param cb The number of bytes.
*/
static void rtR0MemObjDarwinTouchPages(void *pv, size_t cb)
{
uint32_t volatile *pu32 = (uint32_t volatile *)pv;
for (;;)
{
ASMAtomicCmpXchgU32(pu32, 0xdeadbeef, 0xdeadbeef);
if (cb <= PAGE_SIZE)
break;
cb -= PAGE_SIZE;
pu32 += PAGE_SIZE / sizeof(uint32_t);
}
}
/**
* Read (sniff) every page in the range to make sure there are some page tables
* entries backing it.
*
* This is just to be sure vm_protect didn't remove stuff without re-adding it
* if someone should try write-protect something.
*
* @param pv Pointer to the first page.
* @param cb The number of bytes.
*/
static void rtR0MemObjDarwinSniffPages(void const *pv, size_t cb)
{
uint32_t volatile *pu32 = (uint32_t volatile *)pv;
uint32_t volatile u32Counter = 0;
for (;;)
{
u32Counter += *pu32;
if (cb <= PAGE_SIZE)
break;
cb -= PAGE_SIZE;
pu32 += PAGE_SIZE / sizeof(uint32_t);
}
}
/**
* Gets the virtual memory map the specified object is mapped into.
*
* @returns VM map handle on success, NULL if no map.
* @param pMem The memory object.
*/
DECLINLINE(vm_map_t) rtR0MemObjDarwinGetMap(PRTR0MEMOBJINTERNAL pMem)
{
switch (pMem->enmType)
{
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_CONT:
return kernel_map;
case RTR0MEMOBJTYPE_PHYS:
case RTR0MEMOBJTYPE_PHYS_NC:
return NULL; /* pretend these have no mapping atm. */
case RTR0MEMOBJTYPE_LOCK:
return pMem->u.Lock.R0Process == NIL_RTR0PROCESS
? kernel_map
: get_task_map((task_t)pMem->u.Lock.R0Process);
case RTR0MEMOBJTYPE_RES_VIRT:
return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS
? kernel_map
: get_task_map((task_t)pMem->u.ResVirt.R0Process);
case RTR0MEMOBJTYPE_MAPPING:
return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS
? kernel_map
: get_task_map((task_t)pMem->u.Mapping.R0Process);
default:
return NULL;
}
}
#if 0 /* not necessary after all*/
/* My vm_map mockup. */
struct my_vm_map
{
struct { char pad[8]; } lock;
struct my_vm_map_header
{
struct vm_map_links
{
void *prev;
void *next;
vm_map_offset_t start;
vm_map_offset_t end;
} links;
int nentries;
boolean_t entries_pageable;
} hdr;
pmap_t pmap;
vm_map_size_t size;
};
/**
* Gets the minimum map address, this is similar to get_map_min.
*
* @returns The start address of the map.
* @param pMap The map.
*/
static vm_map_offset_t rtR0MemObjDarwinGetMapMin(vm_map_t pMap)
{
/* lazy discovery of the correct offset. The apple guys is a wonderfully secretive bunch. */
static int32_t volatile s_offAdjust = INT32_MAX;
int32_t off = s_offAdjust;
if (off == INT32_MAX)
{
for (off = 0; ; off += sizeof(pmap_t))
{
if (*(pmap_t *)((uint8_t *)kernel_map + off) == kernel_pmap)
break;
AssertReturn(off <= RT_MAX(RT_OFFSETOF(struct my_vm_map, pmap) * 4, 1024), 0x1000);
}
ASMAtomicWriteS32(&s_offAdjust, off - RT_OFFSETOF(struct my_vm_map, pmap));
}
/* calculate it. */
struct my_vm_map *pMyMap = (struct my_vm_map *)((uint8_t *)pMap + off);
return pMyMap->hdr.links.start;
}
#endif /* unused */
#ifdef RT_STRICT
# if 0 /* unused */
/**
* Read from a physical page.
*
* @param HCPhys The address to start reading at.
* @param cb How many bytes to read.
* @param pvDst Where to put the bytes. This is zero'd on failure.
*/
static void rtR0MemObjDarwinReadPhys(RTHCPHYS HCPhys, size_t cb, void *pvDst)
{
memset(pvDst, '\0', cb);
IOAddressRange aRanges[1] = { { (mach_vm_address_t)HCPhys, RT_ALIGN_Z(cb, PAGE_SIZE) } };
IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddressRanges(&aRanges[0], RT_ELEMENTS(aRanges),
kIODirectionIn, NULL /*task*/);
if (pMemDesc)
{
#if MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
IOMemoryMap *pMemMap = pMemDesc->createMappingInTask(kernel_task, 0, kIOMapAnywhere | kIOMapDefaultCache);
#else
IOMemoryMap *pMemMap = pMemDesc->map(kernel_task, 0, kIOMapAnywhere | kIOMapDefaultCache);
#endif
if (pMemMap)
{
void const *pvSrc = (void const *)(uintptr_t)pMemMap->getVirtualAddress();
memcpy(pvDst, pvSrc, cb);
pMemMap->release();
}
else
printf("rtR0MemObjDarwinReadPhys: createMappingInTask failed; HCPhys=%llx\n", HCPhys);
pMemDesc->release();
}
else
printf("rtR0MemObjDarwinReadPhys: withAddressRanges failed; HCPhys=%llx\n", HCPhys);
}
/**
* Gets the PTE for a page.
*
* @returns the PTE.
* @param pvPage The virtual address to get the PTE for.
*/
static uint64_t rtR0MemObjDarwinGetPTE(void *pvPage)
{
RTUINT64U u64;
RTCCUINTREG cr3 = ASMGetCR3();
RTCCUINTREG cr4 = ASMGetCR4();
bool fPAE = false;
bool fLMA = false;
if (cr4 & X86_CR4_PAE)
{
fPAE = true;
uint32_t fExtFeatures = ASMCpuId_EDX(0x80000001);
if (fExtFeatures & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE)
{
uint64_t efer = ASMRdMsr(MSR_K6_EFER);
if (efer & MSR_K6_EFER_LMA)
fLMA = true;
}
}
if (fLMA)
{
/* PML4 */
rtR0MemObjDarwinReadPhys((cr3 & ~(RTCCUINTREG)PAGE_OFFSET_MASK) | (((uint64_t)(uintptr_t)pvPage >> X86_PML4_SHIFT) & X86_PML4_MASK) * 8, 8, &u64);
if (!(u64.u & X86_PML4E_P))
{
printf("rtR0MemObjDarwinGetPTE: %p -> PML4E !p\n", pvPage);
return 0;
}
/* PDPTR */
rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64) * 8, 8, &u64);
if (!(u64.u & X86_PDPE_P))
{
printf("rtR0MemObjDarwinGetPTE: %p -> PDPTE !p\n", pvPage);
return 0;
}
if (u64.u & X86_PDPE_LM_PS)
return (u64.u & ~(uint64_t)(_1G -1)) | ((uintptr_t)pvPage & (_1G -1));
/* PD */
rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * 8, 8, &u64);
if (!(u64.u & X86_PDE_P))
{
printf("rtR0MemObjDarwinGetPTE: %p -> PDE !p\n", pvPage);
return 0;
}
if (u64.u & X86_PDE_PS)
return (u64.u & ~(uint64_t)(_2M -1)) | ((uintptr_t)pvPage & (_2M -1));
/* PT */
rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK) * 8, 8, &u64);
if (!(u64.u & X86_PTE_P))
{
printf("rtR0MemObjDarwinGetPTE: %p -> PTE !p\n", pvPage);
return 0;
}
return u64.u;
}
if (fPAE)
{
/* PDPTR */
rtR0MemObjDarwinReadPhys((u64.u & X86_CR3_PAE_PAGE_MASK) | (((uintptr_t)pvPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * 8, 8, &u64);
if (!(u64.u & X86_PDE_P))
return 0;
/* PD */
rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * 8, 8, &u64);
if (!(u64.u & X86_PDE_P))
return 0;
if (u64.u & X86_PDE_PS)
return (u64.u & ~(uint64_t)(_2M -1)) | ((uintptr_t)pvPage & (_2M -1));
/* PT */
rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK) * 8, 8, &u64);
if (!(u64.u & X86_PTE_P))
return 0;
return u64.u;
}
/* PD */
rtR0MemObjDarwinReadPhys((u64.au32[0] & ~(uint32_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PD_SHIFT) & X86_PD_MASK) * 4, 4, &u64);
if (!(u64.au32[0] & X86_PDE_P))
return 0;
if (u64.au32[0] & X86_PDE_PS)
return (u64.u & ~(uint64_t)(_2M -1)) | ((uintptr_t)pvPage & (_2M -1));
/* PT */
rtR0MemObjDarwinReadPhys((u64.au32[0] & ~(uint32_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PT_SHIFT) & X86_PT_MASK) * 4, 4, &u64);
if (!(u64.au32[0] & X86_PTE_P))
return 0;
return u64.au32[0];
return 0;
}
# endif /* unused */
#endif /* RT_STRICT */
DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)pMem;
IPRT_DARWIN_SAVE_EFL_AC();
/*
* Release the IOMemoryDescriptor or/and IOMemoryMap associated with the object.
*/
if (pMemDarwin->pMemDesc)
{
pMemDarwin->pMemDesc->complete();
pMemDarwin->pMemDesc->release();
pMemDarwin->pMemDesc = NULL;
}
if (pMemDarwin->pMemMap)
{
pMemDarwin->pMemMap->release();
pMemDarwin->pMemMap = NULL;
}
/*
* Release any memory that we've allocated or locked.
*/
switch (pMemDarwin->Core.enmType)
{
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_CONT:
break;
case RTR0MEMOBJTYPE_LOCK:
{
#ifdef USE_VM_MAP_WIRE
vm_map_t Map = pMemDarwin->Core.u.Lock.R0Process != NIL_RTR0PROCESS
? get_task_map((task_t)pMemDarwin->Core.u.Lock.R0Process)
: kernel_map;
kern_return_t kr = vm_map_unwire(Map,
(vm_map_offset_t)pMemDarwin->Core.pv,
(vm_map_offset_t)pMemDarwin->Core.pv + pMemDarwin->Core.cb,
0 /* not user */);
AssertRC(kr == KERN_SUCCESS); /** @todo don't ignore... */
#endif
break;
}
case RTR0MEMOBJTYPE_PHYS:
/*if (pMemDarwin->Core.u.Phys.fAllocated)
IOFreePhysical(pMemDarwin->Core.u.Phys.PhysBase, pMemDarwin->Core.cb);*/
Assert(!pMemDarwin->Core.u.Phys.fAllocated);
break;
case RTR0MEMOBJTYPE_PHYS_NC:
AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
IPRT_DARWIN_RESTORE_EFL_AC();
return VERR_INTERNAL_ERROR;
case RTR0MEMOBJTYPE_RES_VIRT:
AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
IPRT_DARWIN_RESTORE_EFL_AC();
return VERR_INTERNAL_ERROR;
case RTR0MEMOBJTYPE_MAPPING:
/* nothing to do here. */
break;
default:
AssertMsgFailed(("enmType=%d\n", pMemDarwin->Core.enmType));
IPRT_DARWIN_RESTORE_EFL_AC();
return VERR_INTERNAL_ERROR;
}
IPRT_DARWIN_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
/**
* Kernel memory alloc worker that uses inTaskWithPhysicalMask.
*
* @returns IPRT status code.
* @retval VERR_ADDRESS_TOO_BIG try another way.
*
* @param ppMem Where to return the memory object.
* @param cb The page aligned memory size.
* @param fExecutable Whether the mapping needs to be executable.
* @param fContiguous Whether the backing memory needs to be contiguous.
* @param PhysMask The mask for the backing memory (i.e. range). Use 0 if
* you don't care that much or is speculating.
* @param MaxPhysAddr The max address to verify the result against. Use
* UINT64_MAX if it doesn't matter.
* @param enmType The object type.
*/
static int rtR0MemObjNativeAllocWorker(PPRTR0MEMOBJINTERNAL ppMem, size_t cb,
bool fExecutable, bool fContiguous,
mach_vm_address_t PhysMask, uint64_t MaxPhysAddr,
RTR0MEMOBJTYPE enmType)
{
/*
* Try inTaskWithPhysicalMask first, but since we don't quite trust that it
* actually respects the physical memory mask (10.5.x is certainly busted),
* we'll use rtR0MemObjNativeAllocCont as a fallback for dealing with that.
*
* The kIOMemoryKernelUserShared flag just forces the result to be page aligned.
*
* The kIOMemoryMapperNone flag is required since 10.8.2 (IOMMU changes?).
*/
int rc;
size_t cbFudged = cb;
if (1) /** @todo Figure out why this is broken. Is it only on snow leopard? Seen allocating memory for the VM structure, last page corrupted or inaccessible. */
cbFudged += PAGE_SIZE;
#if 1
IOOptionBits fOptions = kIOMemoryKernelUserShared | kIODirectionInOut;
if (fContiguous)
fOptions |= kIOMemoryPhysicallyContiguous;
if (version_major >= 12 /* 12 = 10.8.x = Mountain Kitten */)
fOptions |= kIOMemoryMapperNone;
IOBufferMemoryDescriptor *pMemDesc = IOBufferMemoryDescriptor::inTaskWithPhysicalMask(kernel_task, fOptions,
cbFudged, PhysMask);
#else /* Requires 10.7 SDK, but allows alignment to be specified: */
uint64_t uAlignment = PAGE_SIZE;
IOOptionBits fOptions = kIODirectionInOut | kIOMemoryMapperNone;
if (fContiguous || MaxPhysAddr < UINT64_MAX)
{
fOptions |= kIOMemoryPhysicallyContiguous;
uAlignment = 1; /* PhysMask isn't respected if higher. */
}
IOBufferMemoryDescriptor *pMemDesc = new IOBufferMemoryDescriptor;
if (pMemDesc && !pMemDesc->initWithPhysicalMask(kernel_task, fOptions, cbFudged, uAlignment, PhysMask))
{
pMemDesc->release();
pMemDesc = NULL;
}
#endif
if (pMemDesc)
{
IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
if (IORet == kIOReturnSuccess)
{
void *pv = pMemDesc->getBytesNoCopy(0, cbFudged);
if (pv)
{
/*
* Check if it's all below 4GB.
*/
addr64_t AddrPrev = 0;
MaxPhysAddr &= ~(uint64_t)PAGE_OFFSET_MASK;
for (IOByteCount off = 0; off < cb; off += PAGE_SIZE)
{
#ifdef __LP64__
addr64_t Addr = pMemDesc->getPhysicalSegment(off, NULL, kIOMemoryMapperNone);
#else
addr64_t Addr = pMemDesc->getPhysicalSegment64(off, NULL);
#endif
if ( Addr > MaxPhysAddr
|| !Addr
|| (Addr & PAGE_OFFSET_MASK)
|| ( fContiguous
&& !off
&& Addr == AddrPrev + PAGE_SIZE))
{
/* Buggy API, try allocate the memory another way. */
pMemDesc->complete();
pMemDesc->release();
if (PhysMask)
LogRel(("rtR0MemObjNativeAllocWorker: off=%x Addr=%llx AddrPrev=%llx MaxPhysAddr=%llx PhysMas=%llx fContiguous=%RTbool fOptions=%#x - buggy API!\n",
off, Addr, AddrPrev, MaxPhysAddr, PhysMask, fContiguous, fOptions));
return VERR_ADDRESS_TOO_BIG;
}
AddrPrev = Addr;
}
#ifdef RT_STRICT
/* check that the memory is actually mapped. */
//addr64_t Addr = pMemDesc->getPhysicalSegment64(0, NULL);
//printf("rtR0MemObjNativeAllocWorker: pv=%p %8llx %8llx\n", pv, rtR0MemObjDarwinGetPTE(pv), Addr);
RTTHREADPREEMPTSTATE State = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&State);
rtR0MemObjDarwinTouchPages(pv, cb);
RTThreadPreemptRestore(&State);
#endif
/*
* Create the IPRT memory object.
*/
PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), enmType, pv, cb);
if (pMemDarwin)
{
if (fContiguous)
{
#ifdef __LP64__
addr64_t PhysBase64 = pMemDesc->getPhysicalSegment(0, NULL, kIOMemoryMapperNone);
#else
addr64_t PhysBase64 = pMemDesc->getPhysicalSegment64(0, NULL);
#endif
RTHCPHYS PhysBase = PhysBase64; Assert(PhysBase == PhysBase64);
if (enmType == RTR0MEMOBJTYPE_CONT)
pMemDarwin->Core.u.Cont.Phys = PhysBase;
else if (enmType == RTR0MEMOBJTYPE_PHYS)
pMemDarwin->Core.u.Phys.PhysBase = PhysBase;
else
AssertMsgFailed(("enmType=%d\n", enmType));
}
#if 1 /* Experimental code. */
if (fExecutable)
{
rc = rtR0MemObjNativeProtect(&pMemDarwin->Core, 0, cb, RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
# ifdef RT_STRICT
/* check that the memory is actually mapped. */
RTTHREADPREEMPTSTATE State2 = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&State2);
rtR0MemObjDarwinTouchPages(pv, cb);
RTThreadPreemptRestore(&State2);
# endif
/* Bug 6226: Ignore KERN_PROTECTION_FAILURE on Leopard and older. */
if ( rc == VERR_PERMISSION_DENIED
&& version_major <= 10 /* 10 = 10.6.x = Snow Leopard. */)
rc = VINF_SUCCESS;
}
else
#endif
rc = VINF_SUCCESS;
if (RT_SUCCESS(rc))
{
pMemDarwin->pMemDesc = pMemDesc;
*ppMem = &pMemDarwin->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemDarwin->Core);
}
if (enmType == RTR0MEMOBJTYPE_PHYS_NC)
rc = VERR_NO_PHYS_MEMORY;
else if (enmType == RTR0MEMOBJTYPE_LOW)
rc = VERR_NO_LOW_MEMORY;
else if (enmType == RTR0MEMOBJTYPE_CONT)
rc = VERR_NO_CONT_MEMORY;
else
rc = VERR_NO_MEMORY;
}
else
rc = VERR_MEMOBJ_INIT_FAILED;
pMemDesc->complete();
}
else
rc = RTErrConvertFromDarwinIO(IORet);
pMemDesc->release();
}
else
rc = VERR_MEMOBJ_INIT_FAILED;
Assert(rc != VERR_ADDRESS_TOO_BIG);
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
IPRT_DARWIN_SAVE_EFL_AC();
int rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, false /* fContiguous */,
0 /* PhysMask */, UINT64_MAX, RTR0MEMOBJTYPE_PAGE);
IPRT_DARWIN_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
IPRT_DARWIN_SAVE_EFL_AC();
/*
* Try IOMallocPhysical/IOMallocAligned first.
* Then try optimistically without a physical address mask, which will always
* end up using IOMallocAligned.
*
* (See bug comment in the worker and IOBufferMemoryDescriptor::initWithPhysicalMask.)
*/
int rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, false /* fContiguous */,
~(uint32_t)PAGE_OFFSET_MASK, _4G - PAGE_SIZE, RTR0MEMOBJTYPE_LOW);
if (rc == VERR_ADDRESS_TOO_BIG)
rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, false /* fContiguous */,
0 /* PhysMask */, _4G - PAGE_SIZE, RTR0MEMOBJTYPE_LOW);
IPRT_DARWIN_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
IPRT_DARWIN_SAVE_EFL_AC();
int rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, true /* fContiguous */,
~(uint32_t)PAGE_OFFSET_MASK, _4G - PAGE_SIZE,
RTR0MEMOBJTYPE_CONT);
/*
* Workaround for bogus IOKernelAllocateContiguous behavior, just in case.
* cb <= PAGE_SIZE allocations take a different path, using a different allocator.
*/
if (RT_FAILURE(rc) && cb <= PAGE_SIZE)
rc = rtR0MemObjNativeAllocWorker(ppMem, cb + PAGE_SIZE, fExecutable, true /* fContiguous */,
~(uint32_t)PAGE_OFFSET_MASK, _4G - PAGE_SIZE,
RTR0MEMOBJTYPE_CONT);
IPRT_DARWIN_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
{
/** @todo alignment */
if (uAlignment != PAGE_SIZE)
return VERR_NOT_SUPPORTED;
IPRT_DARWIN_SAVE_EFL_AC();
/*
* Translate the PhysHighest address into a mask.
*/
int rc;
if (PhysHighest == NIL_RTHCPHYS)
rc = rtR0MemObjNativeAllocWorker(ppMem, cb, true /* fExecutable */, true /* fContiguous */,
0 /* PhysMask*/, UINT64_MAX, RTR0MEMOBJTYPE_PHYS);
else
{
mach_vm_address_t PhysMask = 0;
PhysMask = ~(mach_vm_address_t)0;
while (PhysMask > (PhysHighest | PAGE_OFFSET_MASK))
PhysMask >>= 1;
AssertReturn(PhysMask + 1 <= cb, VERR_INVALID_PARAMETER);
PhysMask &= ~(mach_vm_address_t)PAGE_OFFSET_MASK;
rc = rtR0MemObjNativeAllocWorker(ppMem, cb, true /* fExecutable */, true /* fContiguous */,
PhysMask, PhysHighest, RTR0MEMOBJTYPE_PHYS);
}
IPRT_DARWIN_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
/** @todo rtR0MemObjNativeAllocPhys / darwin.
* This might be a bit problematic and may very well require having to create our own
* object which we populate with pages but without mapping it into any address space.
* Estimate is 2-3 days.
*/
RT_NOREF(ppMem, cb, PhysHighest);
return VERR_NOT_SUPPORTED;
}
DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
{
AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
IPRT_DARWIN_SAVE_EFL_AC();
/*
* Create a descriptor for it (the validation is always true on intel macs, but
* as it doesn't harm us keep it in).
*/
int rc = VERR_ADDRESS_TOO_BIG;
IOAddressRange aRanges[1] = { { Phys, cb } };
if ( aRanges[0].address == Phys
&& aRanges[0].length == cb)
{
IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddressRanges(&aRanges[0], RT_ELEMENTS(aRanges),
kIODirectionInOut, NULL /*task*/);
if (pMemDesc)
{
#ifdef __LP64__
Assert(Phys == pMemDesc->getPhysicalSegment(0, NULL, kIOMemoryMapperNone));
#else
Assert(Phys == pMemDesc->getPhysicalSegment64(0, NULL));
#endif
/*
* Create the IPRT memory object.
*/
PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (pMemDarwin)
{
pMemDarwin->Core.u.Phys.PhysBase = Phys;
pMemDarwin->Core.u.Phys.fAllocated = false;
pMemDarwin->Core.u.Phys.uCachePolicy = uCachePolicy;
pMemDarwin->pMemDesc = pMemDesc;
*ppMem = &pMemDarwin->Core;
IPRT_DARWIN_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
rc = VERR_NO_MEMORY;
pMemDesc->release();
}
else
rc = VERR_MEMOBJ_INIT_FAILED;
}
else
AssertMsgFailed(("%#llx %llx\n", (unsigned long long)Phys, (unsigned long long)cb));
IPRT_DARWIN_RESTORE_EFL_AC();
return rc;
}
/**
* Internal worker for locking down pages.
*
* @return IPRT status code.
*
* @param ppMem Where to store the memory object pointer.
* @param pv First page.
* @param cb Number of bytes.
* @param fAccess The desired access, a combination of RTMEM_PROT_READ
* and RTMEM_PROT_WRITE.
* @param Task The task \a pv and \a cb refers to.
*/
static int rtR0MemObjNativeLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, task_t Task)
{
IPRT_DARWIN_SAVE_EFL_AC();
NOREF(fAccess);
#ifdef USE_VM_MAP_WIRE
vm_map_t Map = get_task_map(Task);
Assert(Map);
/*
* First try lock the memory.
*/
int rc = VERR_LOCK_FAILED;
kern_return_t kr = vm_map_wire(get_task_map(Task),
(vm_map_offset_t)pv,
(vm_map_offset_t)pv + cb,
VM_PROT_DEFAULT,
0 /* not user */);
if (kr == KERN_SUCCESS)
{
/*
* Create the IPRT memory object.
*/
PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_LOCK, pv, cb);
if (pMemDarwin)
{
pMemDarwin->Core.u.Lock.R0Process = (RTR0PROCESS)Task;
*ppMem = &pMemDarwin->Core;
IPRT_DARWIN_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
kr = vm_map_unwire(get_task_map(Task), (vm_map_offset_t)pv, (vm_map_offset_t)pv + cb, 0 /* not user */);
Assert(kr == KERN_SUCCESS);
rc = VERR_NO_MEMORY;
}
#else
/*
* Create a descriptor and try lock it (prepare).
*/
int rc = VERR_MEMOBJ_INIT_FAILED;
IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddressRange((vm_address_t)pv, cb, kIODirectionInOut, Task);
if (pMemDesc)
{
IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
if (IORet == kIOReturnSuccess)
{
/*
* Create the IPRT memory object.
*/
PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_LOCK, pv, cb);
if (pMemDarwin)
{
pMemDarwin->Core.u.Lock.R0Process = (RTR0PROCESS)Task;
pMemDarwin->pMemDesc = pMemDesc;
*ppMem = &pMemDarwin->Core;
IPRT_DARWIN_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
pMemDesc->complete();
rc = VERR_NO_MEMORY;
}
else
rc = VERR_LOCK_FAILED;
pMemDesc->release();
}
#endif
IPRT_DARWIN_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
{
return rtR0MemObjNativeLock(ppMem, (void *)R3Ptr, cb, fAccess, (task_t)R0Process);
}
DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
{
return rtR0MemObjNativeLock(ppMem, pv, cb, fAccess, kernel_task);
}
DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
RT_NOREF(ppMem, pvFixed, cb, uAlignment);
return VERR_NOT_SUPPORTED;
}
DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
{
RT_NOREF(ppMem, R3PtrFixed, cb, uAlignment, R0Process);
return VERR_NOT_SUPPORTED;
}
DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
unsigned fProt, size_t offSub, size_t cbSub)
{
RT_NOREF(fProt);
AssertReturn(pvFixed == (void *)-1, VERR_NOT_SUPPORTED);
/*
* Check that the specified alignment is supported.
*/
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
IPRT_DARWIN_SAVE_EFL_AC();
/*
* Must have a memory descriptor that we can map.
*/
int rc = VERR_INVALID_PARAMETER;
PRTR0MEMOBJDARWIN pMemToMapDarwin = (PRTR0MEMOBJDARWIN)pMemToMap;
if (pMemToMapDarwin->pMemDesc)
{
#if MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->createMappingInTask(kernel_task,
0,
kIOMapAnywhere | kIOMapDefaultCache,
offSub,
cbSub);
#else
IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->map(kernel_task,
0,
kIOMapAnywhere | kIOMapDefaultCache,
offSub,
cbSub);
#endif
if (pMemMap)
{
IOVirtualAddress VirtAddr = pMemMap->getVirtualAddress();
void *pv = (void *)(uintptr_t)VirtAddr;
if ((uintptr_t)pv == VirtAddr)
{
//addr64_t Addr = pMemToMapDarwin->pMemDesc->getPhysicalSegment64(offSub, NULL);
//printf("pv=%p: %8llx %8llx\n", pv, rtR0MemObjDarwinGetPTE(pv), Addr);
// /*
// * Explicitly lock it so that we're sure it is present and that
// * its PTEs cannot be recycled.
// * Note! withAddressRange() doesn't work as it adds kIOMemoryTypeVirtual64
// * to the options which causes prepare() to not wire the pages.
// * This is probably a bug.
// */
// IOAddressRange Range = { (mach_vm_address_t)pv, cbSub };
// IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withOptions(&Range,
// 1 /* count */,
// 0 /* offset */,
// kernel_task,
// kIODirectionInOut | kIOMemoryTypeVirtual,
// kIOMapperSystem);
// if (pMemDesc)
// {
// IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
// if (IORet == kIOReturnSuccess)
// {
/* HACK ALERT! */
rtR0MemObjDarwinTouchPages(pv, cbSub);
/** @todo First, the memory should've been mapped by now, and second, it
* should have the wired attribute in the PTE (bit 9). Neither
* seems to be the case. The disabled locking code doesn't make any
* difference, which is extremely odd, and breaks
* rtR0MemObjNativeGetPagePhysAddr (getPhysicalSegment64 -> 64 for the
* lock descriptor. */
//addr64_t Addr = pMemDesc->getPhysicalSegment64(0, NULL);
//printf("pv=%p: %8llx %8llx (%d)\n", pv, rtR0MemObjDarwinGetPTE(pv), Addr, 2);
/*
* Create the IPRT memory object.
*/
PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_MAPPING,
pv, cbSub);
if (pMemDarwin)
{
pMemDarwin->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
pMemDarwin->pMemMap = pMemMap;
// pMemDarwin->pMemDesc = pMemDesc;
*ppMem = &pMemDarwin->Core;
IPRT_DARWIN_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
// pMemDesc->complete();
// rc = VERR_NO_MEMORY;
// }
// else
// rc = RTErrConvertFromDarwinIO(IORet);
// pMemDesc->release();
// }
// else
// rc = VERR_MEMOBJ_INIT_FAILED;
}
else
rc = VERR_ADDRESS_TOO_BIG;
pMemMap->release();
}
else
rc = VERR_MAP_FAILED;
}
IPRT_DARWIN_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
unsigned fProt, RTR0PROCESS R0Process)
{
RT_NOREF(fProt);
/*
* Check for unsupported things.
*/
AssertReturn(R3PtrFixed == (RTR3PTR)-1, VERR_NOT_SUPPORTED);
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
IPRT_DARWIN_SAVE_EFL_AC();
/*
* Must have a memory descriptor.
*/
int rc = VERR_INVALID_PARAMETER;
PRTR0MEMOBJDARWIN pMemToMapDarwin = (PRTR0MEMOBJDARWIN)pMemToMap;
if (pMemToMapDarwin->pMemDesc)
{
#if MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->createMappingInTask((task_t)R0Process,
0,
kIOMapAnywhere | kIOMapDefaultCache,
0 /* offset */,
0 /* length */);
#else
IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->map((task_t)R0Process,
0,
kIOMapAnywhere | kIOMapDefaultCache);
#endif
if (pMemMap)
{
IOVirtualAddress VirtAddr = pMemMap->getVirtualAddress();
void *pv = (void *)(uintptr_t)VirtAddr;
if ((uintptr_t)pv == VirtAddr)
{
/*
* Create the IPRT memory object.
*/
PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_MAPPING,
pv, pMemToMapDarwin->Core.cb);
if (pMemDarwin)
{
pMemDarwin->Core.u.Mapping.R0Process = R0Process;
pMemDarwin->pMemMap = pMemMap;
*ppMem = &pMemDarwin->Core;
IPRT_DARWIN_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
rc = VERR_NO_MEMORY;
}
else
rc = VERR_ADDRESS_TOO_BIG;
pMemMap->release();
}
else
rc = VERR_MAP_FAILED;
}
IPRT_DARWIN_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
{
IPRT_DARWIN_SAVE_EFL_AC();
/* Get the map for the object. */
vm_map_t pVmMap = rtR0MemObjDarwinGetMap(pMem);
if (!pVmMap)
{
IPRT_DARWIN_RESTORE_EFL_AC();
return VERR_NOT_SUPPORTED;
}
/*
* Convert the protection.
*/
vm_prot_t fMachProt;
switch (fProt)
{
case RTMEM_PROT_NONE:
fMachProt = VM_PROT_NONE;
break;
case RTMEM_PROT_READ:
fMachProt = VM_PROT_READ;
break;
case RTMEM_PROT_READ | RTMEM_PROT_WRITE:
fMachProt = VM_PROT_READ | VM_PROT_WRITE;
break;
case RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
fMachProt = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
break;
case RTMEM_PROT_WRITE:
fMachProt = VM_PROT_WRITE | VM_PROT_READ; /* never write-only */
break;
case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
fMachProt = VM_PROT_WRITE | VM_PROT_EXECUTE | VM_PROT_READ; /* never write-only or execute-only */
break;
case RTMEM_PROT_EXEC:
fMachProt = VM_PROT_EXECUTE | VM_PROT_READ; /* never execute-only */
break;
default:
AssertFailedReturn(VERR_INVALID_PARAMETER);
}
/*
* Do the job.
*/
vm_offset_t Start = (uintptr_t)pMem->pv + offSub;
kern_return_t krc = vm_protect(pVmMap,
Start,
cbSub,
false,
fMachProt);
if (krc != KERN_SUCCESS)
{
static int s_cComplaints = 0;
if (s_cComplaints < 10)
{
s_cComplaints++;
printf("rtR0MemObjNativeProtect: vm_protect(%p,%p,%p,false,%#x) -> %d\n",
pVmMap, (void *)Start, (void *)cbSub, fMachProt, krc);
kern_return_t krc2;
vm_offset_t pvReal = Start;
vm_size_t cbReal = 0;
mach_msg_type_number_t cInfo = VM_REGION_BASIC_INFO_COUNT;
struct vm_region_basic_info Info;
RT_ZERO(Info);
krc2 = vm_region(pVmMap, &pvReal, &cbReal, VM_REGION_BASIC_INFO, (vm_region_info_t)&Info, &cInfo, NULL);
printf("rtR0MemObjNativeProtect: basic info - krc2=%d pv=%p cb=%p prot=%#x max=%#x inh=%#x shr=%d rvd=%d off=%#x behavior=%#x wired=%#x\n",
krc2, (void *)pvReal, (void *)cbReal, Info.protection, Info.max_protection, Info.inheritance,
Info.shared, Info.reserved, Info.offset, Info.behavior, Info.user_wired_count);
}
IPRT_DARWIN_RESTORE_EFL_AC();
return RTErrConvertFromDarwinKern(krc);
}
/*
* Touch the pages if they should be writable afterwards and accessible
* from code which should never fault. vm_protect() may leave pages
* temporarily write protected, possibly due to pmap no-upgrade rules?
*
* This is the same trick (or HACK ALERT if you like) as applied in
* rtR0MemObjNativeMapKernel.
*/
if ( pMem->enmType != RTR0MEMOBJTYPE_MAPPING
|| pMem->u.Mapping.R0Process == NIL_RTR0PROCESS)
{
if (fProt & RTMEM_PROT_WRITE)
rtR0MemObjDarwinTouchPages((void *)Start, cbSub);
/*
* Sniff (read) read-only pages too, just to be sure.
*/
else if (fProt & (RTMEM_PROT_READ | RTMEM_PROT_EXEC))
rtR0MemObjDarwinSniffPages((void const *)Start, cbSub);
}
IPRT_DARWIN_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
RTHCPHYS PhysAddr;
PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)pMem;
IPRT_DARWIN_SAVE_EFL_AC();
#ifdef USE_VM_MAP_WIRE
/*
* Locked memory doesn't have a memory descriptor and
* needs to be handled differently.
*/
if (pMemDarwin->Core.enmType == RTR0MEMOBJTYPE_LOCK)
{
ppnum_t PgNo;
if (pMemDarwin->Core.u.Lock.R0Process == NIL_RTR0PROCESS)
PgNo = pmap_find_phys(kernel_pmap, (uintptr_t)pMemDarwin->Core.pv + iPage * PAGE_SIZE);
else
{
/*
* From what I can tell, Apple seems to have locked up the all the
* available interfaces that could help us obtain the pmap_t of a task
* or vm_map_t.
* So, we'll have to figure out where in the vm_map_t structure it is
* and read it our selves. ASSUMING that kernel_pmap is pointed to by
* kernel_map->pmap, we scan kernel_map to locate the structure offset.
* Not nice, but it will hopefully do the job in a reliable manner...
*
* (get_task_pmap, get_map_pmap or vm_map_pmap is what we really need btw.)
*/
static int s_offPmap = -1;
if (RT_UNLIKELY(s_offPmap == -1))
{
pmap_t const *p = (pmap_t *)kernel_map;
pmap_t const * const pEnd = p + 64;
for (; p < pEnd; p++)
if (*p == kernel_pmap)
{
s_offPmap = (uintptr_t)p - (uintptr_t)kernel_map;
break;
}
AssertReturn(s_offPmap >= 0, NIL_RTHCPHYS);
}
pmap_t Pmap = *(pmap_t *)((uintptr_t)get_task_map((task_t)pMemDarwin->Core.u.Lock.R0Process) + s_offPmap);
PgNo = pmap_find_phys(Pmap, (uintptr_t)pMemDarwin->Core.pv + iPage * PAGE_SIZE);
}
IPRT_DARWIN_RESTORE_EFL_AC();
AssertReturn(PgNo, NIL_RTHCPHYS);
PhysAddr = (RTHCPHYS)PgNo << PAGE_SHIFT;
Assert((PhysAddr >> PAGE_SHIFT) == PgNo);
}
else
#endif /* USE_VM_MAP_WIRE */
{
/*
* Get the memory descriptor.
*/
IOMemoryDescriptor *pMemDesc = pMemDarwin->pMemDesc;
if (!pMemDesc)
pMemDesc = pMemDarwin->pMemMap->getMemoryDescriptor();
AssertReturn(pMemDesc, NIL_RTHCPHYS);
/*
* If we've got a memory descriptor, use getPhysicalSegment64().
*/
#ifdef __LP64__
addr64_t Addr = pMemDesc->getPhysicalSegment(iPage * PAGE_SIZE, NULL, kIOMemoryMapperNone);
#else
addr64_t Addr = pMemDesc->getPhysicalSegment64(iPage * PAGE_SIZE, NULL);
#endif
IPRT_DARWIN_RESTORE_EFL_AC();
AssertMsgReturn(Addr, ("iPage=%u\n", iPage), NIL_RTHCPHYS);
PhysAddr = Addr;
AssertMsgReturn(PhysAddr == Addr, ("PhysAddr=%RHp Addr=%RX64\n", PhysAddr, (uint64_t)Addr), NIL_RTHCPHYS);
}
return PhysAddr;
}
|