summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/nt/memobj-r0drv-nt.cpp
blob: a65513a8a4732c23fde328b0138e389396660d7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
/* $Id: memobj-r0drv-nt.cpp $ */
/** @file
 * IPRT - Ring-0 Memory Objects, NT.
 */

/*
 * Copyright (C) 2006-2019 Oracle Corporation
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
 * VirtualBox OSE distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#include "the-nt-kernel.h"

#include <iprt/memobj.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/log.h>
#include <iprt/param.h>
#include <iprt/string.h>
#include <iprt/process.h>
#include "internal/memobj.h"
#include "internal-r0drv-nt.h"


/*********************************************************************************************************************************
*   Defined Constants And Macros                                                                                                 *
*********************************************************************************************************************************/
/** Maximum number of bytes we try to lock down in one go.
 * This is supposed to have a limit right below 256MB, but this appears
 * to actually be much lower. The values here have been determined experimentally.
 */
#ifdef RT_ARCH_X86
# define MAX_LOCK_MEM_SIZE   (32*1024*1024) /* 32MB */
#endif
#ifdef RT_ARCH_AMD64
# define MAX_LOCK_MEM_SIZE   (24*1024*1024) /* 24MB */
#endif


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
/**
 * The NT version of the memory object structure.
 */
typedef struct RTR0MEMOBJNT
{
    /** The core structure. */
    RTR0MEMOBJINTERNAL  Core;
    /** Used MmAllocatePagesForMdl(). */
    bool                fAllocatedPagesForMdl;
    /** Pointer returned by MmSecureVirtualMemory */
    PVOID               pvSecureMem;
    /** The number of PMDLs (memory descriptor lists) in the array. */
    uint32_t            cMdls;
    /** Array of MDL pointers. (variable size) */
    PMDL                apMdls[1];
} RTR0MEMOBJNT, *PRTR0MEMOBJNT;



DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
    PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;

    /*
     * Deal with it on a per type basis (just as a variation).
     */
    switch (pMemNt->Core.enmType)
    {
        case RTR0MEMOBJTYPE_LOW:
            if (pMemNt->fAllocatedPagesForMdl)
            {
                Assert(pMemNt->Core.pv && pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
                MmUnmapLockedPages(pMemNt->Core.pv, pMemNt->apMdls[0]);
                pMemNt->Core.pv = NULL;
                if (pMemNt->pvSecureMem)
                {
                    g_pfnrtMmUnsecureVirtualMemory(pMemNt->pvSecureMem);
                    pMemNt->pvSecureMem = NULL;
                }

                g_pfnrtMmFreePagesFromMdl(pMemNt->apMdls[0]);
                ExFreePool(pMemNt->apMdls[0]);
                pMemNt->apMdls[0] = NULL;
                pMemNt->cMdls = 0;
                break;
            }
            AssertFailed();
            break;

        case RTR0MEMOBJTYPE_PAGE:
            Assert(pMemNt->Core.pv);
            if (g_pfnrtExFreePoolWithTag)
                g_pfnrtExFreePoolWithTag(pMemNt->Core.pv, IPRT_NT_POOL_TAG);
            else
                ExFreePool(pMemNt->Core.pv);
            pMemNt->Core.pv = NULL;

            Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
            IoFreeMdl(pMemNt->apMdls[0]);
            pMemNt->apMdls[0] = NULL;
            pMemNt->cMdls = 0;
            break;

        case RTR0MEMOBJTYPE_CONT:
            Assert(pMemNt->Core.pv);
            MmFreeContiguousMemory(pMemNt->Core.pv);
            pMemNt->Core.pv = NULL;

            Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
            IoFreeMdl(pMemNt->apMdls[0]);
            pMemNt->apMdls[0] = NULL;
            pMemNt->cMdls = 0;
            break;

        case RTR0MEMOBJTYPE_PHYS:
            /* rtR0MemObjNativeEnterPhys? */
            if (!pMemNt->Core.u.Phys.fAllocated)
            {
                Assert(!pMemNt->fAllocatedPagesForMdl);
                /* Nothing to do here. */
                break;
            }
            RT_FALL_THRU();

        case RTR0MEMOBJTYPE_PHYS_NC:
            if (pMemNt->fAllocatedPagesForMdl)
            {
                g_pfnrtMmFreePagesFromMdl(pMemNt->apMdls[0]);
                ExFreePool(pMemNt->apMdls[0]);
                pMemNt->apMdls[0] = NULL;
                pMemNt->cMdls = 0;
                break;
            }
            AssertFailed();
            break;

        case RTR0MEMOBJTYPE_LOCK:
            if (pMemNt->pvSecureMem)
            {
                g_pfnrtMmUnsecureVirtualMemory(pMemNt->pvSecureMem);
                pMemNt->pvSecureMem = NULL;
            }
            for (uint32_t i = 0; i < pMemNt->cMdls; i++)
            {
                MmUnlockPages(pMemNt->apMdls[i]);
                IoFreeMdl(pMemNt->apMdls[i]);
                pMemNt->apMdls[i] = NULL;
            }
            break;

        case RTR0MEMOBJTYPE_RES_VIRT:
/*            if (pMemNt->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
            {
            }
            else
            {
            }*/
            AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
            return VERR_INTERNAL_ERROR;
            break;

        case RTR0MEMOBJTYPE_MAPPING:
        {
            Assert(pMemNt->cMdls == 0 && pMemNt->Core.pv);
            PRTR0MEMOBJNT pMemNtParent = (PRTR0MEMOBJNT)pMemNt->Core.uRel.Child.pParent;
            Assert(pMemNtParent);
            if (pMemNtParent->cMdls)
            {
                Assert(pMemNtParent->cMdls == 1 && pMemNtParent->apMdls[0]);
                Assert(     pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS
                       ||   pMemNt->Core.u.Mapping.R0Process == RTR0ProcHandleSelf());
                MmUnmapLockedPages(pMemNt->Core.pv, pMemNtParent->apMdls[0]);
            }
            else
            {
                Assert(     pMemNtParent->Core.enmType == RTR0MEMOBJTYPE_PHYS
                       &&   !pMemNtParent->Core.u.Phys.fAllocated);
                Assert(pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS);
                MmUnmapIoSpace(pMemNt->Core.pv, pMemNt->Core.cb);
            }
            pMemNt->Core.pv = NULL;
            break;
        }

        default:
            AssertMsgFailed(("enmType=%d\n", pMemNt->Core.enmType));
            return VERR_INTERNAL_ERROR;
    }

    return VINF_SUCCESS;
}


DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
    AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
    RT_NOREF1(fExecutable);

    /*
     * Try allocate the memory and create an MDL for them so
     * we can query the physical addresses and do mappings later
     * without running into out-of-memory conditions and similar problems.
     */
    int rc = VERR_NO_PAGE_MEMORY;
    void *pv;
    if (g_pfnrtExAllocatePoolWithTag)
        pv = g_pfnrtExAllocatePoolWithTag(NonPagedPool, cb, IPRT_NT_POOL_TAG);
    else
        pv = ExAllocatePool(NonPagedPool, cb);
    if (pv)
    {
        PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
        if (pMdl)
        {
            MmBuildMdlForNonPagedPool(pMdl);
#ifdef RT_ARCH_AMD64
            MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
#endif

            /*
             * Create the IPRT memory object.
             */
            PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PAGE, pv, cb);
            if (pMemNt)
            {
                pMemNt->cMdls = 1;
                pMemNt->apMdls[0] = pMdl;
                *ppMem = &pMemNt->Core;
                return VINF_SUCCESS;
            }

            rc = VERR_NO_MEMORY;
            IoFreeMdl(pMdl);
        }
        ExFreePool(pv);
    }
    return rc;
}


DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
    AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */

    /*
     * Try see if we get lucky first...
     * (We could probably just assume we're lucky on NT4.)
     */
    int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
    if (RT_SUCCESS(rc))
    {
        size_t iPage = cb >> PAGE_SHIFT;
        while (iPage-- > 0)
            if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) >= _4G)
            {
                rc = VERR_NO_LOW_MEMORY;
                break;
            }
        if (RT_SUCCESS(rc))
            return rc;

        /* The following ASSUMES that rtR0MemObjNativeAllocPage returns a completed object. */
        RTR0MemObjFree(*ppMem, false);
        *ppMem = NULL;
    }

    /*
     * Use MmAllocatePagesForMdl to specify the range of physical addresses we wish to use.
     */
    if (   g_pfnrtMmAllocatePagesForMdl
        && g_pfnrtMmFreePagesFromMdl
        && g_pfnrtMmMapLockedPagesSpecifyCache)
    {
        PHYSICAL_ADDRESS Zero;
        Zero.QuadPart = 0;
        PHYSICAL_ADDRESS HighAddr;
        HighAddr.QuadPart = _4G - 1;
        PMDL pMdl = g_pfnrtMmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
        if (pMdl)
        {
            if (MmGetMdlByteCount(pMdl) >= cb)
            {
                __try
                {
                    void *pv = g_pfnrtMmMapLockedPagesSpecifyCache(pMdl, KernelMode, MmCached, NULL /* no base address */,
                                                                   FALSE /* no bug check on failure */, NormalPagePriority);
                    if (pv)
                    {
                        PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_LOW, pv, cb);
                        if (pMemNt)
                        {
                            pMemNt->fAllocatedPagesForMdl = true;
                            pMemNt->cMdls = 1;
                            pMemNt->apMdls[0] = pMdl;
                            *ppMem = &pMemNt->Core;
                            return VINF_SUCCESS;
                        }
                        MmUnmapLockedPages(pv, pMdl);
                    }
                }
                __except(EXCEPTION_EXECUTE_HANDLER)
                {
# ifdef LOG_ENABLED
                    NTSTATUS rcNt = GetExceptionCode();
                    Log(("rtR0MemObjNativeAllocLow: Exception Code %#x\n", rcNt));
# endif
                    /* nothing */
                }
            }
            g_pfnrtMmFreePagesFromMdl(pMdl);
            ExFreePool(pMdl);
        }
    }

    /*
     * Fall back on contiguous memory...
     */
    return rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
}


/**
 * Internal worker for rtR0MemObjNativeAllocCont(), rtR0MemObjNativeAllocPhys()
 * and rtR0MemObjNativeAllocPhysNC() that takes a max physical address in addition
 * to what rtR0MemObjNativeAllocCont() does.
 *
 * @returns IPRT status code.
 * @param   ppMem           Where to store the pointer to the ring-0 memory object.
 * @param   cb              The size.
 * @param   fExecutable     Whether the mapping should be executable or not.
 * @param   PhysHighest     The highest physical address for the pages in allocation.
 * @param   uAlignment      The alignment of the physical memory to allocate.
 *                          Supported values are PAGE_SIZE, _2M, _4M and _1G.
 */
static int rtR0MemObjNativeAllocContEx(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, RTHCPHYS PhysHighest,
                                       size_t uAlignment)
{
    AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
    RT_NOREF1(fExecutable);

    /*
     * Allocate the memory and create an MDL for it.
     */
    PHYSICAL_ADDRESS PhysAddrHighest;
    PhysAddrHighest.QuadPart = PhysHighest;
    void *pv;
    if (g_pfnrtMmAllocateContiguousMemorySpecifyCache)
    {
        PHYSICAL_ADDRESS PhysAddrLowest, PhysAddrBoundary;
        PhysAddrLowest.QuadPart   = 0;
        PhysAddrBoundary.QuadPart = (uAlignment == PAGE_SIZE) ? 0 : uAlignment;
        pv = g_pfnrtMmAllocateContiguousMemorySpecifyCache(cb, PhysAddrLowest, PhysAddrHighest, PhysAddrBoundary, MmCached);
    }
    else if (uAlignment == PAGE_SIZE)
        pv = MmAllocateContiguousMemory(cb, PhysAddrHighest);
    else
        return VERR_NOT_SUPPORTED;
    if (!pv)
        return VERR_NO_MEMORY;

    PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
    if (pMdl)
    {
        MmBuildMdlForNonPagedPool(pMdl);
#ifdef RT_ARCH_AMD64
        MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
#endif

        PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_CONT, pv, cb);
        if (pMemNt)
        {
            pMemNt->Core.u.Cont.Phys = (RTHCPHYS)*MmGetMdlPfnArray(pMdl) << PAGE_SHIFT;
            pMemNt->cMdls = 1;
            pMemNt->apMdls[0] = pMdl;
            *ppMem = &pMemNt->Core;
            return VINF_SUCCESS;
        }

        IoFreeMdl(pMdl);
    }
    MmFreeContiguousMemory(pv);
    return VERR_NO_MEMORY;
}


DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
    return rtR0MemObjNativeAllocContEx(ppMem, cb, fExecutable, _4G-1, PAGE_SIZE /* alignment */);
}


DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
{
    /*
     * Try and see if we're lucky and get a contiguous chunk from MmAllocatePagesForMdl.
     *
     * This is preferable to using MmAllocateContiguousMemory because there are
     * a few situations where the memory shouldn't be mapped, like for instance
     * VT-x control memory. Since these are rather small allocations (one or
     * two pages) MmAllocatePagesForMdl will probably be able to satisfy the
     * request.
     *
     * If the allocation is big, the chances are *probably* not very good. The
     * current limit is kind of random...
     */
    if (   cb < _128K
        && uAlignment == PAGE_SIZE
        && g_pfnrtMmAllocatePagesForMdl
        && g_pfnrtMmFreePagesFromMdl)
    {
        PHYSICAL_ADDRESS Zero;
        Zero.QuadPart = 0;
        PHYSICAL_ADDRESS HighAddr;
        HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
        PMDL pMdl = g_pfnrtMmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
        if (pMdl)
        {
            if (MmGetMdlByteCount(pMdl) >= cb)
            {
                PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMdl);
                PFN_NUMBER Pfn = paPfns[0] + 1;
                const size_t cPages = cb >> PAGE_SHIFT;
                size_t iPage;
                for (iPage = 1; iPage < cPages; iPage++, Pfn++)
                    if (paPfns[iPage] != Pfn)
                        break;
                if (iPage >= cPages)
                {
                    PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
                    if (pMemNt)
                    {
                        pMemNt->Core.u.Phys.fAllocated = true;
                        pMemNt->Core.u.Phys.PhysBase = (RTHCPHYS)paPfns[0] << PAGE_SHIFT;
                        pMemNt->fAllocatedPagesForMdl = true;
                        pMemNt->cMdls = 1;
                        pMemNt->apMdls[0] = pMdl;
                        *ppMem = &pMemNt->Core;
                        return VINF_SUCCESS;
                    }
                }
            }
            g_pfnrtMmFreePagesFromMdl(pMdl);
            ExFreePool(pMdl);
        }
    }

    return rtR0MemObjNativeAllocContEx(ppMem, cb, false, PhysHighest, uAlignment);
}


DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
    if (g_pfnrtMmAllocatePagesForMdl && g_pfnrtMmFreePagesFromMdl)
    {
        PHYSICAL_ADDRESS Zero;
        Zero.QuadPart = 0;
        PHYSICAL_ADDRESS HighAddr;
        HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
        PMDL pMdl = g_pfnrtMmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
        if (pMdl)
        {
            if (MmGetMdlByteCount(pMdl) >= cb)
            {
                PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
                if (pMemNt)
                {
                    pMemNt->fAllocatedPagesForMdl = true;
                    pMemNt->cMdls = 1;
                    pMemNt->apMdls[0] = pMdl;
                    *ppMem = &pMemNt->Core;
                    return VINF_SUCCESS;
                }
            }
            g_pfnrtMmFreePagesFromMdl(pMdl);
            ExFreePool(pMdl);
        }
        return VERR_NO_MEMORY;
    }
    return VERR_NOT_SUPPORTED;
}


DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
{
    AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE || uCachePolicy == RTMEM_CACHE_POLICY_MMIO, VERR_NOT_SUPPORTED);

    /*
     * Validate the address range and create a descriptor for it.
     */
    PFN_NUMBER Pfn = (PFN_NUMBER)(Phys >> PAGE_SHIFT);
    if (((RTHCPHYS)Pfn << PAGE_SHIFT) != Phys)
        return VERR_ADDRESS_TOO_BIG;

    /*
     * Create the IPRT memory object.
     */
    PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
    if (pMemNt)
    {
        pMemNt->Core.u.Phys.PhysBase = Phys;
        pMemNt->Core.u.Phys.fAllocated = false;
        pMemNt->Core.u.Phys.uCachePolicy = uCachePolicy;
        *ppMem = &pMemNt->Core;
        return VINF_SUCCESS;
    }
    return VERR_NO_MEMORY;
}


/**
 * Internal worker for locking down pages.
 *
 * @return IPRT status code.
 *
 * @param   ppMem           Where to store the memory object pointer.
 * @param   pv              First page.
 * @param   cb              Number of bytes.
 * @param   fAccess         The desired access, a combination of RTMEM_PROT_READ
 *                          and RTMEM_PROT_WRITE.
 * @param   R0Process       The process \a pv and \a cb refers to.
 */
static int rtR0MemObjNtLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
{
    /*
     * Calc the number of MDLs we need and allocate the memory object structure.
     */
    size_t cMdls = cb / MAX_LOCK_MEM_SIZE;
    if (cb % MAX_LOCK_MEM_SIZE)
        cMdls++;
    if (cMdls >= UINT32_MAX)
        return VERR_OUT_OF_RANGE;
    PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJNT, apMdls[cMdls]),
                                                        RTR0MEMOBJTYPE_LOCK, pv, cb);
    if (!pMemNt)
        return VERR_NO_MEMORY;

    /*
     * Loop locking down the sub parts of the memory.
     */
    int         rc = VINF_SUCCESS;
    size_t      cbTotal = 0;
    uint8_t    *pb = (uint8_t *)pv;
    uint32_t    iMdl;
    for (iMdl = 0; iMdl < cMdls; iMdl++)
    {
        /*
         * Calc the Mdl size and allocate it.
         */
        size_t cbCur = cb - cbTotal;
        if (cbCur > MAX_LOCK_MEM_SIZE)
            cbCur = MAX_LOCK_MEM_SIZE;
        AssertMsg(cbCur, ("cbCur: 0!\n"));
        PMDL pMdl = IoAllocateMdl(pb, (ULONG)cbCur, FALSE, FALSE, NULL);
        if (!pMdl)
        {
            rc = VERR_NO_MEMORY;
            break;
        }

        /*
         * Lock the pages.
         */
        __try
        {
            MmProbeAndLockPages(pMdl,
                                R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
                                fAccess == RTMEM_PROT_READ
                                ? IoReadAccess
                                : fAccess == RTMEM_PROT_WRITE
                                ? IoWriteAccess
                                : IoModifyAccess);

            pMemNt->apMdls[iMdl] = pMdl;
            pMemNt->cMdls++;
        }
        __except(EXCEPTION_EXECUTE_HANDLER)
        {
            IoFreeMdl(pMdl);
            rc = VERR_LOCK_FAILED;
            break;
        }

        if (   R0Process != NIL_RTR0PROCESS
            && g_pfnrtMmSecureVirtualMemory
            && g_pfnrtMmUnsecureVirtualMemory)
        {
            /* Make sure the user process can't change the allocation. */
            pMemNt->pvSecureMem = g_pfnrtMmSecureVirtualMemory(pv, cb,
                                                               fAccess & RTMEM_PROT_WRITE
                                                               ? PAGE_READWRITE
                                                               : PAGE_READONLY);
            if (!pMemNt->pvSecureMem)
            {
                rc = VERR_NO_MEMORY;
                break;
            }
        }

        /* next */
        cbTotal += cbCur;
        pb      += cbCur;
    }
    if (RT_SUCCESS(rc))
    {
        Assert(pMemNt->cMdls == cMdls);
        pMemNt->Core.u.Lock.R0Process = R0Process;
        *ppMem = &pMemNt->Core;
        return rc;
    }

    /*
     * We failed, perform cleanups.
     */
    while (iMdl-- > 0)
    {
        MmUnlockPages(pMemNt->apMdls[iMdl]);
        IoFreeMdl(pMemNt->apMdls[iMdl]);
        pMemNt->apMdls[iMdl] = NULL;
    }
    if (pMemNt->pvSecureMem)
    {
        if (g_pfnrtMmUnsecureVirtualMemory)
            g_pfnrtMmUnsecureVirtualMemory(pMemNt->pvSecureMem);
        pMemNt->pvSecureMem = NULL;
    }

    rtR0MemObjDelete(&pMemNt->Core);
    return rc;
}


DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess,
                                         RTR0PROCESS R0Process)
{
    AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
    /* (Can use MmProbeAndLockProcessPages if we need to mess with other processes later.) */
    return rtR0MemObjNtLock(ppMem, (void *)R3Ptr, cb, fAccess, R0Process);
}


DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
{
    return rtR0MemObjNtLock(ppMem, pv, cb, fAccess, NIL_RTR0PROCESS);
}


DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
    /*
     * MmCreateSection(SEC_RESERVE) + MmMapViewInSystemSpace perhaps?
     */
    RT_NOREF4(ppMem, pvFixed, cb, uAlignment);
    return VERR_NOT_SUPPORTED;
}


DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
                                            RTR0PROCESS R0Process)
{
    /*
     * ZeCreateSection(SEC_RESERVE) + ZwMapViewOfSection perhaps?
     */
    RT_NOREF5(ppMem, R3PtrFixed, cb, uAlignment, R0Process);
    return VERR_NOT_SUPPORTED;
}


/**
 * Internal worker for rtR0MemObjNativeMapKernel and rtR0MemObjNativeMapUser.
 *
 * @returns IPRT status code.
 * @param   ppMem       Where to store the memory object for the mapping.
 * @param   pMemToMap   The memory object to map.
 * @param   pvFixed     Where to map it. (void *)-1 if anywhere is fine.
 * @param   uAlignment  The alignment requirement for the mapping.
 * @param   fProt       The desired page protection for the mapping.
 * @param   R0Process   If NIL_RTR0PROCESS map into system (kernel) memory.
 *                      If not nil, it's the current process.
 */
static int rtR0MemObjNtMap(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
                           unsigned fProt, RTR0PROCESS R0Process)
{
    int rc = VERR_MAP_FAILED;

    /*
     * Check that the specified alignment is supported.
     */
    if (uAlignment > PAGE_SIZE)
        return VERR_NOT_SUPPORTED;

    /*
     * There are two basic cases here, either we've got an MDL and can
     * map it using MmMapLockedPages, or we've got a contiguous physical
     * range (MMIO most likely) and can use MmMapIoSpace.
     */
    PRTR0MEMOBJNT pMemNtToMap = (PRTR0MEMOBJNT)pMemToMap;
    if (pMemNtToMap->cMdls)
    {
        /* don't attempt map locked regions with more than one mdl. */
        if (pMemNtToMap->cMdls != 1)
            return VERR_NOT_SUPPORTED;

        /* Need g_pfnrtMmMapLockedPagesSpecifyCache to map to a specific address. */
        if (pvFixed != (void *)-1 && g_pfnrtMmMapLockedPagesSpecifyCache == NULL)
            return VERR_NOT_SUPPORTED;

        /* we can't map anything to the first page, sorry. */
        if (pvFixed == 0)
            return VERR_NOT_SUPPORTED;

        /* only one system mapping for now - no time to figure out MDL restrictions right now. */
        if (    pMemNtToMap->Core.uRel.Parent.cMappings
            &&  R0Process == NIL_RTR0PROCESS)
        {
            if (pMemNtToMap->Core.enmType != RTR0MEMOBJTYPE_PHYS_NC)
                return VERR_NOT_SUPPORTED;
            uint32_t iMapping = pMemNtToMap->Core.uRel.Parent.cMappings;
            while (iMapping-- > 0)
            {
                PRTR0MEMOBJNT pMapping = (PRTR0MEMOBJNT)pMemNtToMap->Core.uRel.Parent.papMappings[iMapping];
                if (   pMapping->Core.enmType != RTR0MEMOBJTYPE_MAPPING
                    || pMapping->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
                    return VERR_NOT_SUPPORTED;
            }
        }

        __try
        {
            /** @todo uAlignment */
            /** @todo How to set the protection on the pages? */
            void *pv;
            if (g_pfnrtMmMapLockedPagesSpecifyCache)
                pv = g_pfnrtMmMapLockedPagesSpecifyCache(pMemNtToMap->apMdls[0],
                                                         R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
                                                         MmCached,
                                                         pvFixed != (void *)-1 ? pvFixed : NULL,
                                                         FALSE /* no bug check on failure */,
                                                         NormalPagePriority);
            else
                pv = MmMapLockedPages(pMemNtToMap->apMdls[0],
                                      R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode);
            if (pv)
            {
                NOREF(fProt);

                PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
                                                                    pMemNtToMap->Core.cb);
                if (pMemNt)
                {
                    pMemNt->Core.u.Mapping.R0Process = R0Process;
                    *ppMem = &pMemNt->Core;
                    return VINF_SUCCESS;
                }

                rc = VERR_NO_MEMORY;
                MmUnmapLockedPages(pv, pMemNtToMap->apMdls[0]);
            }
        }
        __except(EXCEPTION_EXECUTE_HANDLER)
        {
#ifdef LOG_ENABLED
            NTSTATUS rcNt = GetExceptionCode();
            Log(("rtR0MemObjNtMap: Exception Code %#x\n", rcNt));
#endif

            /* nothing */
            rc = VERR_MAP_FAILED;
        }

    }
    else
    {
        AssertReturn(   pMemNtToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS
                     && !pMemNtToMap->Core.u.Phys.fAllocated, VERR_INTERNAL_ERROR);

        /* cannot map phys mem to user space (yet). */
        if (R0Process != NIL_RTR0PROCESS)
            return VERR_NOT_SUPPORTED;

        /** @todo uAlignment */
        /** @todo How to set the protection on the pages? */
        PHYSICAL_ADDRESS Phys;
        Phys.QuadPart = pMemNtToMap->Core.u.Phys.PhysBase;
        void *pv = MmMapIoSpace(Phys, pMemNtToMap->Core.cb,
                                pMemNtToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO ? MmNonCached : MmCached);
        if (pv)
        {
            PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
                                                                pMemNtToMap->Core.cb);
            if (pMemNt)
            {
                pMemNt->Core.u.Mapping.R0Process = R0Process;
                *ppMem = &pMemNt->Core;
                return VINF_SUCCESS;
            }

            rc = VERR_NO_MEMORY;
            MmUnmapIoSpace(pv, pMemNtToMap->Core.cb);
        }
    }

    NOREF(uAlignment); NOREF(fProt);
    return rc;
}


DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
                                          unsigned fProt, size_t offSub, size_t cbSub)
{
    AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
    return rtR0MemObjNtMap(ppMem, pMemToMap, pvFixed, uAlignment, fProt, NIL_RTR0PROCESS);
}


DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed,
                                        size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
    AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_NOT_SUPPORTED);
    return rtR0MemObjNtMap(ppMem, pMemToMap, (void *)R3PtrFixed, uAlignment, fProt, R0Process);
}


DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
{
#if 0
    PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
#endif

    /*
     * Seems there are some issues with this MmProtectMdlSystemAddress API, so
     * this code isn't currently enabled until we've tested it with the verifier.
     */
#if 0
    /*
     * The API we've got requires a kernel mapping.
     */
    if (   pMemNt->cMdls
        && g_pfnrtMmProtectMdlSystemAddress
        && (g_uRtNtMajorVer > 6 || (g_uRtNtMajorVer == 6 && g_uRtNtMinorVer >= 1)) /* Windows 7 and later. */
        && pMemNt->Core.pv != NULL
        && (   pMemNt->Core.enmType == RTR0MEMOBJTYPE_PAGE
            || pMemNt->Core.enmType == RTR0MEMOBJTYPE_LOW
            || pMemNt->Core.enmType == RTR0MEMOBJTYPE_CONT
            || (   pMemNt->Core.enmType             == RTR0MEMOBJTYPE_LOCK
                && pMemNt->Core.u.Lock.R0Process    == NIL_RTPROCESS)
            || (   pMemNt->Core.enmType             == RTR0MEMOBJTYPE_MAPPING
                && pMemNt->Core.u.Mapping.R0Process == NIL_RTPROCESS) ) )
    {
        /* Convert the protection. */
        LOCK_OPERATION enmLockOp;
        ULONG fAccess;
        switch (fProt)
        {
            case RTMEM_PROT_NONE:
                fAccess = PAGE_NOACCESS;
                enmLockOp = IoReadAccess;
                break;
            case RTMEM_PROT_READ:
                fAccess = PAGE_READONLY;
                enmLockOp = IoReadAccess;
                break;
            case RTMEM_PROT_WRITE:
            case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
                fAccess = PAGE_READWRITE;
                enmLockOp = IoModifyAccess;
                break;
            case RTMEM_PROT_EXEC:
                fAccess = PAGE_EXECUTE;
                enmLockOp = IoReadAccess;
                break;
            case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
                fAccess = PAGE_EXECUTE_READ;
                enmLockOp = IoReadAccess;
                break;
            case RTMEM_PROT_EXEC | RTMEM_PROT_WRITE:
            case RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ:
                fAccess = PAGE_EXECUTE_READWRITE;
                enmLockOp = IoModifyAccess;
                break;
            default:
                AssertFailedReturn(VERR_INVALID_FLAGS);
        }

        NTSTATUS rcNt = STATUS_SUCCESS;
# if 0 /** @todo test this against the verifier. */
        if (offSub == 0 && pMemNt->Core.cb == cbSub)
        {
            uint32_t iMdl = pMemNt->cMdls;
            while (iMdl-- > 0)
            {
                rcNt = g_pfnrtMmProtectMdlSystemAddress(pMemNt->apMdls[i], fAccess);
                if (!NT_SUCCESS(rcNt))
                    break;
            }
        }
        else
# endif
        {
            /*
             * We ASSUME the following here:
             *   - MmProtectMdlSystemAddress can deal with nonpaged pool memory
             *   - MmProtectMdlSystemAddress doesn't actually store anything in the MDL we pass it.
             *   - We are not required to call MmProtectMdlSystemAddress with PAGE_READWRITE for the
             *     exact same ranges prior to freeing them.
             *
             * So, we lock the pages temporarily, call the API and unlock them.
             */
            uint8_t *pbCur = (uint8_t *)pMemNt->Core.pv + offSub;
            while (cbSub > 0 && NT_SUCCESS(rcNt))
            {
                size_t cbCur = cbSub;
                if (cbCur > MAX_LOCK_MEM_SIZE)
                    cbCur = MAX_LOCK_MEM_SIZE;
                PMDL pMdl = IoAllocateMdl(pbCur, (ULONG)cbCur, FALSE, FALSE, NULL);
                if (pMdl)
                {
                    __try
                    {
                        MmProbeAndLockPages(pMdl, KernelMode, enmLockOp);
                    }
                    __except(EXCEPTION_EXECUTE_HANDLER)
                    {
                        rcNt = GetExceptionCode();
                    }
                    if (NT_SUCCESS(rcNt))
                    {
                        rcNt = g_pfnrtMmProtectMdlSystemAddress(pMdl, fAccess);
                        MmUnlockPages(pMdl);
                    }
                    IoFreeMdl(pMdl);
                }
                else
                    rcNt = STATUS_NO_MEMORY;
                pbCur += cbCur;
                cbSub -= cbCur;
            }
        }

        if (NT_SUCCESS(rcNt))
            return VINF_SUCCESS;
        return RTErrConvertFromNtStatus(rcNt);
    }
#else
    RT_NOREF4(pMem, offSub, cbSub, fProt);
#endif

    return VERR_NOT_SUPPORTED;
}


DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
    PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;

    if (pMemNt->cMdls)
    {
        if (pMemNt->cMdls == 1)
        {
            PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[0]);
            return (RTHCPHYS)paPfns[iPage] << PAGE_SHIFT;
        }

        size_t iMdl = iPage / (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
        size_t iMdlPfn = iPage % (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
        PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[iMdl]);
        return (RTHCPHYS)paPfns[iMdlPfn] << PAGE_SHIFT;
    }

    switch (pMemNt->Core.enmType)
    {
        case RTR0MEMOBJTYPE_MAPPING:
            return rtR0MemObjNativeGetPagePhysAddr(pMemNt->Core.uRel.Child.pParent, iPage);

        case RTR0MEMOBJTYPE_PHYS:
            return pMemNt->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);

        case RTR0MEMOBJTYPE_PAGE:
        case RTR0MEMOBJTYPE_PHYS_NC:
        case RTR0MEMOBJTYPE_LOW:
        case RTR0MEMOBJTYPE_CONT:
        case RTR0MEMOBJTYPE_LOCK:
        default:
            AssertMsgFailed(("%d\n", pMemNt->Core.enmType));
        case RTR0MEMOBJTYPE_RES_VIRT:
            return NIL_RTHCPHYS;
    }
}