1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
/* $Id: tstTimer.cpp $ */
/** @file
* IPRT Testcase - Timers.
*/
/*
* Copyright (C) 2006-2019 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include <iprt/timer.h>
#include <iprt/time.h>
#include <iprt/thread.h>
#include <iprt/initterm.h>
#include <iprt/message.h>
#include <iprt/stream.h>
#include <iprt/errcore.h>
#include <iprt/string.h>
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
static volatile unsigned gcTicks;
static volatile uint64_t gu64Min;
static volatile uint64_t gu64Max;
static volatile uint64_t gu64Prev;
static volatile uint64_t gu64Norm;
static uint32_t cFrequency[200];
static DECLCALLBACK(void) TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
{
RT_NOREF_PV(pTimer); RT_NOREF_PV(pvUser); RT_NOREF_PV(iTick);
gcTicks++;
const uint64_t u64Now = RTTimeNanoTS();
if (gu64Prev)
{
const uint64_t u64Delta = u64Now - gu64Prev;
if (u64Delta < gu64Min)
gu64Min = u64Delta;
if (u64Delta > gu64Max)
gu64Max = u64Delta;
int i = (int)( RT_ELEMENTS(cFrequency)
- (u64Delta * (RT_ELEMENTS(cFrequency) / 2) / gu64Norm));
if (i >= 0 && i < (int)RT_ELEMENTS(cFrequency))
cFrequency[i]++;
}
gu64Prev = u64Now;
}
int main()
{
/*
* Init runtime
*/
unsigned cErrors = 0;
int rc = RTR3InitExeNoArguments(0);
if (RT_FAILURE(rc))
return RTMsgInitFailure(rc);
/*
* Check that the clock is reliable.
*/
RTPrintf("tstTimer: TESTING - RTTimeNanoTS() for 2sec\n");
uint64_t uTSMillies = RTTimeMilliTS();
uint64_t uTSBegin = RTTimeNanoTS();
uint64_t uTSLast = uTSBegin;
uint64_t uTSDiff;
uint64_t cIterations = 0;
do
{
uint64_t uTS = RTTimeNanoTS();
if (uTS < uTSLast)
{
RTPrintf("tstTimer: FAILURE - RTTimeNanoTS() is unreliable. uTS=%RU64 uTSLast=%RU64\n", uTS, uTSLast);
cErrors++;
}
if (++cIterations > (2*1000*1000*1000))
{
RTPrintf("tstTimer: FAILURE - RTTimeNanoTS() is unreliable. cIterations=%RU64 uTS=%RU64 uTSBegin=%RU64\n", cIterations, uTS, uTSBegin);
return 1;
}
uTSLast = uTS;
uTSDiff = uTSLast - uTSBegin;
} while (uTSDiff < (2*1000*1000*1000));
uTSMillies = RTTimeMilliTS() - uTSMillies;
if (uTSMillies >= 2500 || uTSMillies <= 1500)
{
RTPrintf("tstTimer: FAILURE - uTSMillies=%RI64 uTSBegin=%RU64 uTSLast=%RU64 uTSDiff=%RU64\n",
uTSMillies, uTSBegin, uTSLast, uTSDiff);
cErrors++;
}
if (!cErrors)
RTPrintf("tstTimer: OK - RTTimeNanoTS()\n");
/*
* Tests.
*/
static struct
{
unsigned uMicroInterval;
unsigned uMilliesWait;
unsigned cLower;
unsigned cUpper;
} aTests[] =
{
{ 32000, 2000, 0, 0 },
{ 20000, 2000, 0, 0 },
{ 10000, 2000, 0, 0 },
{ 8000, 2000, 0, 0 },
{ 2000, 2000, 0, 0 },
{ 1000, 2000, 0, 0 },
{ 500, 5000, 0, 0 },
{ 200, 5000, 0, 0 },
{ 100, 5000, 0, 0 }
};
unsigned i = 0;
for (i = 0; i < RT_ELEMENTS(aTests); i++)
{
aTests[i].cLower = (aTests[i].uMilliesWait*1000 - aTests[i].uMilliesWait*100) / aTests[i].uMicroInterval;
aTests[i].cUpper = (aTests[i].uMilliesWait*1000 + aTests[i].uMilliesWait*100) / aTests[i].uMicroInterval;
gu64Norm = aTests[i].uMicroInterval*1000;
RTPrintf("\n"
"tstTimer: TESTING - %d us interval, %d ms wait, expects %d-%d ticks.\n",
aTests[i].uMicroInterval, aTests[i].uMilliesWait, aTests[i].cLower, aTests[i].cUpper);
/*
* Start timer which ticks every 10ms.
*/
gcTicks = 0;
PRTTIMER pTimer;
gu64Max = 0;
gu64Min = UINT64_MAX;
gu64Prev = 0;
RT_ZERO(cFrequency);
#ifdef RT_OS_WINDOWS
if (aTests[i].uMicroInterval < 1000)
continue;
rc = RTTimerCreate(&pTimer, aTests[i].uMicroInterval / 1000, TimerCallback, NULL);
#else
rc = RTTimerCreateEx(&pTimer, aTests[i].uMicroInterval * (uint64_t)1000, 0, TimerCallback, NULL);
#endif
if (RT_FAILURE(rc))
{
RTPrintf("tstTimer: FAILURE - RTTimerCreateEx(,%u*1M,,,) -> %Rrc\n", aTests[i].uMicroInterval, rc);
cErrors++;
continue;
}
/*
* Start the timer and active waiting for the requested test period.
*/
uTSBegin = RTTimeNanoTS();
#ifndef RT_OS_WINDOWS
rc = RTTimerStart(pTimer, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstTimer: FAILURE - RTTimerStart(,0) -> %Rrc\n", rc);
cErrors++;
}
#endif
while (RTTimeNanoTS() - uTSBegin < (uint64_t)aTests[i].uMilliesWait * 1000000)
/* nothing */;
/* destroy the timer */
uint64_t uTSEnd = RTTimeNanoTS();
uTSDiff = uTSEnd - uTSBegin;
rc = RTTimerDestroy(pTimer);
if (RT_FAILURE(rc))
{
RTPrintf("tstTimer: FAILURE - RTTimerDestroy() -> %d gcTicks=%d\n", rc, gcTicks);
cErrors++;
}
RTPrintf("tstTimer: uTS=%RI64 (%RU64 - %RU64)\n", uTSDiff, uTSBegin, uTSEnd);
unsigned cTicks = gcTicks;
RTThreadSleep(aTests[i].uMicroInterval/1000 * 3);
if (gcTicks != cTicks)
{
RTPrintf("tstTimer: FAILURE - RTTimerDestroy() didn't really stop the timer! gcTicks=%d cTicks=%d\n", gcTicks, cTicks);
cErrors++;
continue;
}
/*
* Check the number of ticks.
*/
if (gcTicks < aTests[i].cLower)
{
RTPrintf("tstTimer: FAILURE - Too few ticks gcTicks=%d (expected %d-%d)", gcTicks, aTests[i].cUpper, aTests[i].cLower);
cErrors++;
}
else if (gcTicks > aTests[i].cUpper)
{
RTPrintf("tstTimer: FAILURE - Too many ticks gcTicks=%d (expected %d-%d)", gcTicks, aTests[i].cUpper, aTests[i].cLower);
cErrors++;
}
else
RTPrintf("tstTimer: OK - gcTicks=%d", gcTicks);
RTPrintf(" min=%RU64 max=%RU64\n", gu64Min, gu64Max);
for (int j = 0; j < (int)RT_ELEMENTS(cFrequency); j++)
{
uint32_t len = cFrequency[j] * 70 / gcTicks;
uint32_t deviation = j - RT_ELEMENTS(cFrequency) / 2;
uint64_t u64FreqPercent = (uint64_t)cFrequency[j] * 10000 / gcTicks;
uint64_t u64FreqPercentFrac = u64FreqPercent % 100;
u64FreqPercent = u64FreqPercent / 100;
RTPrintf("%+4d%c %6u %3llu.%02llu%% ",
deviation, deviation == 0 ? ' ' : '%', cFrequency[j],
u64FreqPercent, u64FreqPercentFrac);
for (unsigned k = 0; k < len; k++)
RTPrintf("*");
RTPrintf("\n");
}
}
/*
* Summary.
*/
if (!cErrors)
RTPrintf("tstTimer: SUCCESS\n");
else
RTPrintf("tstTimer: FAILURE %d errors\n", cErrors);
return !!cErrors;
}
|