summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR3/DBGFDisas.cpp
blob: 8947932fc547acbc18399da695c5c546a6fa8e7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
/* $Id: DBGFDisas.cpp $ */
/** @file
 * DBGF - Debugger Facility, Disassembler.
 */

/*
 * Copyright (C) 2006-2019 Oracle Corporation
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_DBGF
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/selm.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/hm.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/cpum.h>
#ifdef VBOX_WITH_RAW_MODE
# include <VBox/vmm/patm.h>
#endif
#include "DBGFInternal.h"
#include <VBox/dis.h>
#include <VBox/err.h>
#include <VBox/param.h>
#include <VBox/vmm/vm.h>
#include <VBox/vmm/uvm.h>

#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/alloca.h>
#include <iprt/ctype.h>


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
/**
 * Structure used when disassembling and instructions in DBGF.
 * This is used so the reader function can get the stuff it needs.
 */
typedef struct
{
    /** The core structure. */
    DISCPUSTATE     Cpu;
    /** The cross context VM structure. */
    PVM             pVM;
    /** The cross context virtual CPU structure. */
    PVMCPU          pVCpu;
    /** The address space for resolving symbol. */
    RTDBGAS         hDbgAs;
    /** Pointer to the first byte in the segment. */
    RTGCUINTPTR     GCPtrSegBase;
    /** Pointer to the byte after the end of the segment. (might have wrapped!) */
    RTGCUINTPTR     GCPtrSegEnd;
    /** The size of the segment minus 1. */
    RTGCUINTPTR     cbSegLimit;
    /** The guest paging mode. */
    PGMMODE         enmMode;
    /** Pointer to the current page - R3 Ptr. */
    void const     *pvPageR3;
    /** Pointer to the current page - GC Ptr. */
    RTGCPTR         GCPtrPage;
    /** Pointer to the next instruction (relative to GCPtrSegBase). */
    RTGCUINTPTR     GCPtrNext;
    /** The lock information that PGMPhysReleasePageMappingLock needs. */
    PGMPAGEMAPLOCK  PageMapLock;
    /** Whether the PageMapLock is valid or not. */
    bool            fLocked;
    /** 64 bits mode or not. */
    bool            f64Bits;
    /** Read original unpatched bytes from the patch manager. */
    bool            fUnpatchedBytes;
    /** Set when fUnpatchedBytes is active and we encounter patched bytes. */
    bool            fPatchedInstr;
} DBGFDISASSTATE, *PDBGFDISASSTATE;


/*********************************************************************************************************************************
*   Internal Functions                                                                                                           *
*********************************************************************************************************************************/
static FNDISREADBYTES dbgfR3DisasInstrRead;



/**
 * Calls the disassembler with the proper reader functions and such for disa
 *
 * @returns VBox status code.
 * @param   pVM         The cross context VM structure.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pSelInfo    The selector info.
 * @param   enmMode     The guest paging mode.
 * @param   fFlags      DBGF_DISAS_FLAGS_XXX.
 * @param   GCPtr       The GC pointer (selector offset).
 * @param   pState      The disas CPU state.
 */
static int dbgfR3DisasInstrFirst(PVM pVM, PVMCPU pVCpu, PDBGFSELINFO pSelInfo, PGMMODE enmMode,
                                 RTGCPTR GCPtr, uint32_t fFlags, PDBGFDISASSTATE pState)
{
    pState->GCPtrSegBase    = pSelInfo->GCPtrBase;
    pState->GCPtrSegEnd     = pSelInfo->cbLimit + 1 + (RTGCUINTPTR)pSelInfo->GCPtrBase;
    pState->cbSegLimit      = pSelInfo->cbLimit;
    pState->enmMode         = enmMode;
    pState->GCPtrPage       = 0;
    pState->pvPageR3        = NULL;
    pState->hDbgAs          = VM_IS_RAW_MODE_ENABLED(pVM)
                            ? DBGF_AS_RC_AND_GC_GLOBAL
                            : DBGF_AS_GLOBAL;
    pState->pVM             = pVM;
    pState->pVCpu           = pVCpu;
    pState->fLocked         = false;
    pState->f64Bits         = enmMode >= PGMMODE_AMD64 && pSelInfo->u.Raw.Gen.u1Long;
#ifdef VBOX_WITH_RAW_MODE
    pState->fUnpatchedBytes = RT_BOOL(fFlags & DBGF_DISAS_FLAGS_UNPATCHED_BYTES);
    pState->fPatchedInstr   = false;
#endif

    DISCPUMODE enmCpuMode;
    switch (fFlags & DBGF_DISAS_FLAGS_MODE_MASK)
    {
        default:
            AssertFailed();
            RT_FALL_THRU();
        case DBGF_DISAS_FLAGS_DEFAULT_MODE:
            enmCpuMode   = pState->f64Bits
                         ? DISCPUMODE_64BIT
                         : pSelInfo->u.Raw.Gen.u1DefBig
                         ? DISCPUMODE_32BIT
                         : DISCPUMODE_16BIT;
            break;
        case DBGF_DISAS_FLAGS_16BIT_MODE:
        case DBGF_DISAS_FLAGS_16BIT_REAL_MODE:
            enmCpuMode = DISCPUMODE_16BIT;
            break;
        case DBGF_DISAS_FLAGS_32BIT_MODE:
            enmCpuMode = DISCPUMODE_32BIT;
            break;
        case DBGF_DISAS_FLAGS_64BIT_MODE:
            enmCpuMode = DISCPUMODE_64BIT;
            break;
    }

    uint32_t cbInstr;
    int rc = DISInstrWithReader(GCPtr,
                                enmCpuMode,
                                dbgfR3DisasInstrRead,
                                &pState->Cpu,
                                &pState->Cpu,
                                &cbInstr);
    if (RT_SUCCESS(rc))
    {
        pState->GCPtrNext = GCPtr + cbInstr;
        return VINF_SUCCESS;
    }

    /* cleanup */
    if (pState->fLocked)
    {
        PGMPhysReleasePageMappingLock(pVM, &pState->PageMapLock);
        pState->fLocked = false;
    }
    return rc;
}


#if 0
/**
 * Calls the disassembler for disassembling the next instruction.
 *
 * @returns VBox status code.
 * @param   pState      The disas CPU state.
 */
static int dbgfR3DisasInstrNext(PDBGFDISASSTATE pState)
{
    uint32_t cbInstr;
    int rc = DISInstr(&pState->Cpu, (void *)pState->GCPtrNext, 0, &cbInstr, NULL);
    if (RT_SUCCESS(rc))
    {
        pState->GCPtrNext = GCPtr + cbInstr;
        return VINF_SUCCESS;
    }
    return rc;
}
#endif


/**
 * Done with the disassembler state, free associated resources.
 *
 * @param   pState      The disas CPU state ++.
 */
static void dbgfR3DisasInstrDone(PDBGFDISASSTATE pState)
{
    if (pState->fLocked)
    {
        PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
        pState->fLocked = false;
    }
}


/**
 * @callback_method_impl{FNDISREADBYTES}
 *
 * @remarks The source is relative to the base address indicated by
 *          DBGFDISASSTATE::GCPtrSegBase.
 */
static DECLCALLBACK(int) dbgfR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
{
    PDBGFDISASSTATE pState = (PDBGFDISASSTATE)pDis;
    for (;;)
    {
        RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;

        /*
         * Need to update the page translation?
         */
        if (    !pState->pvPageR3
            ||  (GCPtr >> PAGE_SHIFT) != (pState->GCPtrPage >> PAGE_SHIFT))
        {
            int rc = VINF_SUCCESS;

            /* translate the address */
            pState->GCPtrPage = GCPtr & PAGE_BASE_GC_MASK;
            if (   VM_IS_RAW_MODE_ENABLED(pState->pVM)
                && MMHyperIsInsideArea(pState->pVM, pState->GCPtrPage))
            {
                pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->GCPtrPage);
                if (!pState->pvPageR3)
                    rc = VERR_INVALID_POINTER;
            }
            else
            {
                if (pState->fLocked)
                    PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);

                if (pState->enmMode <= PGMMODE_PROTECTED)
                    rc = PGMPhysGCPhys2CCPtrReadOnly(pState->pVM, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
                else
                    rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->GCPtrPage, &pState->pvPageR3, &pState->PageMapLock);
                pState->fLocked = RT_SUCCESS_NP(rc);
            }
            if (RT_FAILURE(rc))
            {
                pState->pvPageR3 = NULL;
                return rc;
            }
        }

        /*
         * Check the segment limit.
         */
        if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
            return VERR_OUT_OF_SELECTOR_BOUNDS;

        /*
         * Calc how much we can read, maxing out the read.
         */
        uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
        if (!pState->f64Bits)
        {
            RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
            if (cb > cbSeg && cbSeg)
                cb = cbSeg;
        }
        if (cb > cbMaxRead)
            cb = cbMaxRead;

#ifdef VBOX_WITH_RAW_MODE
        /*
         * Read original bytes from PATM if asked to do so.
         */
        if (pState->fUnpatchedBytes)
        {
            size_t cbRead = cb;
            int rc = PATMR3ReadOrgInstr(pState->pVM, GCPtr, &pDis->abInstr[offInstr], cbRead, &cbRead);
            if (RT_SUCCESS(rc))
            {
                pState->fPatchedInstr = true;
                if (cbRead >= cbMinRead)
                {
                    pDis->cbCachedInstr = offInstr + (uint8_t)cbRead;
                    return rc;
                }

                cbMinRead -= (uint8_t)cbRead;
                cbMaxRead -= (uint8_t)cbRead;
                cb        -= (uint8_t)cbRead;
                offInstr  += (uint8_t)cbRead;
                GCPtr     += cbRead;
                if (!cb)
                    continue;
            }
        }
#endif /* VBOX_WITH_RAW_MODE */

        /*
         * Read and advance,
         */
        memcpy(&pDis->abInstr[offInstr], (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
        offInstr  += (uint8_t)cb;
        if (cb >= cbMinRead)
        {
            pDis->cbCachedInstr = offInstr;
            return VINF_SUCCESS;
        }
        cbMaxRead -= (uint8_t)cb;
        cbMinRead -= (uint8_t)cb;
    }
}


/**
 * @callback_method_impl{FNDISGETSYMBOL}
 */
static DECLCALLBACK(int) dbgfR3DisasGetSymbol(PCDISCPUSTATE pDis, uint32_t u32Sel, RTUINTPTR uAddress,
                                              char *pszBuf, size_t cchBuf, RTINTPTR *poff, void *pvUser)
{
    PDBGFDISASSTATE pState   = (PDBGFDISASSTATE)pDis;
    PCDBGFSELINFO   pSelInfo = (PCDBGFSELINFO)pvUser;

    /*
     * Address conversion
     */
    DBGFADDRESS     Addr;
    int             rc;
    /* Start with CS. */
    if (   DIS_FMT_SEL_IS_REG(u32Sel)
        ?  DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_CS
        :  pSelInfo->Sel == DIS_FMT_SEL_GET_VALUE(u32Sel))
        rc = DBGFR3AddrFromSelInfoOff(pState->pVM->pUVM, &Addr, pSelInfo, uAddress);
    /* In long mode everything but FS and GS is easy. */
    else if (   pState->Cpu.uCpuMode == DISCPUMODE_64BIT
             && DIS_FMT_SEL_IS_REG(u32Sel)
             && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_GS
             && DIS_FMT_SEL_GET_REG(u32Sel) != DISSELREG_FS)
    {
        DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
        rc = VINF_SUCCESS;
    }
    /* Here's a quick hack to catch patch manager SS relative access. */
    else if (   DIS_FMT_SEL_IS_REG(u32Sel)
             && DIS_FMT_SEL_GET_REG(u32Sel) == DISSELREG_SS
             && pSelInfo->GCPtrBase == 0
             && pSelInfo->cbLimit   >= UINT32_MAX
#ifdef VBOX_WITH_RAW_MODE
             && PATMIsPatchGCAddr(pState->pVM, pState->Cpu.uInstrAddr)
#endif
             )
    {
        DBGFR3AddrFromFlat(pState->pVM->pUVM, &Addr, uAddress);
        rc = VINF_SUCCESS;
    }
    else
    {
        /** @todo implement a generic solution here. */
        rc = VERR_SYMBOL_NOT_FOUND;
    }

    /*
     * If we got an address, try resolve it into a symbol.
     */
    if (RT_SUCCESS(rc))
    {
        RTDBGSYMBOL     Sym;
        RTGCINTPTR      off;
        rc = DBGFR3AsSymbolByAddr(pState->pVM->pUVM, pState->hDbgAs, &Addr,
                                  RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL | RTDBGSYMADDR_FLAGS_SKIP_ABS_IN_DEFERRED,
                                  &off, &Sym, NULL /*phMod*/);
        if (RT_SUCCESS(rc))
        {
            /*
             * Return the symbol and offset.
             */
            size_t cchName = strlen(Sym.szName);
            if (cchName >= cchBuf)
                cchName = cchBuf - 1;
            memcpy(pszBuf, Sym.szName, cchName);
            pszBuf[cchName] = '\0';

            *poff = off;
        }
    }
    return rc;
}


/**
 * Disassembles the one instruction according to the specified flags and
 * address, internal worker executing on the EMT of the specified virtual CPU.
 *
 * @returns VBox status code.
 * @param       pVM             The cross context VM structure.
 * @param       pVCpu           The cross context virtual CPU structure.
 * @param       Sel             The code selector. This used to determine the 32/16 bit ness and
 *                              calculation of the actual instruction address.
 * @param       pGCPtr          Pointer to the variable holding the code address
 *                              relative to the base of Sel.
 * @param       fFlags          Flags controlling where to start and how to format.
 *                              A combination of the DBGF_DISAS_FLAGS_* \#defines.
 * @param       pszOutput       Output buffer.
 * @param       cbOutput        Size of the output buffer.
 * @param       pcbInstr        Where to return the size of the instruction.
 * @param       pDisState       Where to store the disassembler state into.
 */
static DECLCALLBACK(int)
dbgfR3DisasInstrExOnVCpu(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PRTGCPTR pGCPtr, uint32_t fFlags,
                         char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr, PDBGFDISSTATE pDisState)
{
    VMCPU_ASSERT_EMT(pVCpu);
    RTGCPTR GCPtr = *pGCPtr;
    int     rc;

    /*
     * Get the Sel and GCPtr if fFlags requests that.
     */
    PCCPUMCTXCORE  pCtxCore   = NULL;
    PCCPUMSELREG   pSRegCS    = NULL;
    if (fFlags & DBGF_DISAS_FLAGS_CURRENT_GUEST)
    {
        pCtxCore   = CPUMGetGuestCtxCore(pVCpu);
        Sel        = pCtxCore->cs.Sel;
        pSRegCS    = &pCtxCore->cs;
        GCPtr      = pCtxCore->rip;
    }
    else if (fFlags & DBGF_DISAS_FLAGS_CURRENT_HYPER)
    {
        fFlags    |= DBGF_DISAS_FLAGS_HYPER;
        pCtxCore   = CPUMGetHyperCtxCore(pVCpu);
        Sel        = pCtxCore->cs.Sel;
        GCPtr      = pCtxCore->rip;
    }
    /*
     * Check if the selector matches the guest CS, use the hidden
     * registers from that if they are valid. Saves time and effort.
     */
    else
    {
        pCtxCore = CPUMGetGuestCtxCore(pVCpu);
        if (pCtxCore->cs.Sel == Sel && Sel != DBGF_SEL_FLAT)
            pSRegCS = &pCtxCore->cs;
        else
            pCtxCore = NULL;
    }

    /*
     * Read the selector info - assume no stale selectors and nasty stuff like that.
     *
     * Note! We CANNOT load invalid hidden selector registers since that would
     *       mean that log/debug statements or the debug will influence the
     *       guest state and make things behave differently.
     */
    DBGFSELINFO     SelInfo;
    const PGMMODE   enmMode          = PGMGetGuestMode(pVCpu);
    bool            fRealModeAddress = false;

    if (   pSRegCS
        && CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
    {
        SelInfo.Sel                     = Sel;
        SelInfo.SelGate                 = 0;
        SelInfo.GCPtrBase               = pSRegCS->u64Base;
        SelInfo.cbLimit                 = pSRegCS->u32Limit;
        SelInfo.fFlags                  = PGMMODE_IS_LONG_MODE(enmMode)
                                        ? DBGFSELINFO_FLAGS_LONG_MODE
                                        : enmMode != PGMMODE_REAL && !pCtxCore->eflags.Bits.u1VM
                                        ? DBGFSELINFO_FLAGS_PROT_MODE
                                        : DBGFSELINFO_FLAGS_REAL_MODE;

        SelInfo.u.Raw.au32[0]           = 0;
        SelInfo.u.Raw.au32[1]           = 0;
        SelInfo.u.Raw.Gen.u16LimitLow   = 0xffff;
        SelInfo.u.Raw.Gen.u4LimitHigh   = 0xf;
        SelInfo.u.Raw.Gen.u1Present     = pSRegCS->Attr.n.u1Present;
        SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
        SelInfo.u.Raw.Gen.u1DefBig      = pSRegCS->Attr.n.u1DefBig;
        SelInfo.u.Raw.Gen.u1Long        = pSRegCS->Attr.n.u1Long;
        SelInfo.u.Raw.Gen.u1DescType    = pSRegCS->Attr.n.u1DescType;
        SelInfo.u.Raw.Gen.u4Type        = pSRegCS->Attr.n.u4Type;
        fRealModeAddress                = !!(SelInfo.fFlags & DBGFSELINFO_FLAGS_REAL_MODE);
    }
    else if (Sel == DBGF_SEL_FLAT)
    {
        SelInfo.Sel                     = Sel;
        SelInfo.SelGate                 = 0;
        SelInfo.GCPtrBase               = 0;
        SelInfo.cbLimit                 = ~(RTGCUINTPTR)0;
        SelInfo.fFlags                  = PGMMODE_IS_LONG_MODE(enmMode)
                                        ? DBGFSELINFO_FLAGS_LONG_MODE
                                        : enmMode != PGMMODE_REAL
                                        ? DBGFSELINFO_FLAGS_PROT_MODE
                                        : DBGFSELINFO_FLAGS_REAL_MODE;
        SelInfo.u.Raw.au32[0]           = 0;
        SelInfo.u.Raw.au32[1]           = 0;
        SelInfo.u.Raw.Gen.u16LimitLow   = 0xffff;
        SelInfo.u.Raw.Gen.u4LimitHigh   = 0xf;

        pSRegCS = &CPUMGetGuestCtxCore(pVCpu)->cs;
        if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSRegCS))
        {
            /* Assume the current CS defines the execution mode. */
            SelInfo.u.Raw.Gen.u1Present     = pSRegCS->Attr.n.u1Present;
            SelInfo.u.Raw.Gen.u1Granularity = pSRegCS->Attr.n.u1Granularity;;
            SelInfo.u.Raw.Gen.u1DefBig      = pSRegCS->Attr.n.u1DefBig;
            SelInfo.u.Raw.Gen.u1Long        = pSRegCS->Attr.n.u1Long;
            SelInfo.u.Raw.Gen.u1DescType    = pSRegCS->Attr.n.u1DescType;
            SelInfo.u.Raw.Gen.u4Type        = pSRegCS->Attr.n.u4Type;
        }
        else
        {
            pSRegCS  = NULL;
            SelInfo.u.Raw.Gen.u1Present     = 1;
            SelInfo.u.Raw.Gen.u1Granularity = 1;
            SelInfo.u.Raw.Gen.u1DefBig      = 1;
            SelInfo.u.Raw.Gen.u1DescType    = 1;
            SelInfo.u.Raw.Gen.u4Type        = X86_SEL_TYPE_EO;
        }
    }
    else if (   !(fFlags & DBGF_DISAS_FLAGS_HYPER)
             && (   (pCtxCore && pCtxCore->eflags.Bits.u1VM)
                 || enmMode == PGMMODE_REAL
                 || (fFlags & DBGF_DISAS_FLAGS_MODE_MASK) == DBGF_DISAS_FLAGS_16BIT_REAL_MODE
                )
            )
    {   /* V86 mode or real mode - real mode addressing */
        SelInfo.Sel                     = Sel;
        SelInfo.SelGate                 = 0;
        SelInfo.GCPtrBase               = Sel * 16;
        SelInfo.cbLimit                 = ~(RTGCUINTPTR)0;
        SelInfo.fFlags                  = DBGFSELINFO_FLAGS_REAL_MODE;
        SelInfo.u.Raw.au32[0]           = 0;
        SelInfo.u.Raw.au32[1]           = 0;
        SelInfo.u.Raw.Gen.u16LimitLow   = 0xffff;
        SelInfo.u.Raw.Gen.u4LimitHigh   = 0xf;
        SelInfo.u.Raw.Gen.u1Present     = 1;
        SelInfo.u.Raw.Gen.u1Granularity = 1;
        SelInfo.u.Raw.Gen.u1DefBig      = 0; /* 16 bits */
        SelInfo.u.Raw.Gen.u1DescType    = 1;
        SelInfo.u.Raw.Gen.u4Type        = X86_SEL_TYPE_EO;
        fRealModeAddress                = true;
    }
    else
    {
        if (!(fFlags & DBGF_DISAS_FLAGS_HYPER))
            rc = SELMR3GetSelectorInfo(pVM, pVCpu, Sel, &SelInfo);
        else
            rc = SELMR3GetShadowSelectorInfo(pVM, Sel, &SelInfo);
        if (RT_FAILURE(rc))
        {
            RTStrPrintf(pszOutput, cbOutput, "Sel=%04x -> %Rrc\n", Sel, rc);
            return rc;
        }
    }

    /*
     * Disassemble it.
     */
    DBGFDISASSTATE State;
    rc = dbgfR3DisasInstrFirst(pVM, pVCpu, &SelInfo, enmMode, GCPtr, fFlags, &State);
    if (RT_FAILURE(rc))
    {
        if (State.Cpu.cbCachedInstr)
            RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc; %.*Rhxs\n", rc, (size_t)State.Cpu.cbCachedInstr, State.Cpu.abInstr);
        else
            RTStrPrintf(pszOutput, cbOutput, "Disas -> %Rrc\n", rc);
        return rc;
    }

    /*
     * Format it.
     */
    char szBuf[512];
    DISFormatYasmEx(&State.Cpu, szBuf, sizeof(szBuf),
                    DIS_FMT_FLAGS_RELATIVE_BRANCH,
                    fFlags & DBGF_DISAS_FLAGS_NO_SYMBOLS ? NULL : dbgfR3DisasGetSymbol,
                    &SelInfo);

#ifdef VBOX_WITH_RAW_MODE
    /*
     * Patched instruction annotations.
     */
    char szPatchAnnotations[256];
    szPatchAnnotations[0] = '\0';
    if (fFlags & DBGF_DISAS_FLAGS_ANNOTATE_PATCHED)
        PATMR3DbgAnnotatePatchedInstruction(pVM, GCPtr, State.Cpu.cbInstr, szPatchAnnotations, sizeof(szPatchAnnotations));
#endif

    /*
     * Print it to the user specified buffer.
     */
    size_t cch;
    if (fFlags & DBGF_DISAS_FLAGS_NO_BYTES)
    {
        if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
            cch = RTStrPrintf(pszOutput, cbOutput, "%s", szBuf);
        else if (fRealModeAddress)
            cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x  %s", Sel, (unsigned)GCPtr, szBuf);
        else if (Sel == DBGF_SEL_FLAT)
        {
            if (enmMode >= PGMMODE_AMD64)
                cch = RTStrPrintf(pszOutput, cbOutput, "%RGv  %s", GCPtr, szBuf);
            else
                cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32  %s", (uint32_t)GCPtr, szBuf);
        }
        else
        {
            if (enmMode >= PGMMODE_AMD64)
                cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv  %s", Sel, GCPtr, szBuf);
            else
                cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32  %s", Sel, (uint32_t)GCPtr, szBuf);
        }
    }
    else
    {
        uint32_t        cbInstr  = State.Cpu.cbInstr;
        uint8_t const  *pabInstr = State.Cpu.abInstr;
        if (fFlags & DBGF_DISAS_FLAGS_NO_ADDRESS)
            cch = RTStrPrintf(pszOutput, cbOutput, "%.*Rhxs%*s %s",
                              cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
                              szBuf);
        else if (fRealModeAddress)
            cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%04x %.*Rhxs%*s %s",
                              Sel, (unsigned)GCPtr,
                              cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
                              szBuf);
        else if (Sel == DBGF_SEL_FLAT)
        {
            if (enmMode >= PGMMODE_AMD64)
                cch = RTStrPrintf(pszOutput, cbOutput, "%RGv %.*Rhxs%*s %s",
                                  GCPtr,
                                  cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
                                  szBuf);
            else
                cch = RTStrPrintf(pszOutput, cbOutput, "%08RX32 %.*Rhxs%*s %s",
                                  (uint32_t)GCPtr,
                                  cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
                                  szBuf);
        }
        else
        {
            if (enmMode >= PGMMODE_AMD64)
                cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%RGv %.*Rhxs%*s %s",
                                  Sel, GCPtr,
                                  cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
                                  szBuf);
            else
                cch = RTStrPrintf(pszOutput, cbOutput, "%04x:%08RX32 %.*Rhxs%*s %s",
                                  Sel, (uint32_t)GCPtr,
                                  cbInstr, pabInstr, cbInstr < 8 ? (8 - cbInstr) * 3 : 0, "",
                                  szBuf);
        }
    }

#ifdef VBOX_WITH_RAW_MODE
    if (szPatchAnnotations[0] && cch + 1 < cbOutput)
        RTStrPrintf(pszOutput + cch, cbOutput - cch, "  ; %s", szPatchAnnotations);
#endif

    if (pcbInstr)
        *pcbInstr = State.Cpu.cbInstr;

    if (pDisState)
    {
        pDisState->pCurInstr = State.Cpu.pCurInstr;
        pDisState->cbInstr   = State.Cpu.cbInstr;
        pDisState->Param1    = State.Cpu.Param1;
        pDisState->Param2    = State.Cpu.Param2;
        pDisState->Param3    = State.Cpu.Param3;
        pDisState->Param4    = State.Cpu.Param4;
    }

    dbgfR3DisasInstrDone(&State);
    return VINF_SUCCESS;
}


/**
 * Disassembles the one instruction according to the specified flags and address
 * returning part of the disassembler state.
 *
 * @returns VBox status code.
 * @param   pUVM            The user mode VM handle.
 * @param   idCpu           The ID of virtual CPU.
 * @param   pAddr           The code address.
 * @param   fFlags          Flags controlling where to start and how to format.
 *                          A combination of the DBGF_DISAS_FLAGS_* \#defines.
 * @param   pszOutput       Output buffer.  This will always be properly
 *                          terminated if @a cbOutput is greater than zero.
 * @param   cbOutput        Size of the output buffer.
 * @param   pDisState       The disassembler state to fill in.
 *
 * @remarks May have to switch to the EMT of the virtual CPU in order to do
 *          address conversion.
 */
DECLHIDDEN(int) dbgfR3DisasInstrStateEx(PUVM pUVM, VMCPUID idCpu, PDBGFADDRESS pAddr, uint32_t fFlags,
                                        char *pszOutput, uint32_t cbOutput, PDBGFDISSTATE pDisState)
{
    AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
    *pszOutput = '\0';
    UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
    PVM pVM = pUVM->pVM;
    VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
    AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID);
    AssertReturn(!(fFlags & ~DBGF_DISAS_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
    AssertReturn((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) <= DBGF_DISAS_FLAGS_64BIT_MODE, VERR_INVALID_PARAMETER);

    /*
     * Optimize the common case where we're called on the EMT of idCpu since
     * we're using this all the time when logging.
     */
    int     rc;
    PVMCPU  pVCpu = VMMGetCpu(pVM);
    if (    pVCpu
        &&  pVCpu->idCpu == idCpu)
        rc = dbgfR3DisasInstrExOnVCpu(pVM, pVCpu, pAddr->Sel, &pAddr->off, fFlags, pszOutput, cbOutput, NULL, pDisState);
    else
        rc = VMR3ReqPriorityCallWait(pVM, idCpu, (PFNRT)dbgfR3DisasInstrExOnVCpu, 9,
                                     pVM, VMMGetCpuById(pVM, idCpu), pAddr->Sel, &pAddr->off, fFlags, pszOutput, cbOutput, NULL, pDisState);
    return rc;
}

/**
 * Disassembles the one instruction according to the specified flags and address.
 *
 * @returns VBox status code.
 * @param   pUVM            The user mode VM handle.
 * @param   idCpu           The ID of virtual CPU.
 * @param   Sel             The code selector. This used to determine the 32/16 bit ness and
 *                          calculation of the actual instruction address.
 * @param   GCPtr           The code address relative to the base of Sel.
 * @param   fFlags          Flags controlling where to start and how to format.
 *                          A combination of the DBGF_DISAS_FLAGS_* \#defines.
 * @param   pszOutput       Output buffer.  This will always be properly
 *                          terminated if @a cbOutput is greater than zero.
 * @param   cbOutput        Size of the output buffer.
 * @param   pcbInstr        Where to return the size of the instruction.
 *
 * @remarks May have to switch to the EMT of the virtual CPU in order to do
 *          address conversion.
 */
VMMR3DECL(int) DBGFR3DisasInstrEx(PUVM pUVM, VMCPUID idCpu, RTSEL Sel, RTGCPTR GCPtr, uint32_t fFlags,
                                  char *pszOutput, uint32_t cbOutput, uint32_t *pcbInstr)
{
    AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
    *pszOutput = '\0';
    UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
    PVM pVM = pUVM->pVM;
    VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
    AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID);
    AssertReturn(!(fFlags & ~DBGF_DISAS_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
    AssertReturn((fFlags & DBGF_DISAS_FLAGS_MODE_MASK) <= DBGF_DISAS_FLAGS_64BIT_MODE, VERR_INVALID_PARAMETER);

    /*
     * Optimize the common case where we're called on the EMT of idCpu since
     * we're using this all the time when logging.
     */
    int     rc;
    PVMCPU  pVCpu = VMMGetCpu(pVM);
    if (    pVCpu
        &&  pVCpu->idCpu == idCpu)
        rc = dbgfR3DisasInstrExOnVCpu(pVM, pVCpu, Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr, NULL);
    else
        rc = VMR3ReqPriorityCallWait(pVM, idCpu, (PFNRT)dbgfR3DisasInstrExOnVCpu, 9,
                                     pVM, VMMGetCpuById(pVM, idCpu), Sel, &GCPtr, fFlags, pszOutput, cbOutput, pcbInstr, NULL);
    return rc;
}


/**
 * Disassembles the current guest context instruction.
 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pszOutput       Output buffer.  This will always be properly
 *                          terminated if @a cbOutput is greater than zero.
 * @param   cbOutput        Size of the output buffer.
 * @thread  EMT(pVCpu)
 */
VMMR3_INT_DECL(int) DBGFR3DisasInstrCurrent(PVMCPU pVCpu, char *pszOutput, uint32_t cbOutput)
{
    AssertReturn(cbOutput > 0, VERR_INVALID_PARAMETER);
    *pszOutput = '\0';
    Assert(VMCPU_IS_EMT(pVCpu));

    RTGCPTR GCPtr = 0;
    return dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, 0, &GCPtr,
                                    DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE
                                    | DBGF_DISAS_FLAGS_ANNOTATE_PATCHED,
                                    pszOutput, cbOutput, NULL, NULL);
}


/**
 * Disassembles the current guest context instruction and writes it to the log.
 * All registers and data will be displayed. Addresses will be attempted resolved to symbols.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pszPrefix       Short prefix string to the disassembly string. (optional)
 * @thread  EMT(pVCpu)
 */
VMMR3DECL(int) DBGFR3DisasInstrCurrentLogInternal(PVMCPU pVCpu, const char *pszPrefix)
{
    char szBuf[256];
    szBuf[0] = '\0';
    int rc = DBGFR3DisasInstrCurrent(pVCpu, &szBuf[0], sizeof(szBuf));
    if (RT_FAILURE(rc))
        RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrCurrentLog failed with rc=%Rrc\n", rc);
    if (pszPrefix && *pszPrefix)
    {
        if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
            RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
        else
            RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
    }
    else
        RTLogPrintf("%s\n", szBuf);
    return rc;
}



/**
 * Disassembles the specified guest context instruction and writes it to the log.
 * Addresses will be attempted resolved to symbols.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure of the calling
 *                      EMT.
 * @param   Sel         The code selector. This used to determine the 32/16
 *                      bit-ness and calculation of the actual instruction
 *                      address.
 * @param   GCPtr       The code address relative to the base of Sel.
 * @param   pszPrefix   Short prefix string to the disassembly string.
 *                      (optional)
 * @thread  EMT(pVCpu)
 */
VMMR3DECL(int) DBGFR3DisasInstrLogInternal(PVMCPU pVCpu, RTSEL Sel, RTGCPTR GCPtr, const char *pszPrefix)
{
    Assert(VMCPU_IS_EMT(pVCpu));

    char szBuf[256];
    RTGCPTR GCPtrTmp = GCPtr;
    int rc = dbgfR3DisasInstrExOnVCpu(pVCpu->pVMR3, pVCpu, Sel, &GCPtrTmp, DBGF_DISAS_FLAGS_DEFAULT_MODE,
                                      &szBuf[0], sizeof(szBuf), NULL, NULL);
    if (RT_FAILURE(rc))
        RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrLog(, %RTsel, %RGv) failed with rc=%Rrc\n", Sel, GCPtr, rc);
    if (pszPrefix && *pszPrefix)
    {
        if (pVCpu->CTX_SUFF(pVM)->cCpus > 1)
            RTLogPrintf("%s-CPU%u: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
        else
            RTLogPrintf("%s: %s\n", pszPrefix, szBuf);
    }
    else
        RTLogPrintf("%s\n", szBuf);
    return rc;
}