summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR3/PGMPhys.cpp
blob: 03e1da2167bd3761e578f980b40c8eaee7d2d6be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
/* $Id: PGMPhys.cpp $ */
/** @file
 * PGM - Page Manager and Monitor, Physical Memory Addressing.
 */

/*
 * Copyright (C) 2006-2019 Oracle Corporation
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM_PHYS
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/iem.h>
#include <VBox/vmm/iom.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/nem.h>
#include <VBox/vmm/stam.h>
#ifdef VBOX_WITH_REM
# include <VBox/vmm/rem.h>
#endif
#include <VBox/vmm/pdmdev.h>
#include "PGMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/vmm/uvm.h>
#include "PGMInline.h"
#include <VBox/sup.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/alloc.h>
#include <iprt/asm.h>
#ifdef VBOX_STRICT
# include <iprt/crc.h>
#endif
#include <iprt/thread.h>
#include <iprt/string.h>
#include <iprt/system.h>


/*********************************************************************************************************************************
*   Defined Constants And Macros                                                                                                 *
*********************************************************************************************************************************/
/** The number of pages to free in one batch. */
#define PGMPHYS_FREE_PAGE_BATCH_SIZE    128


/*
 * PGMR3PhysReadU8-64
 * PGMR3PhysWriteU8-64
 */
#define PGMPHYSFN_READNAME  PGMR3PhysReadU8
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
#define PGMPHYS_DATASIZE    1
#define PGMPHYS_DATATYPE    uint8_t
#include "PGMPhysRWTmpl.h"

#define PGMPHYSFN_READNAME  PGMR3PhysReadU16
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
#define PGMPHYS_DATASIZE    2
#define PGMPHYS_DATATYPE    uint16_t
#include "PGMPhysRWTmpl.h"

#define PGMPHYSFN_READNAME  PGMR3PhysReadU32
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
#define PGMPHYS_DATASIZE    4
#define PGMPHYS_DATATYPE    uint32_t
#include "PGMPhysRWTmpl.h"

#define PGMPHYSFN_READNAME  PGMR3PhysReadU64
#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
#define PGMPHYS_DATASIZE    8
#define PGMPHYS_DATATYPE    uint64_t
#include "PGMPhysRWTmpl.h"


/**
 * EMT worker for PGMR3PhysReadExternal.
 */
static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
                                                  PGMACCESSORIGIN enmOrigin)
{
    VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
    AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
    return VINF_SUCCESS;
}


/**
 * Read from physical memory, external users.
 *
 * @returns VBox status code.
 * @retval  VINF_SUCCESS.
 *
 * @param   pVM             The cross context VM structure.
 * @param   GCPhys          Physical address to read from.
 * @param   pvBuf           Where to read into.
 * @param   cbRead          How many bytes to read.
 * @param   enmOrigin       Who is calling.
 *
 * @thread  Any but EMTs.
 */
VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
{
    VM_ASSERT_OTHER_THREAD(pVM);

    AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
    LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));

    pgmLock(pVM);

    /*
     * Copy loop on ram ranges.
     */
    PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
    for (;;)
    {
        /* Inside range or not? */
        if (pRam && GCPhys >= pRam->GCPhys)
        {
            /*
             * Must work our way thru this page by page.
             */
            RTGCPHYS off = GCPhys - pRam->GCPhys;
            while (off < pRam->cb)
            {
                unsigned iPage = off >> PAGE_SHIFT;
                PPGMPAGE pPage = &pRam->aPages[iPage];

                /*
                 * If the page has an ALL access handler, we'll have to
                 * delegate the job to EMT.
                 */
                if (   PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
                    || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
                {
                    pgmUnlock(pVM);

                    return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
                                                   pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
                }
                Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));

                /*
                 * Simple stuff, go ahead.
                 */
                size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
                if (cb > cbRead)
                    cb = cbRead;
                PGMPAGEMAPLOCK PgMpLck;
                const void    *pvSrc;
                int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
                if (RT_SUCCESS(rc))
                {
                    memcpy(pvBuf, pvSrc, cb);
                    pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
                }
                else
                {
                    AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
                                           pRam->GCPhys + off, pPage, rc));
                    memset(pvBuf, 0xff, cb);
                }

                /* next page */
                if (cb >= cbRead)
                {
                    pgmUnlock(pVM);
                    return VINF_SUCCESS;
                }
                cbRead -= cb;
                off    += cb;
                GCPhys += cb;
                pvBuf   = (char *)pvBuf + cb;
            } /* walk pages in ram range. */
        }
        else
        {
            LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));

            /*
             * Unassigned address space.
             */
            size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
            if (cb >= cbRead)
            {
                memset(pvBuf, 0xff, cbRead);
                break;
            }
            memset(pvBuf, 0xff, cb);

            cbRead -= cb;
            pvBuf   = (char *)pvBuf + cb;
            GCPhys += cb;
        }

        /* Advance range if necessary. */
        while (pRam && GCPhys > pRam->GCPhysLast)
            pRam = pRam->CTX_SUFF(pNext);
    } /* Ram range walk */

    pgmUnlock(pVM);

    return VINF_SUCCESS;
}


/**
 * EMT worker for PGMR3PhysWriteExternal.
 */
static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
                                                   PGMACCESSORIGIN enmOrigin)
{
    /** @todo VERR_EM_NO_MEMORY */
    VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
    AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
    return VINF_SUCCESS;
}


/**
 * Write to physical memory, external users.
 *
 * @returns VBox status code.
 * @retval  VINF_SUCCESS.
 * @retval  VERR_EM_NO_MEMORY.
 *
 * @param   pVM             The cross context VM structure.
 * @param   GCPhys          Physical address to write to.
 * @param   pvBuf           What to write.
 * @param   cbWrite         How many bytes to write.
 * @param   enmOrigin       Who is calling.
 *
 * @thread  Any but EMTs.
 */
VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
{
    VM_ASSERT_OTHER_THREAD(pVM);

    AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
              ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
               GCPhys, cbWrite, enmOrigin));
    AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
    LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));

    pgmLock(pVM);

    /*
     * Copy loop on ram ranges, stop when we hit something difficult.
     */
    PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
    for (;;)
    {
        /* Inside range or not? */
        if (pRam && GCPhys >= pRam->GCPhys)
        {
            /*
             * Must work our way thru this page by page.
             */
            RTGCPTR off = GCPhys - pRam->GCPhys;
            while (off < pRam->cb)
            {
                RTGCPTR     iPage = off >> PAGE_SHIFT;
                PPGMPAGE    pPage = &pRam->aPages[iPage];

                /*
                 * Is the page problematic, we have to do the work on the EMT.
                 *
                 * Allocating writable pages and access handlers are
                 * problematic, write monitored pages are simple and can be
                 * dealt with here.
                 */
                if (    PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
                    ||  PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
                    ||  PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
                {
                    if (    PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
                        && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
                        pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
                    else
                    {
                        pgmUnlock(pVM);

                        return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
                                                       pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
                    }
                }
                Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));

                /*
                 * Simple stuff, go ahead.
                 */
                size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
                if (cb > cbWrite)
                    cb = cbWrite;
                PGMPAGEMAPLOCK PgMpLck;
                void          *pvDst;
                int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
                if (RT_SUCCESS(rc))
                {
                    memcpy(pvDst, pvBuf, cb);
                    pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
                }
                else
                    AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
                                           pRam->GCPhys + off, pPage, rc));

                /* next page */
                if (cb >= cbWrite)
                {
                    pgmUnlock(pVM);
                    return VINF_SUCCESS;
                }

                cbWrite -= cb;
                off     += cb;
                GCPhys  += cb;
                pvBuf    = (const char *)pvBuf + cb;
            } /* walk pages in ram range */
        }
        else
        {
            /*
             * Unassigned address space, skip it.
             */
            if (!pRam)
                break;
            size_t cb = pRam->GCPhys - GCPhys;
            if (cb >= cbWrite)
                break;
            cbWrite -= cb;
            pvBuf   = (const char *)pvBuf + cb;
            GCPhys += cb;
        }

        /* Advance range if necessary. */
        while (pRam && GCPhys > pRam->GCPhysLast)
            pRam = pRam->CTX_SUFF(pNext);
    } /* Ram range walk */

    pgmUnlock(pVM);
    return VINF_SUCCESS;
}


/**
 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
 *
 * @returns see PGMR3PhysGCPhys2CCPtrExternal
 * @param   pVM         The cross context VM structure.
 * @param   pGCPhys     Pointer to the guest physical address.
 * @param   ppv         Where to store the mapping address.
 * @param   pLock       Where to store the lock.
 */
static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
{
    /*
     * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
     * an access handler after it succeeds.
     */
    int rc = pgmLock(pVM);
    AssertRCReturn(rc, rc);

    rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
    if (RT_SUCCESS(rc))
    {
        PPGMPAGEMAPTLBE pTlbe;
        int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
        AssertFatalRC(rc2);
        PPGMPAGE pPage = pTlbe->pPage;
        if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
        {
            PGMPhysReleasePageMappingLock(pVM, pLock);
            rc = VERR_PGM_PHYS_PAGE_RESERVED;
        }
        else if (    PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
                 ||  pgmPoolIsDirtyPage(pVM, *pGCPhys)
#endif
                )
        {
            /* We *must* flush any corresponding pgm pool page here, otherwise we'll
             * not be informed about writes and keep bogus gst->shw mappings around.
             */
            pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
            Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
            /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
             *        active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
        }
    }

    pgmUnlock(pVM);
    return rc;
}


/**
 * Requests the mapping of a guest page into ring-3, external threads.
 *
 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
 * release it.
 *
 * This API will assume your intention is to write to the page, and will
 * therefore replace shared and zero pages. If you do not intend to modify the
 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
 *
 * @returns VBox status code.
 * @retval  VINF_SUCCESS on success.
 * @retval  VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
 *          backing or if the page has any active access handlers. The caller
 *          must fall back on using PGMR3PhysWriteExternal.
 * @retval  VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
 *
 * @param   pVM         The cross context VM structure.
 * @param   GCPhys      The guest physical address of the page that should be mapped.
 * @param   ppv         Where to store the address corresponding to GCPhys.
 * @param   pLock       Where to store the lock information that PGMPhysReleasePageMappingLock needs.
 *
 * @remark  Avoid calling this API from within critical sections (other than the
 *          PGM one) because of the deadlock risk when we have to delegating the
 *          task to an EMT.
 * @thread  Any.
 */
VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
{
    AssertPtr(ppv);
    AssertPtr(pLock);

    Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));

    int rc = pgmLock(pVM);
    AssertRCReturn(rc, rc);

    /*
     * Query the Physical TLB entry for the page (may fail).
     */
    PPGMPAGEMAPTLBE pTlbe;
    rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
    if (RT_SUCCESS(rc))
    {
        PPGMPAGE pPage = pTlbe->pPage;
        if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
            rc = VERR_PGM_PHYS_PAGE_RESERVED;
        else
        {
            /*
             * If the page is shared, the zero page, or being write monitored
             * it must be converted to an page that's writable if possible.
             * We can only deal with write monitored pages here, the rest have
             * to be on an EMT.
             */
            if (    PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
                ||  PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
                ||  pgmPoolIsDirtyPage(pVM, GCPhys)
#endif
               )
            {
                if (    PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
                    &&  !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
                    &&  !pgmPoolIsDirtyPage(pVM, GCPhys)
#endif
                   )
                    pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
                else
                {
                    pgmUnlock(pVM);

                    return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
                                                   pVM, &GCPhys, ppv, pLock);
                }
            }

            /*
             * Now, just perform the locking and calculate the return address.
             */
            PPGMPAGEMAP pMap = pTlbe->pMap;
            if (pMap)
                pMap->cRefs++;

            unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
            if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
            {
                if (cLocks == 0)
                    pVM->pgm.s.cWriteLockedPages++;
                PGM_PAGE_INC_WRITE_LOCKS(pPage);
            }
            else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
            {
                PGM_PAGE_INC_WRITE_LOCKS(pPage);
                AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
                if (pMap)
                    pMap->cRefs++; /* Extra ref to prevent it from going away. */
            }

            *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
            pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
            pLock->pvMap = pMap;
        }
    }

    pgmUnlock(pVM);
    return rc;
}


/**
 * Requests the mapping of a guest page into ring-3, external threads.
 *
 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
 * release it.
 *
 * @returns VBox status code.
 * @retval  VINF_SUCCESS on success.
 * @retval  VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
 *          backing or if the page as an active ALL access handler. The caller
 *          must fall back on using PGMPhysRead.
 * @retval  VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
 *
 * @param   pVM         The cross context VM structure.
 * @param   GCPhys      The guest physical address of the page that should be mapped.
 * @param   ppv         Where to store the address corresponding to GCPhys.
 * @param   pLock       Where to store the lock information that PGMPhysReleasePageMappingLock needs.
 *
 * @remark  Avoid calling this API from within critical sections (other than
 *          the PGM one) because of the deadlock risk.
 * @thread  Any.
 */
VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
{
    int rc = pgmLock(pVM);
    AssertRCReturn(rc, rc);

    /*
     * Query the Physical TLB entry for the page (may fail).
     */
    PPGMPAGEMAPTLBE pTlbe;
    rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
    if (RT_SUCCESS(rc))
    {
        PPGMPAGE pPage = pTlbe->pPage;
#if 1
        /* MMIO pages doesn't have any readable backing. */
        if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
            rc = VERR_PGM_PHYS_PAGE_RESERVED;
#else
        if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
            rc = VERR_PGM_PHYS_PAGE_RESERVED;
#endif
        else
        {
            /*
             * Now, just perform the locking and calculate the return address.
             */
            PPGMPAGEMAP pMap = pTlbe->pMap;
            if (pMap)
                pMap->cRefs++;

            unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
            if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
            {
                if (cLocks == 0)
                    pVM->pgm.s.cReadLockedPages++;
                PGM_PAGE_INC_READ_LOCKS(pPage);
            }
            else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
            {
                PGM_PAGE_INC_READ_LOCKS(pPage);
                AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
                if (pMap)
                    pMap->cRefs++; /* Extra ref to prevent it from going away. */
            }

            *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
            pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
            pLock->pvMap = pMap;
        }
    }

    pgmUnlock(pVM);
    return rc;
}


#define MAKE_LEAF(a_pNode) \
    do { \
        (a_pNode)->pLeftR3  = NIL_RTR3PTR; \
        (a_pNode)->pRightR3 = NIL_RTR3PTR; \
        (a_pNode)->pLeftR0  = NIL_RTR0PTR; \
        (a_pNode)->pRightR0 = NIL_RTR0PTR; \
        (a_pNode)->pLeftRC  = NIL_RTRCPTR; \
        (a_pNode)->pRightRC = NIL_RTRCPTR; \
    } while (0)

#define INSERT_LEFT(a_pParent, a_pNode) \
    do { \
        (a_pParent)->pLeftR3 = (a_pNode); \
        (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
        (a_pParent)->pLeftRC = (a_pNode)->pSelfRC; \
    } while (0)
#define INSERT_RIGHT(a_pParent, a_pNode) \
    do { \
        (a_pParent)->pRightR3 = (a_pNode); \
        (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
        (a_pParent)->pRightRC = (a_pNode)->pSelfRC; \
    } while (0)


/**
 * Recursive tree builder.
 *
 * @param   ppRam           Pointer to the iterator variable.
 * @param   iDepth          The current depth.  Inserts a leaf node if 0.
 */
static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
{
    PPGMRAMRANGE pRam;
    if (iDepth <= 0)
    {
        /*
         * Leaf node.
         */
        pRam = *ppRam;
        if (pRam)
        {
            *ppRam = pRam->pNextR3;
            MAKE_LEAF(pRam);
        }
    }
    else
    {

        /*
         * Intermediate node.
         */
        PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);

        pRam = *ppRam;
        if (!pRam)
            return pLeft;
        *ppRam = pRam->pNextR3;
        MAKE_LEAF(pRam);
        INSERT_LEFT(pRam, pLeft);

        PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
        if (pRight)
            INSERT_RIGHT(pRam, pRight);
    }
    return pRam;
}


/**
 * Rebuilds the RAM range search trees.
 *
 * @param   pVM         The cross context VM structure.
 */
static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
{

    /*
     * Create the reasonably balanced tree in a sequential fashion.
     * For simplicity (laziness) we use standard recursion here.
     */
    int             iDepth = 0;
    PPGMRAMRANGE    pRam   = pVM->pgm.s.pRamRangesXR3;
    PPGMRAMRANGE    pRoot  = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
    while (pRam)
    {
        PPGMRAMRANGE pLeft = pRoot;

        pRoot = pRam;
        pRam = pRam->pNextR3;
        MAKE_LEAF(pRoot);
        INSERT_LEFT(pRoot, pLeft);

        PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
        if (pRight)
            INSERT_RIGHT(pRoot, pRight);
        /** @todo else: rotate the tree. */

        iDepth++;
    }

    pVM->pgm.s.pRamRangeTreeR3 = pRoot;
    pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
    pVM->pgm.s.pRamRangeTreeRC = pRoot ? pRoot->pSelfRC : NIL_RTRCPTR;

#ifdef VBOX_STRICT
    /*
     * Verify that the above code works.
     */
    unsigned cRanges = 0;
    for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
        cRanges++;
    Assert(cRanges > 0);

    unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
    if ((1U << cMaxDepth) < cRanges)
        cMaxDepth++;

    for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
    {
        unsigned     cDepth = 0;
        PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
        for (;;)
        {
            if (pRam == pRam2)
                break;
            Assert(pRam2);
            if (pRam->GCPhys < pRam2->GCPhys)
                pRam2 = pRam2->pLeftR3;
            else
                pRam2 = pRam2->pRightR3;
        }
        AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
    }
#endif /* VBOX_STRICT */
}

#undef MAKE_LEAF
#undef INSERT_LEFT
#undef INSERT_RIGHT

/**
 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
 *
 * Called when anything was relocated.
 *
 * @param   pVM         The cross context VM structure.
 */
void pgmR3PhysRelinkRamRanges(PVM pVM)
{
    PPGMRAMRANGE pCur;

#ifdef VBOX_STRICT
    for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
    {
        Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
        Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
        Assert((pCur->GCPhys     & PAGE_OFFSET_MASK) == 0);
        Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
        Assert((pCur->cb         & PAGE_OFFSET_MASK) == 0);
        Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
        for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
            Assert(   pCur2 == pCur
                   || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
    }
#endif

    pCur = pVM->pgm.s.pRamRangesXR3;
    if (pCur)
    {
        pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
        pVM->pgm.s.pRamRangesXRC = pCur->pSelfRC;

        for (; pCur->pNextR3; pCur = pCur->pNextR3)
        {
            pCur->pNextR0 = pCur->pNextR3->pSelfR0;
            pCur->pNextRC = pCur->pNextR3->pSelfRC;
        }

        Assert(pCur->pNextR0 == NIL_RTR0PTR);
        Assert(pCur->pNextRC == NIL_RTRCPTR);
    }
    else
    {
        Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
        Assert(pVM->pgm.s.pRamRangesXRC == NIL_RTRCPTR);
    }
    ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);

    pgmR3PhysRebuildRamRangeSearchTrees(pVM);
}


/**
 * Links a new RAM range into the list.
 *
 * @param   pVM         The cross context VM structure.
 * @param   pNew        Pointer to the new list entry.
 * @param   pPrev       Pointer to the previous list entry. If NULL, insert as head.
 */
static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
{
    AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
    Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
    Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));

    pgmLock(pVM);

    PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
    pNew->pNextR3 = pRam;
    pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
    pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;

    if (pPrev)
    {
        pPrev->pNextR3 = pNew;
        pPrev->pNextR0 = pNew->pSelfR0;
        pPrev->pNextRC = pNew->pSelfRC;
    }
    else
    {
        pVM->pgm.s.pRamRangesXR3 = pNew;
        pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
        pVM->pgm.s.pRamRangesXRC = pNew->pSelfRC;
    }
    ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);

    pgmR3PhysRebuildRamRangeSearchTrees(pVM);
    pgmUnlock(pVM);
}


/**
 * Unlink an existing RAM range from the list.
 *
 * @param   pVM         The cross context VM structure.
 * @param   pRam        Pointer to the new list entry.
 * @param   pPrev       Pointer to the previous list entry. If NULL, insert as head.
 */
static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
{
    Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
    Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
    Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));

    pgmLock(pVM);

    PPGMRAMRANGE pNext = pRam->pNextR3;
    if (pPrev)
    {
        pPrev->pNextR3 = pNext;
        pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
        pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
    }
    else
    {
        Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
        pVM->pgm.s.pRamRangesXR3 = pNext;
        pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
        pVM->pgm.s.pRamRangesXRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
    }
    ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);

    pgmR3PhysRebuildRamRangeSearchTrees(pVM);
    pgmUnlock(pVM);
}


/**
 * Unlink an existing RAM range from the list.
 *
 * @param   pVM         The cross context VM structure.
 * @param   pRam        Pointer to the new list entry.
 */
static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
{
    pgmLock(pVM);

    /* find prev. */
    PPGMRAMRANGE pPrev = NULL;
    PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
    while (pCur != pRam)
    {
        pPrev = pCur;
        pCur = pCur->pNextR3;
    }
    AssertFatal(pCur);

    pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
    pgmUnlock(pVM);
}


/**
 * Frees a range of pages, replacing them with ZERO pages of the specified type.
 *
 * @returns VBox status code.
 * @param   pVM         The cross context VM structure.
 * @param   pRam        The RAM range in which the pages resides.
 * @param   GCPhys      The address of the first page.
 * @param   GCPhysLast  The address of the last page.
 * @param   enmType     The page type to replace then with.
 */
static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, PGMPAGETYPE enmType)
{
    PGM_LOCK_ASSERT_OWNER(pVM);
    uint32_t            cPendingPages = 0;
    PGMMFREEPAGESREQ    pReq;
    int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
    AssertLogRelRCReturn(rc, rc);

    /* Iterate the pages. */
    PPGMPAGE pPageDst   = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
    uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
    while (cPagesLeft-- > 0)
    {
        rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, enmType);
        AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */

        PGM_PAGE_SET_TYPE(pVM, pPageDst, enmType);

        GCPhys += PAGE_SIZE;
        pPageDst++;
    }

    if (cPendingPages)
    {
        rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
        AssertLogRelRCReturn(rc, rc);
    }
    GMMR3FreePagesCleanup(pReq);

    return rc;
}

#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))

/**
 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
 *
 * This is only called on one of the EMTs while the other ones are waiting for
 * it to complete this function.
 *
 * @returns VINF_SUCCESS (VBox strict status code).
 * @param   pVM         The cross context VM structure.
 * @param   pVCpu       The cross context virtual CPU structure of the calling EMT. Unused.
 * @param   pvUser      User parameter
 */
static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
{
    uintptr_t          *paUser          = (uintptr_t *)pvUser;
    bool                fInflate        = !!paUser[0];
    unsigned            cPages          = paUser[1];
    RTGCPHYS           *paPhysPage      = (RTGCPHYS *)paUser[2];
    uint32_t            cPendingPages   = 0;
    PGMMFREEPAGESREQ    pReq;
    int                 rc;

    Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
    pgmLock(pVM);

    if (fInflate)
    {
        /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
        pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);

        /* Replace pages with ZERO pages. */
        rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
        if (RT_FAILURE(rc))
        {
            pgmUnlock(pVM);
            AssertLogRelRC(rc);
            return rc;
        }

        /* Iterate the pages. */
        for (unsigned i = 0; i < cPages; i++)
        {
            PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
            if (    pPage == NULL
                ||  PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
            {
                Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
                break;
            }

            LogFlow(("balloon page: %RGp\n", paPhysPage[i]));

            /* Flush the shadow PT if this page was previously used as a guest page table. */
            pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);

            rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
            if (RT_FAILURE(rc))
            {
                pgmUnlock(pVM);
                AssertLogRelRC(rc);
                return rc;
            }
            Assert(PGM_PAGE_IS_ZERO(pPage));
            PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
        }

        if (cPendingPages)
        {
            rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
            if (RT_FAILURE(rc))
            {
                pgmUnlock(pVM);
                AssertLogRelRC(rc);
                return rc;
            }
        }
        GMMR3FreePagesCleanup(pReq);
    }
    else
    {
        /* Iterate the pages. */
        for (unsigned i = 0; i < cPages; i++)
        {
            PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
            AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);

            LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));

            Assert(PGM_PAGE_IS_BALLOONED(pPage));

            /* Change back to zero page.  (NEM does not need to be informed.) */
            PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
        }

        /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
    }

    /* Notify GMM about the balloon change. */
    rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
    if (RT_SUCCESS(rc))
    {
        if (!fInflate)
        {
            Assert(pVM->pgm.s.cBalloonedPages >= cPages);
            pVM->pgm.s.cBalloonedPages -= cPages;
        }
        else
            pVM->pgm.s.cBalloonedPages += cPages;
    }

    pgmUnlock(pVM);

    /* Flush the recompiler's TLB as well. */
    for (VMCPUID i = 0; i < pVM->cCpus; i++)
        CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);

    AssertLogRelRC(rc);
    return rc;
}


/**
 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
 *
 * @returns VBox status code.
 * @param   pVM         The cross context VM structure.
 * @param   fInflate    Inflate or deflate memory balloon
 * @param   cPages      Number of pages to free
 * @param   paPhysPage  Array of guest physical addresses
 */
static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
{
    uintptr_t paUser[3];

    paUser[0] = fInflate;
    paUser[1] = cPages;
    paUser[2] = (uintptr_t)paPhysPage;
    int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
    AssertRC(rc);

    /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
    RTMemFree(paPhysPage);
}

#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */

/**
 * Inflate or deflate a memory balloon
 *
 * @returns VBox status code.
 * @param   pVM         The cross context VM structure.
 * @param   fInflate    Inflate or deflate memory balloon
 * @param   cPages      Number of pages to free
 * @param   paPhysPage  Array of guest physical addresses
 */
VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
{
    /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
    int rc;

    /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
    AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);

    /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
     * In the SMP case we post a request packet to postpone the job.
     */
    if (pVM->cCpus > 1)
    {
        unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
        RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
        AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);

        memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);

        rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
        AssertRC(rc);
    }
    else
    {
        uintptr_t paUser[3];

        paUser[0] = fInflate;
        paUser[1] = cPages;
        paUser[2] = (uintptr_t)paPhysPage;
        rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
        AssertRC(rc);
    }
    return rc;

#else
    NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
    return VERR_NOT_IMPLEMENTED;
#endif
}


/**
 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
 * physical RAM.
 *
 * This is only called on one of the EMTs while the other ones are waiting for
 * it to complete this function.
 *
 * @returns VINF_SUCCESS (VBox strict status code).
 * @param   pVM         The cross context VM structure.
 * @param   pVCpu       The cross context virtual CPU structure of the calling EMT. Unused.
 * @param   pvUser      User parameter, unused.
 */
static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
{
    int rc = VINF_SUCCESS;
    NOREF(pvUser); NOREF(pVCpu);

    pgmLock(pVM);
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
    pgmPoolResetDirtyPages(pVM);
#endif

    /** @todo pointless to write protect the physical page pointed to by RSP. */

    for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
         pRam;
         pRam = pRam->CTX_SUFF(pNext))
    {
        uint32_t cPages = pRam->cb >> PAGE_SHIFT;
        for (uint32_t iPage = 0; iPage < cPages; iPage++)
        {
            PPGMPAGE    pPage = &pRam->aPages[iPage];
            PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);

            if (    RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
                ||  enmPageType == PGMPAGETYPE_MMIO2)
            {
                /*
                 * A RAM page.
                 */
                switch (PGM_PAGE_GET_STATE(pPage))
                {
                    case PGM_PAGE_STATE_ALLOCATED:
                        /** @todo Optimize this: Don't always re-enable write
                         * monitoring if the page is known to be very busy. */
                        if (PGM_PAGE_IS_WRITTEN_TO(pPage))
                        {
                            PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
                            /* Remember this dirty page for the next (memory) sync. */
                            PGM_PAGE_SET_FT_DIRTY(pPage);
                        }

                        pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
                        break;

                    case PGM_PAGE_STATE_SHARED:
                        AssertFailed();
                        break;

                    case PGM_PAGE_STATE_WRITE_MONITORED:    /* nothing to change. */
                    default:
                        break;
                }
            }
        }
    }
    pgmR3PoolWriteProtectPages(pVM);
    PGM_INVL_ALL_VCPU_TLBS(pVM);
    for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
        CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);

    pgmUnlock(pVM);
    return rc;
}

/**
 * Protect all physical RAM to monitor writes
 *
 * @returns VBox status code.
 * @param   pVM         The cross context VM structure.
 */
VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
{
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);

    int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
    AssertRC(rc);
    return rc;
}

/**
 * Enumerate all dirty FT pages.
 *
 * @returns VBox status code.
 * @param   pVM         The cross context VM structure.
 * @param   pfnEnum     Enumerate callback handler.
 * @param   pvUser      Enumerate callback handler parameter.
 */
VMMR3DECL(int) PGMR3PhysEnumDirtyFTPages(PVM pVM, PFNPGMENUMDIRTYFTPAGES pfnEnum, void *pvUser)
{
    int rc = VINF_SUCCESS;

    pgmLock(pVM);
    for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
         pRam;
         pRam = pRam->CTX_SUFF(pNext))
    {
        uint32_t cPages = pRam->cb >> PAGE_SHIFT;
        for (uint32_t iPage = 0; iPage < cPages; iPage++)
        {
            PPGMPAGE    pPage       = &pRam->aPages[iPage];
            PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);

            if (    RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
                ||  enmPageType == PGMPAGETYPE_MMIO2)
            {
                /*
                 * A RAM page.
                 */
                switch (PGM_PAGE_GET_STATE(pPage))
                {
                    case PGM_PAGE_STATE_ALLOCATED:
                    case PGM_PAGE_STATE_WRITE_MONITORED:
                        if (   !PGM_PAGE_IS_WRITTEN_TO(pPage)  /* not very recently updated? */
                            && PGM_PAGE_IS_FT_DIRTY(pPage))
                        {
                            uint32_t       cbPageRange = PAGE_SIZE;
                            uint32_t       iPageClean  = iPage + 1;
                            RTGCPHYS       GCPhysPage  = pRam->GCPhys + iPage * PAGE_SIZE;
                            uint8_t       *pu8Page     = NULL;
                            PGMPAGEMAPLOCK Lock;

                            /* Find the next clean page, so we can merge adjacent dirty pages. */
                            for (; iPageClean < cPages; iPageClean++)
                            {
                                PPGMPAGE pPageNext = &pRam->aPages[iPageClean];
                                if (    RT_UNLIKELY(PGM_PAGE_GET_TYPE(pPageNext) != PGMPAGETYPE_RAM)
                                    ||  PGM_PAGE_GET_STATE(pPageNext) != PGM_PAGE_STATE_ALLOCATED
                                    ||  PGM_PAGE_IS_WRITTEN_TO(pPageNext)
                                    ||  !PGM_PAGE_IS_FT_DIRTY(pPageNext)
                                    /* Crossing a chunk boundary? */
                                    ||  (GCPhysPage & GMM_PAGEID_IDX_MASK) != ((GCPhysPage + cbPageRange) & GMM_PAGEID_IDX_MASK)
                                    )
                                    break;

                                cbPageRange += PAGE_SIZE;
                            }

                            rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysPage, (const void **)&pu8Page, &Lock);
                            if (RT_SUCCESS(rc))
                            {
                                /** @todo this is risky; the range might be changed, but little choice as the sync
                                 *  costs a lot of time. */
                                pgmUnlock(pVM);
                                pfnEnum(pVM, GCPhysPage, pu8Page, cbPageRange, pvUser);
                                pgmLock(pVM);
                                PGMPhysReleasePageMappingLock(pVM, &Lock);
                            }

                            for (uint32_t iTmp = iPage; iTmp < iPageClean; iTmp++)
                                PGM_PAGE_CLEAR_FT_DIRTY(&pRam->aPages[iTmp]);
                        }
                        break;
                }
            }
        }
    }
    pgmUnlock(pVM);
    return rc;
}


/**
 * Gets the number of ram ranges.
 *
 * @returns Number of ram ranges.  Returns UINT32_MAX if @a pVM is invalid.
 * @param   pVM             The cross context VM structure.
 */
VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
{
    VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);

    pgmLock(pVM);
    uint32_t cRamRanges = 0;
    for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
        cRamRanges++;
    pgmUnlock(pVM);
    return cRamRanges;
}


/**
 * Get information about a range.
 *
 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
 * @param   pVM             The cross context VM structure.
 * @param   iRange          The ordinal of the range.
 * @param   pGCPhysStart    Where to return the start of the range. Optional.
 * @param   pGCPhysLast     Where to return the address of the last byte in the
 *                          range. Optional.
 * @param   ppszDesc        Where to return the range description. Optional.
 * @param   pfIsMmio        Where to indicate that this is a pure MMIO range.
 *                          Optional.
 */
VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
                                 const char **ppszDesc, bool *pfIsMmio)
{
    VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);

    pgmLock(pVM);
    uint32_t iCurRange = 0;
    for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
        if (iCurRange == iRange)
        {
            if (pGCPhysStart)
                *pGCPhysStart = pCur->GCPhys;
            if (pGCPhysLast)
                *pGCPhysLast  = pCur->GCPhysLast;
            if (ppszDesc)
                *ppszDesc     = pCur->pszDesc;
            if (pfIsMmio)
                *pfIsMmio     = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);

            pgmUnlock(pVM);
            return VINF_SUCCESS;
        }
    pgmUnlock(pVM);
    return VERR_OUT_OF_RANGE;
}


/**
 * Query the amount of free memory inside VMMR0
 *
 * @returns VBox status code.
 * @param   pUVM                The user mode VM handle.
 * @param   pcbAllocMem         Where to return the amount of memory allocated
 *                              by VMs.
 * @param   pcbFreeMem          Where to return the amount of memory that is
 *                              allocated from the host but not currently used
 *                              by any VMs.
 * @param   pcbBallonedMem      Where to return the sum of memory that is
 *                              currently ballooned by the VMs.
 * @param   pcbSharedMem        Where to return the amount of memory that is
 *                              currently shared.
 */
VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
                                           uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
{
    UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
    VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);

    uint64_t cAllocPages   = 0;
    uint64_t cFreePages    = 0;
    uint64_t cBalloonPages = 0;
    uint64_t cSharedPages  = 0;
    int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
    AssertRCReturn(rc, rc);

    if (pcbAllocMem)
        *pcbAllocMem    = cAllocPages * _4K;

    if (pcbFreeMem)
        *pcbFreeMem     = cFreePages * _4K;

    if (pcbBallonedMem)
        *pcbBallonedMem = cBalloonPages * _4K;

    if (pcbSharedMem)
        *pcbSharedMem   = cSharedPages * _4K;

    Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
         cAllocPages, cFreePages, cBalloonPages, cSharedPages));
    return VINF_SUCCESS;
}


/**
 * Query memory stats for the VM.
 *
 * @returns VBox status code.
 * @param   pUVM                The user mode VM handle.
 * @param   pcbTotalMem         Where to return total amount memory the VM may
 *                              possibly use.
 * @param   pcbPrivateMem       Where to return the amount of private memory
 *                              currently allocated.
 * @param   pcbSharedMem        Where to return the amount of actually shared
 *                              memory currently used by the VM.
 * @param   pcbZeroMem          Where to return the amount of memory backed by
 *                              zero pages.
 *
 * @remarks The total mem is normally larger than the sum of the three
 *          components.  There are two reasons for this, first the amount of
 *          shared memory is what we're sure is shared instead of what could
 *          possibly be shared with someone.  Secondly, because the total may
 *          include some pure MMIO pages that doesn't go into any of the three
 *          sub-counts.
 *
 * @todo Why do we return reused shared pages instead of anything that could
 *       potentially be shared?  Doesn't this mean the first VM gets a much
 *       lower number of shared pages?
 */
VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
                                     uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
{
    UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
    PVM pVM = pUVM->pVM;
    VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);

    if (pcbTotalMem)
        *pcbTotalMem    = (uint64_t)pVM->pgm.s.cAllPages            * PAGE_SIZE;

    if (pcbPrivateMem)
        *pcbPrivateMem  = (uint64_t)pVM->pgm.s.cPrivatePages        * PAGE_SIZE;

    if (pcbSharedMem)
        *pcbSharedMem   = (uint64_t)pVM->pgm.s.cReusedSharedPages   * PAGE_SIZE;

    if (pcbZeroMem)
        *pcbZeroMem     = (uint64_t)pVM->pgm.s.cZeroPages           * PAGE_SIZE;

    Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
    return VINF_SUCCESS;
}


/**
 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
 *
 * @param   pVM             The cross context VM structure.
 * @param   pNew            The new RAM range.
 * @param   GCPhys          The address of the RAM range.
 * @param   GCPhysLast      The last address of the RAM range.
 * @param   RCPtrNew        The RC address if the range is floating. NIL_RTRCPTR
 *                          if in HMA.
 * @param   R0PtrNew        Ditto for R0.
 * @param   pszDesc         The description.
 * @param   pPrev           The previous RAM range (for linking).
 */
static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
                                         RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
{
    /*
     * Initialize the range.
     */
    pNew->pSelfR0       = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
    pNew->pSelfRC       = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
    pNew->GCPhys        = GCPhys;
    pNew->GCPhysLast    = GCPhysLast;
    pNew->cb            = GCPhysLast - GCPhys + 1;
    pNew->pszDesc       = pszDesc;
    pNew->fFlags        = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
    pNew->pvR3          = NULL;
    pNew->paLSPages     = NULL;

    uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
    RTGCPHYS iPage = cPages;
    while (iPage-- > 0)
        PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);

    /* Update the page count stats. */
    pVM->pgm.s.cZeroPages += cPages;
    pVM->pgm.s.cAllPages  += cPages;

    /*
     * Link it.
     */
    pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
}


/**
 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating RAM range.}
 * @sa pgmR3PhysMMIO2ExRangeRelocate
 */
static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
                                                    PGMRELOCATECALL enmMode, void *pvUser)
{
    PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
    Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
    Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE); RT_NOREF_PV(GCPtrOld);

    switch (enmMode)
    {
        case PGMRELOCATECALL_SUGGEST:
            return true;

        case PGMRELOCATECALL_RELOCATE:
        {
            /*
             * Update myself, then relink all the ranges and flush the RC TLB.
             */
            pgmLock(pVM);

            pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);

            pgmR3PhysRelinkRamRanges(pVM);
            for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
                pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;

            pgmUnlock(pVM);
            return true;
        }

        default:
            AssertFailedReturn(false);
    }
}


/**
 * PGMR3PhysRegisterRam worker that registers a high chunk.
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   GCPhys          The address of the RAM.
 * @param   cRamPages       The number of RAM pages to register.
 * @param   cbChunk         The size of the PGMRAMRANGE guest mapping.
 * @param   iChunk          The chunk number.
 * @param   pszDesc         The RAM range description.
 * @param   ppPrev          Previous RAM range pointer. In/Out.
 */
static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
                                         uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
                                         PPGMRAMRANGE *ppPrev)
{
    const char *pszDescChunk = iChunk == 0
                             ? pszDesc
                             : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
    AssertReturn(pszDescChunk, VERR_NO_MEMORY);

    /*
     * Allocate memory for the new chunk.
     */
    size_t const cChunkPages  = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
    PSUPPAGE     paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
    AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
    RTR0PTR      R0PtrChunk   = NIL_RTR0PTR;
    void        *pvChunk      = NULL;
    int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
                              &R0PtrChunk,
#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
                              VM_IS_HM_OR_NEM_ENABLED(pVM) ? &R0PtrChunk : NULL,
#else
                              NULL,
#endif
                              paChunkPages);
    if (RT_SUCCESS(rc))
    {
#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
        Assert(R0PtrChunk != NIL_RTR0PTR);
#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
        if (!VM_IS_HM_OR_NEM_ENABLED(pVM))
            R0PtrChunk = NIL_RTR0PTR;
#else
        R0PtrChunk = (uintptr_t)pvChunk;
#endif
        memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);

        PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;

        /*
         * Create a mapping and map the pages into it.
         * We push these in below the HMA.
         */
        RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
        rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
        if (RT_SUCCESS(rc))
        {
            pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;

            RTGCPTR const   GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
            RTGCPTR         GCPtrPage  = GCPtrChunk;
            for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
                rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
            if (RT_SUCCESS(rc))
            {
                /*
                 * Ok, init and link the range.
                 */
                pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
                                             (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
                *ppPrev = pNew;
            }
        }

        if (RT_FAILURE(rc))
            SUPR3PageFreeEx(pvChunk, cChunkPages);
    }

    RTMemTmpFree(paChunkPages);
    return rc;
}


/**
 * Sets up a range RAM.
 *
 * This will check for conflicting registrations, make a resource
 * reservation for the memory (with GMM), and setup the per-page
 * tracking structures (PGMPAGE).
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   GCPhys          The physical address of the RAM.
 * @param   cb              The size of the RAM.
 * @param   pszDesc         The description - not copied, so, don't free or change it.
 */
VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
{
   /*
     * Validate input.
     */
    Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
    AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
    AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
    AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
    AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);

    pgmLock(pVM);

    /*
     * Find range location and check for conflicts.
     * (We don't lock here because the locking by EMT is only required on update.)
     */
    PPGMRAMRANGE    pPrev = NULL;
    PPGMRAMRANGE    pRam = pVM->pgm.s.pRamRangesXR3;
    while (pRam && GCPhysLast >= pRam->GCPhys)
    {
        if (    GCPhysLast >= pRam->GCPhys
            &&  GCPhys     <= pRam->GCPhysLast)
            AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
                                         GCPhys, GCPhysLast, pszDesc,
                                         pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
                                        VERR_PGM_RAM_CONFLICT);

        /* next */
        pPrev = pRam;
        pRam = pRam->pNextR3;
    }

    /*
     * Register it with GMM (the API bitches).
     */
    const RTGCPHYS cPages = cb >> PAGE_SHIFT;
    int rc = MMR3IncreaseBaseReservation(pVM, cPages);
    if (RT_FAILURE(rc))
    {
        pgmUnlock(pVM);
        return rc;
    }

    if (    GCPhys >= _4G
        &&  cPages > 256)
    {
        /*
         * The PGMRAMRANGE structures for the high memory can get very big.
         * In order to avoid SUPR3PageAllocEx allocation failures due to the
         * allocation size limit there and also to avoid being unable to find
         * guest mapping space for them, we split this memory up into 4MB in
         * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
         * mode.
         *
         * The first and last page of each mapping are guard pages and marked
         * not-present. So, we've got 4186112 and 16769024 bytes available for
         * the PGMRAMRANGE structure.
         *
         * Note! The sizes used here will influence the saved state.
         */
        uint32_t cbChunk;
        uint32_t cPagesPerChunk;
        if (!VM_IS_RAW_MODE_ENABLED(pVM))
        {
            cbChunk = 16U*_1M;
            cPagesPerChunk = 1048048; /* max ~1048059 */
            AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
        }
        else
        {
            cbChunk = 4U*_1M;
            cPagesPerChunk = 261616; /* max ~261627 */
            AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616  <  4U*_1M - PAGE_SIZE * 2);
        }
        AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);

        RTGCPHYS cPagesLeft  = cPages;
        RTGCPHYS GCPhysChunk = GCPhys;
        uint32_t iChunk      = 0;
        while (cPagesLeft > 0)
        {
            uint32_t cPagesInChunk = cPagesLeft;
            if (cPagesInChunk > cPagesPerChunk)
                cPagesInChunk = cPagesPerChunk;

            rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
            AssertRCReturn(rc, rc);

            /* advance */
            GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
            cPagesLeft  -= cPagesInChunk;
            iChunk++;
        }
    }
    else
    {
        /*
         * Allocate, initialize and link the new RAM range.
         */
        const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
        PPGMRAMRANGE pNew;
        rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
        AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);

        pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
    }
    pgmPhysInvalidatePageMapTLB(pVM);

    /*
     * Notify NEM while holding the lock (experimental) and REM without (like always).
     */
    rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, cb);
    pgmUnlock(pVM);
#ifdef VBOX_WITH_REM
    REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
#endif
    return rc;
}


/**
 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
 *
 * We do this late in the init process so that all the ROM and MMIO ranges have
 * been registered already and we don't go wasting memory on them.
 *
 * @returns VBox status code.
 *
 * @param   pVM     The cross context VM structure.
 */
int pgmR3PhysRamPreAllocate(PVM pVM)
{
    Assert(pVM->pgm.s.fRamPreAlloc);
    Log(("pgmR3PhysRamPreAllocate: enter\n"));

    /*
     * Walk the RAM ranges and allocate all RAM pages, halt at
     * the first allocation error.
     */
    uint64_t cPages = 0;
    uint64_t NanoTS = RTTimeNanoTS();
    pgmLock(pVM);
    for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
    {
        PPGMPAGE    pPage  = &pRam->aPages[0];
        RTGCPHYS    GCPhys = pRam->GCPhys;
        uint32_t    cLeft  = pRam->cb >> PAGE_SHIFT;
        while (cLeft-- > 0)
        {
            if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
            {
                switch (PGM_PAGE_GET_STATE(pPage))
                {
                    case PGM_PAGE_STATE_ZERO:
                    {
                        int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
                        if (RT_FAILURE(rc))
                        {
                            LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
                            pgmUnlock(pVM);
                            return rc;
                        }
                        cPages++;
                        break;
                    }

                    case PGM_PAGE_STATE_BALLOONED:
                    case PGM_PAGE_STATE_ALLOCATED:
                    case PGM_PAGE_STATE_WRITE_MONITORED:
                    case PGM_PAGE_STATE_SHARED:
                        /* nothing to do here. */
                        break;
                }
            }

            /* next */
            pPage++;
            GCPhys += PAGE_SIZE;
        }
    }
    pgmUnlock(pVM);
    NanoTS = RTTimeNanoTS() - NanoTS;

    LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
    Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
    return VINF_SUCCESS;
}


/**
 * Checks shared page checksums.
 *
 * @param   pVM     The cross context VM structure.
 */
void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
{
#ifdef VBOX_STRICT
    pgmLock(pVM);

    if (pVM->pgm.s.cSharedPages > 0)
    {
        /*
         * Walk the ram ranges.
         */
        for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
        {
            uint32_t iPage = pRam->cb >> PAGE_SHIFT;
            AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));

            while (iPage-- > 0)
            {
                PPGMPAGE pPage = &pRam->aPages[iPage];
                if (PGM_PAGE_IS_SHARED(pPage))
                {
                    uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
                    if (!u32Checksum)
                    {
                        RTGCPHYS    GCPhysPage  = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
                        void const *pvPage;
                        int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
                        if (RT_SUCCESS(rc))
                        {
                            uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
# if 0
                            AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
# else
                            if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
                                LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
                            else
                                AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
# endif
                        }
                        else
                            AssertRC(rc);
                    }
                }

            } /* for each page */

        } /* for each ram range */
    }

    pgmUnlock(pVM);
#endif /* VBOX_STRICT */
    NOREF(pVM);
}


/**
 * Resets the physical memory state.
 *
 * ASSUMES that the caller owns the PGM lock.
 *
 * @returns VBox status code.
 * @param   pVM     The cross context VM structure.
 */
int pgmR3PhysRamReset(PVM pVM)
{
    PGM_LOCK_ASSERT_OWNER(pVM);

    /* Reset the memory balloon. */
    int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
    AssertRC(rc);

#ifdef VBOX_WITH_PAGE_SHARING
    /* Clear all registered shared modules. */
    pgmR3PhysAssertSharedPageChecksums(pVM);
    rc = GMMR3ResetSharedModules(pVM);
    AssertRC(rc);
#endif
    /* Reset counters. */
    pVM->pgm.s.cReusedSharedPages = 0;
    pVM->pgm.s.cBalloonedPages    = 0;

    return VINF_SUCCESS;
}


/**
 * Resets (zeros) the RAM after all devices and components have been reset.
 *
 * ASSUMES that the caller owns the PGM lock.
 *
 * @returns VBox status code.
 * @param   pVM     The cross context VM structure.
 */
int pgmR3PhysRamZeroAll(PVM pVM)
{
    PGM_LOCK_ASSERT_OWNER(pVM);

    /*
     * We batch up pages that should be freed instead of calling GMM for
     * each and every one of them.
     */
    uint32_t            cPendingPages = 0;
    PGMMFREEPAGESREQ    pReq;
    int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
    AssertLogRelRCReturn(rc, rc);

    /*
     * Walk the ram ranges.
     */
    for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
    {
        uint32_t iPage = pRam->cb >> PAGE_SHIFT;
        AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));

        if (   !pVM->pgm.s.fRamPreAlloc
            && pVM->pgm.s.fZeroRamPagesOnReset)
        {
            /* Replace all RAM pages by ZERO pages. */
            while (iPage-- > 0)
            {
                PPGMPAGE pPage = &pRam->aPages[iPage];
                switch (PGM_PAGE_GET_TYPE(pPage))
                {
                    case PGMPAGETYPE_RAM:
                        /* Do not replace pages part of a 2 MB continuous range
                           with zero pages, but zero them instead. */
                        if (   PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
                            || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
                        {
                            void *pvPage;
                            rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
                            AssertLogRelRCReturn(rc, rc);
                            ASMMemZeroPage(pvPage);
                        }
                        else if (PGM_PAGE_IS_BALLOONED(pPage))
                        {
                            /* Turn into a zero page; the balloon status is lost when the VM reboots. */
                            PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
                        }
                        else if (!PGM_PAGE_IS_ZERO(pPage))
                        {
                            rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
                                                 PGMPAGETYPE_RAM);
                            AssertLogRelRCReturn(rc, rc);
                        }
                        break;

                    case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
                    case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone?  I don't think VT-x copes with this code. */
                        pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
                                                           true /*fDoAccounting*/);
                        break;

                    case PGMPAGETYPE_MMIO2:
                    case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
                    case PGMPAGETYPE_ROM:
                    case PGMPAGETYPE_MMIO:
                        break;
                    default:
                        AssertFailed();
                }
            } /* for each page */
        }
        else
        {
            /* Zero the memory. */
            while (iPage-- > 0)
            {
                PPGMPAGE pPage = &pRam->aPages[iPage];
                switch (PGM_PAGE_GET_TYPE(pPage))
                {
                    case PGMPAGETYPE_RAM:
                        switch (PGM_PAGE_GET_STATE(pPage))
                        {
                            case PGM_PAGE_STATE_ZERO:
                                break;

                            case PGM_PAGE_STATE_BALLOONED:
                                /* Turn into a zero page; the balloon status is lost when the VM reboots. */
                                PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
                                break;

                            case PGM_PAGE_STATE_SHARED:
                            case PGM_PAGE_STATE_WRITE_MONITORED:
                                rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
                                AssertLogRelRCReturn(rc, rc);
                                RT_FALL_THRU();

                            case PGM_PAGE_STATE_ALLOCATED:
                                if (pVM->pgm.s.fZeroRamPagesOnReset)
                                {
                                    void *pvPage;
                                    rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
                                    AssertLogRelRCReturn(rc, rc);
                                    ASMMemZeroPage(pvPage);
                                }
                                break;
                        }
                        break;

                    case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
                    case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone?  I don't think VT-x copes with this code. */
                        pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
                                                           true /*fDoAccounting*/);
                        break;

                    case PGMPAGETYPE_MMIO2:
                    case PGMPAGETYPE_ROM_SHADOW:
                    case PGMPAGETYPE_ROM:
                    case PGMPAGETYPE_MMIO:
                        break;
                    default:
                        AssertFailed();

                }
            } /* for each page */
        }

    }

    /*
     * Finish off any pages pending freeing.
     */
    if (cPendingPages)
    {
        rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
        AssertLogRelRCReturn(rc, rc);
    }
    GMMR3FreePagesCleanup(pReq);
    return VINF_SUCCESS;
}


/**
 * Frees all RAM during VM termination
 *
 * ASSUMES that the caller owns the PGM lock.
 *
 * @returns VBox status code.
 * @param   pVM     The cross context VM structure.
 */
int pgmR3PhysRamTerm(PVM pVM)
{
    PGM_LOCK_ASSERT_OWNER(pVM);

    /* Reset the memory balloon. */
    int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
    AssertRC(rc);

#ifdef VBOX_WITH_PAGE_SHARING
    /*
     * Clear all registered shared modules.
     */
    pgmR3PhysAssertSharedPageChecksums(pVM);
    rc = GMMR3ResetSharedModules(pVM);
    AssertRC(rc);

    /*
     * Flush the handy pages updates to make sure no shared pages are hiding
     * in there.  (No unlikely if the VM shuts down, apparently.)
     */
    rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
#endif

    /*
     * We batch up pages that should be freed instead of calling GMM for
     * each and every one of them.
     */
    uint32_t            cPendingPages = 0;
    PGMMFREEPAGESREQ    pReq;
    rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
    AssertLogRelRCReturn(rc, rc);

    /*
     * Walk the ram ranges.
     */
    for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
    {
        uint32_t iPage = pRam->cb >> PAGE_SHIFT;
        AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));

        while (iPage-- > 0)
        {
            PPGMPAGE pPage = &pRam->aPages[iPage];
            switch (PGM_PAGE_GET_TYPE(pPage))
            {
                case PGMPAGETYPE_RAM:
                    /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
                    /** @todo change this to explicitly free private pages here. */
                    if (PGM_PAGE_IS_SHARED(pPage))
                    {
                        rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
                                             PGMPAGETYPE_RAM);
                        AssertLogRelRCReturn(rc, rc);
                    }
                    break;

                case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
                case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
                case PGMPAGETYPE_MMIO2:
                case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
                case PGMPAGETYPE_ROM:
                case PGMPAGETYPE_MMIO:
                    break;
                default:
                    AssertFailed();
            }
        } /* for each page */
    }

    /*
     * Finish off any pages pending freeing.
     */
    if (cPendingPages)
    {
        rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
        AssertLogRelRCReturn(rc, rc);
    }
    GMMR3FreePagesCleanup(pReq);
    return VINF_SUCCESS;
}


/**
 * This is the interface IOM is using to register an MMIO region.
 *
 * It will check for conflicts and ensure that a RAM range structure
 * is present before calling the PGMR3HandlerPhysicalRegister API to
 * register the callbacks.
 *
 * @returns VBox status code.
 *
 * @param   pVM             The cross context VM structure.
 * @param   GCPhys          The start of the MMIO region.
 * @param   cb              The size of the MMIO region.
 * @param   hType           The physical access handler type registration.
 * @param   pvUserR3        The user argument for R3.
 * @param   pvUserR0        The user argument for R0.
 * @param   pvUserRC        The user argument for RC.
 * @param   pszDesc         The description of the MMIO region.
 */
VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
                                     RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
{
    /*
     * Assert on some assumption.
     */
    VM_ASSERT_EMT(pVM);
    AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
    AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
    Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);

    int rc = pgmLock(pVM);
    AssertRCReturn(rc, rc);

    /*
     * Make sure there's a RAM range structure for the region.
     */
    RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
    bool fRamExists = false;
    PPGMRAMRANGE pRamPrev = NULL;
    PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
    while (pRam && GCPhysLast >= pRam->GCPhys)
    {
        if (    GCPhysLast >= pRam->GCPhys
            &&  GCPhys     <= pRam->GCPhysLast)
        {
            /* Simplification: all within the same range. */
            AssertLogRelMsgReturnStmt(   GCPhys     >= pRam->GCPhys
                                      && GCPhysLast <= pRam->GCPhysLast,
                                      ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
                                       GCPhys, GCPhysLast, pszDesc,
                                       pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
                                      pgmUnlock(pVM),
                                      VERR_PGM_RAM_CONFLICT);

            /* Check that it's all RAM or MMIO pages. */
            PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
            uint32_t cLeft = cb >> PAGE_SHIFT;
            while (cLeft-- > 0)
            {
                AssertLogRelMsgReturnStmt(   PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
                                          || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
                                          ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
                                           GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
                                          pgmUnlock(pVM),
                                          VERR_PGM_RAM_CONFLICT);
                pPage++;
            }

            /* Looks good. */
            fRamExists = true;
            break;
        }

        /* next */
        pRamPrev = pRam;
        pRam = pRam->pNextR3;
    }
    PPGMRAMRANGE pNew;
    if (fRamExists)
    {
        pNew = NULL;

        /*
         * Make all the pages in the range MMIO/ZERO pages, freeing any
         * RAM pages currently mapped here. This might not be 100% correct
         * for PCI memory, but we're doing the same thing for MMIO2 pages.
         */
        rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
        AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);

        /* Force a PGM pool flush as guest ram references have been changed. */
        /** @todo not entirely SMP safe; assuming for now the guest takes
         *   care of this internally (not touch mapped mmio while changing the
         *   mapping). */
        PVMCPU pVCpu = VMMGetCpu(pVM);
        pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
        VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
    }
    else
    {

        /*
         * No RAM range, insert an ad hoc one.
         *
         * Note that we don't have to tell REM about this range because
         * PGMHandlerPhysicalRegisterEx will do that for us.
         */
        Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));

        const uint32_t cPages = cb >> PAGE_SHIFT;
        const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
        rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
        AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);

        /* Initialize the range. */
        pNew->pSelfR0       = MMHyperCCToR0(pVM, pNew);
        pNew->pSelfRC       = MMHyperCCToRC(pVM, pNew);
        pNew->GCPhys        = GCPhys;
        pNew->GCPhysLast    = GCPhysLast;
        pNew->cb            = cb;
        pNew->pszDesc       = pszDesc;
        pNew->fFlags        = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
        pNew->pvR3          = NULL;
        pNew->paLSPages     = NULL;

        uint32_t iPage = cPages;
        while (iPage-- > 0)
            PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
        Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);

        /* update the page count stats. */
        pVM->pgm.s.cPureMmioPages += cPages;
        pVM->pgm.s.cAllPages      += cPages;

        /* link it */
        pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
    }

    /*
     * Register the access handler.
     */
    rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
    if (    RT_FAILURE(rc)
        &&  !fRamExists)
    {
        pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
        pVM->pgm.s.cAllPages      -= cb >> PAGE_SHIFT;

        /* remove the ad hoc range. */
        pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
        pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
        MMHyperFree(pVM, pRam);
    }
    pgmPhysInvalidatePageMapTLB(pVM);

    pgmUnlock(pVM);
    return rc;
}


/**
 * This is the interface IOM is using to register an MMIO region.
 *
 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
 * any ad hoc PGMRAMRANGE left behind.
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   GCPhys          The start of the MMIO region.
 * @param   cb              The size of the MMIO region.
 */
VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
{
    VM_ASSERT_EMT(pVM);

    int rc = pgmLock(pVM);
    AssertRCReturn(rc, rc);

    /*
     * First deregister the handler, then check if we should remove the ram range.
     */
    rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
    if (RT_SUCCESS(rc))
    {
        RTGCPHYS        GCPhysLast  = GCPhys + (cb - 1);
        PPGMRAMRANGE    pRamPrev    = NULL;
        PPGMRAMRANGE    pRam        = pVM->pgm.s.pRamRangesXR3;
        while (pRam && GCPhysLast >= pRam->GCPhys)
        {
            /** @todo We're being a bit too careful here. rewrite. */
            if (    GCPhysLast == pRam->GCPhysLast
                &&  GCPhys     == pRam->GCPhys)
            {
                Assert(pRam->cb == cb);

                /*
                 * See if all the pages are dead MMIO pages.
                 */
                uint32_t const  cPages   = cb >> PAGE_SHIFT;
                bool            fAllMMIO = true;
                uint32_t        iPage    = 0;
                uint32_t        cLeft    = cPages;
                while (cLeft-- > 0)
                {
                    PPGMPAGE    pPage    = &pRam->aPages[iPage];
                    if (   !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
                        /*|| not-out-of-action later */)
                    {
                        fAllMMIO = false;
                        AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
                        break;
                    }
                    Assert(   PGM_PAGE_IS_ZERO(pPage)
                           || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
                           || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
                    pPage++;
                }
                if (fAllMMIO)
                {
                    /*
                     * Ad-hoc range, unlink and free it.
                     */
                    Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
                         GCPhys, GCPhysLast, pRam->pszDesc));

                    pVM->pgm.s.cAllPages      -= cPages;
                    pVM->pgm.s.cPureMmioPages -= cPages;

                    pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
                    pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
                    MMHyperFree(pVM, pRam);
                    break;
                }
            }

            /*
             * Range match? It will all be within one range (see PGMAllHandler.cpp).
             */
            if (    GCPhysLast >= pRam->GCPhys
                &&  GCPhys     <= pRam->GCPhysLast)
            {
                Assert(GCPhys     >= pRam->GCPhys);
                Assert(GCPhysLast <= pRam->GCPhysLast);

                /*
                 * Turn the pages back into RAM pages.
                 */
                uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
                uint32_t cLeft = cb >> PAGE_SHIFT;
                while (cLeft--)
                {
                    PPGMPAGE pPage = &pRam->aPages[iPage];
                    AssertMsg(   (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
                              || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
                              || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
                              ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
                    if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
                        PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
                }
                break;
            }

            /* next */
            pRamPrev = pRam;
            pRam = pRam->pNextR3;
        }
    }

    /* Force a PGM pool flush as guest ram references have been changed. */
    /** @todo Not entirely SMP safe; assuming for now the guest takes care of
     *       this internally (not touch mapped mmio while changing the mapping). */
    PVMCPU pVCpu = VMMGetCpu(pVM);
    pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
    VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);

    pgmPhysInvalidatePageMapTLB(pVM);
    pgmPhysInvalidRamRangeTlbs(pVM);
    pgmUnlock(pVM);
    return rc;
}


/**
 * Locate a MMIO2 range.
 *
 * @returns Pointer to the MMIO2 range.
 * @param   pVM             The cross context VM structure.
 * @param   pDevIns         The device instance owning the region.
 * @param   iSubDev         The sub-device number.
 * @param   iRegion         The region.
 */
DECLINLINE(PPGMREGMMIORANGE) pgmR3PhysMMIOExFind(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
{
    /*
     * Search the list.  There shouldn't be many entries.
     */
    /** @todo Optimize this lookup! There may now be many entries and it'll
     *        become really slow when doing MMR3HyperMapMMIO2 and similar. */
    for (PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
        if (   pCur->pDevInsR3 == pDevIns
            && pCur->iRegion == iRegion
            && pCur->iSubDev == iSubDev)
            return pCur;
    return NULL;
}


/**
 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating MMIO/MMIO2 range.}
 * @sa pgmR3PhysRamRangeRelocate
 */
static DECLCALLBACK(bool) pgmR3PhysMMIOExRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
                                                       PGMRELOCATECALL enmMode, void *pvUser)
{
    PPGMREGMMIORANGE pMmio = (PPGMREGMMIORANGE)pvUser;
    Assert(pMmio->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
    Assert(pMmio->RamRange.pSelfRC == GCPtrOld + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange)); RT_NOREF_PV(GCPtrOld);

    switch (enmMode)
    {
        case PGMRELOCATECALL_SUGGEST:
            return true;

        case PGMRELOCATECALL_RELOCATE:
        {
            /*
             * Update myself, then relink all the ranges and flush the RC TLB.
             */
            pgmLock(pVM);

            pMmio->RamRange.pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange));

            pgmR3PhysRelinkRamRanges(pVM);
            for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
                pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;

            pgmUnlock(pVM);
            return true;
        }

        default:
            AssertFailedReturn(false);
    }
}


/**
 * Calculates the number of chunks
 *
 * @returns Number of registration chunk needed.
 * @param   pVM             The cross context VM structure.
 * @param   cb              The size of the MMIO/MMIO2 range.
 * @param   pcPagesPerChunk Where to return the number of pages tracked by each
 *                          chunk.  Optional.
 * @param   pcbChunk        Where to return the guest mapping size for a chunk.
 */
static uint16_t pgmR3PhysMMIOExCalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
{
    RT_NOREF_PV(pVM); /* without raw mode */

    /*
     * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
     * needing a few bytes extra the PGMREGMMIORANGE structure.
     *
     * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
     *       us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
     */
    uint32_t cbChunk;
    uint32_t cPagesPerChunk;
    if (!VM_IS_RAW_MODE_ENABLED(pVM))
    {
        cbChunk = 16U*_1M;
        cPagesPerChunk = 1048048; /* max ~1048059 */
        AssertCompile(sizeof(PGMREGMMIORANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
    }
    else
    {
        cbChunk = 4U*_1M;
        cPagesPerChunk = 261616; /* max ~261627 */
        AssertCompile(sizeof(PGMREGMMIORANGE) + sizeof(PGMPAGE) * 261616  <  4U*_1M - PAGE_SIZE * 2);
    }
    AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */
    AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
    if (pcbChunk)
        *pcbChunk = cbChunk;
    if (pcPagesPerChunk)
        *pcPagesPerChunk = cPagesPerChunk;

    /* Calc the number of chunks we need. */
    RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
    uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
    AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
    return cChunks;
}


/**
 * Worker for PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that allocates
 * and the PGMREGMMIORANGE structures and does basic initialization.
 *
 * Caller must set type specfic members and initialize the PGMPAGE structures.
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   pDevIns         The device instance owning the region.
 * @param   iSubDev         The sub-device number (internal PCI config number).
 * @param   iRegion         The region number.  If the MMIO2 memory is a PCI
 *                          I/O region this number has to be the number of that
 *                          region. Otherwise it can be any number safe
 *                          UINT8_MAX.
 * @param   cb              The size of the region.  Must be page aligned.
 * @param   pszDesc         The description.
 * @param   ppHeadRet       Where to return the pointer to the first
 *                          registration chunk.
 *
 * @thread  EMT
 */
static int pgmR3PhysMMIOExCreate(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
                                 const char *pszDesc, PPGMREGMMIORANGE *ppHeadRet)
{
    /*
     * Figure out how many chunks we need and of which size.
     */
    uint32_t cPagesPerChunk;
    uint16_t cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
    AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);

    /*
     * Allocate the chunks.
     */
    PPGMREGMMIORANGE *ppNext = ppHeadRet;
    *ppNext = NULL;

    int rc = VINF_SUCCESS;
    uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
    for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++)
    {
        /*
         * We currently do a single RAM range for the whole thing.  This will
         * probably have to change once someone needs really large MMIO regions,
         * as we will be running into SUPR3PageAllocEx limitations and such.
         */
        const uint32_t   cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
        const size_t     cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesTrackedByChunk]);
        PPGMREGMMIORANGE pNew    = NULL;
        if (   iChunk + 1 < cChunks
            || cbRange >= _1M)
        {
            /*
             * Allocate memory for the registration structure.
             */
            size_t const cChunkPages  = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
            size_t const cbChunk      = (1 + cChunkPages + 1) << PAGE_SHIFT;
            AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
            PSUPPAGE     paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
            AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
            RTR0PTR      R0PtrChunk   = NIL_RTR0PTR;
            void        *pvChunk      = NULL;
            rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
                                  &R0PtrChunk,
#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
                                  VM_IS_HM_OR_NEM_ENABLED(pVM) ? &R0PtrChunk : NULL,
#else
                                  NULL,
#endif
                                  paChunkPages);
            AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));

#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
            Assert(R0PtrChunk != NIL_RTR0PTR);
#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
            if (!VM_IS_HM_OR_NEM_ENABLED(pVM))
                R0PtrChunk = NIL_RTR0PTR;
#else
            R0PtrChunk = (uintptr_t)pvChunk;
#endif
            memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);

            pNew = (PPGMREGMMIORANGE)pvChunk;
            pNew->RamRange.fFlags   = PGM_RAM_RANGE_FLAGS_FLOATING;
            pNew->RamRange.pSelfR0  = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);

            /*
             * If we might end up in raw-mode, make a HMA mapping of the range,
             * just like we do for memory above 4GB.
             */
            if (!VM_IS_RAW_MODE_ENABLED(pVM))
                pNew->RamRange.pSelfRC  = NIL_RTRCPTR;
            else
            {
                RTGCPTR         GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - RT_ALIGN_Z(cbChunk, _4M);
                RTGCPTR const   GCPtrChunk    = GCPtrChunkMap + PAGE_SIZE;
                rc = PGMR3MapPT(pVM, GCPtrChunkMap, (uint32_t)cbChunk, 0 /*fFlags*/, pgmR3PhysMMIOExRangeRelocate, pNew, pszDesc);
                if (RT_SUCCESS(rc))
                {
                    pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;

                    RTGCPTR GCPtrPage  = GCPtrChunk;
                    for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
                        rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
                }
                if (RT_FAILURE(rc))
                {
                    SUPR3PageFreeEx(pvChunk, cChunkPages);
                    break;
                }
                pNew->RamRange.pSelfRC  = GCPtrChunk + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
            }
        }
        /*
         * Not so big, do a one time hyper allocation.
         */
        else
        {
            rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
            AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));

            /*
             * Initialize allocation specific items.
             */
            //pNew->RamRange.fFlags = 0;
            pNew->RamRange.pSelfR0  = MMHyperCCToR0(pVM, &pNew->RamRange);
            pNew->RamRange.pSelfRC  = MMHyperCCToRC(pVM, &pNew->RamRange);
        }

        /*
         * Initialize the registration structure (caller does specific bits).
         */
        pNew->pDevInsR3             = pDevIns;
        //pNew->pvR3                = NULL;
        //pNew->pNext               = NULL;
        //pNew->fFlags              = 0;
        if (iChunk == 0)
            pNew->fFlags |= PGMREGMMIORANGE_F_FIRST_CHUNK;
        if (iChunk + 1 == cChunks)
            pNew->fFlags |= PGMREGMMIORANGE_F_LAST_CHUNK;
        pNew->iSubDev               = iSubDev;
        pNew->iRegion               = iRegion;
        pNew->idSavedState          = UINT8_MAX;
        pNew->idMmio2               = UINT8_MAX;
        //pNew->pPhysHandlerR3      = NULL;
        //pNew->paLSPages           = NULL;
        pNew->RamRange.GCPhys       = NIL_RTGCPHYS;
        pNew->RamRange.GCPhysLast   = NIL_RTGCPHYS;
        pNew->RamRange.pszDesc      = pszDesc;
        pNew->RamRange.cb           = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
        pNew->RamRange.fFlags      |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
        //pNew->RamRange.pvR3       = NULL;
        //pNew->RamRange.paLSPages  = NULL;

        *ppNext = pNew;
        ASMCompilerBarrier();
        cPagesLeft -= cPagesTrackedByChunk;
        ppNext = &pNew->pNextR3;
    }
    Assert(cPagesLeft == 0);

    if (RT_SUCCESS(rc))
    {
        Assert((*ppHeadRet)->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
        return VINF_SUCCESS;
    }

    /*
     * Free floating ranges.
     */
    while (*ppHeadRet)
    {
        PPGMREGMMIORANGE pFree = *ppHeadRet;
        *ppHeadRet = pFree->pNextR3;

        if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
        {
            const size_t    cbRange     = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
            size_t const    cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
            SUPR3PageFreeEx(pFree, cChunkPages);
        }
    }

    return rc;
}


/**
 * Common worker PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that links
 * a complete registration entry into the lists and lookup tables.
 *
 * @param   pVM             The cross context VM structure.
 * @param   pNew            The new MMIO / MMIO2 registration to link.
 */
static void pgmR3PhysMMIOExLink(PVM pVM, PPGMREGMMIORANGE pNew)
{
    /*
     * Link it into the list (order doesn't matter, so insert it at the head).
     *
     * Note! The range we're link may consist of multiple chunks, so we have to
     *       find the last one.
     */
    PPGMREGMMIORANGE pLast = pNew;
    for (pLast = pNew; ; pLast = pLast->pNextR3)
    {
        if (pLast->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
            break;
        Assert(pLast->pNextR3);
        Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
        Assert(pLast->pNextR3->iSubDev   == pNew->iSubDev);
        Assert(pLast->pNextR3->iRegion   == pNew->iRegion);
        Assert((pLast->pNextR3->fFlags & PGMREGMMIORANGE_F_MMIO2) == (pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
        Assert(pLast->pNextR3->idMmio2   == (pLast->fFlags & PGMREGMMIORANGE_F_MMIO2 ? pNew->idMmio2 + 1 : UINT8_MAX));
    }

    pgmLock(pVM);

    /* Link in the chain of ranges at the head of the list. */
    pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
    pVM->pgm.s.pRegMmioRangesR3 = pNew;

    /* If MMIO, insert the MMIO2 range/page IDs. */
    uint8_t idMmio2 = pNew->idMmio2;
    if (idMmio2 != UINT8_MAX)
    {
        for (;;)
        {
            Assert(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2);
            Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
            Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
            pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
            pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
            if (pNew->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
                break;
            pNew = pNew->pNextR3;
        }
    }
    else
        Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));

    pgmPhysInvalidatePageMapTLB(pVM);
    pgmUnlock(pVM);
}


/**
 * Allocate and pre-register an MMIO region.
 *
 * This is currently the way to deal with large MMIO regions.  It may in the
 * future be extended to be the way we deal with all MMIO regions, but that
 * means we'll have to do something about the simple list based approach we take
 * to tracking the registrations.
 *
 * @returns VBox status code.
 * @retval  VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
 *          memory.
 * @retval  VERR_ALREADY_EXISTS if the region already exists.
 *
 * @param   pVM             The cross context VM structure.
 * @param   pDevIns         The device instance owning the region.
 * @param   iSubDev         The sub-device number.
 * @param   iRegion         The region number.  If the MMIO2 memory is a PCI
 *                          I/O region this number has to be the number of that
 *                          region. Otherwise it can be any number safe
 *                          UINT8_MAX.
 * @param   cbRegion        The size of the region.  Must be page aligned.
 * @param   hType           The physical handler callback type.
 * @param   pvUserR3        User parameter for ring-3 context callbacks.
 * @param   pvUserR0        User parameter for ring-0 context callbacks.
 * @param   pvUserRC        User parameter for raw-mode context callbacks.
 * @param   pszDesc         The description.
 *
 * @thread  EMT
 *
 * @sa      PGMR3PhysMMIORegister, PGMR3PhysMMIO2Register,
 *          PGMR3PhysMMIOExMap, PGMR3PhysMMIOExUnmap, PGMR3PhysMMIOExDeregister.
 */
VMMR3DECL(int) PGMR3PhysMMIOExPreRegister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion,
                                          PGMPHYSHANDLERTYPE hType, RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC,
                                          const char *pszDesc)
{
    /*
     * Validate input.
     */
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
    AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
    AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
    AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
    AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
    AssertReturn(!(cbRegion & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(cbRegion, VERR_INVALID_PARAMETER);

    const uint32_t cPages = cbRegion >> PAGE_SHIFT;
    AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cbRegion, VERR_INVALID_PARAMETER);
    AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);

    /*
     * For the 2nd+ instance, mangle the description string so it's unique.
     */
    if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
    {
        pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
        if (!pszDesc)
            return VERR_NO_MEMORY;
    }

    /*
     * Register the MMIO callbacks.
     */
    PPGMPHYSHANDLER pPhysHandler;
    int rc = pgmHandlerPhysicalExCreate(pVM, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc, &pPhysHandler);
    if (RT_SUCCESS(rc))
    {
        /*
         * Create the registered MMIO range record for it.
         */
        PPGMREGMMIORANGE pNew;
        rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cbRegion, pszDesc, &pNew);
        if (RT_SUCCESS(rc))
        {
            Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));

            /*
             * Intialize the page structures and set up physical handlers (one for each chunk).
             */
            for (PPGMREGMMIORANGE pCur = pNew; pCur != NULL && RT_SUCCESS(rc); pCur = pCur->pNextR3)
            {
                if (pCur == pNew)
                    pCur->pPhysHandlerR3 = pPhysHandler;
                else
                    rc = pgmHandlerPhysicalExDup(pVM, pPhysHandler, &pCur->pPhysHandlerR3);

                uint32_t iPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
                while (iPage-- > 0)
                    PGM_PAGE_INIT_ZERO(&pCur->RamRange.aPages[iPage], pVM, PGMPAGETYPE_MMIO);
            }
            if (RT_SUCCESS(rc))
            {
                /*
                 * Update the page count stats, link the registration and we're done.
                 */
                pVM->pgm.s.cAllPages += cPages;
                pVM->pgm.s.cPureMmioPages += cPages;

                pgmR3PhysMMIOExLink(pVM, pNew);
                return VINF_SUCCESS;
            }

            /*
             * Clean up in case we're out of memory for extra access handlers.
             */
            while (pNew != NULL)
            {
                PPGMREGMMIORANGE pFree = pNew;
                pNew = pFree->pNextR3;

                if (pFree->pPhysHandlerR3)
                {
                    pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3);
                    pFree->pPhysHandlerR3 = NULL;
                }

                if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
                {
                    const size_t    cbRange     = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
                    size_t const    cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
                    SUPR3PageFreeEx(pFree, cChunkPages);
                }
            }
        }
        else
            pgmHandlerPhysicalExDestroy(pVM, pPhysHandler);
    }
    return rc;
}


/**
 * Allocate and register an MMIO2 region.
 *
 * As mentioned elsewhere, MMIO2 is just RAM spelled differently.  It's RAM
 * associated with a device. It is also non-shared memory with a permanent
 * ring-3 mapping and page backing (presently).
 *
 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
 * the VM, in which case we'll drop the base memory pages.  Presently we will
 * make no attempt to preserve anything that happens to be present in the base
 * memory that is replaced, this is of course incorrect but it's too much
 * effort.
 *
 * @returns VBox status code.
 * @retval  VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
 *          memory.
 * @retval  VERR_ALREADY_EXISTS if the region already exists.
 *
 * @param   pVM             The cross context VM structure.
 * @param   pDevIns         The device instance owning the region.
 * @param   iSubDev         The sub-device number.
 * @param   iRegion         The region number.  If the MMIO2 memory is a PCI
 *                          I/O region this number has to be the number of that
 *                          region. Otherwise it can be any number safe
 *                          UINT8_MAX.
 * @param   cb              The size of the region.  Must be page aligned.
 * @param   fFlags          Reserved for future use, must be zero.
 * @param   ppv             Where to store the pointer to the ring-3 mapping of
 *                          the memory.
 * @param   pszDesc         The description.
 * @thread  EMT
 */
VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
                                      uint32_t fFlags, void **ppv, const char *pszDesc)
{
    /*
     * Validate input.
     */
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
    AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
    AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertPtrReturn(ppv, VERR_INVALID_POINTER);
    AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
    AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
    AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
    AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(cb, VERR_INVALID_PARAMETER);
    AssertReturn(!fFlags, VERR_INVALID_PARAMETER);

    const uint32_t cPages = cb >> PAGE_SHIFT;
    AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
    AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);

    /*
     * For the 2nd+ instance, mangle the description string so it's unique.
     */
    if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
    {
        pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
        if (!pszDesc)
            return VERR_NO_MEMORY;
    }

    /*
     * Allocate an MMIO2 range ID (not freed on failure).
     *
     * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
     * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
     */
    unsigned cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, NULL, NULL);
    pgmLock(pVM);
    uint8_t  idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
    unsigned cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
    if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
    {
        pgmUnlock(pVM);
        AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
    }
    pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
    pgmUnlock(pVM);

    /*
     * Try reserve and allocate the backing memory first as this is what is
     * most likely to fail.
     */
    int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
    if (RT_SUCCESS(rc))
    {
        PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
        if (RT_SUCCESS(rc))
        {
            void *pvPages;
            rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
            if (RT_SUCCESS(rc))
            {
                memset(pvPages, 0, cPages * PAGE_SIZE);

                /*
                 * Create the registered MMIO range record for it.
                 */
                PPGMREGMMIORANGE pNew;
                rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cb, pszDesc, &pNew);
                if (RT_SUCCESS(rc))
                {
                    uint32_t iSrcPage   = 0;
                    uint8_t *pbCurPages = (uint8_t *)pvPages;
                    for (PPGMREGMMIORANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
                    {
                        pCur->pvR3          = pbCurPages;
                        pCur->RamRange.pvR3 = pbCurPages;
                        pCur->idMmio2       = idMmio2;
                        pCur->fFlags       |= PGMREGMMIORANGE_F_MMIO2;

                        uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
                        while (iDstPage-- > 0)
                        {
                            PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
                                          paPages[iDstPage + iSrcPage].Phys,
                                          PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
                                          PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
                        }

                        /* advance. */
                        iSrcPage   += pCur->RamRange.cb >> X86_PAGE_SHIFT;
                        pbCurPages += pCur->RamRange.cb;
                        idMmio2++;
                    }

                    RTMemTmpFree(paPages);

                    /*
                     * Update the page count stats, link the registration and we're done.
                     */
                    pVM->pgm.s.cAllPages += cPages;
                    pVM->pgm.s.cPrivatePages += cPages;

                    pgmR3PhysMMIOExLink(pVM, pNew);

                    *ppv = pvPages;
                    return VINF_SUCCESS;
                }

                SUPR3PageFreeEx(pvPages, cPages);
            }
        }
        RTMemTmpFree(paPages);
        MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
    }
    if (pDevIns->iInstance > 0)
        MMR3HeapFree((void *)pszDesc);
    return rc;
}


/**
 * Deregisters and frees an MMIO2 region or a pre-registered MMIO region
 *
 * Any physical (and virtual) access handlers registered for the region must
 * be deregistered before calling this function.
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   pDevIns         The device instance owning the region.
 * @param   iSubDev         The sub-device number.  Pass UINT32_MAX for wildcard
 *                          matching.
 * @param   iRegion         The region.  Pass UINT32_MAX for wildcard matching.
 */
VMMR3DECL(int) PGMR3PhysMMIOExDeregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
{
    /*
     * Validate input.
     */
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
    AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
    AssertReturn(iSubDev <= UINT8_MAX || iSubDev == UINT32_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);

    /*
     * The loop here scanning all registrations will make sure that multi-chunk ranges
     * get properly deregistered, though it's original purpose was the wildcard iRegion.
     */
    pgmLock(pVM);
    int rc = VINF_SUCCESS;
    unsigned cFound = 0;
    PPGMREGMMIORANGE pPrev = NULL;
    PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
    while (pCur)
    {
        if (    pCur->pDevInsR3 == pDevIns
            &&  (   iRegion == UINT32_MAX
                 || pCur->iRegion == iRegion)
            &&  (   iSubDev == UINT32_MAX
                 || pCur->iSubDev == iSubDev) )
        {
            cFound++;

            /*
             * Unmap it if it's mapped.
             */
            if (pCur->fFlags & PGMREGMMIORANGE_F_MAPPED)
            {
                int rc2 = PGMR3PhysMMIOExUnmap(pVM, pCur->pDevInsR3, pCur->iSubDev, pCur->iRegion, pCur->RamRange.GCPhys);
                AssertRC(rc2);
                if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
                    rc = rc2;
            }

            /*
             * Must tell IOM about MMIO (first one only).
             */
            if ((pCur->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK)) == PGMREGMMIORANGE_F_MMIO2)
                IOMR3MmioExNotifyDeregistered(pVM, pCur->pPhysHandlerR3->pvUserR3);

            /*
             * Unlink it
             */
            PPGMREGMMIORANGE pNext = pCur->pNextR3;
            if (pPrev)
                pPrev->pNextR3 = pNext;
            else
                pVM->pgm.s.pRegMmioRangesR3 = pNext;
            pCur->pNextR3 = NULL;

            uint8_t idMmio2 = pCur->idMmio2;
            if (idMmio2 != UINT8_MAX)
            {
                Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
                pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
                pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
            }

            /*
             * Free the memory.
             */
            uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
            if (pCur->fFlags & PGMREGMMIORANGE_F_MMIO2)
            {
                int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
                AssertRC(rc2);
                if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
                    rc = rc2;

                rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
                AssertRC(rc2);
                if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
                    rc = rc2;
            }

            /* we're leaking hyper memory here if done at runtime. */
#ifdef VBOX_STRICT
            VMSTATE const enmState = VMR3GetState(pVM);
            AssertMsg(   enmState == VMSTATE_POWERING_OFF
                      || enmState == VMSTATE_POWERING_OFF_LS
                      || enmState == VMSTATE_OFF
                      || enmState == VMSTATE_OFF_LS
                      || enmState == VMSTATE_DESTROYING
                      || enmState == VMSTATE_TERMINATED
                      || enmState == VMSTATE_CREATING
                      , ("%s\n", VMR3GetStateName(enmState)));
#endif

            const bool fIsMmio2 = RT_BOOL(pCur->fFlags & PGMREGMMIORANGE_F_MMIO2);
            if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
            {
                const size_t    cbRange     = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPages]);
                size_t const    cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
                SUPR3PageFreeEx(pCur, cChunkPages);
            }
            /*else
            {
                rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
                AssertRCReturn(rc, rc);
            } */


            /* update page count stats */
            pVM->pgm.s.cAllPages -= cPages;
            if (fIsMmio2)
                pVM->pgm.s.cPrivatePages -= cPages;
            else
                pVM->pgm.s.cPureMmioPages -= cPages;

            /* next */
            pCur = pNext;
        }
        else
        {
            pPrev = pCur;
            pCur = pCur->pNextR3;
        }
    }
    pgmPhysInvalidatePageMapTLB(pVM);
    pgmUnlock(pVM);
    return !cFound && iRegion != UINT32_MAX && iSubDev != UINT32_MAX ? VERR_NOT_FOUND : rc;
}


/**
 * Maps a MMIO2 region or a pre-registered MMIO region.
 *
 * This is done when a guest / the bios / state loading changes the
 * PCI config. The replacing of base memory has the same restrictions
 * as during registration, of course.
 *
 * @returns VBox status code.
 *
 * @param   pVM             The cross context VM structure.
 * @param   pDevIns         The device instance owning the region.
 * @param   iSubDev         The sub-device number of the registered region.
 * @param   iRegion         The index of the registered region.
 * @param   GCPhys          The guest-physical address to be remapped.
 */
VMMR3DECL(int) PGMR3PhysMMIOExMap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys)
{
    /*
     * Validate input.
     *
     * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
     *       happens during VM construction.
     */
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
    AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
    AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
    AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
    AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);

    PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
    AssertReturn(pFirstMmio, VERR_NOT_FOUND);
    Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);

    PPGMREGMMIORANGE pLastMmio = pFirstMmio;
    RTGCPHYS         cbRange   = 0;
    for (;;)
    {
        AssertReturn(!(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), VERR_WRONG_ORDER);
        Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
        Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
        Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
        Assert(pLastMmio->iSubDev   == pFirstMmio->iSubDev);
        Assert(pLastMmio->iRegion   == pFirstMmio->iRegion);
        cbRange += pLastMmio->RamRange.cb;
        if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
            break;
        pLastMmio = pLastMmio->pNextR3;
    }

    RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
    AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);

    /*
     * Find our location in the ram range list, checking for restriction
     * we don't bother implementing yet (partially overlapping, multiple
     * ram ranges).
     */
    pgmLock(pVM);

    AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), pgmUnlock(pVM), VERR_WRONG_ORDER);

    bool fRamExists = false;
    PPGMRAMRANGE pRamPrev = NULL;
    PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
    while (pRam && GCPhysLast >= pRam->GCPhys)
    {
        if (    GCPhys     <= pRam->GCPhysLast
            &&  GCPhysLast >= pRam->GCPhys)
        {
            /* Completely within? */
            AssertLogRelMsgReturnStmt(   GCPhys     >= pRam->GCPhys
                                      && GCPhysLast <= pRam->GCPhysLast,
                                      ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
                                       GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
                                       pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
                                      pgmUnlock(pVM),
                                      VERR_PGM_RAM_CONFLICT);

            /* Check that all the pages are RAM pages. */
            PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
            uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
            while (cPagesLeft-- > 0)
            {
                AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
                                          ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
                                           GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
                                          pgmUnlock(pVM),
                                          VERR_PGM_RAM_CONFLICT);
                pPage++;
            }

            /* There can only be one MMIO/MMIO2 chunk matching here! */
            AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK,
                                      ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
                                       GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
                                      pgmUnlock(pVM),
                                      VERR_PGM_PHYS_MMIO_EX_IPE);

            fRamExists = true;
            break;
        }

        /* next */
        pRamPrev = pRam;
        pRam = pRam->pNextR3;
    }
    Log(("PGMR3PhysMMIOExMap: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));


    /*
     * Make the changes.
     */
    RTGCPHYS GCPhysCur = GCPhys;
    for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
    {
        pCurMmio->RamRange.GCPhys = GCPhysCur;
        pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
        if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
        {
            Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
            break;
        }
        GCPhysCur += pCurMmio->RamRange.cb;
    }

    if (fRamExists)
    {
        /*
         * Make all the pages in the range MMIO/ZERO pages, freeing any
         * RAM pages currently mapped here. This might not be 100% correct
         * for PCI memory, but we're doing the same thing for MMIO2 pages.
         *
         * We replace this MMIO/ZERO pages with real pages in the MMIO2 case.
         */
        Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */

        int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
        AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);

        if (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
        {
            /* replace the pages, freeing all present RAM pages. */
            PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
            PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
            uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
            while (cPagesLeft-- > 0)
            {
                Assert(PGM_PAGE_IS_MMIO(pPageDst));

                RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
                uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
                PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
                PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
                PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
                PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
                PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
                PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
                PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
                /* (We tell NEM at the end of the function.) */

                pVM->pgm.s.cZeroPages--;
                GCPhys += PAGE_SIZE;
                pPageSrc++;
                pPageDst++;
            }
        }

        /* Flush physical page map TLB. */
        pgmPhysInvalidatePageMapTLB(pVM);

        /* Force a PGM pool flush as guest ram references have been changed. */
        /** @todo not entirely SMP safe; assuming for now the guest takes care of
         *  this internally (not touch mapped mmio while changing the mapping). */
        PVMCPU pVCpu = VMMGetCpu(pVM);
        pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
        VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
    }
    else
    {
        /*
         * No RAM range, insert the ones prepared during registration.
         */
        for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
        {
            /* Clear the tracking data of pages we're going to reactivate. */
            PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
            uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
            while (cPagesLeft-- > 0)
            {
                PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
                PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
                pPageSrc++;
            }

            /* link in the ram range */
            pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);

            if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
            {
                Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
                break;
            }
            pRamPrev = &pCurMmio->RamRange;
        }
    }

    /*
     * Register the access handler if plain MMIO.
     *
     * We must register access handlers for each range since the access handler
     * code refuses to deal with multiple ranges (and we can).
     */
    if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2))
    {
        int rc = VINF_SUCCESS;
        for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
        {
            Assert(!(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED));
            rc = pgmHandlerPhysicalExRegister(pVM, pCurMmio->pPhysHandlerR3, pCurMmio->RamRange.GCPhys,
                                              pCurMmio->RamRange.GCPhysLast);
            if (RT_FAILURE(rc))
                break;
            pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED; /* Use this to mark that the handler is registered. */
            if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
            {
                rc = IOMR3MmioExNotifyMapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys);
                break;
            }
        }
        if (RT_FAILURE(rc))
        {
            /* Almost impossible, but try clean up properly and get out of here. */
            for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
            {
                if (pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED)
                {
                    pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_MAPPED;
                    pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, fRamExists);
                }

                if (!fRamExists)
                    pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
                else
                {
                    Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */

                    uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
                    PPGMPAGE pPageDst = &pRam->aPages[(pCurMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
                    while (cPagesLeft-- > 0)
                    {
                        PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
                        pPageDst++;
                    }
                }

                pCurMmio->RamRange.GCPhys     = NIL_RTGCPHYS;
                pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
                if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
                    break;
            }

            pgmUnlock(pVM);
            return rc;
        }
    }

    /*
     * We're good, set the flags and invalid the mapping TLB.
     */
    for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
    {
        pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED;
        if (fRamExists)
            pCurMmio->fFlags |= PGMREGMMIORANGE_F_OVERLAPPING;
        else
            pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_OVERLAPPING;
        if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
            break;
    }
    pgmPhysInvalidatePageMapTLB(pVM);

    /*
     * Notify NEM while holding the lock (experimental) and REM without (like always).
     */
    uint32_t const fNemNotify = (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2       ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2   : 0)
                              | (pFirstMmio->fFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
    int rc = NEMR3NotifyPhysMmioExMap(pVM, GCPhys, cbRange, fNemNotify, pFirstMmio->pvR3);

    pgmUnlock(pVM);

#ifdef VBOX_WITH_REM
    if (!fRamExists && (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)) /** @todo this doesn't look right. */
        REMR3NotifyPhysRamRegister(pVM, GCPhys, cbRange, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
#endif
    return rc;
}


/**
 * Unmaps a MMIO2 or a pre-registered MMIO region.
 *
 * This is done when a guest / the bios / state loading changes the
 * PCI config. The replacing of base memory has the same restrictions
 * as during registration, of course.
 */
VMMR3DECL(int) PGMR3PhysMMIOExUnmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys)
{
    /*
     * Validate input
     */
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
    AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
    AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
    AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
    AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);

    PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
    AssertReturn(pFirstMmio, VERR_NOT_FOUND);
    Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);

    PPGMREGMMIORANGE pLastMmio = pFirstMmio;
    RTGCPHYS         cbRange   = 0;
    for (;;)
    {
        AssertReturn(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED, VERR_WRONG_ORDER);
        AssertReturn(pLastMmio->RamRange.GCPhys == GCPhys + cbRange, VERR_INVALID_PARAMETER);
        Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
        Assert(pLastMmio->iSubDev   == pFirstMmio->iSubDev);
        Assert(pLastMmio->iRegion   == pFirstMmio->iRegion);
        cbRange += pLastMmio->RamRange.cb;
        if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
            break;
        pLastMmio = pLastMmio->pNextR3;
    }

    Log(("PGMR3PhysMMIOExUnmap: %RGp-%RGp %s\n",
         pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));

    int rc = pgmLock(pVM);
    AssertRCReturn(rc, rc);
    uint16_t const fOldFlags = pFirstMmio->fFlags;
    AssertReturnStmt(fOldFlags & PGMREGMMIORANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);

    /*
     * If plain MMIO, we must deregister the handlers first.
     */
    if (!(fOldFlags & PGMREGMMIORANGE_F_MMIO2))
    {
        PPGMREGMMIORANGE pCurMmio = pFirstMmio;
        rc = pgmHandlerPhysicalExDeregister(pVM, pFirstMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING));
        AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
        while (!(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK))
        {
            pCurMmio = pCurMmio->pNextR3;
            rc = pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING));
            AssertRCReturnStmt(rc, pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE);
        }

        IOMR3MmioExNotifyUnmapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys);
    }

    /*
     * Unmap it.
     */
    RTGCPHYS const GCPhysRangeNotify = pFirstMmio->RamRange.GCPhys;
    if (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING)
    {
        /*
         * We've replaced RAM, replace with zero pages.
         *
         * Note! This is where we might differ a little from a real system, because
         *       it's likely to just show the RAM pages as they were before the
         *       MMIO/MMIO2 region was mapped here.
         */
        /* Only one chunk allowed when overlapping! */
        Assert(fOldFlags & PGMREGMMIORANGE_F_LAST_CHUNK);

        /* Restore the RAM pages we've replaced. */
        PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
        while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
            pRam = pRam->pNextR3;

        uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
        if (fOldFlags & PGMREGMMIORANGE_F_MMIO2)
            pVM->pgm.s.cZeroPages += cPagesLeft;

        PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
        while (cPagesLeft-- > 0)
        {
            PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
            pPageDst++;
        }

        /* Flush physical page map TLB. */
        pgmPhysInvalidatePageMapTLB(pVM);

        /* Update range state. */
        pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
        pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
        pFirstMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED);
    }
    else
    {
        /*
         * Unlink the chunks related to the MMIO/MMIO2 region.
         */
        for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
        {
            pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
            pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
            pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
            pCurMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED);
            if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
                break;
        }
    }

    /* Force a PGM pool flush as guest ram references have been changed. */
    /** @todo not entirely SMP safe; assuming for now the guest takes care
     *  of this internally (not touch mapped mmio while changing the
     *  mapping). */
    PVMCPU pVCpu = VMMGetCpu(pVM);
    pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
    VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);

    pgmPhysInvalidatePageMapTLB(pVM);
    pgmPhysInvalidRamRangeTlbs(pVM);

    /*
     * Notify NEM while holding the lock (experimental) and REM without (like always).
     */
    uint32_t const fNemFlags = (fOldFlags & PGMREGMMIORANGE_F_MMIO2       ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2   : 0)
                             | (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
    rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysRangeNotify, cbRange, fNemFlags);
    pgmUnlock(pVM);
#ifdef VBOX_WITH_REM
    if ((fOldFlags & (PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MMIO2)) == PGMREGMMIORANGE_F_MMIO2)
        REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeNotify, cbRange);
#endif
    return rc;
}


/**
 * Reduces the mapping size of a MMIO2 or pre-registered MMIO region.
 *
 * This is mainly for dealing with old saved states after changing the default
 * size of a mapping region.  See PGMDevHlpMMIOExReduce and
 * PDMPCIDEV::pfnRegionLoadChangeHookR3.
 *
 * The region must not currently be mapped when making this call.  The VM state
 * must be state restore or VM construction.
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   pDevIns         The device instance owning the region.
 * @param   iSubDev         The sub-device number of the registered region.
 * @param   iRegion         The index of the registered region.
 * @param   cbRegion        The new mapping size.
 */
VMMR3_INT_DECL(int) PGMR3PhysMMIOExReduce(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion)
{
    /*
     * Validate input
     */
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
    AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
    AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
    AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
    VMSTATE enmVmState = VMR3GetState(pVM);
    AssertLogRelMsgReturn(   enmVmState == VMSTATE_CREATING
                          || enmVmState == VMSTATE_LOADING,
                          ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
                          VERR_VM_INVALID_VM_STATE);

    int rc = pgmLock(pVM);
    AssertRCReturn(rc, rc);

    PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
    if (pFirstMmio)
    {
        Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
        if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED))
        {
            /*
             * NOTE! Current implementation does not support multiple ranges.
             *       Implement when there is a real world need and thus a testcase.
             */
            AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK,
                                ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
                                rc = VERR_NOT_SUPPORTED);
            if (RT_SUCCESS(rc))
            {
                /*
                 * Make the change.
                 */
                Log(("PGMR3PhysMMIOExReduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
                     pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));

                AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
                                    ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
                                    rc = VERR_OUT_OF_RANGE);
                if (RT_SUCCESS(rc))
                {
                    pFirstMmio->RamRange.cb = cbRegion;
                }
            }
        }
        else
            rc = VERR_WRONG_ORDER;
    }
    else
        rc = VERR_NOT_FOUND;

    pgmUnlock(pVM);
    return rc;
}


/**
 * Checks if the given address is an MMIO2 or pre-registered MMIO base address
 * or not.
 *
 * @returns true/false accordingly.
 * @param   pVM             The cross context VM structure.
 * @param   pDevIns         The owner of the memory, optional.
 * @param   GCPhys          The address to check.
 */
VMMR3DECL(bool) PGMR3PhysMMIOExIsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
{
    /*
     * Validate input
     */
    VM_ASSERT_EMT_RETURN(pVM, false);
    AssertPtrReturn(pDevIns, false);
    AssertReturn(GCPhys != NIL_RTGCPHYS, false);
    AssertReturn(GCPhys != 0, false);
    AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);

    /*
     * Search the list.
     */
    pgmLock(pVM);
    for (PPGMREGMMIORANGE pCurMmio = pVM->pgm.s.pRegMmioRangesR3; pCurMmio; pCurMmio = pCurMmio->pNextR3)
        if (pCurMmio->RamRange.GCPhys == GCPhys)
        {
            Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED);
            bool fRet = RT_BOOL(pCurMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
            pgmUnlock(pVM);
            return fRet;
        }
    pgmUnlock(pVM);
    return false;
}


/**
 * Gets the HC physical address of a page in the MMIO2 region.
 *
 * This is API is intended for MMHyper and shouldn't be called
 * by anyone else...
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   pDevIns         The owner of the memory, optional.
 * @param   iSubDev         Sub-device number.
 * @param   iRegion         The region.
 * @param   off             The page expressed an offset into the MMIO2 region.
 * @param   pHCPhys         Where to store the result.
 */
VMMR3_INT_DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
                                            RTGCPHYS off, PRTHCPHYS pHCPhys)
{
    /*
     * Validate input
     */
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
    AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
    AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);

    pgmLock(pVM);
    PPGMREGMMIORANGE pCurMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
    AssertReturn(pCurMmio, VERR_NOT_FOUND);
    AssertReturn(pCurMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);

    while (   off >= pCurMmio->RamRange.cb
           && !(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK))
    {
        off -= pCurMmio->RamRange.cb;
        pCurMmio = pCurMmio->pNextR3;
    }
    AssertReturn(off < pCurMmio->RamRange.cb, VERR_INVALID_PARAMETER);

    PCPGMPAGE pPage = &pCurMmio->RamRange.aPages[off >> PAGE_SHIFT];
    *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
    pgmUnlock(pVM);
    return VINF_SUCCESS;
}


/**
 * Maps a portion of an MMIO2 region into kernel space (host).
 *
 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
 * or the VM is terminated.
 *
 * @return VBox status code.
 *
 * @param   pVM         The cross context VM structure.
 * @param   pDevIns     The device owning the MMIO2 memory.
 * @param   iSubDev     The sub-device number.
 * @param   iRegion     The region.
 * @param   off         The offset into the region. Must be page aligned.
 * @param   cb          The number of bytes to map. Must be page aligned.
 * @param   pszDesc     Mapping description.
 * @param   pR0Ptr      Where to store the R0 address.
 */
VMMR3_INT_DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
                                            RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTR0PTR pR0Ptr)
{
    /*
     * Validate input.
     */
    VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
    AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
    AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
    AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);

    PPGMREGMMIORANGE pFirstRegMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
    AssertReturn(pFirstRegMmio, VERR_NOT_FOUND);
    AssertReturn(pFirstRegMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
    AssertReturn(off < pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
    AssertReturn(off + cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
    NOREF(pszDesc);

    /*
     * Pass the request on to the support library/driver.
     */
#if defined(RT_OS_WINDOWS) || defined(RT_OS_LINUX) || defined(RT_OS_OS2) /** @todo Fully implement RTR0MemObjMapKernelEx everywhere. */
    AssertLogRelReturn(off == 0, VERR_NOT_SUPPORTED);
    AssertLogRelReturn(pFirstRegMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK, VERR_NOT_SUPPORTED);
    int rc = SUPR3PageMapKernel(pFirstRegMmio->pvR3, 0 /*off*/, pFirstRegMmio->RamRange.cb, 0 /*fFlags*/, pR0Ptr);
#else
    int rc = SUPR3PageMapKernel(pFirstRegMmio->pvR3, off, cb, 0 /*fFlags*/, pR0Ptr);
#endif

    return rc;
}


/**
 * Worker for PGMR3PhysRomRegister.
 *
 * This is here to simplify lock management, i.e. the caller does all the
 * locking and we can simply return without needing to remember to unlock
 * anything first.
 *
 * @returns VBox status code.
 * @param   pVM                 The cross context VM structure.
 * @param   pDevIns             The device instance owning the ROM.
 * @param   GCPhys              First physical address in the range.
 *                              Must be page aligned!
 * @param   cb                  The size of the range (in bytes).
 *                              Must be page aligned!
 * @param   pvBinary            Pointer to the binary data backing the ROM image.
 * @param   cbBinary            The size of the binary data pvBinary points to.
 *                              This must be less or equal to @a cb.
 * @param   fFlags              Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
 *                              and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
 * @param   pszDesc             Pointer to description string. This must not be freed.
 */
static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
                                      const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
{
    /*
     * Validate input.
     */
    AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
    AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
    AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
    RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
    AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
    AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
    AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
    AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
    VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);

    const uint32_t cPages = cb >> PAGE_SHIFT;

    /*
     * Find the ROM location in the ROM list first.
     */
    PPGMROMRANGE    pRomPrev = NULL;
    PPGMROMRANGE    pRom = pVM->pgm.s.pRomRangesR3;
    while (pRom && GCPhysLast >= pRom->GCPhys)
    {
        if (    GCPhys     <= pRom->GCPhysLast
            &&  GCPhysLast >= pRom->GCPhys)
            AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
                                         GCPhys, GCPhysLast, pszDesc,
                                         pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
                                        VERR_PGM_RAM_CONFLICT);
        /* next */
        pRomPrev = pRom;
        pRom = pRom->pNextR3;
    }

    /*
     * Find the RAM location and check for conflicts.
     *
     * Conflict detection is a bit different than for RAM
     * registration since a ROM can be located within a RAM
     * range. So, what we have to check for is other memory
     * types (other than RAM that is) and that we don't span
     * more than one RAM range (layz).
     */
    bool            fRamExists = false;
    PPGMRAMRANGE    pRamPrev = NULL;
    PPGMRAMRANGE    pRam = pVM->pgm.s.pRamRangesXR3;
    while (pRam && GCPhysLast >= pRam->GCPhys)
    {
        if (    GCPhys     <= pRam->GCPhysLast
            &&  GCPhysLast >= pRam->GCPhys)
        {
            /* completely within? */
            AssertLogRelMsgReturn(   GCPhys     >= pRam->GCPhys
                                  && GCPhysLast <= pRam->GCPhysLast,
                                  ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
                                   GCPhys, GCPhysLast, pszDesc,
                                   pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
                                  VERR_PGM_RAM_CONFLICT);
            fRamExists = true;
            break;
        }

        /* next */
        pRamPrev = pRam;
        pRam = pRam->pNextR3;
    }
    if (fRamExists)
    {
        PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
        uint32_t cPagesLeft = cPages;
        while (cPagesLeft-- > 0)
        {
            AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
                                  ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
                                   pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
                                   pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
            Assert(PGM_PAGE_IS_ZERO(pPage));
            pPage++;
        }
    }

    /*
     * Update the base memory reservation if necessary.
     */
    uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
    if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
        cExtraBaseCost += cPages;
    if (cExtraBaseCost)
    {
        int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
        if (RT_FAILURE(rc))
            return rc;
    }

    /*
     * Allocate memory for the virgin copy of the RAM.
     */
    PGMMALLOCATEPAGESREQ pReq;
    int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
    AssertRCReturn(rc, rc);

    for (uint32_t iPage = 0; iPage < cPages; iPage++)
    {
        pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
        pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
        pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
    }

    rc = GMMR3AllocatePagesPerform(pVM, pReq);
    if (RT_FAILURE(rc))
    {
        GMMR3AllocatePagesCleanup(pReq);
        return rc;
    }

    /*
     * Allocate the new ROM range and RAM range (if necessary).
     */
    PPGMROMRANGE pRomNew;
    rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
    if (RT_SUCCESS(rc))
    {
        PPGMRAMRANGE pRamNew = NULL;
        if (!fRamExists)
            rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
        if (RT_SUCCESS(rc))
        {
            /*
             * Initialize and insert the RAM range (if required).
             */
            PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
            if (!fRamExists)
            {
                pRamNew->pSelfR0       = MMHyperCCToR0(pVM, pRamNew);
                pRamNew->pSelfRC       = MMHyperCCToRC(pVM, pRamNew);
                pRamNew->GCPhys        = GCPhys;
                pRamNew->GCPhysLast    = GCPhysLast;
                pRamNew->cb            = cb;
                pRamNew->pszDesc       = pszDesc;
                pRamNew->fFlags        = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
                pRamNew->pvR3          = NULL;
                pRamNew->paLSPages     = NULL;

                PPGMPAGE pPage = &pRamNew->aPages[0];
                for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
                {
                    PGM_PAGE_INIT(pPage,
                                  pReq->aPages[iPage].HCPhysGCPhys,
                                  pReq->aPages[iPage].idPage,
                                  PGMPAGETYPE_ROM,
                                  PGM_PAGE_STATE_ALLOCATED);

                    pRomPage->Virgin = *pPage;
                }

                pVM->pgm.s.cAllPages += cPages;
                pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
            }
            else
            {
                PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
                for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
                {
                    PGM_PAGE_SET_TYPE(pVM, pPage,   PGMPAGETYPE_ROM);
                    PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
                    PGM_PAGE_SET_STATE(pVM, pPage,  PGM_PAGE_STATE_ALLOCATED);
                    PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
                    PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
                    PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
                    PGM_PAGE_SET_TRACKING(pVM, pPage, 0);

                    pRomPage->Virgin = *pPage;
                }

                pRamNew = pRam;

                pVM->pgm.s.cZeroPages -= cPages;
            }
            pVM->pgm.s.cPrivatePages += cPages;

            /* Flush physical page map TLB. */
            pgmPhysInvalidatePageMapTLB(pVM);


            /* Notify NEM before we register handlers. */
            uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
                                      | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
            rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fNemNotify);

            /*
             * !HACK ALERT!  REM + (Shadowed) ROM ==> mess.
             *
             * If it's shadowed we'll register the handler after the ROM notification
             * so we get the access handler callbacks that we should. If it isn't
             * shadowed we'll do it the other way around to make REM use the built-in
             * ROM behavior and not the handler behavior (which is to route all access
             * to PGM atm).
             */
            if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
            {
#ifdef VBOX_WITH_REM
                REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
#endif
                if (RT_SUCCESS(rc))
                    rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
                                                    pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
                                                    pszDesc);
            }
            else
            {
                if (RT_SUCCESS(rc))
                    rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
                                                    pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
                                                    pszDesc);
#ifdef VBOX_WITH_REM
                REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
#endif
            }
            if (RT_SUCCESS(rc))
            {
                /*
                 * Copy the image over to the virgin pages.
                 * This must be done after linking in the RAM range.
                 */
                size_t          cbBinaryLeft = cbBinary;
                PPGMPAGE        pRamPage     = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
                for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
                {
                    void *pvDstPage;
                    rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
                    if (RT_FAILURE(rc))
                    {
                        VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
                        break;
                    }
                    if (cbBinaryLeft >= PAGE_SIZE)
                    {
                        memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
                        cbBinaryLeft -= PAGE_SIZE;
                    }
                    else
                    {
                        ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
                        if (cbBinaryLeft > 0)
                        {
                            memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
                            cbBinaryLeft = 0;
                        }
                    }
                }
                if (RT_SUCCESS(rc))
                {
                    /*
                     * Initialize the ROM range.
                     * Note that the Virgin member of the pages has already been initialized above.
                     */
                    pRomNew->GCPhys     = GCPhys;
                    pRomNew->GCPhysLast = GCPhysLast;
                    pRomNew->cb         = cb;
                    pRomNew->fFlags     = fFlags;
                    pRomNew->idSavedState = UINT8_MAX;
                    pRomNew->cbOriginal = cbBinary;
                    pRomNew->pszDesc    = pszDesc;
                    pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
                                        ? pvBinary : RTMemDup(pvBinary, cbBinary);
                    if (pRomNew->pvOriginal)
                    {
                        for (unsigned iPage = 0; iPage < cPages; iPage++)
                        {
                            PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
                            pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
                            PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
                        }

                        /* update the page count stats for the shadow pages. */
                        if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
                        {
                            pVM->pgm.s.cZeroPages += cPages;
                            pVM->pgm.s.cAllPages  += cPages;
                        }

                        /*
                         * Insert the ROM range, tell REM and return successfully.
                         */
                        pRomNew->pNextR3 = pRom;
                        pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
                        pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;

                        if (pRomPrev)
                        {
                            pRomPrev->pNextR3 = pRomNew;
                            pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
                            pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
                        }
                        else
                        {
                            pVM->pgm.s.pRomRangesR3 = pRomNew;
                            pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
                            pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
                        }

                        pgmPhysInvalidatePageMapTLB(pVM);
                        GMMR3AllocatePagesCleanup(pReq);

                        /* Notify NEM again. */
                        return NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, fNemNotify);
                    }

                    /* bail out */
                    rc = VERR_NO_MEMORY;
                }

                int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
                AssertRC(rc2);
            }

            if (!fRamExists)
            {
                pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
                MMHyperFree(pVM, pRamNew);
            }
        }
        MMHyperFree(pVM, pRomNew);
    }

    /** @todo Purge the mapping cache or something... */
    GMMR3FreeAllocatedPages(pVM, pReq);
    GMMR3AllocatePagesCleanup(pReq);
    return rc;
}


/**
 * Registers a ROM image.
 *
 * Shadowed ROM images requires double the amount of backing memory, so,
 * don't use that unless you have to. Shadowing of ROM images is process
 * where we can select where the reads go and where the writes go. On real
 * hardware the chipset provides means to configure this. We provide
 * PGMR3PhysProtectROM() for this purpose.
 *
 * A read-only copy of the ROM image will always be kept around while we
 * will allocate RAM pages for the changes on demand (unless all memory
 * is configured to be preallocated).
 *
 * @returns VBox status code.
 * @param   pVM                 The cross context VM structure.
 * @param   pDevIns             The device instance owning the ROM.
 * @param   GCPhys              First physical address in the range.
 *                              Must be page aligned!
 * @param   cb                  The size of the range (in bytes).
 *                              Must be page aligned!
 * @param   pvBinary            Pointer to the binary data backing the ROM image.
 * @param   cbBinary            The size of the binary data pvBinary points to.
 *                              This must be less or equal to @a cb.
 * @param   fFlags              Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
 *                              and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
 * @param   pszDesc             Pointer to description string. This must not be freed.
 *
 * @remark  There is no way to remove the rom, automatically on device cleanup or
 *          manually from the device yet. This isn't difficult in any way, it's
 *          just not something we expect to be necessary for a while.
 */
VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
                                    const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
{
    Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
         pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
    pgmLock(pVM);
    int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
    pgmUnlock(pVM);
    return rc;
}


/**
 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
 * that the virgin part is untouched.
 *
 * This is done after the normal memory has been cleared.
 *
 * ASSUMES that the caller owns the PGM lock.
 *
 * @param   pVM         The cross context VM structure.
 */
int pgmR3PhysRomReset(PVM pVM)
{
    PGM_LOCK_ASSERT_OWNER(pVM);
    for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
    {
        const uint32_t cPages = pRom->cb >> PAGE_SHIFT;

        if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
        {
            /*
             * Reset the physical handler.
             */
            int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
            AssertRCReturn(rc, rc);

            /*
             * What we do with the shadow pages depends on the memory
             * preallocation option. If not enabled, we'll just throw
             * out all the dirty pages and replace them by the zero page.
             */
            if (!pVM->pgm.s.fRamPreAlloc)
            {
                /* Free the dirty pages. */
                uint32_t            cPendingPages = 0;
                PGMMFREEPAGESREQ    pReq;
                rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
                AssertRCReturn(rc, rc);

                for (uint32_t iPage = 0; iPage < cPages; iPage++)
                    if (   !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
                        && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
                    {
                        Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
                        rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
                                             pRom->GCPhys + (iPage << PAGE_SHIFT),
                                             (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
                        AssertLogRelRCReturn(rc, rc);
                    }

                if (cPendingPages)
                {
                    rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
                    AssertLogRelRCReturn(rc, rc);
                }
                GMMR3FreePagesCleanup(pReq);
            }
            else
            {
                /* clear all the shadow pages. */
                for (uint32_t iPage = 0; iPage < cPages; iPage++)
                {
                    if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
                        continue;
                    Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
                    void *pvDstPage;
                    const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
                    rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
                    if (RT_FAILURE(rc))
                        break;
                    ASMMemZeroPage(pvDstPage);
                }
                AssertRCReturn(rc, rc);
            }
        }

        /*
         * Restore the original ROM pages after a saved state load.
         * Also, in strict builds check that ROM pages remain unmodified.
         */
#ifndef VBOX_STRICT
        if (pVM->pgm.s.fRestoreRomPagesOnReset)
#endif
        {
            size_t         cbSrcLeft = pRom->cbOriginal;
            uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
            uint32_t       cRestored = 0;
            for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
            {
                const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
                void const *pvDstPage;
                int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
                if (RT_FAILURE(rc))
                    break;

                if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
                {
                    if (pVM->pgm.s.fRestoreRomPagesOnReset)
                    {
                        void *pvDstPageW;
                        rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
                        AssertLogRelRCReturn(rc, rc);
                        memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
                        cRestored++;
                    }
                    else
                        LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
                }
                cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
            }
            if (cRestored > 0)
                LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
        }
    }

    /* Clear the ROM restore flag now as we only need to do this once after
       loading saved state. */
    pVM->pgm.s.fRestoreRomPagesOnReset = false;

    return VINF_SUCCESS;
}


/**
 * Called by PGMR3Term to free resources.
 *
 * ASSUMES that the caller owns the PGM lock.
 *
 * @param   pVM         The cross context VM structure.
 */
void pgmR3PhysRomTerm(PVM pVM)
{
    /*
     * Free the heap copy of the original bits.
     */
    for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
    {
        if (   pRom->pvOriginal
            && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
        {
            RTMemFree((void *)pRom->pvOriginal);
            pRom->pvOriginal = NULL;
        }
    }
}


/**
 * Change the shadowing of a range of ROM pages.
 *
 * This is intended for implementing chipset specific memory registers
 * and will not be very strict about the input. It will silently ignore
 * any pages that are not the part of a shadowed ROM.
 *
 * @returns VBox status code.
 * @retval  VINF_PGM_SYNC_CR3
 *
 * @param   pVM         The cross context VM structure.
 * @param   GCPhys      Where to start. Page aligned.
 * @param   cb          How much to change. Page aligned.
 * @param   enmProt     The new ROM protection.
 */
VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
{
    /*
     * Check input
     */
    if (!cb)
        return VINF_SUCCESS;
    AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
    AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
    AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);

    /*
     * Process the request.
     */
    pgmLock(pVM);
    int  rc = VINF_SUCCESS;
    bool fFlushTLB = false;
    for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
    {
        if (   GCPhys     <= pRom->GCPhysLast
            && GCPhysLast >= pRom->GCPhys
            && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
        {
            /*
             * Iterate the relevant pages and make necessary the changes.
             */
            bool fChanges = false;
            uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
                                  ? pRom->cb >> PAGE_SHIFT
                                  : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
            for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
                 iPage < cPages;
                 iPage++)
            {
                PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
                if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
                {
                    fChanges = true;

                    /* flush references to the page. */
                    PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
                    int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
                                                       true /*fFlushPTEs*/, &fFlushTLB);
                    if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
                        rc = rc2;
                    uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);

                    PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
                    PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;

                    *pOld = *pRamPage;
                    *pRamPage = *pNew;
                    /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */

                    /* Tell NEM about the backing and protection change. */
                    if (VM_IS_NEM_ENABLED(pVM))
                    {
                        PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
                        NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
                                                   pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
                        PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
                    }
                }
                pRomPage->enmProt = enmProt;
            }

            /*
             * Reset the access handler if we made changes, no need
             * to optimize this.
             */
            if (fChanges)
            {
                int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
                if (RT_FAILURE(rc2))
                {
                    pgmUnlock(pVM);
                    AssertRC(rc);
                    return rc2;
                }
            }

            /* Advance - cb isn't updated. */
            GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
        }
    }
    pgmUnlock(pVM);
    if (fFlushTLB)
        PGM_INVL_ALL_VCPU_TLBS(pVM);

    return rc;
}


/**
 * Sets the Address Gate 20 state.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   fEnable     True if the gate should be enabled.
 *                      False if the gate should be disabled.
 */
VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
{
    LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
    if (pVCpu->pgm.s.fA20Enabled != fEnable)
    {
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
        PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
        if (   CPUMIsGuestInVmxRootMode(pCtx)
            && !fEnable)
        {
            Log(("Cannot enter A20M mode while in VMX root mode\n"));
            return;
        }
#endif
        pVCpu->pgm.s.fA20Enabled = fEnable;
        pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
#ifdef VBOX_WITH_REM
        REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
#endif
        NEMR3NotifySetA20(pVCpu, fEnable);
#ifdef PGM_WITH_A20
        pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
        VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
        pgmR3RefreshShadowModeAfterA20Change(pVCpu);
        HMFlushTlb(pVCpu);
#endif
        IEMTlbInvalidateAllPhysical(pVCpu);
        STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
    }
}


/**
 * Tree enumeration callback for dealing with age rollover.
 * It will perform a simple compression of the current age.
 */
static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
{
    /* Age compression - ASSUMES iNow == 4. */
    PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
    if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
        pChunk->iLastUsed = 3;
    else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
        pChunk->iLastUsed = 2;
    else if (pChunk->iLastUsed)
        pChunk->iLastUsed = 1;
    else /* iLastUsed = 0 */
        pChunk->iLastUsed = 4;

    NOREF(pvUser);
    return 0;
}


/**
 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
 */
typedef struct PGMR3PHYSCHUNKUNMAPCB
{
    PVM                 pVM;            /**< Pointer to the VM. */
    PPGMCHUNKR3MAP      pChunk;         /**< The chunk to unmap. */
} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;


/**
 * Callback used to find the mapping that's been unused for
 * the longest time.
 */
static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
{
    PPGMCHUNKR3MAP          pChunk = (PPGMCHUNKR3MAP)pNode;
    PPGMR3PHYSCHUNKUNMAPCB  pArg   = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;

    /*
     * Check for locks and compare when last used.
     */
    if (pChunk->cRefs)
        return 0;
    if (pChunk->cPermRefs)
        return 0;
    if (   pArg->pChunk
        && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
        return 0;

    /*
     * Check that it's not in any of the TLBs.
     */
    PVM pVM = pArg->pVM;
    if (   pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
        == pChunk->Core.Key)
    {
        pChunk = NULL;
        return 0;
    }
#ifdef VBOX_STRICT
    for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
    {
        Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
        Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
    }
#endif

    for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
        if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
            return 0;

    pArg->pChunk = pChunk;
    return 0;
}


/**
 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
 *
 * The candidate will not be part of any TLBs, so no need to flush
 * anything afterwards.
 *
 * @returns Chunk id.
 * @param   pVM         The cross context VM structure.
 */
static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
{
    PGM_LOCK_ASSERT_OWNER(pVM);

    /*
     * Enumerate the age tree starting with the left most node.
     */
    STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
    PGMR3PHYSCHUNKUNMAPCB Args;
    Args.pVM    = pVM;
    Args.pChunk = NULL;
    RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
    Assert(Args.pChunk);
    if (Args.pChunk)
    {
        Assert(Args.pChunk->cRefs == 0);
        Assert(Args.pChunk->cPermRefs == 0);
        STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
        return Args.pChunk->Core.Key;
    }

    STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
    return INT32_MAX;
}


/**
 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
 *
 * This is only called on one of the EMTs while the other ones are waiting for
 * it to complete this function.
 *
 * @returns VINF_SUCCESS (VBox strict status code).
 * @param   pVM         The cross context VM structure.
 * @param   pVCpu       The cross context virtual CPU structure of the calling EMT. Unused.
 * @param   pvUser      User pointer. Unused
 *
 */
static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
{
    int rc = VINF_SUCCESS;
    pgmLock(pVM);
    NOREF(pVCpu); NOREF(pvUser);

    if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
    {
        /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
        /** @todo also not really efficient to unmap a chunk that contains PD
         *  or PT pages. */
        pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */);

        /*
         * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
         */
        GMMMAPUNMAPCHUNKREQ Req;
        Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
        Req.Hdr.cbReq    = sizeof(Req);
        Req.pvR3         = NULL;
        Req.idChunkMap   = NIL_GMM_CHUNKID;
        Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
        if (Req.idChunkUnmap != INT32_MAX)
        {
            STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
            rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
            STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
            if (RT_SUCCESS(rc))
            {
                /*
                 * Remove the unmapped one.
                 */
                PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
                AssertRelease(pUnmappedChunk);
                AssertRelease(!pUnmappedChunk->cRefs);
                AssertRelease(!pUnmappedChunk->cPermRefs);
                pUnmappedChunk->pv       = NULL;
                pUnmappedChunk->Core.Key = UINT32_MAX;
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
                MMR3HeapFree(pUnmappedChunk);
#else
                MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
#endif
                pVM->pgm.s.ChunkR3Map.c--;
                pVM->pgm.s.cUnmappedChunks++;

                /*
                 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
                 */
                /** @todo We should not flush chunks which include cr3 mappings. */
                for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
                {
                    PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s;

                    pPGM->pGst32BitPdR3    = NULL;
                    pPGM->pGstPaePdptR3    = NULL;
                    pPGM->pGstAmd64Pml4R3  = NULL;
#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
                    pPGM->pGst32BitPdR0    = NIL_RTR0PTR;
                    pPGM->pGstPaePdptR0    = NIL_RTR0PTR;
                    pPGM->pGstAmd64Pml4R0  = NIL_RTR0PTR;
#endif
                    for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
                    {
                        pPGM->apGstPaePDsR3[i]             = NULL;
#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
                        pPGM->apGstPaePDsR0[i]             = NIL_RTR0PTR;
#endif
                    }

                    /* Flush REM TLBs. */
                    CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
                }
#ifdef VBOX_WITH_REM
                /* Flush REM translation blocks. */
                REMFlushTBs(pVM);
#endif
            }
        }
    }
    pgmUnlock(pVM);
    return rc;
}

/**
 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
 *
 * @returns VBox status code.
 * @param   pVM         The cross context VM structure.
 */
void pgmR3PhysUnmapChunk(PVM pVM)
{
    int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
    AssertRC(rc);
}


/**
 * Maps the given chunk into the ring-3 mapping cache.
 *
 * This will call ring-0.
 *
 * @returns VBox status code.
 * @param   pVM         The cross context VM structure.
 * @param   idChunk     The chunk in question.
 * @param   ppChunk     Where to store the chunk tracking structure.
 *
 * @remarks Called from within the PGM critical section.
 * @remarks Can be called from any thread!
 */
int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
{
    int rc;

    PGM_LOCK_ASSERT_OWNER(pVM);

    /*
     * Move the chunk time forward.
     */
    pVM->pgm.s.ChunkR3Map.iNow++;
    if (pVM->pgm.s.ChunkR3Map.iNow == 0)
    {
        pVM->pgm.s.ChunkR3Map.iNow = 4;
        RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
    }

    /*
     * Allocate a new tracking structure first.
     */
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
    PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
#else
    PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
#endif
    AssertReturn(pChunk, VERR_NO_MEMORY);
    pChunk->Core.Key  = idChunk;
    pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;

    /*
     * Request the ring-0 part to map the chunk in question.
     */
    GMMMAPUNMAPCHUNKREQ Req;
    Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
    Req.Hdr.cbReq    = sizeof(Req);
    Req.pvR3         = NULL;
    Req.idChunkMap   = idChunk;
    Req.idChunkUnmap = NIL_GMM_CHUNKID;

    /* Must be callable from any thread, so can't use VMMR3CallR0. */
    STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
    rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
    STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
    if (RT_SUCCESS(rc))
    {
        pChunk->pv = Req.pvR3;

        /*
         * If we're running out of virtual address space, then we should
         * unmap another chunk.
         *
         * Currently, an unmap operation requires that all other virtual CPUs
         * are idling and not by chance making use of the memory we're
         * unmapping.  So, we create an async unmap operation here.
         *
         * Now, when creating or restoring a saved state this wont work very
         * well since we may want to restore all guest RAM + a little something.
         * So, we have to do the unmap synchronously.  Fortunately for us
         * though, during these operations the other virtual CPUs are inactive
         * and it should be safe to do this.
         */
        /** @todo Eventually we should lock all memory when used and do
         *        map+unmap as one kernel call without any rendezvous or
         *        other precautions. */
        if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
        {
            switch (VMR3GetState(pVM))
            {
                case VMSTATE_LOADING:
                case VMSTATE_SAVING:
                {
                    PVMCPU pVCpu = VMMGetCpu(pVM);
                    if (   pVCpu
                        && pVM->pgm.s.cDeprecatedPageLocks == 0)
                    {
                        pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
                        break;
                    }
                }
                RT_FALL_THRU();
                default:
                    rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
                    AssertRC(rc);
                    break;
            }
        }

        /*
         * Update the tree.  We must do this after any unmapping to make sure
         * the chunk we're going to return isn't unmapped by accident.
         */
        AssertPtr(Req.pvR3);
        bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
        AssertRelease(fRc);
        pVM->pgm.s.ChunkR3Map.c++;
        pVM->pgm.s.cMappedChunks++;
    }
    else
    {
        /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
         *        should probably restrict ourselves on linux. */
        AssertRC(rc);
#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
        MMR3HeapFree(pChunk);
#else
        MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
#endif
        pChunk = NULL;
    }

    *ppChunk = pChunk;
    return rc;
}


/**
 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
 *
 * @returns see pgmR3PhysChunkMap.
 * @param   pVM         The cross context VM structure.
 * @param   idChunk     The chunk to map.
 */
VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
{
    PPGMCHUNKR3MAP pChunk;
    int rc;

    pgmLock(pVM);
    rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
    pgmUnlock(pVM);
    return rc;
}


/**
 * Invalidates the TLB for the ring-3 mapping cache.
 *
 * @param   pVM         The cross context VM structure.
 */
VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
{
    pgmLock(pVM);
    for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
    {
        pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
        pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
    }
    /* The page map TLB references chunks, so invalidate that one too. */
    pgmPhysInvalidatePageMapTLB(pVM);
    pgmUnlock(pVM);
}


/**
 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
 * (2MB) page for use with a nested paging PDE.
 *
 * @returns The following VBox status codes.
 * @retval  VINF_SUCCESS on success.
 * @retval  VINF_EM_NO_MEMORY if we're out of memory.
 *
 * @param   pVM         The cross context VM structure.
 * @param   GCPhys      GC physical start address of the 2 MB range
 */
VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
{
#ifdef PGM_WITH_LARGE_PAGES
    uint64_t u64TimeStamp1, u64TimeStamp2;

    pgmLock(pVM);

    STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
    u64TimeStamp1 = RTTimeMilliTS();
    int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
    u64TimeStamp2 = RTTimeMilliTS();
    STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
    if (RT_SUCCESS(rc))
    {
        Assert(pVM->pgm.s.cLargeHandyPages == 1);

        uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
        RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;

        void *pv;

        /* Map the large page into our address space.
         *
         * Note: assuming that within the 2 MB range:
         * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
         * - user space mapping is continuous as well
         * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
         */
        rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
        AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));

        if (RT_SUCCESS(rc))
        {
            /*
             * Clear the pages.
             */
            STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
            for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
            {
                ASMMemZeroPage(pv);

                PPGMPAGE pPage;
                rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
                AssertRC(rc);

                Assert(PGM_PAGE_IS_ZERO(pPage));
                STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
                pVM->pgm.s.cZeroPages--;

                /*
                 * Do the PGMPAGE modifications.
                 */
                pVM->pgm.s.cPrivatePages++;
                PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
                PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
                PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
                PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
                PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
                PGM_PAGE_SET_TRACKING(pVM, pPage, 0);

                /* Somewhat dirty assumption that page ids are increasing. */
                idPage++;

                HCPhys += PAGE_SIZE;
                GCPhys += PAGE_SIZE;

                pv = (void *)((uintptr_t)pv + PAGE_SIZE);

                Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
            }
            STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);

            /* Flush all TLBs. */
            PGM_INVL_ALL_VCPU_TLBS(pVM);
            pgmPhysInvalidatePageMapTLB(pVM);
        }
        pVM->pgm.s.cLargeHandyPages = 0;
    }

    if (RT_SUCCESS(rc))
    {
        static uint32_t cTimeOut = 0;
        uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;

        if (u64TimeStampDelta > 100)
        {
            STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
            if (    ++cTimeOut > 10
                ||  u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
            {
                /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
                 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
                 */
                LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
                PGMSetLargePageUsage(pVM, false);
            }
        }
        else
        if (cTimeOut > 0)
            cTimeOut--;
    }

    pgmUnlock(pVM);
    return rc;
#else
    RT_NOREF(pVM, GCPhys);
    return VERR_NOT_IMPLEMENTED;
#endif /* PGM_WITH_LARGE_PAGES */
}


/**
 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
 *
 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
 * signal and clear the out of memory condition. When contracted, this API is
 * used to try clear the condition when the user wants to resume.
 *
 * @returns The following VBox status codes.
 * @retval  VINF_SUCCESS on success. FFs cleared.
 * @retval  VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
 *          this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
 *
 * @param   pVM         The cross context VM structure.
 *
 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
 *          in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
 *          pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
 *          handler.
 */
VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
{
    pgmLock(pVM);

    /*
     * Allocate more pages, noting down the index of the first new page.
     */
    uint32_t iClear = pVM->pgm.s.cHandyPages;
    AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
    Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
    int rcAlloc = VINF_SUCCESS;
    int rcSeed  = VINF_SUCCESS;
    int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
    while (rc == VERR_GMM_SEED_ME)
    {
        void *pvChunk;
        rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
        if (RT_SUCCESS(rc))
        {
            rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
            if (RT_FAILURE(rc))
                SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
        }
        if (RT_SUCCESS(rc))
            rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
    }

    /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
    if (    rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
        &&  pVM->pgm.s.cHandyPages > 0)
    {
        /* Still handy pages left, so don't panic. */
        rc = VINF_SUCCESS;
    }

    if (RT_SUCCESS(rc))
    {
        AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
        Assert(pVM->pgm.s.cHandyPages > 0);
        VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
        VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);

#ifdef VBOX_STRICT
        uint32_t i;
        for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
            if (   pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
                || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
                || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
                break;
        if (i != pVM->pgm.s.cHandyPages)
        {
            RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
            RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
            for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
                RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
                                pVM->pgm.s.aHandyPages[j].idPage,
                                pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
                                pVM->pgm.s.aHandyPages[j].idSharedPage,
                                j == i ? " <---" : "");
            RTAssertPanic();
        }
#endif
        /*
         * Clear the pages.
         */
        while (iClear < pVM->pgm.s.cHandyPages)
        {
            PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
            void *pv;
            rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
            AssertLogRelMsgBreak(RT_SUCCESS(rc),
                                 ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
                                  iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
            ASMMemZeroPage(pv);
            iClear++;
            Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
        }
    }
    else
    {
        uint64_t cAllocPages, cMaxPages, cBalloonPages;

        /*
         * We should never get here unless there is a genuine shortage of
         * memory (or some internal error). Flag the error so the VM can be
         * suspended ASAP and the user informed. If we're totally out of
         * handy pages we will return failure.
         */
        /* Report the failure. */
        LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
                "     cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
                rc, rcAlloc, rcSeed,
                pVM->pgm.s.cHandyPages,
                pVM->pgm.s.cAllPages,
                pVM->pgm.s.cPrivatePages,
                pVM->pgm.s.cSharedPages,
                pVM->pgm.s.cZeroPages));

        if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
        {
            LogRel(("GMM: Statistics:\n"
                    "     Allocated pages: %RX64\n"
                    "     Maximum   pages: %RX64\n"
                    "     Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
        }

        if (   rc != VERR_NO_MEMORY
            && rc != VERR_NO_PHYS_MEMORY
            && rc != VERR_LOCK_FAILED)
        {
            for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
            {
                LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
                        i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
                        pVM->pgm.s.aHandyPages[i].idSharedPage));
                uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
                if (idPage != NIL_GMM_PAGEID)
                {
                    for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
                         pRam;
                         pRam = pRam->pNextR3)
                    {
                        uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
                        for (uint32_t iPage = 0; iPage < cPages; iPage++)
                            if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
                                LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
                                        pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
                    }
                }
            }
        }

        if (rc == VERR_NO_MEMORY)
        {
            uint64_t cbHostRamAvail = 0;
            int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
            if (RT_SUCCESS(rc2))
                LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
            else
                LogRel(("Cannot determine the amount of available host memory\n"));
        }

        /* Set the FFs and adjust rc. */
        VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
        VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
        if (    rc == VERR_NO_MEMORY
            ||  rc == VERR_NO_PHYS_MEMORY
            ||  rc == VERR_LOCK_FAILED)
            rc = VINF_EM_NO_MEMORY;
    }

    pgmUnlock(pVM);
    return rc;
}


/**
 * Frees the specified RAM page and replaces it with the ZERO page.
 *
 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
 *
 * @param   pVM             The cross context VM structure.
 * @param   pReq            Pointer to the request.
 * @param   pcPendingPages  Where the number of pages waiting to be freed are
 *                          kept.  This will normally be incremented.
 * @param   pPage           Pointer to the page structure.
 * @param   GCPhys          The guest physical address of the page, if applicable.
 * @param   enmNewType      New page type for NEM notification, since several
 *                          callers will change the type upon successful return.
 *
 * @remarks The caller must own the PGM lock.
 */
int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
                    PGMPAGETYPE enmNewType)
{
    /*
     * Assert sanity.
     */
    PGM_LOCK_ASSERT_OWNER(pVM);
    if (RT_UNLIKELY(    PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
                    &&  PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
    {
        AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
        return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
    }

    /** @todo What about ballooning of large pages??! */
    Assert(   PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
           && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);

    if (    PGM_PAGE_IS_ZERO(pPage)
        ||  PGM_PAGE_IS_BALLOONED(pPage))
        return VINF_SUCCESS;

    const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
    Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
    if (RT_UNLIKELY(    idPage == NIL_GMM_PAGEID
                    ||  idPage > GMM_PAGEID_LAST
                    ||  PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
    {
        AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
        return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
    }
    const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);

    /* update page count stats. */
    if (PGM_PAGE_IS_SHARED(pPage))
        pVM->pgm.s.cSharedPages--;
    else
        pVM->pgm.s.cPrivatePages--;
    pVM->pgm.s.cZeroPages++;

    /* Deal with write monitored pages. */
    if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
    {
        PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
        pVM->pgm.s.cWrittenToPages++;
    }

    /*
     * pPage = ZERO page.
     */
    PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
    PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
    PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
    PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
    PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
    PGM_PAGE_SET_TRACKING(pVM, pPage, 0);

    /* Flush physical page map TLB entry. */
    pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);

    /* Notify NEM. */
    /** @todo consider doing batch NEM notifications.  */
    if (VM_IS_NEM_ENABLED(pVM))
    {
        uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
        NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg,
                                   pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
        PGM_PAGE_SET_NEM_STATE(pPage, u2State);
    }

    /*
     * Make sure it's not in the handy page array.
     */
    for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
    {
        if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
        {
            pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
            break;
        }
        if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
        {
            pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
            break;
        }
    }

    /*
     * Push it onto the page array.
     */
    uint32_t iPage = *pcPendingPages;
    Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
    *pcPendingPages += 1;

    pReq->aPages[iPage].idPage = idPage;

    if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
        return VINF_SUCCESS;

    /*
     * Flush the pages.
     */
    int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
    if (RT_SUCCESS(rc))
    {
        GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
        *pcPendingPages = 0;
    }
    return rc;
}


/**
 * Converts a GC physical address to a HC ring-3 pointer, with some
 * additional checks.
 *
 * @returns VBox status code.
 * @retval  VINF_SUCCESS on success.
 * @retval  VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
 *          access handler of some kind.
 * @retval  VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
 *          accesses or is odd in any way.
 * @retval  VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
 *
 * @param   pVM         The cross context VM structure.
 * @param   GCPhys      The GC physical address to convert.  Since this is only
 *                      used for filling the REM TLB, the A20 mask must be
 *                      applied before calling this API.
 * @param   fWritable   Whether write access is required.
 * @param   ppv         Where to store the pointer corresponding to GCPhys on
 *                      success.
 */
VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
{
    pgmLock(pVM);
    PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);

    PPGMRAMRANGE pRam;
    PPGMPAGE pPage;
    int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
    if (RT_SUCCESS(rc))
    {
        if (PGM_PAGE_IS_BALLOONED(pPage))
            rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
        else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
            rc = VINF_SUCCESS;
        else
        {
            if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
                rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
            else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
            {
                /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
                 *        in -norawr0 mode. */
                if (fWritable)
                    rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
            }
            else
            {
                /* Temporarily disabled physical handler(s), since the recompiler
                   doesn't get notified when it's reset we'll have to pretend it's
                   operating normally. */
                if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
                    rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
                else
                    rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
            }
        }
        if (RT_SUCCESS(rc))
        {
            int rc2;

            /* Make sure what we return is writable. */
            if (fWritable)
                switch (PGM_PAGE_GET_STATE(pPage))
                {
                    case PGM_PAGE_STATE_ALLOCATED:
                        break;
                    case PGM_PAGE_STATE_BALLOONED:
                        AssertFailed();
                        break;
                    case PGM_PAGE_STATE_ZERO:
                    case PGM_PAGE_STATE_SHARED:
                        if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
                            break;
                        RT_FALL_THRU();
                    case PGM_PAGE_STATE_WRITE_MONITORED:
                        rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
                        AssertLogRelRCReturn(rc2, rc2);
                        break;
                }

            /* Get a ring-3 mapping of the address. */
            PPGMPAGER3MAPTLBE pTlbe;
            rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
            AssertLogRelRCReturn(rc2, rc2);
            *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
            /** @todo mapping/locking hell; this isn't horribly efficient since
             *        pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */

            Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
        }
        else
            Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));

        /* else: handler catching all access, no pointer returned. */
    }
    else
        rc = VERR_PGM_PHYS_TLB_UNASSIGNED;

    pgmUnlock(pVM);
    return rc;
}