1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "util_time.h"
/* Number of characters needed to format the microsecond part of a timestamp.
* Microseconds have 6 digits plus one separator character makes 7.
* */
#define AP_CTIME_USEC_LENGTH 7
/* Length of ISO 8601 date/time */
#define AP_CTIME_COMPACT_LEN 20
/* Cache for exploded values of recent timestamps
*/
struct exploded_time_cache_element {
apr_int64_t t;
apr_time_exp_t xt;
apr_int64_t t_validate; /* please see comments in cached_explode() */
};
/* the "+ 1" is for the current second: */
#define TIME_CACHE_SIZE (AP_TIME_RECENT_THRESHOLD + 1)
/* Note that AP_TIME_RECENT_THRESHOLD is defined to
* be a power of two minus one in util_time.h, so that
* we can replace a modulo operation with a bitwise AND
* when hashing items into a cache of size
* AP_TIME_RECENT_THRESHOLD+1
*/
#define TIME_CACHE_MASK (AP_TIME_RECENT_THRESHOLD)
static struct exploded_time_cache_element exploded_cache_localtime[TIME_CACHE_SIZE];
static struct exploded_time_cache_element exploded_cache_gmt[TIME_CACHE_SIZE];
static apr_status_t cached_explode(apr_time_exp_t *xt, apr_time_t t,
struct exploded_time_cache_element *cache,
int use_gmt)
{
apr_int64_t seconds = apr_time_sec(t);
struct exploded_time_cache_element *cache_element =
&(cache[seconds & TIME_CACHE_MASK]);
struct exploded_time_cache_element cache_element_snapshot;
/* The cache is implemented as a ring buffer. Each second,
* it uses a different element in the buffer. The timestamp
* in the element indicates whether the element contains the
* exploded time for the current second (vs the time
* 'now - AP_TIME_RECENT_THRESHOLD' seconds ago). If the
* cached value is for the current time, we use it. Otherwise,
* we compute the apr_time_exp_t and store it in this
* cache element. Note that the timestamp in the cache
* element is updated only after the exploded time. Thus
* if two threads hit this cache element simultaneously
* at the start of a new second, they'll both explode the
* time and store it. I.e., the writers will collide, but
* they'll be writing the same value.
*/
if (cache_element->t >= seconds) {
/* There is an intentional race condition in this design:
* in a multithreaded app, one thread might be reading
* from this cache_element to resolve a timestamp from
* TIME_CACHE_SIZE seconds ago at the same time that
* another thread is copying the exploded form of the
* current time into the same cache_element. (I.e., the
* first thread might hit this element of the ring buffer
* just as the element is being recycled.) This can
* also happen at the start of a new second, if a
* reader accesses the cache_element after a writer
* has updated cache_element.t but before the writer
* has finished updating the whole cache_element.
*
* Rather than trying to prevent this race condition
* with locks, we allow it to happen and then detect
* and correct it. The detection works like this:
* Step 1: Take a "snapshot" of the cache element by
* copying it into a temporary buffer.
* Step 2: Check whether the snapshot contains consistent
* data: the timestamps at the start and end of
* the cache_element should both match the 'seconds'
* value that we computed from the input time.
* If these three don't match, then the snapshot
* shows the cache_element in the middle of an
* update, and its contents are invalid.
* Step 3: If the snapshot is valid, use it. Otherwise,
* just give up on the cache and explode the
* input time.
*/
memcpy(&cache_element_snapshot, cache_element,
sizeof(struct exploded_time_cache_element));
if ((seconds != cache_element_snapshot.t) ||
(seconds != cache_element_snapshot.t_validate)) {
/* Invalid snapshot */
if (use_gmt) {
return apr_time_exp_gmt(xt, t);
}
else {
return apr_time_exp_lt(xt, t);
}
}
else {
/* Valid snapshot */
memcpy(xt, &(cache_element_snapshot.xt),
sizeof(apr_time_exp_t));
}
}
else {
apr_status_t r;
if (use_gmt) {
r = apr_time_exp_gmt(xt, t);
}
else {
r = apr_time_exp_lt(xt, t);
}
if (r != APR_SUCCESS) {
return r;
}
cache_element->t = seconds;
memcpy(&(cache_element->xt), xt, sizeof(apr_time_exp_t));
cache_element->t_validate = seconds;
}
xt->tm_usec = (int)apr_time_usec(t);
return APR_SUCCESS;
}
AP_DECLARE(apr_status_t) ap_explode_recent_localtime(apr_time_exp_t * tm,
apr_time_t t)
{
return cached_explode(tm, t, exploded_cache_localtime, 0);
}
AP_DECLARE(apr_status_t) ap_explode_recent_gmt(apr_time_exp_t * tm,
apr_time_t t)
{
return cached_explode(tm, t, exploded_cache_gmt, 1);
}
AP_DECLARE(apr_status_t) ap_recent_ctime(char *date_str, apr_time_t t)
{
int len = APR_CTIME_LEN;
return ap_recent_ctime_ex(date_str, t, AP_CTIME_OPTION_NONE, &len);
}
AP_DECLARE(apr_status_t) ap_recent_ctime_ex(char *date_str, apr_time_t t,
int option, int *len)
{
/* ### This code is a clone of apr_ctime(), except that it
* uses ap_explode_recent_localtime() instead of apr_time_exp_lt().
*/
apr_time_exp_t xt;
const char *s;
int real_year;
int needed;
/* Calculate the needed buffer length */
if (option & AP_CTIME_OPTION_COMPACT)
needed = AP_CTIME_COMPACT_LEN;
else
needed = APR_CTIME_LEN;
if (option & AP_CTIME_OPTION_USEC) {
needed += AP_CTIME_USEC_LENGTH;
}
/* Check the provided buffer length */
if (len && *len >= needed) {
*len = needed;
}
else {
if (len != NULL) {
*len = 0;
}
return APR_ENOMEM;
}
/* example without options: "Wed Jun 30 21:49:08 1993" */
/* 123456789012345678901234 */
/* example for compact format: "1993-06-30 21:49:08" */
/* 1234567890123456789 */
ap_explode_recent_localtime(&xt, t);
real_year = 1900 + xt.tm_year;
if (option & AP_CTIME_OPTION_COMPACT) {
int real_month = xt.tm_mon + 1;
*date_str++ = real_year / 1000 + '0';
*date_str++ = real_year % 1000 / 100 + '0';
*date_str++ = real_year % 100 / 10 + '0';
*date_str++ = real_year % 10 + '0';
*date_str++ = '-';
*date_str++ = real_month / 10 + '0';
*date_str++ = real_month % 10 + '0';
*date_str++ = '-';
}
else {
s = &apr_day_snames[xt.tm_wday][0];
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = ' ';
s = &apr_month_snames[xt.tm_mon][0];
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = ' ';
}
*date_str++ = xt.tm_mday / 10 + '0';
*date_str++ = xt.tm_mday % 10 + '0';
*date_str++ = ' ';
*date_str++ = xt.tm_hour / 10 + '0';
*date_str++ = xt.tm_hour % 10 + '0';
*date_str++ = ':';
*date_str++ = xt.tm_min / 10 + '0';
*date_str++ = xt.tm_min % 10 + '0';
*date_str++ = ':';
*date_str++ = xt.tm_sec / 10 + '0';
*date_str++ = xt.tm_sec % 10 + '0';
if (option & AP_CTIME_OPTION_USEC) {
int div;
int usec = (int)xt.tm_usec;
*date_str++ = '.';
for (div=100000; div>0; div=div/10) {
*date_str++ = usec / div + '0';
usec = usec % div;
}
}
if (!(option & AP_CTIME_OPTION_COMPACT)) {
*date_str++ = ' ';
*date_str++ = real_year / 1000 + '0';
*date_str++ = real_year % 1000 / 100 + '0';
*date_str++ = real_year % 100 / 10 + '0';
*date_str++ = real_year % 10 + '0';
}
*date_str++ = 0;
return APR_SUCCESS;
}
AP_DECLARE(apr_status_t) ap_recent_rfc822_date(char *date_str, apr_time_t t)
{
/* ### This code is a clone of apr_rfc822_date(), except that it
* uses ap_explode_recent_gmt() instead of apr_time_exp_gmt().
*/
apr_time_exp_t xt;
const char *s;
int real_year;
ap_explode_recent_gmt(&xt, t);
/* example: "Sat, 08 Jan 2000 18:31:41 GMT" */
/* 12345678901234567890123456789 */
s = &apr_day_snames[xt.tm_wday][0];
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = ',';
*date_str++ = ' ';
*date_str++ = xt.tm_mday / 10 + '0';
*date_str++ = xt.tm_mday % 10 + '0';
*date_str++ = ' ';
s = &apr_month_snames[xt.tm_mon][0];
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = ' ';
real_year = 1900 + xt.tm_year;
/* This routine isn't y10k ready. */
*date_str++ = real_year / 1000 + '0';
*date_str++ = real_year % 1000 / 100 + '0';
*date_str++ = real_year % 100 / 10 + '0';
*date_str++ = real_year % 10 + '0';
*date_str++ = ' ';
*date_str++ = xt.tm_hour / 10 + '0';
*date_str++ = xt.tm_hour % 10 + '0';
*date_str++ = ':';
*date_str++ = xt.tm_min / 10 + '0';
*date_str++ = xt.tm_min % 10 + '0';
*date_str++ = ':';
*date_str++ = xt.tm_sec / 10 + '0';
*date_str++ = xt.tm_sec % 10 + '0';
*date_str++ = ' ';
*date_str++ = 'G';
*date_str++ = 'M';
*date_str++ = 'T';
*date_str++ = 0;
return APR_SUCCESS;
}
|