summaryrefslogtreecommitdiffstats
path: root/crypto/apr_crypto_nss.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/apr_crypto_nss.c')
-rw-r--r--crypto/apr_crypto_nss.c1097
1 files changed, 1097 insertions, 0 deletions
diff --git a/crypto/apr_crypto_nss.c b/crypto/apr_crypto_nss.c
new file mode 100644
index 0000000..47d1640
--- /dev/null
+++ b/crypto/apr_crypto_nss.c
@@ -0,0 +1,1097 @@
+/* Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "apr_lib.h"
+#include "apu.h"
+#include "apu_config.h"
+#include "apu_errno.h"
+
+#include <ctype.h>
+#include <stdlib.h>
+
+#include "apr_strings.h"
+#include "apr_time.h"
+#include "apr_buckets.h"
+
+#include "apr_crypto_internal.h"
+
+#if APU_HAVE_CRYPTO
+
+#include <prerror.h>
+
+#ifdef HAVE_NSS_NSS_H
+#include <nss/nss.h>
+#endif
+#ifdef HAVE_NSS_H
+#include <nss.h>
+#endif
+
+#ifdef HAVE_NSS_PK11PUB_H
+#include <nss/pk11pub.h>
+#endif
+#ifdef HAVE_PK11PUB_H
+#include <pk11pub.h>
+#endif
+
+struct apr_crypto_t {
+ apr_pool_t *pool;
+ const apr_crypto_driver_t *provider;
+ apu_err_t *result;
+ apr_crypto_config_t *config;
+ apr_hash_t *types;
+ apr_hash_t *modes;
+};
+
+struct apr_crypto_config_t {
+ void *opaque;
+};
+
+struct apr_crypto_key_t {
+ apr_pool_t *pool;
+ const apr_crypto_driver_t *provider;
+ const apr_crypto_t *f;
+ CK_MECHANISM_TYPE cipherMech;
+ SECOidTag cipherOid;
+ PK11SymKey *symKey;
+ int ivSize;
+ int keyLength;
+};
+
+struct apr_crypto_block_t {
+ apr_pool_t *pool;
+ const apr_crypto_driver_t *provider;
+ const apr_crypto_t *f;
+ PK11Context *ctx;
+ apr_crypto_key_t *key;
+ SECItem *secParam;
+ int blockSize;
+};
+
+static struct apr_crypto_block_key_type_t key_types[] =
+{
+{ APR_KEY_3DES_192, 24, 8, 8 },
+{ APR_KEY_AES_128, 16, 16, 16 },
+{ APR_KEY_AES_192, 24, 16, 16 },
+{ APR_KEY_AES_256, 32, 16, 16 } };
+
+static struct apr_crypto_block_key_mode_t key_modes[] =
+{
+{ APR_MODE_ECB },
+{ APR_MODE_CBC } };
+
+/* sufficient space to wrap a key */
+#define BUFFER_SIZE 128
+
+/**
+ * Fetch the most recent error from this driver.
+ */
+static apr_status_t crypto_error(const apu_err_t **result,
+ const apr_crypto_t *f)
+{
+ *result = f->result;
+ return APR_SUCCESS;
+}
+
+/**
+ * Shutdown the crypto library and release resources.
+ *
+ * It is safe to shut down twice.
+ */
+static apr_status_t crypto_shutdown(void)
+{
+ if (NSS_IsInitialized()) {
+ SECStatus s = NSS_Shutdown();
+ if (s != SECSuccess) {
+ fprintf(stderr, "NSS failed to shutdown, possible leak: %d: %s",
+ PR_GetError(), PR_ErrorToName(s));
+ return APR_EINIT;
+ }
+ }
+ return APR_SUCCESS;
+}
+
+static apr_status_t crypto_shutdown_helper(void *data)
+{
+ return crypto_shutdown();
+}
+
+/**
+ * Initialise the crypto library and perform one time initialisation.
+ */
+static apr_status_t crypto_init(apr_pool_t *pool, const char *params,
+ const apu_err_t **result)
+{
+ SECStatus s;
+ const char *dir = NULL;
+ const char *keyPrefix = NULL;
+ const char *certPrefix = NULL;
+ const char *secmod = NULL;
+ int noinit = 0;
+ PRUint32 flags = 0;
+
+ struct {
+ const char *field;
+ const char *value;
+ int set;
+ } fields[] = {
+ { "dir", NULL, 0 },
+ { "key3", NULL, 0 },
+ { "cert7", NULL, 0 },
+ { "secmod", NULL, 0 },
+ { "noinit", NULL, 0 },
+ { NULL, NULL, 0 }
+ };
+ const char *ptr;
+ size_t klen;
+ char **elts = NULL;
+ char *elt;
+ int i = 0, j;
+ apr_status_t status;
+
+ if (params) {
+ if (APR_SUCCESS != (status = apr_tokenize_to_argv(params, &elts, pool))) {
+ return status;
+ }
+ while ((elt = elts[i])) {
+ ptr = strchr(elt, '=');
+ if (ptr) {
+ for (klen = ptr - elt; klen && apr_isspace(elt[klen - 1]); --klen)
+ ;
+ ptr++;
+ }
+ else {
+ for (klen = strlen(elt); klen && apr_isspace(elt[klen - 1]); --klen)
+ ;
+ }
+ elt[klen] = 0;
+
+ for (j = 0; fields[j].field != NULL; ++j) {
+ if (klen && !strcasecmp(fields[j].field, elt)) {
+ fields[j].set = 1;
+ if (ptr) {
+ fields[j].value = ptr;
+ }
+ break;
+ }
+ }
+
+ i++;
+ }
+ dir = fields[0].value;
+ keyPrefix = fields[1].value;
+ certPrefix = fields[2].value;
+ secmod = fields[3].value;
+ noinit = fields[4].set;
+ }
+
+ /* if we've been asked to bypass, do so here */
+ if (noinit) {
+ return APR_SUCCESS;
+ }
+
+ /* sanity check - we can only initialise NSS once */
+ if (NSS_IsInitialized()) {
+ return APR_EREINIT;
+ }
+
+ if (keyPrefix || certPrefix || secmod) {
+ s = NSS_Initialize(dir, certPrefix, keyPrefix, secmod, flags);
+ }
+ else if (dir) {
+ s = NSS_InitReadWrite(dir);
+ }
+ else {
+ s = NSS_NoDB_Init(NULL);
+ }
+ if (s != SECSuccess) {
+ if (result) {
+ /* Note: all memory must be owned by the caller, in case we're unloaded */
+ apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t));
+ err->rc = PR_GetError();
+ err->msg = apr_pstrdup(pool, PR_ErrorToName(s));
+ err->reason = apr_pstrdup(pool, "Error during 'nss' initialisation");
+ *result = err;
+ }
+
+ return APR_ECRYPT;
+ }
+
+ apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper,
+ apr_pool_cleanup_null);
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Clean encryption / decryption context.
+ * @note After cleanup, a context is free to be reused if necessary.
+ * @param f The context to use.
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+static apr_status_t crypto_block_cleanup(apr_crypto_block_t *block)
+{
+
+ if (block->secParam) {
+ SECITEM_FreeItem(block->secParam, PR_TRUE);
+ block->secParam = NULL;
+ }
+
+ if (block->ctx) {
+ PK11_DestroyContext(block->ctx, PR_TRUE);
+ block->ctx = NULL;
+ }
+
+ return APR_SUCCESS;
+
+}
+
+static apr_status_t crypto_block_cleanup_helper(void *data)
+{
+ apr_crypto_block_t *block = (apr_crypto_block_t *) data;
+ return crypto_block_cleanup(block);
+}
+
+static apr_status_t crypto_key_cleanup(void *data)
+{
+ apr_crypto_key_t *key = data;
+ if (key->symKey) {
+ PK11_FreeSymKey(key->symKey);
+ key->symKey = NULL;
+ }
+ return APR_SUCCESS;
+}
+/**
+ * @brief Clean encryption / decryption context.
+ * @note After cleanup, a context is free to be reused if necessary.
+ * @param f The context to use.
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+static apr_status_t crypto_cleanup(apr_crypto_t *f)
+{
+ return APR_SUCCESS;
+}
+
+static apr_status_t crypto_cleanup_helper(void *data)
+{
+ apr_crypto_t *f = (apr_crypto_t *) data;
+ return crypto_cleanup(f);
+}
+
+/**
+ * @brief Create a context for supporting encryption. Keys, certificates,
+ * algorithms and other parameters will be set per context. More than
+ * one context can be created at one time. A cleanup will be automatically
+ * registered with the given pool to guarantee a graceful shutdown.
+ * @param f - context pointer will be written here
+ * @param provider - provider to use
+ * @param params - parameter string
+ * @param pool - process pool
+ * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
+ * if the engine cannot be initialised.
+ */
+static apr_status_t crypto_make(apr_crypto_t **ff,
+ const apr_crypto_driver_t *provider, const char *params,
+ apr_pool_t *pool)
+{
+ apr_crypto_config_t *config = NULL;
+ apr_crypto_t *f;
+
+ f = apr_pcalloc(pool, sizeof(apr_crypto_t));
+ if (!f) {
+ return APR_ENOMEM;
+ }
+ *ff = f;
+ f->pool = pool;
+ f->provider = provider;
+ config = f->config = apr_pcalloc(pool, sizeof(apr_crypto_config_t));
+ if (!config) {
+ return APR_ENOMEM;
+ }
+ f->result = apr_pcalloc(pool, sizeof(apu_err_t));
+ if (!f->result) {
+ return APR_ENOMEM;
+ }
+
+ f->types = apr_hash_make(pool);
+ if (!f->types) {
+ return APR_ENOMEM;
+ }
+ apr_hash_set(f->types, "3des192", APR_HASH_KEY_STRING, &(key_types[0]));
+ apr_hash_set(f->types, "aes128", APR_HASH_KEY_STRING, &(key_types[1]));
+ apr_hash_set(f->types, "aes192", APR_HASH_KEY_STRING, &(key_types[2]));
+ apr_hash_set(f->types, "aes256", APR_HASH_KEY_STRING, &(key_types[3]));
+
+ f->modes = apr_hash_make(pool);
+ if (!f->modes) {
+ return APR_ENOMEM;
+ }
+ apr_hash_set(f->modes, "ecb", APR_HASH_KEY_STRING, &(key_modes[0]));
+ apr_hash_set(f->modes, "cbc", APR_HASH_KEY_STRING, &(key_modes[1]));
+
+ apr_pool_cleanup_register(pool, f, crypto_cleanup_helper,
+ apr_pool_cleanup_null);
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Get a hash table of key types, keyed by the name of the type against
+ * a pointer to apr_crypto_block_key_type_t.
+ *
+ * @param types - hashtable of key types keyed to constants.
+ * @param f - encryption context
+ * @return APR_SUCCESS for success
+ */
+static apr_status_t crypto_get_block_key_types(apr_hash_t **types,
+ const apr_crypto_t *f)
+{
+ *types = f->types;
+ return APR_SUCCESS;
+}
+
+/**
+ * @brief Get a hash table of key modes, keyed by the name of the mode against
+ * a pointer to apr_crypto_block_key_mode_t.
+ *
+ * @param modes - hashtable of key modes keyed to constants.
+ * @param f - encryption context
+ * @return APR_SUCCESS for success
+ */
+static apr_status_t crypto_get_block_key_modes(apr_hash_t **modes,
+ const apr_crypto_t *f)
+{
+ *modes = f->modes;
+ return APR_SUCCESS;
+}
+
+/*
+ * Work out which mechanism to use.
+ */
+static apr_status_t crypto_cipher_mechanism(apr_crypto_key_t *key,
+ const apr_crypto_block_key_type_e type,
+ const apr_crypto_block_key_mode_e mode, const int doPad)
+{
+
+ /* decide on what cipher mechanism we will be using */
+ switch (type) {
+
+ case (APR_KEY_3DES_192):
+ if (APR_MODE_CBC == mode) {
+ key->cipherOid = SEC_OID_DES_EDE3_CBC;
+ }
+ else if (APR_MODE_ECB == mode) {
+ return APR_ENOCIPHER;
+ /* No OID for CKM_DES3_ECB; */
+ }
+ key->keyLength = 24;
+ break;
+ case (APR_KEY_AES_128):
+ if (APR_MODE_CBC == mode) {
+ key->cipherOid = SEC_OID_AES_128_CBC;
+ }
+ else {
+ key->cipherOid = SEC_OID_AES_128_ECB;
+ }
+ key->keyLength = 16;
+ break;
+ case (APR_KEY_AES_192):
+ if (APR_MODE_CBC == mode) {
+ key->cipherOid = SEC_OID_AES_192_CBC;
+ }
+ else {
+ key->cipherOid = SEC_OID_AES_192_ECB;
+ }
+ key->keyLength = 24;
+ break;
+ case (APR_KEY_AES_256):
+ if (APR_MODE_CBC == mode) {
+ key->cipherOid = SEC_OID_AES_256_CBC;
+ }
+ else {
+ key->cipherOid = SEC_OID_AES_256_ECB;
+ }
+ key->keyLength = 32;
+ break;
+ default:
+ /* unknown key type, give up */
+ return APR_EKEYTYPE;
+ }
+
+ /* AES_128_CBC --> CKM_AES_CBC --> CKM_AES_CBC_PAD */
+ key->cipherMech = PK11_AlgtagToMechanism(key->cipherOid);
+ if (key->cipherMech == CKM_INVALID_MECHANISM) {
+ return APR_ENOCIPHER;
+ }
+ if (doPad) {
+ CK_MECHANISM_TYPE paddedMech;
+ paddedMech = PK11_GetPadMechanism(key->cipherMech);
+ if (CKM_INVALID_MECHANISM == paddedMech
+ || key->cipherMech == paddedMech) {
+ return APR_EPADDING;
+ }
+ key->cipherMech = paddedMech;
+ }
+
+ key->ivSize = PK11_GetIVLength(key->cipherMech);
+
+ return APR_SUCCESS;
+}
+
+/**
+ * @brief Create a key from the provided secret or passphrase. The key is cleaned
+ * up when the context is cleaned, and may be reused with multiple encryption
+ * or decryption operations.
+ * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
+ * *key is not NULL, *key must point at a previously created structure.
+ * @param key The key returned, see note.
+ * @param rec The key record, from which the key will be derived.
+ * @param f The context to use.
+ * @param p The pool to use.
+ * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
+ * error occurred while generating the key. APR_ENOCIPHER if the type or mode
+ * is not supported by the particular backend. APR_EKEYTYPE if the key type is
+ * not known. APR_EPADDING if padding was requested but is not supported.
+ * APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_key(apr_crypto_key_t **k,
+ const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p)
+{
+ apr_status_t rv = APR_SUCCESS;
+ PK11SlotInfo *slot, *tslot;
+ PK11SymKey *tkey;
+ SECItem secretItem;
+ SECItem wrappedItem;
+ SECItem *secParam;
+ PK11Context *ctx;
+ SECStatus s;
+ SECItem passItem;
+ SECItem saltItem;
+ SECAlgorithmID *algid;
+ void *wincx = NULL; /* what is wincx? */
+ apr_crypto_key_t *key;
+ int blockSize;
+ int remainder;
+
+ key = *k;
+ if (!key) {
+ *k = key = apr_pcalloc(p, sizeof *key);
+ if (!key) {
+ return APR_ENOMEM;
+ }
+ apr_pool_cleanup_register(p, key, crypto_key_cleanup,
+ apr_pool_cleanup_null);
+ }
+
+ key->f = f;
+ key->provider = f->provider;
+
+ /* decide on what cipher mechanism we will be using */
+ rv = crypto_cipher_mechanism(key, rec->type, rec->mode, rec->pad);
+ if (APR_SUCCESS != rv) {
+ return rv;
+ }
+
+ switch (rec->ktype) {
+
+ case APR_CRYPTO_KTYPE_PASSPHRASE: {
+
+ /* Turn the raw passphrase and salt into SECItems */
+ passItem.data = (unsigned char*) rec->k.passphrase.pass;
+ passItem.len = rec->k.passphrase.passLen;
+ saltItem.data = (unsigned char*) rec->k.passphrase.salt;
+ saltItem.len = rec->k.passphrase.saltLen;
+
+ /* generate the key */
+ /* pbeAlg and cipherAlg are the same. */
+ algid = PK11_CreatePBEV2AlgorithmID(key->cipherOid, key->cipherOid,
+ SEC_OID_HMAC_SHA1, key->keyLength,
+ rec->k.passphrase.iterations, &saltItem);
+ if (algid) {
+ slot = PK11_GetBestSlot(key->cipherMech, wincx);
+ if (slot) {
+ key->symKey = PK11_PBEKeyGen(slot, algid, &passItem, PR_FALSE,
+ wincx);
+ PK11_FreeSlot(slot);
+ }
+ SECOID_DestroyAlgorithmID(algid, PR_TRUE);
+ }
+
+ break;
+ }
+
+ case APR_CRYPTO_KTYPE_SECRET: {
+
+ /*
+ * NSS is by default in FIPS mode, which disallows the use of unencrypted
+ * symmetrical keys. As per http://permalink.gmane.org/gmane.comp.mozilla.crypto/7947
+ * we do the following:
+ *
+ * 1. Generate a (temporary) symmetric key in NSS.
+ * 2. Use that symmetric key to encrypt your symmetric key as data.
+ * 3. Unwrap your wrapped symmetric key, using the symmetric key
+ * you generated in Step 1 as the unwrapping key.
+ *
+ * http://permalink.gmane.org/gmane.comp.mozilla.crypto/7947
+ */
+
+ /* generate the key */
+ slot = PK11_GetBestSlot(key->cipherMech, NULL);
+ if (slot) {
+ unsigned char data[BUFFER_SIZE];
+
+ /* sanity check - key correct size? */
+ if (rec->k.secret.secretLen != key->keyLength) {
+ PK11_FreeSlot(slot);
+ return APR_EKEYLENGTH;
+ }
+
+ tslot = PK11_GetBestSlot(CKM_AES_ECB, NULL);
+ if (tslot) {
+
+ /* generate a temporary wrapping key */
+ tkey = PK11_KeyGen(tslot, CKM_AES_ECB, 0, PK11_GetBestKeyLength(tslot, CKM_AES_ECB), 0);
+
+ /* prepare the key to wrap */
+ secretItem.data = (unsigned char *) rec->k.secret.secret;
+ secretItem.len = rec->k.secret.secretLen;
+
+ /* ensure our key matches the blocksize */
+ secParam = PK11_GenerateNewParam(CKM_AES_ECB, tkey);
+ blockSize = PK11_GetBlockSize(CKM_AES_ECB, secParam);
+ remainder = rec->k.secret.secretLen % blockSize;
+ if (remainder) {
+ secretItem.data =
+ apr_pcalloc(p, rec->k.secret.secretLen + remainder);
+ apr_crypto_clear(p, secretItem.data,
+ rec->k.secret.secretLen);
+ memcpy(secretItem.data, rec->k.secret.secret,
+ rec->k.secret.secretLen);
+ secretItem.len += remainder;
+ }
+
+ /* prepare a space for the wrapped key */
+ wrappedItem.data = data;
+
+ /* wrap the key */
+ ctx = PK11_CreateContextBySymKey(CKM_AES_ECB, CKA_ENCRYPT, tkey,
+ secParam);
+ if (ctx) {
+ s = PK11_CipherOp(ctx, wrappedItem.data,
+ (int *) (&wrappedItem.len), BUFFER_SIZE,
+ secretItem.data, secretItem.len);
+ if (s == SECSuccess) {
+
+ /* unwrap the key again */
+ key->symKey = PK11_UnwrapSymKeyWithFlags(tkey,
+ CKM_AES_ECB, NULL, &wrappedItem,
+ key->cipherMech, CKA_ENCRYPT,
+ rec->k.secret.secretLen, 0);
+
+ }
+
+ PK11_DestroyContext(ctx, PR_TRUE);
+ }
+
+ /* clean up */
+ SECITEM_FreeItem(secParam, PR_TRUE);
+ PK11_FreeSymKey(tkey);
+ PK11_FreeSlot(tslot);
+
+ }
+
+ PK11_FreeSlot(slot);
+ }
+
+ break;
+ }
+
+ default: {
+
+ return APR_ENOKEY;
+
+ }
+ }
+
+ /* sanity check? */
+ if (!key->symKey) {
+ PRErrorCode perr = PORT_GetError();
+ if (perr) {
+ f->result->rc = perr;
+ f->result->msg = PR_ErrorToName(perr);
+ rv = APR_ENOKEY;
+ }
+ }
+
+ return rv;
+}
+
+/**
+ * @brief Create a key from the given passphrase. By default, the PBKDF2
+ * algorithm is used to generate the key from the passphrase. It is expected
+ * that the same pass phrase will generate the same key, regardless of the
+ * backend crypto platform used. The key is cleaned up when the context
+ * is cleaned, and may be reused with multiple encryption or decryption
+ * operations.
+ * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
+ * *key is not NULL, *key must point at a previously created structure.
+ * @param key The key returned, see note.
+ * @param ivSize The size of the initialisation vector will be returned, based
+ * on whether an IV is relevant for this type of crypto.
+ * @param pass The passphrase to use.
+ * @param passLen The passphrase length in bytes
+ * @param salt The salt to use.
+ * @param saltLen The salt length in bytes
+ * @param type 3DES_192, AES_128, AES_192, AES_256.
+ * @param mode Electronic Code Book / Cipher Block Chaining.
+ * @param doPad Pad if necessary.
+ * @param iterations Iteration count
+ * @param f The context to use.
+ * @param p The pool to use.
+ * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
+ * error occurred while generating the key. APR_ENOCIPHER if the type or mode
+ * is not supported by the particular backend. APR_EKEYTYPE if the key type is
+ * not known. APR_EPADDING if padding was requested but is not supported.
+ * APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_passphrase(apr_crypto_key_t **k, apr_size_t *ivSize,
+ const char *pass, apr_size_t passLen, const unsigned char * salt,
+ apr_size_t saltLen, const apr_crypto_block_key_type_e type,
+ const apr_crypto_block_key_mode_e mode, const int doPad,
+ const int iterations, const apr_crypto_t *f, apr_pool_t *p)
+{
+ apr_status_t rv = APR_SUCCESS;
+ PK11SlotInfo * slot;
+ SECItem passItem;
+ SECItem saltItem;
+ SECAlgorithmID *algid;
+ void *wincx = NULL; /* what is wincx? */
+ apr_crypto_key_t *key = *k;
+
+ if (!key) {
+ *k = key = apr_pcalloc(p, sizeof *key);
+ if (!key) {
+ return APR_ENOMEM;
+ }
+ apr_pool_cleanup_register(p, key, crypto_key_cleanup,
+ apr_pool_cleanup_null);
+ }
+
+ key->f = f;
+ key->provider = f->provider;
+
+ /* decide on what cipher mechanism we will be using */
+ rv = crypto_cipher_mechanism(key, type, mode, doPad);
+ if (APR_SUCCESS != rv) {
+ return rv;
+ }
+
+ /* Turn the raw passphrase and salt into SECItems */
+ passItem.data = (unsigned char*) pass;
+ passItem.len = passLen;
+ saltItem.data = (unsigned char*) salt;
+ saltItem.len = saltLen;
+
+ /* generate the key */
+ /* pbeAlg and cipherAlg are the same. */
+ algid = PK11_CreatePBEV2AlgorithmID(key->cipherOid, key->cipherOid,
+ SEC_OID_HMAC_SHA1, key->keyLength, iterations, &saltItem);
+ if (algid) {
+ slot = PK11_GetBestSlot(key->cipherMech, wincx);
+ if (slot) {
+ key->symKey = PK11_PBEKeyGen(slot, algid, &passItem, PR_FALSE,
+ wincx);
+ PK11_FreeSlot(slot);
+ }
+ SECOID_DestroyAlgorithmID(algid, PR_TRUE);
+ }
+
+ /* sanity check? */
+ if (!key->symKey) {
+ PRErrorCode perr = PORT_GetError();
+ if (perr) {
+ f->result->rc = perr;
+ f->result->msg = PR_ErrorToName(perr);
+ rv = APR_ENOKEY;
+ }
+ }
+
+ if (ivSize) {
+ *ivSize = key->ivSize;
+ }
+
+ return rv;
+}
+
+/**
+ * @brief Initialise a context for encrypting arbitrary data using the given key.
+ * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
+ * *ctx is not NULL, *ctx must point at a previously created structure.
+ * @param ctx The block context returned, see note.
+ * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
+ * an IV will be created at random, in space allocated from the pool.
+ * If the buffer pointed to is not NULL, the IV in the buffer will be
+ * used.
+ * @param key The key structure.
+ * @param blockSize The block size of the cipher.
+ * @param p The pool to use.
+ * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
+ * Returns APR_EINIT if the backend failed to initialise the context. Returns
+ * APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_block_encrypt_init(apr_crypto_block_t **ctx,
+ const unsigned char **iv, const apr_crypto_key_t *key,
+ apr_size_t *blockSize, apr_pool_t *p)
+{
+ PRErrorCode perr;
+ SECItem ivItem;
+ unsigned char * usedIv;
+ apr_crypto_block_t *block = *ctx;
+ if (!block) {
+ *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
+ }
+ if (!block) {
+ return APR_ENOMEM;
+ }
+ block->f = key->f;
+ block->pool = p;
+ block->provider = key->provider;
+
+ apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
+ apr_pool_cleanup_null);
+
+ if (key->ivSize) {
+ if (iv == NULL) {
+ return APR_ENOIV;
+ }
+ if (*iv == NULL) {
+ SECStatus s;
+ usedIv = apr_pcalloc(p, key->ivSize);
+ if (!usedIv) {
+ return APR_ENOMEM;
+ }
+ apr_crypto_clear(p, usedIv, key->ivSize);
+ s = PK11_GenerateRandom(usedIv, key->ivSize);
+ if (s != SECSuccess) {
+ return APR_ENOIV;
+ }
+ *iv = usedIv;
+ }
+ else {
+ usedIv = (unsigned char *) *iv;
+ }
+ ivItem.data = usedIv;
+ ivItem.len = key->ivSize;
+ block->secParam = PK11_ParamFromIV(key->cipherMech, &ivItem);
+ }
+ else {
+ block->secParam = PK11_GenerateNewParam(key->cipherMech, key->symKey);
+ }
+ block->blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
+ block->ctx = PK11_CreateContextBySymKey(key->cipherMech, CKA_ENCRYPT,
+ key->symKey, block->secParam);
+
+ /* did an error occur? */
+ perr = PORT_GetError();
+ if (perr || !block->ctx) {
+ key->f->result->rc = perr;
+ key->f->result->msg = PR_ErrorToName(perr);
+ return APR_EINIT;
+ }
+
+ if (blockSize) {
+ *blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
+ }
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Encrypt data provided by in, write it to out.
+ * @note The number of bytes written will be written to outlen. If
+ * out is NULL, outlen will contain the maximum size of the
+ * buffer needed to hold the data, including any data
+ * generated by apr_crypto_block_encrypt_finish below. If *out points
+ * to NULL, a buffer sufficiently large will be created from
+ * the pool provided. If *out points to a not-NULL value, this
+ * value will be used as a buffer instead.
+ * @param out Address of a buffer to which data will be written,
+ * see note.
+ * @param outlen Length of the output will be written here.
+ * @param in Address of the buffer to read.
+ * @param inlen Length of the buffer to read.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
+ * not implemented.
+ */
+static apr_status_t crypto_block_encrypt(unsigned char **out,
+ apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
+ apr_crypto_block_t *block)
+{
+
+ unsigned char *buffer;
+ int outl = (int) *outlen;
+ SECStatus s;
+ if (!out) {
+ *outlen = inlen + block->blockSize;
+ return APR_SUCCESS;
+ }
+ if (!*out) {
+ buffer = apr_palloc(block->pool, inlen + block->blockSize);
+ if (!buffer) {
+ return APR_ENOMEM;
+ }
+ apr_crypto_clear(block->pool, buffer, inlen + block->blockSize);
+ *out = buffer;
+ }
+
+ s = PK11_CipherOp(block->ctx, *out, &outl, inlen, (unsigned char*) in,
+ inlen);
+ if (s != SECSuccess) {
+ PRErrorCode perr = PORT_GetError();
+ if (perr) {
+ block->f->result->rc = perr;
+ block->f->result->msg = PR_ErrorToName(perr);
+ }
+ return APR_ECRYPT;
+ }
+ *outlen = outl;
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Encrypt final data block, write it to out.
+ * @note If necessary the final block will be written out after being
+ * padded. Typically the final block will be written to the
+ * same buffer used by apr_crypto_block_encrypt, offset by the
+ * number of bytes returned as actually written by the
+ * apr_crypto_block_encrypt() call. After this call, the context
+ * is cleaned and can be reused by apr_crypto_block_encrypt_init().
+ * @param out Address of a buffer to which data will be written. This
+ * buffer must already exist, and is usually the same
+ * buffer used by apr_evp_crypt(). See note.
+ * @param outlen Length of the output will be written here.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred.
+ * @return APR_EPADDING if padding was enabled and the block was incorrectly
+ * formatted.
+ * @return APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_block_encrypt_finish(unsigned char *out,
+ apr_size_t *outlen, apr_crypto_block_t *block)
+{
+
+ apr_status_t rv = APR_SUCCESS;
+ unsigned int outl = *outlen;
+
+ SECStatus s = PK11_DigestFinal(block->ctx, out, &outl, block->blockSize);
+ *outlen = outl;
+
+ if (s != SECSuccess) {
+ PRErrorCode perr = PORT_GetError();
+ if (perr) {
+ block->f->result->rc = perr;
+ block->f->result->msg = PR_ErrorToName(perr);
+ }
+ rv = APR_ECRYPT;
+ }
+ crypto_block_cleanup(block);
+
+ return rv;
+
+}
+
+/**
+ * @brief Initialise a context for decrypting arbitrary data using the given key.
+ * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
+ * *ctx is not NULL, *ctx must point at a previously created structure.
+ * @param ctx The block context returned, see note.
+ * @param blockSize The block size of the cipher.
+ * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
+ * an IV will be created at random, in space allocated from the pool.
+ * If the buffer is not NULL, the IV in the buffer will be used.
+ * @param key The key structure.
+ * @param p The pool to use.
+ * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
+ * Returns APR_EINIT if the backend failed to initialise the context. Returns
+ * APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_block_decrypt_init(apr_crypto_block_t **ctx,
+ apr_size_t *blockSize, const unsigned char *iv,
+ const apr_crypto_key_t *key, apr_pool_t *p)
+{
+ PRErrorCode perr;
+ apr_crypto_block_t *block = *ctx;
+ if (!block) {
+ *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
+ }
+ if (!block) {
+ return APR_ENOMEM;
+ }
+ block->f = key->f;
+ block->pool = p;
+ block->provider = key->provider;
+
+ apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
+ apr_pool_cleanup_null);
+
+ if (key->ivSize) {
+ SECItem ivItem;
+ if (iv == NULL) {
+ return APR_ENOIV; /* Cannot initialise without an IV */
+ }
+ ivItem.data = (unsigned char*) iv;
+ ivItem.len = key->ivSize;
+ block->secParam = PK11_ParamFromIV(key->cipherMech, &ivItem);
+ }
+ else {
+ block->secParam = PK11_GenerateNewParam(key->cipherMech, key->symKey);
+ }
+ block->blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
+ block->ctx = PK11_CreateContextBySymKey(key->cipherMech, CKA_DECRYPT,
+ key->symKey, block->secParam);
+
+ /* did an error occur? */
+ perr = PORT_GetError();
+ if (perr || !block->ctx) {
+ key->f->result->rc = perr;
+ key->f->result->msg = PR_ErrorToName(perr);
+ return APR_EINIT;
+ }
+
+ if (blockSize) {
+ *blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
+ }
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Decrypt data provided by in, write it to out.
+ * @note The number of bytes written will be written to outlen. If
+ * out is NULL, outlen will contain the maximum size of the
+ * buffer needed to hold the data, including any data
+ * generated by apr_crypto_block_decrypt_finish below. If *out points
+ * to NULL, a buffer sufficiently large will be created from
+ * the pool provided. If *out points to a not-NULL value, this
+ * value will be used as a buffer instead.
+ * @param out Address of a buffer to which data will be written,
+ * see note.
+ * @param outlen Length of the output will be written here.
+ * @param in Address of the buffer to read.
+ * @param inlen Length of the buffer to read.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
+ * not implemented.
+ */
+static apr_status_t crypto_block_decrypt(unsigned char **out,
+ apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
+ apr_crypto_block_t *block)
+{
+
+ unsigned char *buffer;
+ int outl = (int) *outlen;
+ SECStatus s;
+ if (!out) {
+ *outlen = inlen + block->blockSize;
+ return APR_SUCCESS;
+ }
+ if (!*out) {
+ buffer = apr_palloc(block->pool, inlen + block->blockSize);
+ if (!buffer) {
+ return APR_ENOMEM;
+ }
+ apr_crypto_clear(block->pool, buffer, inlen + block->blockSize);
+ *out = buffer;
+ }
+
+ s = PK11_CipherOp(block->ctx, *out, &outl, inlen, (unsigned char*) in,
+ inlen);
+ if (s != SECSuccess) {
+ PRErrorCode perr = PORT_GetError();
+ if (perr) {
+ block->f->result->rc = perr;
+ block->f->result->msg = PR_ErrorToName(perr);
+ }
+ return APR_ECRYPT;
+ }
+ *outlen = outl;
+
+ return APR_SUCCESS;
+
+}
+
+/**
+ * @brief Decrypt final data block, write it to out.
+ * @note If necessary the final block will be written out after being
+ * padded. Typically the final block will be written to the
+ * same buffer used by apr_crypto_block_decrypt, offset by the
+ * number of bytes returned as actually written by the
+ * apr_crypto_block_decrypt() call. After this call, the context
+ * is cleaned and can be reused by apr_crypto_block_decrypt_init().
+ * @param out Address of a buffer to which data will be written. This
+ * buffer must already exist, and is usually the same
+ * buffer used by apr_evp_crypt(). See note.
+ * @param outlen Length of the output will be written here.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred.
+ * @return APR_EPADDING if padding was enabled and the block was incorrectly
+ * formatted.
+ * @return APR_ENOTIMPL if not implemented.
+ */
+static apr_status_t crypto_block_decrypt_finish(unsigned char *out,
+ apr_size_t *outlen, apr_crypto_block_t *block)
+{
+
+ apr_status_t rv = APR_SUCCESS;
+ unsigned int outl = *outlen;
+
+ SECStatus s = PK11_DigestFinal(block->ctx, out, &outl, block->blockSize);
+ *outlen = outl;
+
+ if (s != SECSuccess) {
+ PRErrorCode perr = PORT_GetError();
+ if (perr) {
+ block->f->result->rc = perr;
+ block->f->result->msg = PR_ErrorToName(perr);
+ }
+ rv = APR_ECRYPT;
+ }
+ crypto_block_cleanup(block);
+
+ return rv;
+
+}
+
+/**
+ * NSS module.
+ */
+APU_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_nss_driver = {
+ "nss", crypto_init, crypto_make, crypto_get_block_key_types,
+ crypto_get_block_key_modes, crypto_passphrase,
+ crypto_block_encrypt_init, crypto_block_encrypt,
+ crypto_block_encrypt_finish, crypto_block_decrypt_init,
+ crypto_block_decrypt, crypto_block_decrypt_finish,
+ crypto_block_cleanup, crypto_cleanup, crypto_shutdown, crypto_error,
+ crypto_key
+};
+
+#endif