summaryrefslogtreecommitdiffstats
path: root/docs/design/firmware-design.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 09:13:47 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 09:13:47 +0000
commit102b0d2daa97dae68d3eed54d8fe37a9cc38a892 (patch)
treebcf648efac40ca6139842707f0eba5a4496a6dd2 /docs/design/firmware-design.rst
parentInitial commit. (diff)
downloadarm-trusted-firmware-102b0d2daa97dae68d3eed54d8fe37a9cc38a892.tar.xz
arm-trusted-firmware-102b0d2daa97dae68d3eed54d8fe37a9cc38a892.zip
Adding upstream version 2.8.0+dfsg.upstream/2.8.0+dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'docs/design/firmware-design.rst')
-rw-r--r--docs/design/firmware-design.rst2766
1 files changed, 2766 insertions, 0 deletions
diff --git a/docs/design/firmware-design.rst b/docs/design/firmware-design.rst
new file mode 100644
index 0000000..84bba18
--- /dev/null
+++ b/docs/design/firmware-design.rst
@@ -0,0 +1,2766 @@
+Firmware Design
+===============
+
+Trusted Firmware-A (TF-A) implements a subset of the Trusted Board Boot
+Requirements (TBBR) Platform Design Document (PDD) for Arm reference
+platforms.
+
+The TBB sequence starts when the platform is powered on and runs up
+to the stage where it hands-off control to firmware running in the normal
+world in DRAM. This is the cold boot path.
+
+TF-A also implements the `Power State Coordination Interface PDD`_ as a
+runtime service. PSCI is the interface from normal world software to firmware
+implementing power management use-cases (for example, secondary CPU boot,
+hotplug and idle). Normal world software can access TF-A runtime services via
+the Arm SMC (Secure Monitor Call) instruction. The SMC instruction must be
+used as mandated by the SMC Calling Convention (`SMCCC`_).
+
+TF-A implements a framework for configuring and managing interrupts generated
+in either security state. The details of the interrupt management framework
+and its design can be found in :ref:`Interrupt Management Framework`.
+
+TF-A also implements a library for setting up and managing the translation
+tables. The details of this library can be found in
+:ref:`Translation (XLAT) Tables Library`.
+
+TF-A can be built to support either AArch64 or AArch32 execution state.
+
+.. note::
+
+ The descriptions in this chapter are for the Arm TrustZone architecture.
+ For changes to the firmware design for the
+ `Arm Confidential Compute Architecture (Arm CCA)`_ please refer to the
+ chapter :ref:`Realm Management Extension (RME)`.
+
+Cold boot
+---------
+
+The cold boot path starts when the platform is physically turned on. If
+``COLD_BOOT_SINGLE_CPU=0``, one of the CPUs released from reset is chosen as the
+primary CPU, and the remaining CPUs are considered secondary CPUs. The primary
+CPU is chosen through platform-specific means. The cold boot path is mainly
+executed by the primary CPU, other than essential CPU initialization executed by
+all CPUs. The secondary CPUs are kept in a safe platform-specific state until
+the primary CPU has performed enough initialization to boot them.
+
+Refer to the :ref:`CPU Reset` for more information on the effect of the
+``COLD_BOOT_SINGLE_CPU`` platform build option.
+
+The cold boot path in this implementation of TF-A depends on the execution
+state. For AArch64, it is divided into five steps (in order of execution):
+
+- Boot Loader stage 1 (BL1) *AP Trusted ROM*
+- Boot Loader stage 2 (BL2) *Trusted Boot Firmware*
+- Boot Loader stage 3-1 (BL31) *EL3 Runtime Software*
+- Boot Loader stage 3-2 (BL32) *Secure-EL1 Payload* (optional)
+- Boot Loader stage 3-3 (BL33) *Non-trusted Firmware*
+
+For AArch32, it is divided into four steps (in order of execution):
+
+- Boot Loader stage 1 (BL1) *AP Trusted ROM*
+- Boot Loader stage 2 (BL2) *Trusted Boot Firmware*
+- Boot Loader stage 3-2 (BL32) *EL3 Runtime Software*
+- Boot Loader stage 3-3 (BL33) *Non-trusted Firmware*
+
+Arm development platforms (Fixed Virtual Platforms (FVPs) and Juno) implement a
+combination of the following types of memory regions. Each bootloader stage uses
+one or more of these memory regions.
+
+- Regions accessible from both non-secure and secure states. For example,
+ non-trusted SRAM, ROM and DRAM.
+- Regions accessible from only the secure state. For example, trusted SRAM and
+ ROM. The FVPs also implement the trusted DRAM which is statically
+ configured. Additionally, the Base FVPs and Juno development platform
+ configure the TrustZone Controller (TZC) to create a region in the DRAM
+ which is accessible only from the secure state.
+
+The sections below provide the following details:
+
+- dynamic configuration of Boot Loader stages
+- initialization and execution of the first three stages during cold boot
+- specification of the EL3 Runtime Software (BL31 for AArch64 and BL32 for
+ AArch32) entrypoint requirements for use by alternative Trusted Boot
+ Firmware in place of the provided BL1 and BL2
+
+Dynamic Configuration during cold boot
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Each of the Boot Loader stages may be dynamically configured if required by the
+platform. The Boot Loader stage may optionally specify a firmware
+configuration file and/or hardware configuration file as listed below:
+
+- FW_CONFIG - The firmware configuration file. Holds properties shared across
+ all BLx images.
+ An example is the "dtb-registry" node, which contains the information about
+ the other device tree configurations (load-address, size, image_id).
+- HW_CONFIG - The hardware configuration file. Can be shared by all Boot Loader
+ stages and also by the Normal World Rich OS.
+- TB_FW_CONFIG - Trusted Boot Firmware configuration file. Shared between BL1
+ and BL2.
+- SOC_FW_CONFIG - SoC Firmware configuration file. Used by BL31.
+- TOS_FW_CONFIG - Trusted OS Firmware configuration file. Used by Trusted OS
+ (BL32).
+- NT_FW_CONFIG - Non Trusted Firmware configuration file. Used by Non-trusted
+ firmware (BL33).
+
+The Arm development platforms use the Flattened Device Tree format for the
+dynamic configuration files.
+
+Each Boot Loader stage can pass up to 4 arguments via registers to the next
+stage. BL2 passes the list of the next images to execute to the *EL3 Runtime
+Software* (BL31 for AArch64 and BL32 for AArch32) via `arg0`. All the other
+arguments are platform defined. The Arm development platforms use the following
+convention:
+
+- BL1 passes the address of a meminfo_t structure to BL2 via ``arg1``. This
+ structure contains the memory layout available to BL2.
+- When dynamic configuration files are present, the firmware configuration for
+ the next Boot Loader stage is populated in the first available argument and
+ the generic hardware configuration is passed the next available argument.
+ For example,
+
+ - FW_CONFIG is loaded by BL1, then its address is passed in ``arg0`` to BL2.
+ - TB_FW_CONFIG address is retrieved by BL2 from FW_CONFIG device tree.
+ - If HW_CONFIG is loaded by BL1, then its address is passed in ``arg2`` to
+ BL2. Note, ``arg1`` is already used for meminfo_t.
+ - If SOC_FW_CONFIG is loaded by BL2, then its address is passed in ``arg1``
+ to BL31. Note, ``arg0`` is used to pass the list of executable images.
+ - Similarly, if HW_CONFIG is loaded by BL1 or BL2, then its address is
+ passed in ``arg2`` to BL31.
+ - For other BL3x images, if the firmware configuration file is loaded by
+ BL2, then its address is passed in ``arg0`` and if HW_CONFIG is loaded
+ then its address is passed in ``arg1``.
+ - In case of the Arm FVP platform, FW_CONFIG address passed in ``arg1`` to
+ BL31/SP_MIN, and the SOC_FW_CONFIG and HW_CONFIG details are retrieved
+ from FW_CONFIG device tree.
+
+BL1
+~~~
+
+This stage begins execution from the platform's reset vector at EL3. The reset
+address is platform dependent but it is usually located in a Trusted ROM area.
+The BL1 data section is copied to trusted SRAM at runtime.
+
+On the Arm development platforms, BL1 code starts execution from the reset
+vector defined by the constant ``BL1_RO_BASE``. The BL1 data section is copied
+to the top of trusted SRAM as defined by the constant ``BL1_RW_BASE``.
+
+The functionality implemented by this stage is as follows.
+
+Determination of boot path
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Whenever a CPU is released from reset, BL1 needs to distinguish between a warm
+boot and a cold boot. This is done using platform-specific mechanisms (see the
+``plat_get_my_entrypoint()`` function in the :ref:`Porting Guide`). In the case
+of a warm boot, a CPU is expected to continue execution from a separate
+entrypoint. In the case of a cold boot, the secondary CPUs are placed in a safe
+platform-specific state (see the ``plat_secondary_cold_boot_setup()`` function in
+the :ref:`Porting Guide`) while the primary CPU executes the remaining cold boot
+path as described in the following sections.
+
+This step only applies when ``PROGRAMMABLE_RESET_ADDRESS=0``. Refer to the
+:ref:`CPU Reset` for more information on the effect of the
+``PROGRAMMABLE_RESET_ADDRESS`` platform build option.
+
+Architectural initialization
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+BL1 performs minimal architectural initialization as follows.
+
+- Exception vectors
+
+ BL1 sets up simple exception vectors for both synchronous and asynchronous
+ exceptions. The default behavior upon receiving an exception is to populate
+ a status code in the general purpose register ``X0/R0`` and call the
+ ``plat_report_exception()`` function (see the :ref:`Porting Guide`). The
+ status code is one of:
+
+ For AArch64:
+
+ ::
+
+ 0x0 : Synchronous exception from Current EL with SP_EL0
+ 0x1 : IRQ exception from Current EL with SP_EL0
+ 0x2 : FIQ exception from Current EL with SP_EL0
+ 0x3 : System Error exception from Current EL with SP_EL0
+ 0x4 : Synchronous exception from Current EL with SP_ELx
+ 0x5 : IRQ exception from Current EL with SP_ELx
+ 0x6 : FIQ exception from Current EL with SP_ELx
+ 0x7 : System Error exception from Current EL with SP_ELx
+ 0x8 : Synchronous exception from Lower EL using aarch64
+ 0x9 : IRQ exception from Lower EL using aarch64
+ 0xa : FIQ exception from Lower EL using aarch64
+ 0xb : System Error exception from Lower EL using aarch64
+ 0xc : Synchronous exception from Lower EL using aarch32
+ 0xd : IRQ exception from Lower EL using aarch32
+ 0xe : FIQ exception from Lower EL using aarch32
+ 0xf : System Error exception from Lower EL using aarch32
+
+ For AArch32:
+
+ ::
+
+ 0x10 : User mode
+ 0x11 : FIQ mode
+ 0x12 : IRQ mode
+ 0x13 : SVC mode
+ 0x16 : Monitor mode
+ 0x17 : Abort mode
+ 0x1a : Hypervisor mode
+ 0x1b : Undefined mode
+ 0x1f : System mode
+
+ The ``plat_report_exception()`` implementation on the Arm FVP port programs
+ the Versatile Express System LED register in the following format to
+ indicate the occurrence of an unexpected exception:
+
+ ::
+
+ SYS_LED[0] - Security state (Secure=0/Non-Secure=1)
+ SYS_LED[2:1] - Exception Level (EL3=0x3, EL2=0x2, EL1=0x1, EL0=0x0)
+ For AArch32 it is always 0x0
+ SYS_LED[7:3] - Exception Class (Sync/Async & origin). This is the value
+ of the status code
+
+ A write to the LED register reflects in the System LEDs (S6LED0..7) in the
+ CLCD window of the FVP.
+
+ BL1 does not expect to receive any exceptions other than the SMC exception.
+ For the latter, BL1 installs a simple stub. The stub expects to receive a
+ limited set of SMC types (determined by their function IDs in the general
+ purpose register ``X0/R0``):
+
+ - ``BL1_SMC_RUN_IMAGE``: This SMC is raised by BL2 to make BL1 pass control
+ to EL3 Runtime Software.
+ - All SMCs listed in section "BL1 SMC Interface" in the :ref:`Firmware Update (FWU)`
+ Design Guide are supported for AArch64 only. These SMCs are currently
+ not supported when BL1 is built for AArch32.
+
+ Any other SMC leads to an assertion failure.
+
+- CPU initialization
+
+ BL1 calls the ``reset_handler()`` function which in turn calls the CPU
+ specific reset handler function (see the section: "CPU specific operations
+ framework").
+
+- Control register setup (for AArch64)
+
+ - ``SCTLR_EL3``. Instruction cache is enabled by setting the ``SCTLR_EL3.I``
+ bit. Alignment and stack alignment checking is enabled by setting the
+ ``SCTLR_EL3.A`` and ``SCTLR_EL3.SA`` bits. Exception endianness is set to
+ little-endian by clearing the ``SCTLR_EL3.EE`` bit.
+
+ - ``SCR_EL3``. The register width of the next lower exception level is set
+ to AArch64 by setting the ``SCR.RW`` bit. The ``SCR.EA`` bit is set to trap
+ both External Aborts and SError Interrupts in EL3. The ``SCR.SIF`` bit is
+ also set to disable instruction fetches from Non-secure memory when in
+ secure state.
+
+ - ``CPTR_EL3``. Accesses to the ``CPACR_EL1`` register from EL1 or EL2, or the
+ ``CPTR_EL2`` register from EL2 are configured to not trap to EL3 by
+ clearing the ``CPTR_EL3.TCPAC`` bit. Access to the trace functionality is
+ configured not to trap to EL3 by clearing the ``CPTR_EL3.TTA`` bit.
+ Instructions that access the registers associated with Floating Point
+ and Advanced SIMD execution are configured to not trap to EL3 by
+ clearing the ``CPTR_EL3.TFP`` bit.
+
+ - ``DAIF``. The SError interrupt is enabled by clearing the SError interrupt
+ mask bit.
+
+ - ``MDCR_EL3``. The trap controls, ``MDCR_EL3.TDOSA``, ``MDCR_EL3.TDA`` and
+ ``MDCR_EL3.TPM``, are set so that accesses to the registers they control
+ do not trap to EL3. AArch64 Secure self-hosted debug is disabled by
+ setting the ``MDCR_EL3.SDD`` bit. Also ``MDCR_EL3.SPD32`` is set to
+ disable AArch32 Secure self-hosted privileged debug from S-EL1.
+
+- Control register setup (for AArch32)
+
+ - ``SCTLR``. Instruction cache is enabled by setting the ``SCTLR.I`` bit.
+ Alignment checking is enabled by setting the ``SCTLR.A`` bit.
+ Exception endianness is set to little-endian by clearing the
+ ``SCTLR.EE`` bit.
+
+ - ``SCR``. The ``SCR.SIF`` bit is set to disable instruction fetches from
+ Non-secure memory when in secure state.
+
+ - ``CPACR``. Allow execution of Advanced SIMD instructions at PL0 and PL1,
+ by clearing the ``CPACR.ASEDIS`` bit. Access to the trace functionality
+ is configured not to trap to undefined mode by clearing the
+ ``CPACR.TRCDIS`` bit.
+
+ - ``NSACR``. Enable non-secure access to Advanced SIMD functionality and
+ system register access to implemented trace registers.
+
+ - ``FPEXC``. Enable access to the Advanced SIMD and floating-point
+ functionality from all Exception levels.
+
+ - ``CPSR.A``. The Asynchronous data abort interrupt is enabled by clearing
+ the Asynchronous data abort interrupt mask bit.
+
+ - ``SDCR``. The ``SDCR.SPD`` field is set to disable AArch32 Secure
+ self-hosted privileged debug.
+
+Platform initialization
+^^^^^^^^^^^^^^^^^^^^^^^
+
+On Arm platforms, BL1 performs the following platform initializations:
+
+- Enable the Trusted Watchdog.
+- Initialize the console.
+- Configure the Interconnect to enable hardware coherency.
+- Enable the MMU and map the memory it needs to access.
+- Configure any required platform storage to load the next bootloader image
+ (BL2).
+- If the BL1 dynamic configuration file, ``TB_FW_CONFIG``, is available, then
+ load it to the platform defined address and make it available to BL2 via
+ ``arg0``.
+- Configure the system timer and program the `CNTFRQ_EL0` for use by NS-BL1U
+ and NS-BL2U firmware update images.
+
+Firmware Update detection and execution
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+After performing platform setup, BL1 common code calls
+``bl1_plat_get_next_image_id()`` to determine if :ref:`Firmware Update (FWU)` is
+required or to proceed with the normal boot process. If the platform code
+returns ``BL2_IMAGE_ID`` then the normal boot sequence is executed as described
+in the next section, else BL1 assumes that :ref:`Firmware Update (FWU)` is
+required and execution passes to the first image in the
+:ref:`Firmware Update (FWU)` process. In either case, BL1 retrieves a descriptor
+of the next image by calling ``bl1_plat_get_image_desc()``. The image descriptor
+contains an ``entry_point_info_t`` structure, which BL1 uses to initialize the
+execution state of the next image.
+
+BL2 image load and execution
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In the normal boot flow, BL1 execution continues as follows:
+
+#. BL1 prints the following string from the primary CPU to indicate successful
+ execution of the BL1 stage:
+
+ ::
+
+ "Booting Trusted Firmware"
+
+#. BL1 loads a BL2 raw binary image from platform storage, at a
+ platform-specific base address. Prior to the load, BL1 invokes
+ ``bl1_plat_handle_pre_image_load()`` which allows the platform to update or
+ use the image information. If the BL2 image file is not present or if
+ there is not enough free trusted SRAM the following error message is
+ printed:
+
+ ::
+
+ "Failed to load BL2 firmware."
+
+#. BL1 invokes ``bl1_plat_handle_post_image_load()`` which again is intended
+ for platforms to take further action after image load. This function must
+ populate the necessary arguments for BL2, which may also include the memory
+ layout. Further description of the memory layout can be found later
+ in this document.
+
+#. BL1 passes control to the BL2 image at Secure EL1 (for AArch64) or at
+ Secure SVC mode (for AArch32), starting from its load address.
+
+BL2
+~~~
+
+BL1 loads and passes control to BL2 at Secure-EL1 (for AArch64) or at Secure
+SVC mode (for AArch32) . BL2 is linked against and loaded at a platform-specific
+base address (more information can be found later in this document).
+The functionality implemented by BL2 is as follows.
+
+Architectural initialization
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+For AArch64, BL2 performs the minimal architectural initialization required
+for subsequent stages of TF-A and normal world software. EL1 and EL0 are given
+access to Floating Point and Advanced SIMD registers by setting the
+``CPACR.FPEN`` bits.
+
+For AArch32, the minimal architectural initialization required for subsequent
+stages of TF-A and normal world software is taken care of in BL1 as both BL1
+and BL2 execute at PL1.
+
+Platform initialization
+^^^^^^^^^^^^^^^^^^^^^^^
+
+On Arm platforms, BL2 performs the following platform initializations:
+
+- Initialize the console.
+- Configure any required platform storage to allow loading further bootloader
+ images.
+- Enable the MMU and map the memory it needs to access.
+- Perform platform security setup to allow access to controlled components.
+- Reserve some memory for passing information to the next bootloader image
+ EL3 Runtime Software and populate it.
+- Define the extents of memory available for loading each subsequent
+ bootloader image.
+- If BL1 has passed TB_FW_CONFIG dynamic configuration file in ``arg0``,
+ then parse it.
+
+Image loading in BL2
+^^^^^^^^^^^^^^^^^^^^
+
+BL2 generic code loads the images based on the list of loadable images
+provided by the platform. BL2 passes the list of executable images
+provided by the platform to the next handover BL image.
+
+The list of loadable images provided by the platform may also contain
+dynamic configuration files. The files are loaded and can be parsed as
+needed in the ``bl2_plat_handle_post_image_load()`` function. These
+configuration files can be passed to next Boot Loader stages as arguments
+by updating the corresponding entrypoint information in this function.
+
+SCP_BL2 (System Control Processor Firmware) image load
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Some systems have a separate System Control Processor (SCP) for power, clock,
+reset and system control. BL2 loads the optional SCP_BL2 image from platform
+storage into a platform-specific region of secure memory. The subsequent
+handling of SCP_BL2 is platform specific. For example, on the Juno Arm
+development platform port the image is transferred into SCP's internal memory
+using the Boot Over MHU (BOM) protocol after being loaded in the trusted SRAM
+memory. The SCP executes SCP_BL2 and signals to the Application Processor (AP)
+for BL2 execution to continue.
+
+EL3 Runtime Software image load
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+BL2 loads the EL3 Runtime Software image from platform storage into a platform-
+specific address in trusted SRAM. If there is not enough memory to load the
+image or image is missing it leads to an assertion failure.
+
+AArch64 BL32 (Secure-EL1 Payload) image load
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+BL2 loads the optional BL32 image from platform storage into a platform-
+specific region of secure memory. The image executes in the secure world. BL2
+relies on BL31 to pass control to the BL32 image, if present. Hence, BL2
+populates a platform-specific area of memory with the entrypoint/load-address
+of the BL32 image. The value of the Saved Processor Status Register (``SPSR``)
+for entry into BL32 is not determined by BL2, it is initialized by the
+Secure-EL1 Payload Dispatcher (see later) within BL31, which is responsible for
+managing interaction with BL32. This information is passed to BL31.
+
+BL33 (Non-trusted Firmware) image load
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+BL2 loads the BL33 image (e.g. UEFI or other test or boot software) from
+platform storage into non-secure memory as defined by the platform.
+
+BL2 relies on EL3 Runtime Software to pass control to BL33 once secure state
+initialization is complete. Hence, BL2 populates a platform-specific area of
+memory with the entrypoint and Saved Program Status Register (``SPSR``) of the
+normal world software image. The entrypoint is the load address of the BL33
+image. The ``SPSR`` is determined as specified in Section 5.13 of the
+`Power State Coordination Interface PDD`_. This information is passed to the
+EL3 Runtime Software.
+
+AArch64 BL31 (EL3 Runtime Software) execution
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+BL2 execution continues as follows:
+
+#. BL2 passes control back to BL1 by raising an SMC, providing BL1 with the
+ BL31 entrypoint. The exception is handled by the SMC exception handler
+ installed by BL1.
+
+#. BL1 turns off the MMU and flushes the caches. It clears the
+ ``SCTLR_EL3.M/I/C`` bits, flushes the data cache to the point of coherency
+ and invalidates the TLBs.
+
+#. BL1 passes control to BL31 at the specified entrypoint at EL3.
+
+Running BL2 at EL3 execution level
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Some platforms have a non-TF-A Boot ROM that expects the next boot stage
+to execute at EL3. On these platforms, TF-A BL1 is a waste of memory
+as its only purpose is to ensure TF-A BL2 is entered at S-EL1. To avoid
+this waste, a special mode enables BL2 to execute at EL3, which allows
+a non-TF-A Boot ROM to load and jump directly to BL2. This mode is selected
+when the build flag BL2_AT_EL3 is enabled. The main differences in this
+mode are:
+
+#. BL2 includes the reset code and the mailbox mechanism to differentiate
+ cold boot and warm boot. It runs at EL3 doing the arch
+ initialization required for EL3.
+
+#. BL2 does not receive the meminfo information from BL1 anymore. This
+ information can be passed by the Boot ROM or be internal to the
+ BL2 image.
+
+#. Since BL2 executes at EL3, BL2 jumps directly to the next image,
+ instead of invoking the RUN_IMAGE SMC call.
+
+
+We assume 3 different types of BootROM support on the platform:
+
+#. The Boot ROM always jumps to the same address, for both cold
+ and warm boot. In this case, we will need to keep a resident part
+ of BL2 whose memory cannot be reclaimed by any other image. The
+ linker script defines the symbols __TEXT_RESIDENT_START__ and
+ __TEXT_RESIDENT_END__ that allows the platform to configure
+ correctly the memory map.
+#. The platform has some mechanism to indicate the jump address to the
+ Boot ROM. Platform code can then program the jump address with
+ psci_warmboot_entrypoint during cold boot.
+#. The platform has some mechanism to program the reset address using
+ the PROGRAMMABLE_RESET_ADDRESS feature. Platform code can then
+ program the reset address with psci_warmboot_entrypoint during
+ cold boot, bypassing the boot ROM for warm boot.
+
+In the last 2 cases, no part of BL2 needs to remain resident at
+runtime. In the first 2 cases, we expect the Boot ROM to be able to
+differentiate between warm and cold boot, to avoid loading BL2 again
+during warm boot.
+
+This functionality can be tested with FVP loading the image directly
+in memory and changing the address where the system jumps at reset.
+For example:
+
+ -C cluster0.cpu0.RVBAR=0x4022000
+ --data cluster0.cpu0=bl2.bin@0x4022000
+
+With this configuration, FVP is like a platform of the first case,
+where the Boot ROM jumps always to the same address. For simplification,
+BL32 is loaded in DRAM in this case, to avoid other images reclaiming
+BL2 memory.
+
+
+AArch64 BL31
+~~~~~~~~~~~~
+
+The image for this stage is loaded by BL2 and BL1 passes control to BL31 at
+EL3. BL31 executes solely in trusted SRAM. BL31 is linked against and
+loaded at a platform-specific base address (more information can be found later
+in this document). The functionality implemented by BL31 is as follows.
+
+Architectural initialization
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Currently, BL31 performs a similar architectural initialization to BL1 as
+far as system register settings are concerned. Since BL1 code resides in ROM,
+architectural initialization in BL31 allows override of any previous
+initialization done by BL1.
+
+BL31 initializes the per-CPU data framework, which provides a cache of
+frequently accessed per-CPU data optimised for fast, concurrent manipulation
+on different CPUs. This buffer includes pointers to per-CPU contexts, crash
+buffer, CPU reset and power down operations, PSCI data, platform data and so on.
+
+It then replaces the exception vectors populated by BL1 with its own. BL31
+exception vectors implement more elaborate support for handling SMCs since this
+is the only mechanism to access the runtime services implemented by BL31 (PSCI
+for example). BL31 checks each SMC for validity as specified by the
+`SMC Calling Convention`_ before passing control to the required SMC
+handler routine.
+
+BL31 programs the ``CNTFRQ_EL0`` register with the clock frequency of the system
+counter, which is provided by the platform.
+
+Platform initialization
+^^^^^^^^^^^^^^^^^^^^^^^
+
+BL31 performs detailed platform initialization, which enables normal world
+software to function correctly.
+
+On Arm platforms, this consists of the following:
+
+- Initialize the console.
+- Configure the Interconnect to enable hardware coherency.
+- Enable the MMU and map the memory it needs to access.
+- Initialize the generic interrupt controller.
+- Initialize the power controller device.
+- Detect the system topology.
+
+Runtime services initialization
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+BL31 is responsible for initializing the runtime services. One of them is PSCI.
+
+As part of the PSCI initializations, BL31 detects the system topology. It also
+initializes the data structures that implement the state machine used to track
+the state of power domain nodes. The state can be one of ``OFF``, ``RUN`` or
+``RETENTION``. All secondary CPUs are initially in the ``OFF`` state. The cluster
+that the primary CPU belongs to is ``ON``; any other cluster is ``OFF``. It also
+initializes the locks that protect them. BL31 accesses the state of a CPU or
+cluster immediately after reset and before the data cache is enabled in the
+warm boot path. It is not currently possible to use 'exclusive' based spinlocks,
+therefore BL31 uses locks based on Lamport's Bakery algorithm instead.
+
+The runtime service framework and its initialization is described in more
+detail in the "EL3 runtime services framework" section below.
+
+Details about the status of the PSCI implementation are provided in the
+"Power State Coordination Interface" section below.
+
+AArch64 BL32 (Secure-EL1 Payload) image initialization
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If a BL32 image is present then there must be a matching Secure-EL1 Payload
+Dispatcher (SPD) service (see later for details). During initialization
+that service must register a function to carry out initialization of BL32
+once the runtime services are fully initialized. BL31 invokes such a
+registered function to initialize BL32 before running BL33. This initialization
+is not necessary for AArch32 SPs.
+
+Details on BL32 initialization and the SPD's role are described in the
+:ref:`firmware_design_sel1_spd` section below.
+
+BL33 (Non-trusted Firmware) execution
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+EL3 Runtime Software initializes the EL2 or EL1 processor context for normal-
+world cold boot, ensuring that no secure state information finds its way into
+the non-secure execution state. EL3 Runtime Software uses the entrypoint
+information provided by BL2 to jump to the Non-trusted firmware image (BL33)
+at the highest available Exception Level (EL2 if available, otherwise EL1).
+
+Using alternative Trusted Boot Firmware in place of BL1 & BL2 (AArch64 only)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Some platforms have existing implementations of Trusted Boot Firmware that
+would like to use TF-A BL31 for the EL3 Runtime Software. To enable this
+firmware architecture it is important to provide a fully documented and stable
+interface between the Trusted Boot Firmware and BL31.
+
+Future changes to the BL31 interface will be done in a backwards compatible
+way, and this enables these firmware components to be independently enhanced/
+updated to develop and exploit new functionality.
+
+Required CPU state when calling ``bl31_entrypoint()`` during cold boot
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This function must only be called by the primary CPU.
+
+On entry to this function the calling primary CPU must be executing in AArch64
+EL3, little-endian data access, and all interrupt sources masked:
+
+::
+
+ PSTATE.EL = 3
+ PSTATE.RW = 1
+ PSTATE.DAIF = 0xf
+ SCTLR_EL3.EE = 0
+
+X0 and X1 can be used to pass information from the Trusted Boot Firmware to the
+platform code in BL31:
+
+::
+
+ X0 : Reserved for common TF-A information
+ X1 : Platform specific information
+
+BL31 zero-init sections (e.g. ``.bss``) should not contain valid data on entry,
+these will be zero filled prior to invoking platform setup code.
+
+Use of the X0 and X1 parameters
+'''''''''''''''''''''''''''''''
+
+The parameters are platform specific and passed from ``bl31_entrypoint()`` to
+``bl31_early_platform_setup()``. The value of these parameters is never directly
+used by the common BL31 code.
+
+The convention is that ``X0`` conveys information regarding the BL31, BL32 and
+BL33 images from the Trusted Boot firmware and ``X1`` can be used for other
+platform specific purpose. This convention allows platforms which use TF-A's
+BL1 and BL2 images to transfer additional platform specific information from
+Secure Boot without conflicting with future evolution of TF-A using ``X0`` to
+pass a ``bl31_params`` structure.
+
+BL31 common and SPD initialization code depends on image and entrypoint
+information about BL33 and BL32, which is provided via BL31 platform APIs.
+This information is required until the start of execution of BL33. This
+information can be provided in a platform defined manner, e.g. compiled into
+the platform code in BL31, or provided in a platform defined memory location
+by the Trusted Boot firmware, or passed from the Trusted Boot Firmware via the
+Cold boot Initialization parameters. This data may need to be cleaned out of
+the CPU caches if it is provided by an earlier boot stage and then accessed by
+BL31 platform code before the caches are enabled.
+
+TF-A's BL2 implementation passes a ``bl31_params`` structure in
+``X0`` and the Arm development platforms interpret this in the BL31 platform
+code.
+
+MMU, Data caches & Coherency
+''''''''''''''''''''''''''''
+
+BL31 does not depend on the enabled state of the MMU, data caches or
+interconnect coherency on entry to ``bl31_entrypoint()``. If these are disabled
+on entry, these should be enabled during ``bl31_plat_arch_setup()``.
+
+Data structures used in the BL31 cold boot interface
+''''''''''''''''''''''''''''''''''''''''''''''''''''
+
+These structures are designed to support compatibility and independent
+evolution of the structures and the firmware images. For example, a version of
+BL31 that can interpret the BL3x image information from different versions of
+BL2, a platform that uses an extended entry_point_info structure to convey
+additional register information to BL31, or a ELF image loader that can convey
+more details about the firmware images.
+
+To support these scenarios the structures are versioned and sized, which enables
+BL31 to detect which information is present and respond appropriately. The
+``param_header`` is defined to capture this information:
+
+.. code:: c
+
+ typedef struct param_header {
+ uint8_t type; /* type of the structure */
+ uint8_t version; /* version of this structure */
+ uint16_t size; /* size of this structure in bytes */
+ uint32_t attr; /* attributes: unused bits SBZ */
+ } param_header_t;
+
+The structures using this format are ``entry_point_info``, ``image_info`` and
+``bl31_params``. The code that allocates and populates these structures must set
+the header fields appropriately, and the ``SET_PARAM_HEAD()`` a macro is defined
+to simplify this action.
+
+Required CPU state for BL31 Warm boot initialization
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+When requesting a CPU power-on, or suspending a running CPU, TF-A provides
+the platform power management code with a Warm boot initialization
+entry-point, to be invoked by the CPU immediately after the reset handler.
+On entry to the Warm boot initialization function the calling CPU must be in
+AArch64 EL3, little-endian data access and all interrupt sources masked:
+
+::
+
+ PSTATE.EL = 3
+ PSTATE.RW = 1
+ PSTATE.DAIF = 0xf
+ SCTLR_EL3.EE = 0
+
+The PSCI implementation will initialize the processor state and ensure that the
+platform power management code is then invoked as required to initialize all
+necessary system, cluster and CPU resources.
+
+AArch32 EL3 Runtime Software entrypoint interface
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To enable this firmware architecture it is important to provide a fully
+documented and stable interface between the Trusted Boot Firmware and the
+AArch32 EL3 Runtime Software.
+
+Future changes to the entrypoint interface will be done in a backwards
+compatible way, and this enables these firmware components to be independently
+enhanced/updated to develop and exploit new functionality.
+
+Required CPU state when entering during cold boot
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This function must only be called by the primary CPU.
+
+On entry to this function the calling primary CPU must be executing in AArch32
+EL3, little-endian data access, and all interrupt sources masked:
+
+::
+
+ PSTATE.AIF = 0x7
+ SCTLR.EE = 0
+
+R0 and R1 are used to pass information from the Trusted Boot Firmware to the
+platform code in AArch32 EL3 Runtime Software:
+
+::
+
+ R0 : Reserved for common TF-A information
+ R1 : Platform specific information
+
+Use of the R0 and R1 parameters
+'''''''''''''''''''''''''''''''
+
+The parameters are platform specific and the convention is that ``R0`` conveys
+information regarding the BL3x images from the Trusted Boot firmware and ``R1``
+can be used for other platform specific purpose. This convention allows
+platforms which use TF-A's BL1 and BL2 images to transfer additional platform
+specific information from Secure Boot without conflicting with future
+evolution of TF-A using ``R0`` to pass a ``bl_params`` structure.
+
+The AArch32 EL3 Runtime Software is responsible for entry into BL33. This
+information can be obtained in a platform defined manner, e.g. compiled into
+the AArch32 EL3 Runtime Software, or provided in a platform defined memory
+location by the Trusted Boot firmware, or passed from the Trusted Boot Firmware
+via the Cold boot Initialization parameters. This data may need to be cleaned
+out of the CPU caches if it is provided by an earlier boot stage and then
+accessed by AArch32 EL3 Runtime Software before the caches are enabled.
+
+When using AArch32 EL3 Runtime Software, the Arm development platforms pass a
+``bl_params`` structure in ``R0`` from BL2 to be interpreted by AArch32 EL3 Runtime
+Software platform code.
+
+MMU, Data caches & Coherency
+''''''''''''''''''''''''''''
+
+AArch32 EL3 Runtime Software must not depend on the enabled state of the MMU,
+data caches or interconnect coherency in its entrypoint. They must be explicitly
+enabled if required.
+
+Data structures used in cold boot interface
+'''''''''''''''''''''''''''''''''''''''''''
+
+The AArch32 EL3 Runtime Software cold boot interface uses ``bl_params`` instead
+of ``bl31_params``. The ``bl_params`` structure is based on the convention
+described in AArch64 BL31 cold boot interface section.
+
+Required CPU state for warm boot initialization
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+When requesting a CPU power-on, or suspending a running CPU, AArch32 EL3
+Runtime Software must ensure execution of a warm boot initialization entrypoint.
+If TF-A BL1 is used and the PROGRAMMABLE_RESET_ADDRESS build flag is false,
+then AArch32 EL3 Runtime Software must ensure that BL1 branches to the warm
+boot entrypoint by arranging for the BL1 platform function,
+plat_get_my_entrypoint(), to return a non-zero value.
+
+In this case, the warm boot entrypoint must be in AArch32 EL3, little-endian
+data access and all interrupt sources masked:
+
+::
+
+ PSTATE.AIF = 0x7
+ SCTLR.EE = 0
+
+The warm boot entrypoint may be implemented by using TF-A
+``psci_warmboot_entrypoint()`` function. In that case, the platform must fulfil
+the pre-requisites mentioned in the
+:ref:`PSCI Library Integration guide for Armv8-A AArch32 systems`.
+
+EL3 runtime services framework
+------------------------------
+
+Software executing in the non-secure state and in the secure state at exception
+levels lower than EL3 will request runtime services using the Secure Monitor
+Call (SMC) instruction. These requests will follow the convention described in
+the SMC Calling Convention PDD (`SMCCC`_). The `SMCCC`_ assigns function
+identifiers to each SMC request and describes how arguments are passed and
+returned.
+
+The EL3 runtime services framework enables the development of services by
+different providers that can be easily integrated into final product firmware.
+The following sections describe the framework which facilitates the
+registration, initialization and use of runtime services in EL3 Runtime
+Software (BL31).
+
+The design of the runtime services depends heavily on the concepts and
+definitions described in the `SMCCC`_, in particular SMC Function IDs, Owning
+Entity Numbers (OEN), Fast and Yielding calls, and the SMC32 and SMC64 calling
+conventions. Please refer to that document for more detailed explanation of
+these terms.
+
+The following runtime services are expected to be implemented first. They have
+not all been instantiated in the current implementation.
+
+#. Standard service calls
+
+ This service is for management of the entire system. The Power State
+ Coordination Interface (`PSCI`_) is the first set of standard service calls
+ defined by Arm (see PSCI section later).
+
+#. Secure-EL1 Payload Dispatcher service
+
+ If a system runs a Trusted OS or other Secure-EL1 Payload (SP) then
+ it also requires a *Secure Monitor* at EL3 to switch the EL1 processor
+ context between the normal world (EL1/EL2) and trusted world (Secure-EL1).
+ The Secure Monitor will make these world switches in response to SMCs. The
+ `SMCCC`_ provides for such SMCs with the Trusted OS Call and Trusted
+ Application Call OEN ranges.
+
+ The interface between the EL3 Runtime Software and the Secure-EL1 Payload is
+ not defined by the `SMCCC`_ or any other standard. As a result, each
+ Secure-EL1 Payload requires a specific Secure Monitor that runs as a runtime
+ service - within TF-A this service is referred to as the Secure-EL1 Payload
+ Dispatcher (SPD).
+
+ TF-A provides a Test Secure-EL1 Payload (TSP) and its associated Dispatcher
+ (TSPD). Details of SPD design and TSP/TSPD operation are described in the
+ :ref:`firmware_design_sel1_spd` section below.
+
+#. CPU implementation service
+
+ This service will provide an interface to CPU implementation specific
+ services for a given platform e.g. access to processor errata workarounds.
+ This service is currently unimplemented.
+
+Additional services for Arm Architecture, SiP and OEM calls can be implemented.
+Each implemented service handles a range of SMC function identifiers as
+described in the `SMCCC`_.
+
+Registration
+~~~~~~~~~~~~
+
+A runtime service is registered using the ``DECLARE_RT_SVC()`` macro, specifying
+the name of the service, the range of OENs covered, the type of service and
+initialization and call handler functions. This macro instantiates a ``const struct rt_svc_desc`` for the service with these details (see ``runtime_svc.h``).
+This structure is allocated in a special ELF section ``rt_svc_descs``, enabling
+the framework to find all service descriptors included into BL31.
+
+The specific service for a SMC Function is selected based on the OEN and call
+type of the Function ID, and the framework uses that information in the service
+descriptor to identify the handler for the SMC Call.
+
+The service descriptors do not include information to identify the precise set
+of SMC function identifiers supported by this service implementation, the
+security state from which such calls are valid nor the capability to support
+64-bit and/or 32-bit callers (using SMC32 or SMC64). Responding appropriately
+to these aspects of a SMC call is the responsibility of the service
+implementation, the framework is focused on integration of services from
+different providers and minimizing the time taken by the framework before the
+service handler is invoked.
+
+Details of the parameters, requirements and behavior of the initialization and
+call handling functions are provided in the following sections.
+
+Initialization
+~~~~~~~~~~~~~~
+
+``runtime_svc_init()`` in ``runtime_svc.c`` initializes the runtime services
+framework running on the primary CPU during cold boot as part of the BL31
+initialization. This happens prior to initializing a Trusted OS and running
+Normal world boot firmware that might in turn use these services.
+Initialization involves validating each of the declared runtime service
+descriptors, calling the service initialization function and populating the
+index used for runtime lookup of the service.
+
+The BL31 linker script collects all of the declared service descriptors into a
+single array and defines symbols that allow the framework to locate and traverse
+the array, and determine its size.
+
+The framework does basic validation of each descriptor to halt firmware
+initialization if service declaration errors are detected. The framework does
+not check descriptors for the following error conditions, and may behave in an
+unpredictable manner under such scenarios:
+
+#. Overlapping OEN ranges
+#. Multiple descriptors for the same range of OENs and ``call_type``
+#. Incorrect range of owning entity numbers for a given ``call_type``
+
+Once validated, the service ``init()`` callback is invoked. This function carries
+out any essential EL3 initialization before servicing requests. The ``init()``
+function is only invoked on the primary CPU during cold boot. If the service
+uses per-CPU data this must either be initialized for all CPUs during this call,
+or be done lazily when a CPU first issues an SMC call to that service. If
+``init()`` returns anything other than ``0``, this is treated as an initialization
+error and the service is ignored: this does not cause the firmware to halt.
+
+The OEN and call type fields present in the SMC Function ID cover a total of
+128 distinct services, but in practice a single descriptor can cover a range of
+OENs, e.g. SMCs to call a Trusted OS function. To optimize the lookup of a
+service handler, the framework uses an array of 128 indices that map every
+distinct OEN/call-type combination either to one of the declared services or to
+indicate the service is not handled. This ``rt_svc_descs_indices[]`` array is
+populated for all of the OENs covered by a service after the service ``init()``
+function has reported success. So a service that fails to initialize will never
+have it's ``handle()`` function invoked.
+
+The following figure shows how the ``rt_svc_descs_indices[]`` index maps the SMC
+Function ID call type and OEN onto a specific service handler in the
+``rt_svc_descs[]`` array.
+
+|Image 1|
+
+.. _handling-an-smc:
+
+Handling an SMC
+~~~~~~~~~~~~~~~
+
+When the EL3 runtime services framework receives a Secure Monitor Call, the SMC
+Function ID is passed in W0 from the lower exception level (as per the
+`SMCCC`_). If the calling register width is AArch32, it is invalid to invoke an
+SMC Function which indicates the SMC64 calling convention: such calls are
+ignored and return the Unknown SMC Function Identifier result code ``0xFFFFFFFF``
+in R0/X0.
+
+Bit[31] (fast/yielding call) and bits[29:24] (owning entity number) of the SMC
+Function ID are combined to index into the ``rt_svc_descs_indices[]`` array. The
+resulting value might indicate a service that has no handler, in this case the
+framework will also report an Unknown SMC Function ID. Otherwise, the value is
+used as a further index into the ``rt_svc_descs[]`` array to locate the required
+service and handler.
+
+The service's ``handle()`` callback is provided with five of the SMC parameters
+directly, the others are saved into memory for retrieval (if needed) by the
+handler. The handler is also provided with an opaque ``handle`` for use with the
+supporting library for parameter retrieval, setting return values and context
+manipulation. The ``flags`` parameter indicates the security state of the caller
+and the state of the SVE hint bit per the SMCCCv1.3. The framework finally sets
+up the execution stack for the handler, and invokes the services ``handle()``
+function.
+
+On return from the handler the result registers are populated in X0-X7 as needed
+before restoring the stack and CPU state and returning from the original SMC.
+
+Exception Handling Framework
+----------------------------
+
+Please refer to the :ref:`Exception Handling Framework` document.
+
+Power State Coordination Interface
+----------------------------------
+
+TODO: Provide design walkthrough of PSCI implementation.
+
+The PSCI v1.1 specification categorizes APIs as optional and mandatory. All the
+mandatory APIs in PSCI v1.1, PSCI v1.0 and in PSCI v0.2 draft specification
+`Power State Coordination Interface PDD`_ are implemented. The table lists
+the PSCI v1.1 APIs and their support in generic code.
+
+An API implementation might have a dependency on platform code e.g. CPU_SUSPEND
+requires the platform to export a part of the implementation. Hence the level
+of support of the mandatory APIs depends upon the support exported by the
+platform port as well. The Juno and FVP (all variants) platforms export all the
+required support.
+
++-----------------------------+-------------+-------------------------------+
+| PSCI v1.1 API | Supported | Comments |
++=============================+=============+===============================+
+| ``PSCI_VERSION`` | Yes | The version returned is 1.1 |
++-----------------------------+-------------+-------------------------------+
+| ``CPU_SUSPEND`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``CPU_OFF`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``CPU_ON`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``AFFINITY_INFO`` | Yes | |
++-----------------------------+-------------+-------------------------------+
+| ``MIGRATE`` | Yes\*\* | |
++-----------------------------+-------------+-------------------------------+
+| ``MIGRATE_INFO_TYPE`` | Yes\*\* | |
++-----------------------------+-------------+-------------------------------+
+| ``MIGRATE_INFO_CPU`` | Yes\*\* | |
++-----------------------------+-------------+-------------------------------+
+| ``SYSTEM_OFF`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``SYSTEM_RESET`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``PSCI_FEATURES`` | Yes | |
++-----------------------------+-------------+-------------------------------+
+| ``CPU_FREEZE`` | No | |
++-----------------------------+-------------+-------------------------------+
+| ``CPU_DEFAULT_SUSPEND`` | No | |
++-----------------------------+-------------+-------------------------------+
+| ``NODE_HW_STATE`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``SYSTEM_SUSPEND`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``PSCI_SET_SUSPEND_MODE`` | No | |
++-----------------------------+-------------+-------------------------------+
+| ``PSCI_STAT_RESIDENCY`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``PSCI_STAT_COUNT`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``SYSTEM_RESET2`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``MEM_PROTECT`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+| ``MEM_PROTECT_CHECK_RANGE`` | Yes\* | |
++-----------------------------+-------------+-------------------------------+
+
+\*Note : These PSCI APIs require platform power management hooks to be
+registered with the generic PSCI code to be supported.
+
+\*\*Note : These PSCI APIs require appropriate Secure Payload Dispatcher
+hooks to be registered with the generic PSCI code to be supported.
+
+The PSCI implementation in TF-A is a library which can be integrated with
+AArch64 or AArch32 EL3 Runtime Software for Armv8-A systems. A guide to
+integrating PSCI library with AArch32 EL3 Runtime Software can be found
+at :ref:`PSCI Library Integration guide for Armv8-A AArch32 systems`.
+
+.. _firmware_design_sel1_spd:
+
+Secure-EL1 Payloads and Dispatchers
+-----------------------------------
+
+On a production system that includes a Trusted OS running in Secure-EL1/EL0,
+the Trusted OS is coupled with a companion runtime service in the BL31
+firmware. This service is responsible for the initialisation of the Trusted
+OS and all communications with it. The Trusted OS is the BL32 stage of the
+boot flow in TF-A. The firmware will attempt to locate, load and execute a
+BL32 image.
+
+TF-A uses a more general term for the BL32 software that runs at Secure-EL1 -
+the *Secure-EL1 Payload* - as it is not always a Trusted OS.
+
+TF-A provides a Test Secure-EL1 Payload (TSP) and a Test Secure-EL1 Payload
+Dispatcher (TSPD) service as an example of how a Trusted OS is supported on a
+production system using the Runtime Services Framework. On such a system, the
+Test BL32 image and service are replaced by the Trusted OS and its dispatcher
+service. The TF-A build system expects that the dispatcher will define the
+build flag ``NEED_BL32`` to enable it to include the BL32 in the build either
+as a binary or to compile from source depending on whether the ``BL32`` build
+option is specified or not.
+
+The TSP runs in Secure-EL1. It is designed to demonstrate synchronous
+communication with the normal-world software running in EL1/EL2. Communication
+is initiated by the normal-world software
+
+- either directly through a Fast SMC (as defined in the `SMCCC`_)
+
+- or indirectly through a `PSCI`_ SMC. The `PSCI`_ implementation in turn
+ informs the TSPD about the requested power management operation. This allows
+ the TSP to prepare for or respond to the power state change
+
+The TSPD service is responsible for.
+
+- Initializing the TSP
+
+- Routing requests and responses between the secure and the non-secure
+ states during the two types of communications just described
+
+Initializing a BL32 Image
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The Secure-EL1 Payload Dispatcher (SPD) service is responsible for initializing
+the BL32 image. It needs access to the information passed by BL2 to BL31 to do
+so. This is provided by:
+
+.. code:: c
+
+ entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t);
+
+which returns a reference to the ``entry_point_info`` structure corresponding to
+the image which will be run in the specified security state. The SPD uses this
+API to get entry point information for the SECURE image, BL32.
+
+In the absence of a BL32 image, BL31 passes control to the normal world
+bootloader image (BL33). When the BL32 image is present, it is typical
+that the SPD wants control to be passed to BL32 first and then later to BL33.
+
+To do this the SPD has to register a BL32 initialization function during
+initialization of the SPD service. The BL32 initialization function has this
+prototype:
+
+.. code:: c
+
+ int32_t init(void);
+
+and is registered using the ``bl31_register_bl32_init()`` function.
+
+TF-A supports two approaches for the SPD to pass control to BL32 before
+returning through EL3 and running the non-trusted firmware (BL33):
+
+#. In the BL32 setup function, use ``bl31_set_next_image_type()`` to
+ request that the exit from ``bl31_main()`` is to the BL32 entrypoint in
+ Secure-EL1. BL31 will exit to BL32 using the asynchronous method by
+ calling ``bl31_prepare_next_image_entry()`` and ``el3_exit()``.
+
+ When the BL32 has completed initialization at Secure-EL1, it returns to
+ BL31 by issuing an SMC, using a Function ID allocated to the SPD. On
+ receipt of this SMC, the SPD service handler should switch the CPU context
+ from trusted to normal world and use the ``bl31_set_next_image_type()`` and
+ ``bl31_prepare_next_image_entry()`` functions to set up the initial return to
+ the normal world firmware BL33. On return from the handler the framework
+ will exit to EL2 and run BL33.
+
+#. The BL32 setup function registers an initialization function using
+ ``bl31_register_bl32_init()`` which provides a SPD-defined mechanism to
+ invoke a 'world-switch synchronous call' to Secure-EL1 to run the BL32
+ entrypoint.
+
+ .. note::
+ The Test SPD service included with TF-A provides one implementation
+ of such a mechanism.
+
+ On completion BL32 returns control to BL31 via a SMC, and on receipt the
+ SPD service handler invokes the synchronous call return mechanism to return
+ to the BL32 initialization function. On return from this function,
+ ``bl31_main()`` will set up the return to the normal world firmware BL33 and
+ continue the boot process in the normal world.
+
+Crash Reporting in BL31
+-----------------------
+
+BL31 implements a scheme for reporting the processor state when an unhandled
+exception is encountered. The reporting mechanism attempts to preserve all the
+register contents and report it via a dedicated UART (PL011 console). BL31
+reports the general purpose, EL3, Secure EL1 and some EL2 state registers.
+
+A dedicated per-CPU crash stack is maintained by BL31 and this is retrieved via
+the per-CPU pointer cache. The implementation attempts to minimise the memory
+required for this feature. The file ``crash_reporting.S`` contains the
+implementation for crash reporting.
+
+The sample crash output is shown below.
+
+::
+
+ x0 = 0x000000002a4a0000
+ x1 = 0x0000000000000001
+ x2 = 0x0000000000000002
+ x3 = 0x0000000000000003
+ x4 = 0x0000000000000004
+ x5 = 0x0000000000000005
+ x6 = 0x0000000000000006
+ x7 = 0x0000000000000007
+ x8 = 0x0000000000000008
+ x9 = 0x0000000000000009
+ x10 = 0x0000000000000010
+ x11 = 0x0000000000000011
+ x12 = 0x0000000000000012
+ x13 = 0x0000000000000013
+ x14 = 0x0000000000000014
+ x15 = 0x0000000000000015
+ x16 = 0x0000000000000016
+ x17 = 0x0000000000000017
+ x18 = 0x0000000000000018
+ x19 = 0x0000000000000019
+ x20 = 0x0000000000000020
+ x21 = 0x0000000000000021
+ x22 = 0x0000000000000022
+ x23 = 0x0000000000000023
+ x24 = 0x0000000000000024
+ x25 = 0x0000000000000025
+ x26 = 0x0000000000000026
+ x27 = 0x0000000000000027
+ x28 = 0x0000000000000028
+ x29 = 0x0000000000000029
+ x30 = 0x0000000088000b78
+ scr_el3 = 0x000000000003073d
+ sctlr_el3 = 0x00000000b0cd183f
+ cptr_el3 = 0x0000000000000000
+ tcr_el3 = 0x000000008080351c
+ daif = 0x00000000000002c0
+ mair_el3 = 0x00000000004404ff
+ spsr_el3 = 0x0000000060000349
+ elr_el3 = 0x0000000088000114
+ ttbr0_el3 = 0x0000000004018201
+ esr_el3 = 0x00000000be000000
+ far_el3 = 0x0000000000000000
+ spsr_el1 = 0x0000000000000000
+ elr_el1 = 0x0000000000000000
+ spsr_abt = 0x0000000000000000
+ spsr_und = 0x0000000000000000
+ spsr_irq = 0x0000000000000000
+ spsr_fiq = 0x0000000000000000
+ sctlr_el1 = 0x0000000030d00800
+ actlr_el1 = 0x0000000000000000
+ cpacr_el1 = 0x0000000000000000
+ csselr_el1 = 0x0000000000000000
+ sp_el1 = 0x0000000000000000
+ esr_el1 = 0x0000000000000000
+ ttbr0_el1 = 0x0000000000000000
+ ttbr1_el1 = 0x0000000000000000
+ mair_el1 = 0x0000000000000000
+ amair_el1 = 0x0000000000000000
+ tcr_el1 = 0x0000000000000000
+ tpidr_el1 = 0x0000000000000000
+ tpidr_el0 = 0x0000000000000000
+ tpidrro_el0 = 0x0000000000000000
+ par_el1 = 0x0000000000000000
+ mpidr_el1 = 0x0000000080000000
+ afsr0_el1 = 0x0000000000000000
+ afsr1_el1 = 0x0000000000000000
+ contextidr_el1 = 0x0000000000000000
+ vbar_el1 = 0x0000000000000000
+ cntp_ctl_el0 = 0x0000000000000000
+ cntp_cval_el0 = 0x0000000000000000
+ cntv_ctl_el0 = 0x0000000000000000
+ cntv_cval_el0 = 0x0000000000000000
+ cntkctl_el1 = 0x0000000000000000
+ sp_el0 = 0x0000000004014940
+ isr_el1 = 0x0000000000000000
+ dacr32_el2 = 0x0000000000000000
+ ifsr32_el2 = 0x0000000000000000
+ icc_hppir0_el1 = 0x00000000000003ff
+ icc_hppir1_el1 = 0x00000000000003ff
+ icc_ctlr_el3 = 0x0000000000080400
+ gicd_ispendr regs (Offsets 0x200-0x278)
+ Offset Value
+ 0x200: 0x0000000000000000
+ 0x208: 0x0000000000000000
+ 0x210: 0x0000000000000000
+ 0x218: 0x0000000000000000
+ 0x220: 0x0000000000000000
+ 0x228: 0x0000000000000000
+ 0x230: 0x0000000000000000
+ 0x238: 0x0000000000000000
+ 0x240: 0x0000000000000000
+ 0x248: 0x0000000000000000
+ 0x250: 0x0000000000000000
+ 0x258: 0x0000000000000000
+ 0x260: 0x0000000000000000
+ 0x268: 0x0000000000000000
+ 0x270: 0x0000000000000000
+ 0x278: 0x0000000000000000
+
+Guidelines for Reset Handlers
+-----------------------------
+
+TF-A implements a framework that allows CPU and platform ports to perform
+actions very early after a CPU is released from reset in both the cold and warm
+boot paths. This is done by calling the ``reset_handler()`` function in both
+the BL1 and BL31 images. It in turn calls the platform and CPU specific reset
+handling functions.
+
+Details for implementing a CPU specific reset handler can be found in
+Section 8. Details for implementing a platform specific reset handler can be
+found in the :ref:`Porting Guide` (see the ``plat_reset_handler()`` function).
+
+When adding functionality to a reset handler, keep in mind that if a different
+reset handling behavior is required between the first and the subsequent
+invocations of the reset handling code, this should be detected at runtime.
+In other words, the reset handler should be able to detect whether an action has
+already been performed and act as appropriate. Possible courses of actions are,
+e.g. skip the action the second time, or undo/redo it.
+
+.. _configuring-secure-interrupts:
+
+Configuring secure interrupts
+-----------------------------
+
+The GIC driver is responsible for performing initial configuration of secure
+interrupts on the platform. To this end, the platform is expected to provide the
+GIC driver (either GICv2 or GICv3, as selected by the platform) with the
+interrupt configuration during the driver initialisation.
+
+Secure interrupt configuration are specified in an array of secure interrupt
+properties. In this scheme, in both GICv2 and GICv3 driver data structures, the
+``interrupt_props`` member points to an array of interrupt properties. Each
+element of the array specifies the interrupt number and its attributes
+(priority, group, configuration). Each element of the array shall be populated
+by the macro ``INTR_PROP_DESC()``. The macro takes the following arguments:
+
+- 10-bit interrupt number,
+
+- 8-bit interrupt priority,
+
+- Interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1``,
+ ``INTR_TYPE_NS``),
+
+- Interrupt configuration (either ``GIC_INTR_CFG_LEVEL`` or
+ ``GIC_INTR_CFG_EDGE``).
+
+.. _firmware_design_cpu_ops_fwk:
+
+CPU specific operations framework
+---------------------------------
+
+Certain aspects of the Armv8-A architecture are implementation defined,
+that is, certain behaviours are not architecturally defined, but must be
+defined and documented by individual processor implementations. TF-A
+implements a framework which categorises the common implementation defined
+behaviours and allows a processor to export its implementation of that
+behaviour. The categories are:
+
+#. Processor specific reset sequence.
+
+#. Processor specific power down sequences.
+
+#. Processor specific register dumping as a part of crash reporting.
+
+#. Errata status reporting.
+
+Each of the above categories fulfils a different requirement.
+
+#. allows any processor specific initialization before the caches and MMU
+ are turned on, like implementation of errata workarounds, entry into
+ the intra-cluster coherency domain etc.
+
+#. allows each processor to implement the power down sequence mandated in
+ its Technical Reference Manual (TRM).
+
+#. allows a processor to provide additional information to the developer
+ in the event of a crash, for example Cortex-A53 has registers which
+ can expose the data cache contents.
+
+#. allows a processor to define a function that inspects and reports the status
+ of all errata workarounds on that processor.
+
+Please note that only 2. is mandated by the TRM.
+
+The CPU specific operations framework scales to accommodate a large number of
+different CPUs during power down and reset handling. The platform can specify
+any CPU optimization it wants to enable for each CPU. It can also specify
+the CPU errata workarounds to be applied for each CPU type during reset
+handling by defining CPU errata compile time macros. Details on these macros
+can be found in the :ref:`Arm CPU Specific Build Macros` document.
+
+The CPU specific operations framework depends on the ``cpu_ops`` structure which
+needs to be exported for each type of CPU in the platform. It is defined in
+``include/lib/cpus/aarch64/cpu_macros.S`` and has the following fields : ``midr``,
+``reset_func()``, ``cpu_pwr_down_ops`` (array of power down functions) and
+``cpu_reg_dump()``.
+
+The CPU specific files in ``lib/cpus`` export a ``cpu_ops`` data structure with
+suitable handlers for that CPU. For example, ``lib/cpus/aarch64/cortex_a53.S``
+exports the ``cpu_ops`` for Cortex-A53 CPU. According to the platform
+configuration, these CPU specific files must be included in the build by
+the platform makefile. The generic CPU specific operations framework code exists
+in ``lib/cpus/aarch64/cpu_helpers.S``.
+
+CPU specific Reset Handling
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+After a reset, the state of the CPU when it calls generic reset handler is:
+MMU turned off, both instruction and data caches turned off and not part
+of any coherency domain.
+
+The BL entrypoint code first invokes the ``plat_reset_handler()`` to allow
+the platform to perform any system initialization required and any system
+errata workarounds that needs to be applied. The ``get_cpu_ops_ptr()`` reads
+the current CPU midr, finds the matching ``cpu_ops`` entry in the ``cpu_ops``
+array and returns it. Note that only the part number and implementer fields
+in midr are used to find the matching ``cpu_ops`` entry. The ``reset_func()`` in
+the returned ``cpu_ops`` is then invoked which executes the required reset
+handling for that CPU and also any errata workarounds enabled by the platform.
+This function must preserve the values of general purpose registers x20 to x29.
+
+Refer to Section "Guidelines for Reset Handlers" for general guidelines
+regarding placement of code in a reset handler.
+
+CPU specific power down sequence
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+During the BL31 initialization sequence, the pointer to the matching ``cpu_ops``
+entry is stored in per-CPU data by ``init_cpu_ops()`` so that it can be quickly
+retrieved during power down sequences.
+
+Various CPU drivers register handlers to perform power down at certain power
+levels for that specific CPU. The PSCI service, upon receiving a power down
+request, determines the highest power level at which to execute power down
+sequence for a particular CPU. It uses the ``prepare_cpu_pwr_dwn()`` function to
+pick the right power down handler for the requested level. The function
+retrieves ``cpu_ops`` pointer member of per-CPU data, and from that, further
+retrieves ``cpu_pwr_down_ops`` array, and indexes into the required level. If the
+requested power level is higher than what a CPU driver supports, the handler
+registered for highest level is invoked.
+
+At runtime the platform hooks for power down are invoked by the PSCI service to
+perform platform specific operations during a power down sequence, for example
+turning off CCI coherency during a cluster power down.
+
+CPU specific register reporting during crash
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+If the crash reporting is enabled in BL31, when a crash occurs, the crash
+reporting framework calls ``do_cpu_reg_dump`` which retrieves the matching
+``cpu_ops`` using ``get_cpu_ops_ptr()`` function. The ``cpu_reg_dump()`` in
+``cpu_ops`` is invoked, which then returns the CPU specific register values to
+be reported and a pointer to the ASCII list of register names in a format
+expected by the crash reporting framework.
+
+.. _firmware_design_cpu_errata_reporting:
+
+CPU errata status reporting
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Errata workarounds for CPUs supported in TF-A are applied during both cold and
+warm boots, shortly after reset. Individual Errata workarounds are enabled as
+build options. Some errata workarounds have potential run-time implications;
+therefore some are enabled by default, others not. Platform ports shall
+override build options to enable or disable errata as appropriate. The CPU
+drivers take care of applying errata workarounds that are enabled and applicable
+to a given CPU. Refer to :ref:`arm_cpu_macros_errata_workarounds` for more
+information.
+
+Functions in CPU drivers that apply errata workaround must follow the
+conventions listed below.
+
+The errata workaround must be authored as two separate functions:
+
+- One that checks for errata. This function must determine whether that errata
+ applies to the current CPU. Typically this involves matching the current
+ CPUs revision and variant against a value that's known to be affected by the
+ errata. If the function determines that the errata applies to this CPU, it
+ must return ``ERRATA_APPLIES``; otherwise, it must return
+ ``ERRATA_NOT_APPLIES``. The utility functions ``cpu_get_rev_var`` and
+ ``cpu_rev_var_ls`` functions may come in handy for this purpose.
+
+For an errata identified as ``E``, the check function must be named
+``check_errata_E``.
+
+This function will be invoked at different times, both from assembly and from
+C run time. Therefore it must follow AAPCS, and must not use stack.
+
+- Another one that applies the errata workaround. This function would call the
+ check function described above, and applies errata workaround if required.
+
+CPU drivers that apply errata workaround can optionally implement an assembly
+function that report the status of errata workarounds pertaining to that CPU.
+For a driver that registers the CPU, for example, ``cpux`` via ``declare_cpu_ops``
+macro, the errata reporting function, if it exists, must be named
+``cpux_errata_report``. This function will always be called with MMU enabled; it
+must follow AAPCS and may use stack.
+
+In a debug build of TF-A, on a CPU that comes out of reset, both BL1 and the
+runtime firmware (BL31 in AArch64, and BL32 in AArch32) will invoke errata
+status reporting function, if one exists, for that type of CPU.
+
+To report the status of each errata workaround, the function shall use the
+assembler macro ``report_errata``, passing it:
+
+- The build option that enables the errata;
+
+- The name of the CPU: this must be the same identifier that CPU driver
+ registered itself with, using ``declare_cpu_ops``;
+
+- And the errata identifier: the identifier must match what's used in the
+ errata's check function described above.
+
+The errata status reporting function will be called once per CPU type/errata
+combination during the software's active life time.
+
+It's expected that whenever an errata workaround is submitted to TF-A, the
+errata reporting function is appropriately extended to report its status as
+well.
+
+Reporting the status of errata workaround is for informational purpose only; it
+has no functional significance.
+
+Memory layout of BL images
+--------------------------
+
+Each bootloader image can be divided in 2 parts:
+
+- the static contents of the image. These are data actually stored in the
+ binary on the disk. In the ELF terminology, they are called ``PROGBITS``
+ sections;
+
+- the run-time contents of the image. These are data that don't occupy any
+ space in the binary on the disk. The ELF binary just contains some
+ metadata indicating where these data will be stored at run-time and the
+ corresponding sections need to be allocated and initialized at run-time.
+ In the ELF terminology, they are called ``NOBITS`` sections.
+
+All PROGBITS sections are grouped together at the beginning of the image,
+followed by all NOBITS sections. This is true for all TF-A images and it is
+governed by the linker scripts. This ensures that the raw binary images are
+as small as possible. If a NOBITS section was inserted in between PROGBITS
+sections then the resulting binary file would contain zero bytes in place of
+this NOBITS section, making the image unnecessarily bigger. Smaller images
+allow faster loading from the FIP to the main memory.
+
+For BL31, a platform can specify an alternate location for NOBITS sections
+(other than immediately following PROGBITS sections) by setting
+``SEPARATE_NOBITS_REGION`` to 1 and defining ``BL31_NOBITS_BASE`` and
+``BL31_NOBITS_LIMIT``.
+
+Linker scripts and symbols
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Each bootloader stage image layout is described by its own linker script. The
+linker scripts export some symbols into the program symbol table. Their values
+correspond to particular addresses. TF-A code can refer to these symbols to
+figure out the image memory layout.
+
+Linker symbols follow the following naming convention in TF-A.
+
+- ``__<SECTION>_START__``
+
+ Start address of a given section named ``<SECTION>``.
+
+- ``__<SECTION>_END__``
+
+ End address of a given section named ``<SECTION>``. If there is an alignment
+ constraint on the section's end address then ``__<SECTION>_END__`` corresponds
+ to the end address of the section's actual contents, rounded up to the right
+ boundary. Refer to the value of ``__<SECTION>_UNALIGNED_END__`` to know the
+ actual end address of the section's contents.
+
+- ``__<SECTION>_UNALIGNED_END__``
+
+ End address of a given section named ``<SECTION>`` without any padding or
+ rounding up due to some alignment constraint.
+
+- ``__<SECTION>_SIZE__``
+
+ Size (in bytes) of a given section named ``<SECTION>``. If there is an
+ alignment constraint on the section's end address then ``__<SECTION>_SIZE__``
+ corresponds to the size of the section's actual contents, rounded up to the
+ right boundary. In other words, ``__<SECTION>_SIZE__ = __<SECTION>_END__ - _<SECTION>_START__``. Refer to the value of ``__<SECTION>_UNALIGNED_SIZE__``
+ to know the actual size of the section's contents.
+
+- ``__<SECTION>_UNALIGNED_SIZE__``
+
+ Size (in bytes) of a given section named ``<SECTION>`` without any padding or
+ rounding up due to some alignment constraint. In other words,
+ ``__<SECTION>_UNALIGNED_SIZE__ = __<SECTION>_UNALIGNED_END__ - __<SECTION>_START__``.
+
+Some of the linker symbols are mandatory as TF-A code relies on them to be
+defined. They are listed in the following subsections. Some of them must be
+provided for each bootloader stage and some are specific to a given bootloader
+stage.
+
+The linker scripts define some extra, optional symbols. They are not actually
+used by any code but they help in understanding the bootloader images' memory
+layout as they are easy to spot in the link map files.
+
+Common linker symbols
+^^^^^^^^^^^^^^^^^^^^^
+
+All BL images share the following requirements:
+
+- The BSS section must be zero-initialised before executing any C code.
+- The coherent memory section (if enabled) must be zero-initialised as well.
+- The MMU setup code needs to know the extents of the coherent and read-only
+ memory regions to set the right memory attributes. When
+ ``SEPARATE_CODE_AND_RODATA=1``, it needs to know more specifically how the
+ read-only memory region is divided between code and data.
+
+The following linker symbols are defined for this purpose:
+
+- ``__BSS_START__``
+- ``__BSS_SIZE__``
+- ``__COHERENT_RAM_START__`` Must be aligned on a page-size boundary.
+- ``__COHERENT_RAM_END__`` Must be aligned on a page-size boundary.
+- ``__COHERENT_RAM_UNALIGNED_SIZE__``
+- ``__RO_START__``
+- ``__RO_END__``
+- ``__TEXT_START__``
+- ``__TEXT_END__``
+- ``__RODATA_START__``
+- ``__RODATA_END__``
+
+BL1's linker symbols
+^^^^^^^^^^^^^^^^^^^^
+
+BL1 being the ROM image, it has additional requirements. BL1 resides in ROM and
+it is entirely executed in place but it needs some read-write memory for its
+mutable data. Its ``.data`` section (i.e. its allocated read-write data) must be
+relocated from ROM to RAM before executing any C code.
+
+The following additional linker symbols are defined for BL1:
+
+- ``__BL1_ROM_END__`` End address of BL1's ROM contents, covering its code
+ and ``.data`` section in ROM.
+- ``__DATA_ROM_START__`` Start address of the ``.data`` section in ROM. Must be
+ aligned on a 16-byte boundary.
+- ``__DATA_RAM_START__`` Address in RAM where the ``.data`` section should be
+ copied over. Must be aligned on a 16-byte boundary.
+- ``__DATA_SIZE__`` Size of the ``.data`` section (in ROM or RAM).
+- ``__BL1_RAM_START__`` Start address of BL1 read-write data.
+- ``__BL1_RAM_END__`` End address of BL1 read-write data.
+
+How to choose the right base addresses for each bootloader stage image
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+There is currently no support for dynamic image loading in TF-A. This means
+that all bootloader images need to be linked against their ultimate runtime
+locations and the base addresses of each image must be chosen carefully such
+that images don't overlap each other in an undesired way. As the code grows,
+the base addresses might need adjustments to cope with the new memory layout.
+
+The memory layout is completely specific to the platform and so there is no
+general recipe for choosing the right base addresses for each bootloader image.
+However, there are tools to aid in understanding the memory layout. These are
+the link map files: ``build/<platform>/<build-type>/bl<x>/bl<x>.map``, with ``<x>``
+being the stage bootloader. They provide a detailed view of the memory usage of
+each image. Among other useful information, they provide the end address of
+each image.
+
+- ``bl1.map`` link map file provides ``__BL1_RAM_END__`` address.
+- ``bl2.map`` link map file provides ``__BL2_END__`` address.
+- ``bl31.map`` link map file provides ``__BL31_END__`` address.
+- ``bl32.map`` link map file provides ``__BL32_END__`` address.
+
+For each bootloader image, the platform code must provide its start address
+as well as a limit address that it must not overstep. The latter is used in the
+linker scripts to check that the image doesn't grow past that address. If that
+happens, the linker will issue a message similar to the following:
+
+::
+
+ aarch64-none-elf-ld: BLx has exceeded its limit.
+
+Additionally, if the platform memory layout implies some image overlaying like
+on FVP, BL31 and TSP need to know the limit address that their PROGBITS
+sections must not overstep. The platform code must provide those.
+
+TF-A does not provide any mechanism to verify at boot time that the memory
+to load a new image is free to prevent overwriting a previously loaded image.
+The platform must specify the memory available in the system for all the
+relevant BL images to be loaded.
+
+For example, in the case of BL1 loading BL2, ``bl1_plat_sec_mem_layout()`` will
+return the region defined by the platform where BL1 intends to load BL2. The
+``load_image()`` function performs bounds check for the image size based on the
+base and maximum image size provided by the platforms. Platforms must take
+this behaviour into account when defining the base/size for each of the images.
+
+Memory layout on Arm development platforms
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following list describes the memory layout on the Arm development platforms:
+
+- A 4KB page of shared memory is used for communication between Trusted
+ Firmware and the platform's power controller. This is located at the base of
+ Trusted SRAM. The amount of Trusted SRAM available to load the bootloader
+ images is reduced by the size of the shared memory.
+
+ The shared memory is used to store the CPUs' entrypoint mailbox. On Juno,
+ this is also used for the MHU payload when passing messages to and from the
+ SCP.
+
+- Another 4 KB page is reserved for passing memory layout between BL1 and BL2
+ and also the dynamic firmware configurations.
+
+- On FVP, BL1 is originally sitting in the Trusted ROM at address ``0x0``. On
+ Juno, BL1 resides in flash memory at address ``0x0BEC0000``. BL1 read-write
+ data are relocated to the top of Trusted SRAM at runtime.
+
+- BL2 is loaded below BL1 RW
+
+- EL3 Runtime Software, BL31 for AArch64 and BL32 for AArch32 (e.g. SP_MIN),
+ is loaded at the top of the Trusted SRAM, such that its NOBITS sections will
+ overwrite BL1 R/W data and BL2. This implies that BL1 global variables
+ remain valid only until execution reaches the EL3 Runtime Software entry
+ point during a cold boot.
+
+- On Juno, SCP_BL2 is loaded temporarily into the EL3 Runtime Software memory
+ region and transferred to the SCP before being overwritten by EL3 Runtime
+ Software.
+
+- BL32 (for AArch64) can be loaded in one of the following locations:
+
+ - Trusted SRAM
+ - Trusted DRAM (FVP only)
+ - Secure region of DRAM (top 16MB of DRAM configured by the TrustZone
+ controller)
+
+ When BL32 (for AArch64) is loaded into Trusted SRAM, it is loaded below
+ BL31.
+
+The location of the BL32 image will result in different memory maps. This is
+illustrated for both FVP and Juno in the following diagrams, using the TSP as
+an example.
+
+.. note::
+ Loading the BL32 image in TZC secured DRAM doesn't change the memory
+ layout of the other images in Trusted SRAM.
+
+CONFIG section in memory layouts shown below contains:
+
+::
+
+ +--------------------+
+ |bl2_mem_params_descs|
+ |--------------------|
+ | fw_configs |
+ +--------------------+
+
+``bl2_mem_params_descs`` contains parameters passed from BL2 to next the
+BL image during boot.
+
+``fw_configs`` includes soc_fw_config, tos_fw_config, tb_fw_config and fw_config.
+
+**FVP with TSP in Trusted SRAM with firmware configs :**
+(These diagrams only cover the AArch64 case)
+
+::
+
+ DRAM
+ 0xffffffff +----------+
+ : :
+ 0x82100000 |----------|
+ |HW_CONFIG |
+ 0x82000000 |----------| (non-secure)
+ | |
+ 0x80000000 +----------+
+
+ Trusted DRAM
+ 0x08000000 +----------+
+ |HW_CONFIG |
+ 0x07f00000 |----------|
+ : :
+ | |
+ 0x06000000 +----------+
+
+ Trusted SRAM
+ 0x04040000 +----------+ loaded by BL2 +----------------+
+ | BL1 (rw) | <<<<<<<<<<<<< | |
+ |----------| <<<<<<<<<<<<< | BL31 NOBITS |
+ | BL2 | <<<<<<<<<<<<< | |
+ |----------| <<<<<<<<<<<<< |----------------|
+ | | <<<<<<<<<<<<< | BL31 PROGBITS |
+ | | <<<<<<<<<<<<< |----------------|
+ | | <<<<<<<<<<<<< | BL32 |
+ 0x04003000 +----------+ +----------------+
+ | CONFIG |
+ 0x04001000 +----------+
+ | Shared |
+ 0x04000000 +----------+
+
+ Trusted ROM
+ 0x04000000 +----------+
+ | BL1 (ro) |
+ 0x00000000 +----------+
+
+**FVP with TSP in Trusted DRAM with firmware configs (default option):**
+
+::
+
+ DRAM
+ 0xffffffff +--------------+
+ : :
+ 0x82100000 |--------------|
+ | HW_CONFIG |
+ 0x82000000 |--------------| (non-secure)
+ | |
+ 0x80000000 +--------------+
+
+ Trusted DRAM
+ 0x08000000 +--------------+
+ | HW_CONFIG |
+ 0x07f00000 |--------------|
+ : :
+ | BL32 |
+ 0x06000000 +--------------+
+
+ Trusted SRAM
+ 0x04040000 +--------------+ loaded by BL2 +----------------+
+ | BL1 (rw) | <<<<<<<<<<<<< | |
+ |--------------| <<<<<<<<<<<<< | BL31 NOBITS |
+ | BL2 | <<<<<<<<<<<<< | |
+ |--------------| <<<<<<<<<<<<< |----------------|
+ | | <<<<<<<<<<<<< | BL31 PROGBITS |
+ | | +----------------+
+ 0x04003000 +--------------+
+ | CONFIG |
+ 0x04001000 +--------------+
+ | Shared |
+ 0x04000000 +--------------+
+
+ Trusted ROM
+ 0x04000000 +--------------+
+ | BL1 (ro) |
+ 0x00000000 +--------------+
+
+**FVP with TSP in TZC-Secured DRAM with firmware configs :**
+
+::
+
+ DRAM
+ 0xffffffff +----------+
+ | BL32 | (secure)
+ 0xff000000 +----------+
+ | |
+ 0x82100000 |----------|
+ |HW_CONFIG |
+ 0x82000000 |----------| (non-secure)
+ | |
+ 0x80000000 +----------+
+
+ Trusted DRAM
+ 0x08000000 +----------+
+ |HW_CONFIG |
+ 0x7f000000 |----------|
+ : :
+ | |
+ 0x06000000 +----------+
+
+ Trusted SRAM
+ 0x04040000 +----------+ loaded by BL2 +----------------+
+ | BL1 (rw) | <<<<<<<<<<<<< | |
+ |----------| <<<<<<<<<<<<< | BL31 NOBITS |
+ | BL2 | <<<<<<<<<<<<< | |
+ |----------| <<<<<<<<<<<<< |----------------|
+ | | <<<<<<<<<<<<< | BL31 PROGBITS |
+ | | +----------------+
+ 0x04003000 +----------+
+ | CONFIG |
+ 0x04001000 +----------+
+ | Shared |
+ 0x04000000 +----------+
+
+ Trusted ROM
+ 0x04000000 +----------+
+ | BL1 (ro) |
+ 0x00000000 +----------+
+
+**Juno with BL32 in Trusted SRAM :**
+
+::
+
+ Flash0
+ 0x0C000000 +----------+
+ : :
+ 0x0BED0000 |----------|
+ | BL1 (ro) |
+ 0x0BEC0000 |----------|
+ : :
+ 0x08000000 +----------+ BL31 is loaded
+ after SCP_BL2 has
+ Trusted SRAM been sent to SCP
+ 0x04040000 +----------+ loaded by BL2 +----------------+
+ | BL1 (rw) | <<<<<<<<<<<<< | |
+ |----------| <<<<<<<<<<<<< | BL31 NOBITS |
+ | BL2 | <<<<<<<<<<<<< | |
+ |----------| <<<<<<<<<<<<< |----------------|
+ | SCP_BL2 | <<<<<<<<<<<<< | BL31 PROGBITS |
+ | | <<<<<<<<<<<<< |----------------|
+ | | <<<<<<<<<<<<< | BL32 |
+ | | +----------------+
+ | |
+ 0x04001000 +----------+
+ | MHU |
+ 0x04000000 +----------+
+
+**Juno with BL32 in TZC-secured DRAM :**
+
+::
+
+ DRAM
+ 0xFFE00000 +----------+
+ | BL32 | (secure)
+ 0xFF000000 |----------|
+ | |
+ : : (non-secure)
+ | |
+ 0x80000000 +----------+
+
+ Flash0
+ 0x0C000000 +----------+
+ : :
+ 0x0BED0000 |----------|
+ | BL1 (ro) |
+ 0x0BEC0000 |----------|
+ : :
+ 0x08000000 +----------+ BL31 is loaded
+ after SCP_BL2 has
+ Trusted SRAM been sent to SCP
+ 0x04040000 +----------+ loaded by BL2 +----------------+
+ | BL1 (rw) | <<<<<<<<<<<<< | |
+ |----------| <<<<<<<<<<<<< | BL31 NOBITS |
+ | BL2 | <<<<<<<<<<<<< | |
+ |----------| <<<<<<<<<<<<< |----------------|
+ | SCP_BL2 | <<<<<<<<<<<<< | BL31 PROGBITS |
+ | | +----------------+
+ 0x04001000 +----------+
+ | MHU |
+ 0x04000000 +----------+
+
+.. _firmware_design_fip:
+
+Firmware Image Package (FIP)
+----------------------------
+
+Using a Firmware Image Package (FIP) allows for packing bootloader images (and
+potentially other payloads) into a single archive that can be loaded by TF-A
+from non-volatile platform storage. A driver to load images from a FIP has
+been added to the storage layer and allows a package to be read from supported
+platform storage. A tool to create Firmware Image Packages is also provided
+and described below.
+
+Firmware Image Package layout
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FIP layout consists of a table of contents (ToC) followed by payload data.
+The ToC itself has a header followed by one or more table entries. The ToC is
+terminated by an end marker entry, and since the size of the ToC is 0 bytes,
+the offset equals the total size of the FIP file. All ToC entries describe some
+payload data that has been appended to the end of the binary package. With the
+information provided in the ToC entry the corresponding payload data can be
+retrieved.
+
+::
+
+ ------------------
+ | ToC Header |
+ |----------------|
+ | ToC Entry 0 |
+ |----------------|
+ | ToC Entry 1 |
+ |----------------|
+ | ToC End Marker |
+ |----------------|
+ | |
+ | Data 0 |
+ | |
+ |----------------|
+ | |
+ | Data 1 |
+ | |
+ ------------------
+
+The ToC header and entry formats are described in the header file
+``include/tools_share/firmware_image_package.h``. This file is used by both the
+tool and TF-A.
+
+The ToC header has the following fields:
+
+::
+
+ `name`: The name of the ToC. This is currently used to validate the header.
+ `serial_number`: A non-zero number provided by the creation tool
+ `flags`: Flags associated with this data.
+ Bits 0-31: Reserved
+ Bits 32-47: Platform defined
+ Bits 48-63: Reserved
+
+A ToC entry has the following fields:
+
+::
+
+ `uuid`: All files are referred to by a pre-defined Universally Unique
+ IDentifier [UUID] . The UUIDs are defined in
+ `include/tools_share/firmware_image_package.h`. The platform translates
+ the requested image name into the corresponding UUID when accessing the
+ package.
+ `offset_address`: The offset address at which the corresponding payload data
+ can be found. The offset is calculated from the ToC base address.
+ `size`: The size of the corresponding payload data in bytes.
+ `flags`: Flags associated with this entry. None are yet defined.
+
+Firmware Image Package creation tool
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FIP creation tool can be used to pack specified images into a binary
+package that can be loaded by TF-A from platform storage. The tool currently
+only supports packing bootloader images. Additional image definitions can be
+added to the tool as required.
+
+The tool can be found in ``tools/fiptool``.
+
+Loading from a Firmware Image Package (FIP)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The Firmware Image Package (FIP) driver can load images from a binary package on
+non-volatile platform storage. For the Arm development platforms, this is
+currently NOR FLASH.
+
+Bootloader images are loaded according to the platform policy as specified by
+the function ``plat_get_image_source()``. For the Arm development platforms, this
+means the platform will attempt to load images from a Firmware Image Package
+located at the start of NOR FLASH0.
+
+The Arm development platforms' policy is to only allow loading of a known set of
+images. The platform policy can be modified to allow additional images.
+
+Use of coherent memory in TF-A
+------------------------------
+
+There might be loss of coherency when physical memory with mismatched
+shareability, cacheability and memory attributes is accessed by multiple CPUs
+(refer to section B2.9 of `Arm ARM`_ for more details). This possibility occurs
+in TF-A during power up/down sequences when coherency, MMU and caches are
+turned on/off incrementally.
+
+TF-A defines coherent memory as a region of memory with Device nGnRE attributes
+in the translation tables. The translation granule size in TF-A is 4KB. This
+is the smallest possible size of the coherent memory region.
+
+By default, all data structures which are susceptible to accesses with
+mismatched attributes from various CPUs are allocated in a coherent memory
+region (refer to section 2.1 of :ref:`Porting Guide`). The coherent memory
+region accesses are Outer Shareable, non-cacheable and they can be accessed with
+the Device nGnRE attributes when the MMU is turned on. Hence, at the expense of
+at least an extra page of memory, TF-A is able to work around coherency issues
+due to mismatched memory attributes.
+
+The alternative to the above approach is to allocate the susceptible data
+structures in Normal WriteBack WriteAllocate Inner shareable memory. This
+approach requires the data structures to be designed so that it is possible to
+work around the issue of mismatched memory attributes by performing software
+cache maintenance on them.
+
+Disabling the use of coherent memory in TF-A
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+It might be desirable to avoid the cost of allocating coherent memory on
+platforms which are memory constrained. TF-A enables inclusion of coherent
+memory in firmware images through the build flag ``USE_COHERENT_MEM``.
+This flag is enabled by default. It can be disabled to choose the second
+approach described above.
+
+The below sections analyze the data structures allocated in the coherent memory
+region and the changes required to allocate them in normal memory.
+
+Coherent memory usage in PSCI implementation
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ``psci_non_cpu_pd_nodes`` data structure stores the platform's power domain
+tree information for state management of power domains. By default, this data
+structure is allocated in the coherent memory region in TF-A because it can be
+accessed by multiple CPUs, either with caches enabled or disabled.
+
+.. code:: c
+
+ typedef struct non_cpu_pwr_domain_node {
+ /*
+ * Index of the first CPU power domain node level 0 which has this node
+ * as its parent.
+ */
+ unsigned int cpu_start_idx;
+
+ /*
+ * Number of CPU power domains which are siblings of the domain indexed
+ * by 'cpu_start_idx' i.e. all the domains in the range 'cpu_start_idx
+ * -> cpu_start_idx + ncpus' have this node as their parent.
+ */
+ unsigned int ncpus;
+
+ /*
+ * Index of the parent power domain node.
+ */
+ unsigned int parent_node;
+
+ plat_local_state_t local_state;
+
+ unsigned char level;
+
+ /* For indexing the psci_lock array*/
+ unsigned char lock_index;
+ } non_cpu_pd_node_t;
+
+In order to move this data structure to normal memory, the use of each of its
+fields must be analyzed. Fields like ``cpu_start_idx``, ``ncpus``, ``parent_node``
+``level`` and ``lock_index`` are only written once during cold boot. Hence removing
+them from coherent memory involves only doing a clean and invalidate of the
+cache lines after these fields are written.
+
+The field ``local_state`` can be concurrently accessed by multiple CPUs in
+different cache states. A Lamport's Bakery lock ``psci_locks`` is used to ensure
+mutual exclusion to this field and a clean and invalidate is needed after it
+is written.
+
+Bakery lock data
+~~~~~~~~~~~~~~~~
+
+The bakery lock data structure ``bakery_lock_t`` is allocated in coherent memory
+and is accessed by multiple CPUs with mismatched attributes. ``bakery_lock_t`` is
+defined as follows:
+
+.. code:: c
+
+ typedef struct bakery_lock {
+ /*
+ * The lock_data is a bit-field of 2 members:
+ * Bit[0] : choosing. This field is set when the CPU is
+ * choosing its bakery number.
+ * Bits[1 - 15] : number. This is the bakery number allocated.
+ */
+ volatile uint16_t lock_data[BAKERY_LOCK_MAX_CPUS];
+ } bakery_lock_t;
+
+It is a characteristic of Lamport's Bakery algorithm that the volatile per-CPU
+fields can be read by all CPUs but only written to by the owning CPU.
+
+Depending upon the data cache line size, the per-CPU fields of the
+``bakery_lock_t`` structure for multiple CPUs may exist on a single cache line.
+These per-CPU fields can be read and written during lock contention by multiple
+CPUs with mismatched memory attributes. Since these fields are a part of the
+lock implementation, they do not have access to any other locking primitive to
+safeguard against the resulting coherency issues. As a result, simple software
+cache maintenance is not enough to allocate them in coherent memory. Consider
+the following example.
+
+CPU0 updates its per-CPU field with data cache enabled. This write updates a
+local cache line which contains a copy of the fields for other CPUs as well. Now
+CPU1 updates its per-CPU field of the ``bakery_lock_t`` structure with data cache
+disabled. CPU1 then issues a DCIVAC operation to invalidate any stale copies of
+its field in any other cache line in the system. This operation will invalidate
+the update made by CPU0 as well.
+
+To use bakery locks when ``USE_COHERENT_MEM`` is disabled, the lock data structure
+has been redesigned. The changes utilise the characteristic of Lamport's Bakery
+algorithm mentioned earlier. The bakery_lock structure only allocates the memory
+for a single CPU. The macro ``DEFINE_BAKERY_LOCK`` allocates all the bakery locks
+needed for a CPU into a section ``bakery_lock``. The linker allocates the memory
+for other cores by using the total size allocated for the bakery_lock section
+and multiplying it with (PLATFORM_CORE_COUNT - 1). This enables software to
+perform software cache maintenance on the lock data structure without running
+into coherency issues associated with mismatched attributes.
+
+The bakery lock data structure ``bakery_info_t`` is defined for use when
+``USE_COHERENT_MEM`` is disabled as follows:
+
+.. code:: c
+
+ typedef struct bakery_info {
+ /*
+ * The lock_data is a bit-field of 2 members:
+ * Bit[0] : choosing. This field is set when the CPU is
+ * choosing its bakery number.
+ * Bits[1 - 15] : number. This is the bakery number allocated.
+ */
+ volatile uint16_t lock_data;
+ } bakery_info_t;
+
+The ``bakery_info_t`` represents a single per-CPU field of one lock and
+the combination of corresponding ``bakery_info_t`` structures for all CPUs in the
+system represents the complete bakery lock. The view in memory for a system
+with n bakery locks are:
+
+::
+
+ bakery_lock section start
+ |----------------|
+ | `bakery_info_t`| <-- Lock_0 per-CPU field
+ | Lock_0 | for CPU0
+ |----------------|
+ | `bakery_info_t`| <-- Lock_1 per-CPU field
+ | Lock_1 | for CPU0
+ |----------------|
+ | .... |
+ |----------------|
+ | `bakery_info_t`| <-- Lock_N per-CPU field
+ | Lock_N | for CPU0
+ ------------------
+ | XXXXX |
+ | Padding to |
+ | next Cache WB | <--- Calculate PERCPU_BAKERY_LOCK_SIZE, allocate
+ | Granule | continuous memory for remaining CPUs.
+ ------------------
+ | `bakery_info_t`| <-- Lock_0 per-CPU field
+ | Lock_0 | for CPU1
+ |----------------|
+ | `bakery_info_t`| <-- Lock_1 per-CPU field
+ | Lock_1 | for CPU1
+ |----------------|
+ | .... |
+ |----------------|
+ | `bakery_info_t`| <-- Lock_N per-CPU field
+ | Lock_N | for CPU1
+ ------------------
+ | XXXXX |
+ | Padding to |
+ | next Cache WB |
+ | Granule |
+ ------------------
+
+Consider a system of 2 CPUs with 'N' bakery locks as shown above. For an
+operation on Lock_N, the corresponding ``bakery_info_t`` in both CPU0 and CPU1
+``bakery_lock`` section need to be fetched and appropriate cache operations need
+to be performed for each access.
+
+On Arm Platforms, bakery locks are used in psci (``psci_locks``) and power controller
+driver (``arm_lock``).
+
+Non Functional Impact of removing coherent memory
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Removal of the coherent memory region leads to the additional software overhead
+of performing cache maintenance for the affected data structures. However, since
+the memory where the data structures are allocated is cacheable, the overhead is
+mostly mitigated by an increase in performance.
+
+There is however a performance impact for bakery locks, due to:
+
+- Additional cache maintenance operations, and
+- Multiple cache line reads for each lock operation, since the bakery locks
+ for each CPU are distributed across different cache lines.
+
+The implementation has been optimized to minimize this additional overhead.
+Measurements indicate that when bakery locks are allocated in Normal memory, the
+minimum latency of acquiring a lock is on an average 3-4 micro seconds whereas
+in Device memory the same is 2 micro seconds. The measurements were done on the
+Juno Arm development platform.
+
+As mentioned earlier, almost a page of memory can be saved by disabling
+``USE_COHERENT_MEM``. Each platform needs to consider these trade-offs to decide
+whether coherent memory should be used. If a platform disables
+``USE_COHERENT_MEM`` and needs to use bakery locks in the porting layer, it can
+optionally define macro ``PLAT_PERCPU_BAKERY_LOCK_SIZE`` (see the
+:ref:`Porting Guide`). Refer to the reference platform code for examples.
+
+Isolating code and read-only data on separate memory pages
+----------------------------------------------------------
+
+In the Armv8-A VMSA, translation table entries include fields that define the
+properties of the target memory region, such as its access permissions. The
+smallest unit of memory that can be addressed by a translation table entry is
+a memory page. Therefore, if software needs to set different permissions on two
+memory regions then it needs to map them using different memory pages.
+
+The default memory layout for each BL image is as follows:
+
+::
+
+ | ... |
+ +-------------------+
+ | Read-write data |
+ +-------------------+ Page boundary
+ | <Padding> |
+ +-------------------+
+ | Exception vectors |
+ +-------------------+ 2 KB boundary
+ | <Padding> |
+ +-------------------+
+ | Read-only data |
+ +-------------------+
+ | Code |
+ +-------------------+ BLx_BASE
+
+.. note::
+ The 2KB alignment for the exception vectors is an architectural
+ requirement.
+
+The read-write data start on a new memory page so that they can be mapped with
+read-write permissions, whereas the code and read-only data below are configured
+as read-only.
+
+However, the read-only data are not aligned on a page boundary. They are
+contiguous to the code. Therefore, the end of the code section and the beginning
+of the read-only data one might share a memory page. This forces both to be
+mapped with the same memory attributes. As the code needs to be executable, this
+means that the read-only data stored on the same memory page as the code are
+executable as well. This could potentially be exploited as part of a security
+attack.
+
+TF provides the build flag ``SEPARATE_CODE_AND_RODATA`` to isolate the code and
+read-only data on separate memory pages. This in turn allows independent control
+of the access permissions for the code and read-only data. In this case,
+platform code gets a finer-grained view of the image layout and can
+appropriately map the code region as executable and the read-only data as
+execute-never.
+
+This has an impact on memory footprint, as padding bytes need to be introduced
+between the code and read-only data to ensure the segregation of the two. To
+limit the memory cost, this flag also changes the memory layout such that the
+code and exception vectors are now contiguous, like so:
+
+::
+
+ | ... |
+ +-------------------+
+ | Read-write data |
+ +-------------------+ Page boundary
+ | <Padding> |
+ +-------------------+
+ | Read-only data |
+ +-------------------+ Page boundary
+ | <Padding> |
+ +-------------------+
+ | Exception vectors |
+ +-------------------+ 2 KB boundary
+ | <Padding> |
+ +-------------------+
+ | Code |
+ +-------------------+ BLx_BASE
+
+With this more condensed memory layout, the separation of read-only data will
+add zero or one page to the memory footprint of each BL image. Each platform
+should consider the trade-off between memory footprint and security.
+
+This build flag is disabled by default, minimising memory footprint. On Arm
+platforms, it is enabled.
+
+Publish and Subscribe Framework
+-------------------------------
+
+The Publish and Subscribe Framework allows EL3 components to define and publish
+events, to which other EL3 components can subscribe.
+
+The following macros are provided by the framework:
+
+- ``REGISTER_PUBSUB_EVENT(event)``: Defines an event, and takes one argument,
+ the event name, which must be a valid C identifier. All calls to
+ ``REGISTER_PUBSUB_EVENT`` macro must be placed in the file
+ ``pubsub_events.h``.
+
+- ``PUBLISH_EVENT_ARG(event, arg)``: Publishes a defined event, by iterating
+ subscribed handlers and calling them in turn. The handlers will be passed the
+ parameter ``arg``. The expected use-case is to broadcast an event.
+
+- ``PUBLISH_EVENT(event)``: Like ``PUBLISH_EVENT_ARG``, except that the value
+ ``NULL`` is passed to subscribed handlers.
+
+- ``SUBSCRIBE_TO_EVENT(event, handler)``: Registers the ``handler`` to
+ subscribe to ``event``. The handler will be executed whenever the ``event``
+ is published.
+
+- ``for_each_subscriber(event, subscriber)``: Iterates through all handlers
+ subscribed for ``event``. ``subscriber`` must be a local variable of type
+ ``pubsub_cb_t *``, and will point to each subscribed handler in turn during
+ iteration. This macro can be used for those patterns that none of the
+ ``PUBLISH_EVENT_*()`` macros cover.
+
+Publishing an event that wasn't defined using ``REGISTER_PUBSUB_EVENT`` will
+result in build error. Subscribing to an undefined event however won't.
+
+Subscribed handlers must be of type ``pubsub_cb_t``, with following function
+signature:
+
+.. code:: c
+
+ typedef void* (*pubsub_cb_t)(const void *arg);
+
+There may be arbitrary number of handlers registered to the same event. The
+order in which subscribed handlers are notified when that event is published is
+not defined. Subscribed handlers may be executed in any order; handlers should
+not assume any relative ordering amongst them.
+
+Publishing an event on a PE will result in subscribed handlers executing on that
+PE only; it won't cause handlers to execute on a different PE.
+
+Note that publishing an event on a PE blocks until all the subscribed handlers
+finish executing on the PE.
+
+TF-A generic code publishes and subscribes to some events within. Platform
+ports are discouraged from subscribing to them. These events may be withdrawn,
+renamed, or have their semantics altered in the future. Platforms may however
+register, publish, and subscribe to platform-specific events.
+
+Publish and Subscribe Example
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A publisher that wants to publish event ``foo`` would:
+
+- Define the event ``foo`` in the ``pubsub_events.h``.
+
+ .. code:: c
+
+ REGISTER_PUBSUB_EVENT(foo);
+
+- Depending on the nature of event, use one of ``PUBLISH_EVENT_*()`` macros to
+ publish the event at the appropriate path and time of execution.
+
+A subscriber that wants to subscribe to event ``foo`` published above would
+implement:
+
+.. code:: c
+
+ void *foo_handler(const void *arg)
+ {
+ void *result;
+
+ /* Do handling ... */
+
+ return result;
+ }
+
+ SUBSCRIBE_TO_EVENT(foo, foo_handler);
+
+
+Reclaiming the BL31 initialization code
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A significant amount of the code used for the initialization of BL31 is never
+needed again after boot time. In order to reduce the runtime memory
+footprint, the memory used for this code can be reclaimed after initialization
+has finished and be used for runtime data.
+
+The build option ``RECLAIM_INIT_CODE`` can be set to mark this boot time code
+with a ``.text.init.*`` attribute which can be filtered and placed suitably
+within the BL image for later reclamation by the platform. The platform can
+specify the filter and the memory region for this init section in BL31 via the
+plat.ld.S linker script. For example, on the FVP, this section is placed
+overlapping the secondary CPU stacks so that after the cold boot is done, this
+memory can be reclaimed for the stacks. The init memory section is initially
+mapped with ``RO``, ``EXECUTE`` attributes. After BL31 initialization has
+completed, the FVP changes the attributes of this section to ``RW``,
+``EXECUTE_NEVER`` allowing it to be used for runtime data. The memory attributes
+are changed within the ``bl31_plat_runtime_setup`` platform hook. The init
+section section can be reclaimed for any data which is accessed after cold
+boot initialization and it is upto the platform to make the decision.
+
+.. _firmware_design_pmf:
+
+Performance Measurement Framework
+---------------------------------
+
+The Performance Measurement Framework (PMF) facilitates collection of
+timestamps by registered services and provides interfaces to retrieve them
+from within TF-A. A platform can choose to expose appropriate SMCs to
+retrieve these collected timestamps.
+
+By default, the global physical counter is used for the timestamp
+value and is read via ``CNTPCT_EL0``. The framework allows to retrieve
+timestamps captured by other CPUs.
+
+Timestamp identifier format
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A PMF timestamp is uniquely identified across the system via the
+timestamp ID or ``tid``. The ``tid`` is composed as follows:
+
+::
+
+ Bits 0-7: The local timestamp identifier.
+ Bits 8-9: Reserved.
+ Bits 10-15: The service identifier.
+ Bits 16-31: Reserved.
+
+#. The service identifier. Each PMF service is identified by a
+ service name and a service identifier. Both the service name and
+ identifier are unique within the system as a whole.
+
+#. The local timestamp identifier. This identifier is unique within a given
+ service.
+
+Registering a PMF service
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To register a PMF service, the ``PMF_REGISTER_SERVICE()`` macro from ``pmf.h``
+is used. The arguments required are the service name, the service ID,
+the total number of local timestamps to be captured and a set of flags.
+
+The ``flags`` field can be specified as a bitwise-OR of the following values:
+
+::
+
+ PMF_STORE_ENABLE: The timestamp is stored in memory for later retrieval.
+ PMF_DUMP_ENABLE: The timestamp is dumped on the serial console.
+
+The ``PMF_REGISTER_SERVICE()`` reserves memory to store captured
+timestamps in a PMF specific linker section at build time.
+Additionally, it defines necessary functions to capture and
+retrieve a particular timestamp for the given service at runtime.
+
+The macro ``PMF_REGISTER_SERVICE()`` only enables capturing PMF timestamps
+from within TF-A. In order to retrieve timestamps from outside of TF-A, the
+``PMF_REGISTER_SERVICE_SMC()`` macro must be used instead. This macro
+accepts the same set of arguments as the ``PMF_REGISTER_SERVICE()``
+macro but additionally supports retrieving timestamps using SMCs.
+
+Capturing a timestamp
+~~~~~~~~~~~~~~~~~~~~~
+
+PMF timestamps are stored in a per-service timestamp region. On a
+system with multiple CPUs, each timestamp is captured and stored
+in a per-CPU cache line aligned memory region.
+
+Having registered the service, the ``PMF_CAPTURE_TIMESTAMP()`` macro can be
+used to capture a timestamp at the location where it is used. The macro
+takes the service name, a local timestamp identifier and a flag as arguments.
+
+The ``flags`` field argument can be zero, or ``PMF_CACHE_MAINT`` which
+instructs PMF to do cache maintenance following the capture. Cache
+maintenance is required if any of the service's timestamps are captured
+with data cache disabled.
+
+To capture a timestamp in assembly code, the caller should use
+``pmf_calc_timestamp_addr`` macro (defined in ``pmf_asm_macros.S``) to
+calculate the address of where the timestamp would be stored. The
+caller should then read ``CNTPCT_EL0`` register to obtain the timestamp
+and store it at the determined address for later retrieval.
+
+Retrieving a timestamp
+~~~~~~~~~~~~~~~~~~~~~~
+
+From within TF-A, timestamps for individual CPUs can be retrieved using either
+``PMF_GET_TIMESTAMP_BY_MPIDR()`` or ``PMF_GET_TIMESTAMP_BY_INDEX()`` macros.
+These macros accept the CPU's MPIDR value, or its ordinal position
+respectively.
+
+From outside TF-A, timestamps for individual CPUs can be retrieved by calling
+into ``pmf_smc_handler()``.
+
+::
+
+ Interface : pmf_smc_handler()
+ Argument : unsigned int smc_fid, u_register_t x1,
+ u_register_t x2, u_register_t x3,
+ u_register_t x4, void *cookie,
+ void *handle, u_register_t flags
+ Return : uintptr_t
+
+ smc_fid: Holds the SMC identifier which is either `PMF_SMC_GET_TIMESTAMP_32`
+ when the caller of the SMC is running in AArch32 mode
+ or `PMF_SMC_GET_TIMESTAMP_64` when the caller is running in AArch64 mode.
+ x1: Timestamp identifier.
+ x2: The `mpidr` of the CPU for which the timestamp has to be retrieved.
+ This can be the `mpidr` of a different core to the one initiating
+ the SMC. In that case, service specific cache maintenance may be
+ required to ensure the updated copy of the timestamp is returned.
+ x3: A flags value that is either 0 or `PMF_CACHE_MAINT`. If
+ `PMF_CACHE_MAINT` is passed, then the PMF code will perform a
+ cache invalidate before reading the timestamp. This ensures
+ an updated copy is returned.
+
+The remaining arguments, ``x4``, ``cookie``, ``handle`` and ``flags`` are unused
+in this implementation.
+
+PMF code structure
+~~~~~~~~~~~~~~~~~~
+
+#. ``pmf_main.c`` consists of core functions that implement service registration,
+ initialization, storing, dumping and retrieving timestamps.
+
+#. ``pmf_smc.c`` contains the SMC handling for registered PMF services.
+
+#. ``pmf.h`` contains the public interface to Performance Measurement Framework.
+
+#. ``pmf_asm_macros.S`` consists of macros to facilitate capturing timestamps in
+ assembly code.
+
+#. ``pmf_helpers.h`` is an internal header used by ``pmf.h``.
+
+Armv8-A Architecture Extensions
+-------------------------------
+
+TF-A makes use of Armv8-A Architecture Extensions where applicable. This
+section lists the usage of Architecture Extensions, and build flags
+controlling them.
+
+In general, and unless individually mentioned, the build options
+``ARM_ARCH_MAJOR`` and ``ARM_ARCH_MINOR`` select the Architecture Extension to
+target when building TF-A. Subsequent Arm Architecture Extensions are backward
+compatible with previous versions.
+
+The build system only requires that ``ARM_ARCH_MAJOR`` and ``ARM_ARCH_MINOR`` have a
+valid numeric value. These build options only control whether or not
+Architecture Extension-specific code is included in the build. Otherwise, TF-A
+targets the base Armv8.0-A architecture; i.e. as if ``ARM_ARCH_MAJOR`` == 8
+and ``ARM_ARCH_MINOR`` == 0, which are also their respective default values.
+
+.. seealso:: :ref:`Build Options`
+
+For details on the Architecture Extension and available features, please refer
+to the respective Architecture Extension Supplement.
+
+Armv8.1-A
+~~~~~~~~~
+
+This Architecture Extension is targeted when ``ARM_ARCH_MAJOR`` >= 8, or when
+``ARM_ARCH_MAJOR`` == 8 and ``ARM_ARCH_MINOR`` >= 1.
+
+- By default, a load-/store-exclusive instruction pair is used to implement
+ spinlocks. The ``USE_SPINLOCK_CAS`` build option when set to 1 selects the
+ spinlock implementation using the ARMv8.1-LSE Compare and Swap instruction.
+ Notice this instruction is only available in AArch64 execution state, so
+ the option is only available to AArch64 builds.
+
+Armv8.2-A
+~~~~~~~~~
+
+- The presence of ARMv8.2-TTCNP is detected at runtime. When it is present, the
+ Common not Private (TTBRn_ELx.CnP) bit is enabled to indicate that multiple
+ Processing Elements in the same Inner Shareable domain use the same
+ translation table entries for a given stage of translation for a particular
+ translation regime.
+
+Armv8.3-A
+~~~~~~~~~
+
+- Pointer authentication features of Armv8.3-A are unconditionally enabled in
+ the Non-secure world so that lower ELs are allowed to use them without
+ causing a trap to EL3.
+
+ In order to enable the Secure world to use it, ``CTX_INCLUDE_PAUTH_REGS``
+ must be set to 1. This will add all pointer authentication system registers
+ to the context that is saved when doing a world switch.
+
+ The TF-A itself has support for pointer authentication at runtime
+ that can be enabled by setting ``BRANCH_PROTECTION`` option to non-zero and
+ ``CTX_INCLUDE_PAUTH_REGS`` to 1. This enables pointer authentication in BL1,
+ BL2, BL31, and the TSP if it is used.
+
+ Note that Pointer Authentication is enabled for Non-secure world irrespective
+ of the value of these build flags if the CPU supports it.
+
+ If ``ARM_ARCH_MAJOR == 8`` and ``ARM_ARCH_MINOR >= 3`` the code footprint of
+ enabling PAuth is lower because the compiler will use the optimized
+ PAuth instructions rather than the backwards-compatible ones.
+
+Armv8.5-A
+~~~~~~~~~
+
+- Branch Target Identification feature is selected by ``BRANCH_PROTECTION``
+ option set to 1. This option defaults to 0.
+
+- Memory Tagging Extension feature is unconditionally enabled for both worlds
+ (at EL0 and S-EL0) if it is only supported at EL0. If instead it is
+ implemented at all ELs, it is unconditionally enabled for only the normal
+ world. To enable it for the secure world as well, the build option
+ ``CTX_INCLUDE_MTE_REGS`` is required. If the hardware does not implement
+ MTE support at all, it is always disabled, no matter what build options
+ are used.
+
+Armv7-A
+~~~~~~~
+
+This Architecture Extension is targeted when ``ARM_ARCH_MAJOR`` == 7.
+
+There are several Armv7-A extensions available. Obviously the TrustZone
+extension is mandatory to support the TF-A bootloader and runtime services.
+
+Platform implementing an Armv7-A system can to define from its target
+Cortex-A architecture through ``ARM_CORTEX_A<X> = yes`` in their
+``platform.mk`` script. For example ``ARM_CORTEX_A15=yes`` for a
+Cortex-A15 target.
+
+Platform can also set ``ARM_WITH_NEON=yes`` to enable neon support.
+Note that using neon at runtime has constraints on non secure world context.
+TF-A does not yet provide VFP context management.
+
+Directive ``ARM_CORTEX_A<x>`` and ``ARM_WITH_NEON`` are used to set
+the toolchain target architecture directive.
+
+Platform may choose to not define straight the toolchain target architecture
+directive by defining ``MARCH32_DIRECTIVE``.
+I.e:
+
+.. code:: make
+
+ MARCH32_DIRECTIVE := -mach=armv7-a
+
+Code Structure
+--------------
+
+TF-A code is logically divided between the three boot loader stages mentioned
+in the previous sections. The code is also divided into the following
+categories (present as directories in the source code):
+
+- **Platform specific.** Choice of architecture specific code depends upon
+ the platform.
+- **Common code.** This is platform and architecture agnostic code.
+- **Library code.** This code comprises of functionality commonly used by all
+ other code. The PSCI implementation and other EL3 runtime frameworks reside
+ as Library components.
+- **Stage specific.** Code specific to a boot stage.
+- **Drivers.**
+- **Services.** EL3 runtime services (eg: SPD). Specific SPD services
+ reside in the ``services/spd`` directory (e.g. ``services/spd/tspd``).
+
+Each boot loader stage uses code from one or more of the above mentioned
+categories. Based upon the above, the code layout looks like this:
+
+::
+
+ Directory Used by BL1? Used by BL2? Used by BL31?
+ bl1 Yes No No
+ bl2 No Yes No
+ bl31 No No Yes
+ plat Yes Yes Yes
+ drivers Yes No Yes
+ common Yes Yes Yes
+ lib Yes Yes Yes
+ services No No Yes
+
+The build system provides a non configurable build option IMAGE_BLx for each
+boot loader stage (where x = BL stage). e.g. for BL1 , IMAGE_BL1 will be
+defined by the build system. This enables TF-A to compile certain code only
+for specific boot loader stages
+
+All assembler files have the ``.S`` extension. The linker source files for each
+boot stage have the extension ``.ld.S``. These are processed by GCC to create the
+linker scripts which have the extension ``.ld``.
+
+FDTs provide a description of the hardware platform and are used by the Linux
+kernel at boot time. These can be found in the ``fdts`` directory.
+
+.. rubric:: References
+
+- `Trusted Board Boot Requirements CLIENT (TBBR-CLIENT) Armv8-A (ARM DEN0006D)`_
+
+- `Power State Coordination Interface PDD`_
+
+- `SMC Calling Convention`_
+
+- :ref:`Interrupt Management Framework`
+
+--------------
+
+*Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.*
+
+.. _Power State Coordination Interface PDD: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
+.. _SMCCC: https://developer.arm.com/docs/den0028/latest
+.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
+.. _Power State Coordination Interface PDD: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
+.. _Arm ARM: https://developer.arm.com/docs/ddi0487/latest
+.. _SMC Calling Convention: https://developer.arm.com/docs/den0028/latest
+.. _Trusted Board Boot Requirements CLIENT (TBBR-CLIENT) Armv8-A (ARM DEN0006D): https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
+.. _Arm Confidential Compute Architecture (Arm CCA): https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
+
+.. |Image 1| image:: ../resources/diagrams/rt-svc-descs-layout.png