diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 09:13:47 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 09:13:47 +0000 |
commit | 102b0d2daa97dae68d3eed54d8fe37a9cc38a892 (patch) | |
tree | bcf648efac40ca6139842707f0eba5a4496a6dd2 /docs/design_documents | |
parent | Initial commit. (diff) | |
download | arm-trusted-firmware-102b0d2daa97dae68d3eed54d8fe37a9cc38a892.tar.xz arm-trusted-firmware-102b0d2daa97dae68d3eed54d8fe37a9cc38a892.zip |
Adding upstream version 2.8.0+dfsg.upstream/2.8.0+dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'docs/design_documents')
-rw-r--r-- | docs/design_documents/cmake_framework.rst | 165 | ||||
-rw-r--r-- | docs/design_documents/context_mgmt_rework.rst | 197 | ||||
-rw-r--r-- | docs/design_documents/drtm_poc.rst | 132 | ||||
-rw-r--r-- | docs/design_documents/index.rst | 15 | ||||
-rw-r--r-- | docs/design_documents/measured_boot_poc.rst | 507 |
5 files changed, 1016 insertions, 0 deletions
diff --git a/docs/design_documents/cmake_framework.rst b/docs/design_documents/cmake_framework.rst new file mode 100644 index 0000000..d88942e --- /dev/null +++ b/docs/design_documents/cmake_framework.rst @@ -0,0 +1,165 @@ +TF-A CMake buildsystem +====================== + +:Author: Balint Dobszay +:Organization: Arm Limited +:Contact: Balint Dobszay <balint.dobszay@arm.com> +:Status: Accepted + +.. contents:: Table of Contents + +Abstract +-------- +This document presents a proposal for a new buildsystem for TF-A using CMake, +and as part of this a reusable CMake framework for embedded projects. For a +summary about the proposal, please see the `Phabricator wiki page +<https://developer.trustedfirmware.org/w/tf_a/cmake-buildsystem-proposal/>`_. As +mentioned there, the proposal consists of two phases. The subject of this +document is the first phase only. + +Introduction +------------ +The current Makefile based buildsystem of TF-A has become complicated and hard +to maintain, there is a need for a new, more flexible solution. The proposal is +to use CMake language for the new buildsystem. The main reasons of this decision +are the following: + +* It is a well-established, mature tool, widely accepted by open-source + projects. +* TF-M is already using CMake, reducing fragmentation for tf.org projects can be + beneficial. +* CMake has various advantages over Make, e.g.: + + * Host and target system agnostic project. + * CMake project is scalable, supports project modularization. + * Supports software integration. + * Out-of-the-box support for integration with several tools (e.g. project + generation for various IDEs, integration with cppcheck, etc). + +Of course there are drawbacks too: + +* Language is problematic (e.g. variable scope). +* Not embedded approach. + +To overcome these and other problems, we need to create workarounds for some +tasks, wrap CMake functions, etc. Since this functionality can be useful in +other embedded projects too, it is beneficial to collect the new code into a +reusable framework and store this in a separate repository. The following +diagram provides an overview of the framework structure: + +|Framework structure| + +Main features +------------- + +Structured configuration description +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +In the current Makefile system the build configuration description, validation, +processing, and the target creation, source file description are mixed and +spread across several files. One of the goals of the framework is to organize +this. + +The framework provides a solution to describe the input build parameters, flags, +macros, etc. in a structured way. It contains two utilities for this purpose: + +* Map: simple key-value pair implementation. +* Group: collection of related maps. + +The related parameters shall be packed into a group (or "setting group"). The +setting groups shall be defined and filled with content in config files. +Currently the config files are created and edited manually, but later a +configuration management tool (e.g. Kconfig) shall be used to generate these +files. Therefore, the framework does not contain parameter validation and +conflict checking, these shall be handled by the configuration tool. + +Target description +^^^^^^^^^^^^^^^^^^ +The framework provides an API called STGT ('simple target') to describe the +targets, i.e. what is the build output, what source files are used, what +libraries are linked, etc. The API wraps the CMake target functions, and also +extends the built-in functionality, it can use the setting groups described in +the previous section. A group can be applied onto a target, i.e. a collection of +macros, flags, etc. can be applied onto the given output executable/library. +This provides a more granular way than the current Makefile system where most of +these are global and applied onto each target. + +Compiler abstraction +^^^^^^^^^^^^^^^^^^^^ +Apart from the built-in CMake usage of the compiler, there are some common tasks +that CMake does not solve (e.g. preprocessing a file). For these tasks the +framework uses wrapper functions instead of direct calls to the compiler. This +way it is not tied to one specific compiler. + +External tools +^^^^^^^^^^^^^^ +In the TF-A buildsystem some external tools are used, e.g. fiptool for image +generation or dtc for device tree compilation. These tools have to be found +and/or built by the framework. For this, the CMake find_package functionality is +used, any other necessary tools can be added later. + +Workflow +-------- +The following diagram demonstrates the development workflow using the framework: + +|Framework workflow| + +The process can be split into two main phases: + +In the provisioning phase, first we have to obtain the necessary resources, i.e. +clone the code repository and other dependencies. Next we have to do the +configuration, preferably using a config tool like KConfig. + +In the development phase first we run CMake, which will generate the buildsystem +using the selected generator backend (currently only the Makefile generator is +supported). After this we run the selected build tool which in turn calls the +compiler, linker, packaging tool, etc. Finally we can run and debug the output +executables. + +Usually during development only the steps in this second phase have to be +repeated, while the provisioning phase needs to be done only once (or rarely). + +Example +------- +This is a short example for the basic framework usage. + +First, we create a setting group called *mem_conf* and fill it with several +parameters. It is worth noting the difference between *CONFIG* and *DEFINE* +types: the former is only a CMake domain option, the latter is only a C language +macro. + +Next, we create a target called *fw1* and add the *mem_conf* setting group to +it. This means that all source and header files used by the target will have all +the parameters declared in the setting group. Then we set the target type to +executable, and add some source files. Since the target has the parameters from +the settings group, we can use it for conditionally adding source files. E.g. +*dram_controller.c* will only be added if MEM_TYPE equals dram. + +.. code-block:: cmake + + group_new(NAME mem_conf) + group_add(NAME mem_conf TYPE DEFINE KEY MEM_SIZE VAL 1024) + group_add(NAME mem_conf TYPE CONFIG DEFINE KEY MEM_TYPE VAL dram) + group_add(NAME mem_conf TYPE CFLAG KEY -Os) + + stgt_create(NAME fw1) + stgt_add_setting(NAME fw1 GROUPS mem_conf) + stgt_set_target(NAME fw1 TYPE exe) + + stgt_add_src(NAME fw1 SRC + ${CMAKE_SOURCE_DIR}/main.c + ) + + stgt_add_src_cond(NAME fw1 KEY MEM_TYPE VAL dram SRC + ${CMAKE_SOURCE_DIR}/dram_controller.c + ) + +.. |Framework structure| image:: + ../resources/diagrams/cmake_framework_structure.png + :width: 75 % + +.. |Framework workflow| image:: + ../resources/diagrams/cmake_framework_workflow.png + +-------------- + +*Copyright (c) 2019-2020, Arm Limited and Contributors. All rights reserved.* diff --git a/docs/design_documents/context_mgmt_rework.rst b/docs/design_documents/context_mgmt_rework.rst new file mode 100644 index 0000000..59f9d4e --- /dev/null +++ b/docs/design_documents/context_mgmt_rework.rst @@ -0,0 +1,197 @@ +Enhance Context Management library for EL3 firmware +=================================================== + +:Authors: Soby Mathew & Zelalem Aweke +:Organization: Arm Limited +:Contact: Soby Mathew <soby.mathew@arm.com> & Zelalem Aweke <zelalem.aweke@arm.com> +:Status: RFC + +.. contents:: Table of Contents + +Introduction +------------ +The context management library in TF-A provides the basic CPU context +initialization and management routines for use by different components +in EL3 firmware. The original design of the library was done keeping in +mind the 2 world switch and hence this design pattern has been extended to +keep up with growing requirements of EL3 firmware. With the introduction +of a new Realm world and a separate Root world for EL3 firmware, it is clear +that this library needs to be refactored to cater for future enhancements and +reduce chances of introducing error in code. This also aligns with the overall +goal of reducing EL3 firmware complexity and footprint. + +It is expected that the suggestions below could have legacy implications and +hence we are mainly targeting SPM/RMM based systems. It is expected that these +legacy issues will need to be sorted out as part of implementation on a case +by case basis. + +Design Principles +----------------- +The below section lays down the design principles for re-factoring the context +management library : + +(1) **Decentralized model for context mgmt** + + Both the Secure and Realm worlds have associated dispatcher component in + EL3 firmware to allow management of their respective worlds. Allowing the + dispatcher to own the context for their respective world and moving away + from a centralized policy management by context management library will + remove the world differentiation code in the library. This also means that + the library will not be responsible for CPU feature enablement for + Secure and Realm worlds. See point 3 and 4 for more details. + + The Non Secure world does not have a dispatcher component and hence EL3 + firmware (BL31)/context management library needs to have routines to help + initialize the Non Secure world context. + +(2) **EL3 should only initialize immediate used lower EL** + + Due to the way TF-A evolved, from EL3 interacting with an S-EL1 payload to + SPM in S-EL2, there is some code initializing S-EL1 registers which is + probably redundant when SPM is present in S-EL2. As a principle, EL3 + firmware should only initialize the next immediate lower EL in use. + If EL2 needs to be skipped and is not to be used at runtime, then + EL3 can do the bare minimal EL2 init and init EL1 to prepare for EL3 exit. + It is expected that this skip EL2 configuration is only needed for NS + world to support legacy Android deployments. It is worth removing this + `skip EL2 for Non Secure` config support if this is no longer used. + +(3) **Maintain EL3 sysregs which affect lower EL within CPU context** + + The CPU context contains some EL3 sysregs and gets applied on a per-world + basis (eg: cptr_el3, scr_el3, zcr_el3 is part of the context + because different settings need to be applied between each world). + But this design pattern is not enforced in TF-A. It is possible to directly + modify EL3 sysreg dynamically during the transition between NS and Secure + worlds. Having multiple ways of manipulating EL3 sysregs for different + values between the worlds is flaky and error prone. The proposal is to + enforce the rule that any EL3 sysreg which can be different between worlds + is maintained in the CPU Context. Once the context is initialized the + EL3 sysreg values corresponding to the world being entered will be restored. + +(4) **Allow more flexibility for Dispatchers to select feature set to save and restore** + + The current functions for EL2 CPU context save and restore is a single + function which takes care of saving and restoring all the registers for + EL2. This method is inflexible and it does not allow to dynamically detect + CPU features to select registers to save and restore. It also assumes that + both Realm and Secure world will have the same feature set enabled from + EL3 at runtime and makes it hard to enable different features for each + world. The framework should cater for selective save and restore of CPU + registers which can be controlled by the dispatcher. + + For the implementation, this could mean that there is a separate assembly + save and restore routine corresponding to Arch feature. The memory allocation + within the CPU Context for each set of registers will be controlled by a + FEAT_xxx build option. It is a valid configuration to have + context memory allocated but not used at runtime based on feature detection + at runtime or the platform owner has decided not to enable the feature + for the particular world. + +Context Allocation and Initialization +------------------------------------- + +|context_mgmt_abs| + +.. |context_mgmt_abs| image:: + ../resources/diagrams/context_management_abs.png + +The above figure shows how the CPU context is allocated within TF-A. The +allocation for Secure and Realm world is by the respective dispatcher. In the case +of NS world, the context is allocated by the PSCI lib. This scheme allows TF-A +to be built in various configurations (with or without Secure/Realm worlds) and +will result in optimal memory footprint. The Secure and Realm world contexts are +initialized by invoking context management library APIs which then initialize +each world based on conditional evaluation of the security state of the +context. The proposal here is to move the conditional initialization +of context for Secure and Realm worlds to their respective dispatchers and +have the library do only the common init needed. The library can export +helpers to initialize registers corresponding to certain features but +should not try to do different initialization between the worlds. The library +can also export helpers for initialization of NS CPU Context since there is no +dispatcher for that world. + +This implies that any world specific code in context mgmt lib should now be +migrated to the respective "owners". To maintain compatibility with legacy, the +current functions can be retained in the lib and perhaps define new ones for +use by SPMD and RMMD. The details of this can be worked out during +implementation. + +Introducing Root Context +------------------------ +Till now, we have been ignoring the fact that Root world (or EL3) itself could +have some settings which are distinct from NS/S/Realm worlds. In this case, +Root world itself would need to maintain some sysregs settings for its own +execution and would need to use sysregs of lower EL (eg: PAuth, pmcr) to enable +some functionalities in EL3. The current sequence for context save and restore +in TF-A is as given below: + +|context_mgmt_existing| + +.. |context_mgmt_existing| image:: + ../resources/diagrams/context_mgmt_existing.png + +Note1: The EL3 CPU context is not a homogenous collection of EL3 sysregs but +a collection of EL3 and some other lower EL registers. The save and restore +is also not done homogenously but based on the objective of using the +particular register. + +Note2: The EL1 context save and restore can possibly be removed when switching +to S-EL2 as SPM can take care of saving the incoming NS EL1 context. + +It can be seen that the EL3 sysreg values applied while the execution is in Root +world corresponds to the world it came from (eg: if entering EL3 from NS world, +the sysregs correspond to the values in NS context). There is a case that EL3 +itself may have some settings to apply for various reasons. A good example for +this is the cptr_el3 regsiter. Although FPU traps need to be disabled for +Non Secure, Secure and Realm worlds, the EL3 execution itself may keep the trap +enabled for the sake of robustness. Another example is, if the MTE feature +is enabled for a particular world, this feature will be enabled for Root world +as well when entering EL3 from that world. The firmware at EL3 may not +be expecting this feature to be enabled and may cause unwanted side-effects +which could be problematic. Thus it would be more robust if Root world is not +subject to EL3 sysreg values from other worlds but maintains its own values +which is stable and predictable throughout root world execution. + +There is also the case that when EL3 would like to make use of some +Architectural feature(s) or do some security hardening, it might need +programming of some lower EL sysregs. For example, if EL3 needs to make +use of Pointer Authentication (PAuth) feature, it needs to program +its own PAuth Keys during execution at EL3. Hence EL3 needs its +own copy of PAuth registers which needs to be restored on every +entry to EL3. A similar case can be made for DIT bit in PSTATE, +or use of SP_EL0 for C Runtime Stack at EL3. + +The proposal here is to maintain a separate root world CPU context +which gets applied for Root world execution. This is not the full +CPU_Context, but subset of EL3 sysregs (`el3_sysreg`) and lower EL +sysregs (`root_exc_context`) used by EL3. The save and restore +sequence for this Root context would need to be done in +an optimal way. The `el3_sysreg` does not need to be saved +on EL3 Exit and possibly only some registers in `root_exc_context` +of Root world context would need to be saved on EL3 exit (eg: SP_EL0). + +The new sequence for world switch including Root world context would +be as given below : + +|context_mgmt_proposed| + +.. |context_mgmt_proposed| image:: + ../resources/diagrams/context_mgmt_proposed.png + +Having this framework in place will allow Root world to make use of lower EL +registers easily for its own purposes and also have a fixed EL3 sysreg setting +which is not affected by the settings of other worlds. This will unify the +Root world register usage pattern for its own execution and remove some +of the adhoc usages in code. + +Conclusion +---------- +Of all the proposals, the introduction of Root world context would likely need +further prototyping to confirm the design and we will need to measure the +performance and memory impact of this change. Other changes are incremental +improvements which are thought to have negligible impact on EL3 performance. + +-------------- + +*Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.* diff --git a/docs/design_documents/drtm_poc.rst b/docs/design_documents/drtm_poc.rst new file mode 100644 index 0000000..79e1142 --- /dev/null +++ b/docs/design_documents/drtm_poc.rst @@ -0,0 +1,132 @@ +DRTM Proof of Concept +===================== + +Dynamic Root of Trust for Measurement (DRTM) begins a new trust environment +by measuring and executing a protected payload. + +Static Root of Trust for Measurement (SRTM)/Measured Boot implementation, +currently used by TF-A covers all firmwares, from the boot ROM to the normal +world bootloader. As a whole, they make up the system's TCB. These boot +measurements allow attesting to what software is running on the system and +enable enforcing security policies. + +As the boot chain grows or firmware becomes dynamically extensible, +establishing an attestable TCB becomes more challenging. DRTM provides a +solution to this problem by allowing measurement chains to be started at +any time. As these measurements are stored separately from the boot-time +measurements, they reduce the size of the TCB, which helps reduce the attack +surface and the risk of untrusted code executing, which could compromise +the security of the system. + +Components +~~~~~~~~~~ + + - **DCE-Preamble**: The DCE Preamble prepares the platform for DRTM by + doing any needed configuration, loading the target payload image(DLME), + and preparing input parameters needed by DRTM. Finally, it invokes the + DL Event to start the dynamic launch. + + - **D-CRTM**: The D-CRTM is the trust anchor (or root of trust) for the + DRTM boot sequence and is where the dynamic launch starts. The D-CRTM + must be implemented as a trusted agent in the system. The D-CRTM + initializes the TPM for DRTM and prepares the environment for the next + stage of DRTM, the DCE. The D-CRTM measures the DCE, verifies its + signature, and transfers control to it. + + - **DCE**: The DCE executes on an application core. The DCE verifies the + system’s state, measures security-critical attributes of the system, + prepares the memory region for the target payload, measures the payload, + and finally transfers control to the payload. + + - **DLME**: The protected payload is referred to as the Dynamically Launched + Measured Environment, or DLME. The DLME begins execution in a safe state, + with a single thread of execution, DMA protections, and interrupts + disabled. The DCE provides data to the DLME that it can use to verify the + configuration of the system. + +In this proof of concept, DCE and D-CRTM are implemented in BL31 and +DCE-Preamble and DLME are implemented in UEFI application. A DL Event is +triggered as a SMC by DCE-Preamble and handled by D-CRTM, which launches the +DLME via DCE. + +This manual provides instructions to build TF-A code with pre-buit EDK2 +and DRTM UEFI application. + +Building the PoC for the Arm FVP platform +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +(1) Use the below command to clone TF-A source code - + +.. code:: shell + + $ git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git + +(2) There are prebuilt binaries required to execute the DRTM implementation + in the `prebuilts-drtm-bins`_. + Download EDK2 *FVP_AARCH64_EFI.fd* and UEFI DRTM application *test-disk.img* + binary from `prebuilts-drtm-bins`_. + +(3) Build the TF-A code using below command + +.. code:: shell + + $ make CROSS_COMPILE=aarch64-none-elf- ARM_ROTPK_LOCATION=devel_rsa + DEBUG=1 V=1 BL33=</path/to/FVP_AARCH64_EFI.fd> DRTM_SUPPORT=1 + MBEDTLS_DIR=</path/to/mbedTLS-source> USE_ROMLIB=1 all fip + +Running DRTM UEFI application on the Armv8-A AEM FVP +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +To run the DRTM test application along with DRTM implementation in BL31, +you need an FVP model. Please use the version of FVP_Base_RevC-2xAEMvA model +advertised in the TF-A documentation. + +.. code:: shell + + FVP_Base_RevC-2xAEMvA \ + --data cluster0.cpu0=</path/to/romlib.bin>@0x03ff2000 \ + --stat \ + -C bp.flashloader0.fname=<path/to/fip.bin> \ + -C bp.secureflashloader.fname=<path/to/bl1.bin> \ + -C bp.ve_sysregs.exit_on_shutdown=1 \ + -C bp.virtioblockdevice.image_path=<path/to/test-disk.img> \ + -C cache_state_modelled=1 \ + -C cluster0.check_memory_attributes=0 \ + -C cluster0.cpu0.etm-present=0 \ + -C cluster0.cpu1.etm-present=0 \ + -C cluster0.cpu2.etm-present=0 \ + -C cluster0.cpu3.etm-present=0 \ + -C cluster0.stage12_tlb_size=1024 \ + -C cluster1.check_memory_attributes=0 \ + -C cluster1.cpu0.etm-present=0 \ + -C cluster1.cpu1.etm-present=0 \ + -C cluster1.cpu2.etm-present=0 \ + -C cluster1.cpu3.etm-present=0 \ + -C cluster1.stage12_tlb_size=1024 \ + -C pctl.startup=0.0.0.0 \ + -Q 1000 \ + "$@" + +The bottom of the output from *uart1* should look something like the +following to indicate that the last SMC to unprotect memory has been fired +successfully. + +.. code-block:: shell + + ... + + INFO: DRTM service handler: version + INFO: ++ DRTM service handler: TPM features + INFO: ++ DRTM service handler: Min. mem. requirement features + INFO: ++ DRTM service handler: DMA protection features + INFO: ++ DRTM service handler: Boot PE ID features + INFO: ++ DRTM service handler: TCB-hashes features + INFO: DRTM service handler: dynamic launch + WARNING: DRTM service handler: close locality is not supported + INFO: DRTM service handler: unprotect mem + +-------------- + +*Copyright (c) 2022, Arm Limited. All rights reserved.* + +.. _prebuilts-drtm-bins: https://downloads.trustedfirmware.org/tf-a/drtm +.. _DRTM-specification: https://developer.arm.com/documentation/den0113/a diff --git a/docs/design_documents/index.rst b/docs/design_documents/index.rst new file mode 100644 index 0000000..3e20c07 --- /dev/null +++ b/docs/design_documents/index.rst @@ -0,0 +1,15 @@ +Design Documents +================ + +.. toctree:: + :maxdepth: 1 + :caption: Contents + + cmake_framework + context_mgmt_rework + measured_boot_poc + drtm_poc + +-------------- + +*Copyright (c) 2020-2022, Arm Limited and Contributors. All rights reserved.* diff --git a/docs/design_documents/measured_boot_poc.rst b/docs/design_documents/measured_boot_poc.rst new file mode 100644 index 0000000..3ae539b --- /dev/null +++ b/docs/design_documents/measured_boot_poc.rst @@ -0,0 +1,507 @@ +Interaction between Measured Boot and an fTPM (PoC) +=================================================== + +Measured Boot is the process of cryptographically measuring the code and +critical data used at boot time, for example using a TPM, so that the +security state can be attested later. + +The current implementation of the driver included in Trusted Firmware-A +(TF-A) stores the measurements into a `TGC event log`_ in secure +memory. No other means of recording measurements (such as a discrete TPM) is +supported right now. + +The driver also provides mechanisms to pass the Event Log to normal world if +needed. + +This manual provides instructions to build a proof of concept (PoC) with the +sole intention of showing how Measured Boot can be used in conjunction with +a firmware TPM (fTPM) service implemented on top of OP-TEE. + +.. note:: + The instructions given in this document are meant to be used to build + a PoC to show how Measured Boot on TF-A can interact with a third + party (f)TPM service and they try to be as general as possible. Different + platforms might have different needs and configurations (e.g. different + SHA algorithms) and they might also use different types of TPM services + (or even a different type of service to provide the attestation) + and therefore the instuctions given here might not apply in such scenarios. + +Components +~~~~~~~~~~ + +The PoC is built on top of the `OP-TEE Toolkit`_, which has support to build +TF-A with support for Measured Boot enabled (and run it on a Foundation Model) +since commit cf56848. + +The aforementioned toolkit builds a set of images that contain all the components +needed to test that the Event Log was properly created. One of these images will +contain a third party fTPM service which in turn will be used to process the +Event Log. + +The reason to choose OP-TEE Toolkit to build our PoC around it is mostly +for convenience. As the fTPM service used is an OP-TEE TA, it was easy to add +build support for it to the toolkit and then build the PoC around it. + +The most relevant components installed in the image that are closely related to +Measured Boot/fTPM functionality are: + + - **OP-TEE**: As stated earlier, the fTPM service used in this PoC is built as an + OP-TEE TA and therefore we need to include the OP-TEE OS image. + Support to interfacing with Measured Boot was added to version 3.9.0 of + OP-TEE by implementing the ``PTA_SYSTEM_GET_TPM_EVENT_LOG`` syscall, which + allows the former to pass a copy of the Event Log to any TA requesting it. + OP-TEE knows the location of the Event Log by reading the DTB bindings + received from TF-A. Visit :ref:`DTB binding for Event Log properties` + for more details on this. + + - **fTPM Service**: We use a third party fTPM service in order to validate + the Measured Boot functionality. The chosen fTPM service is a sample + implementation for Aarch32 architecture included on the `ms-tpm-20-ref`_ + reference implementation from Microsoft. The service was updated in order + to extend the Measured Boot Event Log at boot up and it uses the + aforementioned ``PTA_SYSTEM_GET_TPM_EVENT_LOG`` call to retrieve a copy + of the former. + + .. note:: + Arm does not provide an fTPM implementation. The fTPM service used here + is a third party one which has been updated to support Measured Boot + service as provided by TF-A. As such, it is beyond the scope of this + manual to test and verify the correctness of the output generated by the + fTPM service. + + - **TPM Kernel module**: In order to interact with the fTPM service, we need + a kernel module to forward the request from user space to the secure world. + + - `tpm2-tools`_: This is a set of tools that allow to interact with the + fTPM service. We use this in order to read the PCRs with the measurements. + +Building the PoC for the Arm FVP platform +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +As mentioned before, this PoC is based on the OP-TEE Toolkit with some +extensions to enable Measured Boot and an fTPM service. Therefore, we can rely +on the instructions to build the original OP-TEE Toolkit. As a general rule, +the following steps should suffice: + +(1) Start by following the `Get and build the solution`_ instructions to build + the OP-TEE toolkit. On step 3, you need to get the manifest for FVP + platform from the main branch: + + .. code:: shell + + $ repo init -u https://github.com/OP-TEE/manifest.git -m fvp.xml + + Then proceed synching the repos as stated in step 3. Continue following + the instructions and stop before step 5. + +(2) Next you should obtain the `Armv8-A Foundation Platform (For Linux Hosts Only)`_. + The binary should be untar'ed to the root of the repo tree, i.e., like + this: ``<fvp-project>/Foundation_Platformpkg``. In the end, after cloning + all source code, getting the toolchains and "installing" + Foundation_Platformpkg, you should have a folder structure that looks like + this: + + .. code:: shell + + $ ls -la + total 80 + drwxrwxr-x 20 tf-a_user tf-a_user 4096 Jul 1 12:16 . + drwxr-xr-x 23 tf-a_user tf-a_user 4096 Jul 1 10:40 .. + drwxrwxr-x 12 tf-a_user tf-a_user 4096 Jul 1 10:45 build + drwxrwxr-x 16 tf-a_user tf-a_user 4096 Jul 1 12:16 buildroot + drwxrwxr-x 51 tf-a_user tf-a_user 4096 Jul 1 10:45 edk2 + drwxrwxr-x 6 tf-a_user tf-a_user 4096 Jul 1 12:14 edk2-platforms + drwxr-xr-x 7 tf-a_user tf-a_user 4096 Jul 1 10:52 Foundation_Platformpkg + drwxrwxr-x 17 tf-a_user tf-a_user 4096 Jul 2 10:40 grub + drwxrwxr-x 25 tf-a_user tf-a_user 4096 Jul 2 10:39 linux + drwxrwxr-x 15 tf-a_user tf-a_user 4096 Jul 1 10:45 mbedtls + drwxrwxr-x 6 tf-a_user tf-a_user 4096 Jul 1 10:45 ms-tpm-20-ref + drwxrwxr-x 8 tf-a_user tf-a_user 4096 Jul 1 10:45 optee_client + drwxrwxr-x 10 tf-a_user tf-a_user 4096 Jul 1 10:45 optee_examples + drwxrwxr-x 12 tf-a_user tf-a_user 4096 Jul 1 12:13 optee_os + drwxrwxr-x 8 tf-a_user tf-a_user 4096 Jul 1 10:45 optee_test + drwxrwxr-x 7 tf-a_user tf-a_user 4096 Jul 1 10:45 .repo + drwxrwxr-x 4 tf-a_user tf-a_user 4096 Jul 1 12:12 toolchains + drwxrwxr-x 21 tf-a_user tf-a_user 4096 Jul 1 12:15 trusted-firmware-a + +(3) Now enter into ``ms-tpm-20-ref`` and get its dependencies: + + .. code:: shell + + $ cd ms-tpm-20-ref + $ git submodule init + $ git submodule update + Submodule path 'external/wolfssl': checked out '9c87f979a7f1d3a6d786b260653d566c1d31a1c4' + +(4) Now, you should be able to continue with step 5 in "`Get and build the solution`_" + instructions. In order to enable support for Measured Boot, you need to + set the ``MEASURED_BOOT`` build option: + + .. code:: shell + + $ MEASURED_BOOT=y make -j `nproc` + + .. note:: + The build process will likely take a long time. It is strongly recommended to + pass the ``-j`` option to make to run the process faster. + + After this step, you should be ready to run the image. + +Running and using the PoC on the Armv8-A Foundation AEM FVP +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +With everything built, you can now run the image: + +.. code:: shell + + $ make run-only + +.. note:: + Using ``make run`` will build and run the image and it can be used instead + of simply ``make``. However, once the image is built, it is recommended to + use ``make run-only`` to avoid re-running all the building rules, which + would take time. + +When FVP is launched, two terminal windows will appear. ``FVP terminal_0`` +is the userspace terminal whereas ``FVP terminal_1`` is the counterpart for +the secure world (where TAs will print their logs, for instance). + +Log into the image shell with user ``root``, no password will be required. +Then we can issue the ``ftpm`` command, which is an alias that + +(1) loads the ftpm kernel module and + +(2) calls ``tpm2_pcrread``, which will access the fTPM service to read the + PCRs. + +When loading the ftpm kernel module, the fTPM TA is loaded into the secure +world. This TA then requests a copy of the Event Log generated during the +booting process so it can retrieve all the entries on the log and record them +first thing. + +.. note:: + For this PoC, nothing loaded after BL33 and NT_FW_CONFIG is recorded + in the Event Log. + +The secure world terminal should show the debug logs for the fTPM service, +including all the measurements available in the Event Log as they are being +processed: + +.. code:: shell + + M/TA: Preparing to extend the following TPM Event Log: + M/TA: TCG_EfiSpecIDEvent: + M/TA: PCRIndex : 0 + M/TA: EventType : 3 + M/TA: Digest : 00 + M/TA: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 + M/TA: : 00 00 00 + M/TA: EventSize : 33 + M/TA: Signature : Spec ID Event03 + M/TA: PlatformClass : 0 + M/TA: SpecVersion : 2.0.2 + M/TA: UintnSize : 1 + M/TA: NumberOfAlgorithms : 1 + M/TA: DigestSizes : + M/TA: #0 AlgorithmId : SHA256 + M/TA: DigestSize : 32 + M/TA: VendorInfoSize : 0 + M/TA: PCR_Event2: + M/TA: PCRIndex : 0 + M/TA: EventType : 3 + M/TA: Digests Count : 1 + M/TA: #0 AlgorithmId : SHA256 + M/TA: Digest : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 + M/TA: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 + M/TA: EventSize : 17 + M/TA: Signature : StartupLocality + M/TA: StartupLocality : 0 + M/TA: PCR_Event2: + M/TA: PCRIndex : 0 + M/TA: EventType : 1 + M/TA: Digests Count : 1 + M/TA: #0 AlgorithmId : SHA256 + M/TA: Digest : 58 26 32 6e 64 45 64 da 45 de 35 db 96 fd ed 63 + M/TA: : 2a 6a d4 0d aa 94 b0 b1 55 e4 72 e7 1f 0a e0 d5 + M/TA: EventSize : 5 + M/TA: Event : BL_2 + M/TA: PCR_Event2: + M/TA: PCRIndex : 0 + M/TA: EventType : 1 + M/TA: Digests Count : 1 + M/TA: #0 AlgorithmId : SHA256 + M/TA: Digest : cf f9 7d a3 5c 73 ac cb 7b a0 25 80 6a 6e 50 a5 + M/TA: : 6b 2e d2 8c c9 36 92 7d 46 c5 b9 c3 a4 6c 51 7c + M/TA: EventSize : 6 + M/TA: Event : BL_31 + M/TA: PCR_Event2: + M/TA: PCRIndex : 0 + M/TA: EventType : 1 + M/TA: Digests Count : 1 + M/TA: #0 AlgorithmId : SHA256 + M/TA: Digest : 23 b0 a3 5d 54 d9 43 1a 5c b9 89 63 1c da 06 c2 + M/TA: : e5 de e7 7e 99 17 52 12 7d f7 45 ca 4f 4a 39 c0 + M/TA: EventSize : 10 + M/TA: Event : HW_CONFIG + M/TA: PCR_Event2: + M/TA: PCRIndex : 0 + M/TA: EventType : 1 + M/TA: Digests Count : 1 + M/TA: #0 AlgorithmId : SHA256 + M/TA: Digest : 4e e4 8e 5a e6 50 ed e0 b5 a3 54 8a 1f d6 0e 8a + M/TA: : ea 0e 71 75 0e a4 3f 82 76 ce af cd 7c b0 91 e0 + M/TA: EventSize : 14 + M/TA: Event : SOC_FW_CONFIG + M/TA: PCR_Event2: + M/TA: PCRIndex : 0 + M/TA: EventType : 1 + M/TA: Digests Count : 1 + M/TA: #0 AlgorithmId : SHA256 + M/TA: Digest : 01 b0 80 47 a1 ce 86 cd df 89 d2 1f 2e fc 6c 22 + M/TA: : f8 19 ec 6e 1e ec 73 ba 5a be d0 96 e3 5f 6d 75 + M/TA: EventSize : 6 + M/TA: Event : BL_32 + M/TA: PCR_Event2: + M/TA: PCRIndex : 0 + M/TA: EventType : 1 + M/TA: Digests Count : 1 + M/TA: #0 AlgorithmId : SHA256 + M/TA: Digest : 5d c6 ef 35 5a 90 81 b4 37 e6 3b 52 da 92 ab 8e + M/TA: : d9 6e 93 98 2d 40 87 96 1b 5a a7 ee f1 f4 40 63 + M/TA: EventSize : 18 + M/TA: Event : BL32_EXTRA1_IMAGE + M/TA: PCR_Event2: + M/TA: PCRIndex : 0 + M/TA: EventType : 1 + M/TA: Digests Count : 1 + M/TA: #0 AlgorithmId : SHA256 + M/TA: Digest : 39 b7 13 b9 93 db 32 2f 1b 48 30 eb 2c f2 5c 25 + M/TA: : 00 0f 38 dc 8e c8 02 cd 79 f2 48 d2 2c 25 ab e2 + M/TA: EventSize : 6 + M/TA: Event : BL_33 + M/TA: PCR_Event2: + M/TA: PCRIndex : 0 + M/TA: EventType : 1 + M/TA: Digests Count : 1 + M/TA: #0 AlgorithmId : SHA256 + M/TA: Digest : 25 10 60 5d d4 bc 9d 82 7a 16 9f 8a cc 47 95 a6 + M/TA: : fd ca a0 c1 2b c9 99 8f 51 20 ff c6 ed 74 68 5a + M/TA: EventSize : 13 + M/TA: Event : NT_FW_CONFIG + +These logs correspond to the measurements stored by TF-A during the measured +boot process and therefore, they should match the logs dumped by the former +during the boot up process. These can be seen on the terminal_0: + +.. code:: shell + + NOTICE: Booting Trusted Firmware + NOTICE: BL1: v2.5(release):v2.5 + NOTICE: BL1: Built : 10:41:20, Jul 2 2021 + NOTICE: BL1: Booting BL2 + NOTICE: BL2: v2.5(release):v2.5 + NOTICE: BL2: Built : 10:41:20, Jul 2 2021 + NOTICE: TCG_EfiSpecIDEvent: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 3 + NOTICE: Digest : 00 + NOTICE: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 + NOTICE: : 00 00 00 + NOTICE: EventSize : 33 + NOTICE: Signature : Spec ID Event03 + NOTICE: PlatformClass : 0 + NOTICE: SpecVersion : 2.0.2 + NOTICE: UintnSize : 1 + NOTICE: NumberOfAlgorithms : 1 + NOTICE: DigestSizes : + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: DigestSize : 32 + NOTICE: VendorInfoSize : 0 + NOTICE: PCR_Event2: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 3 + NOTICE: Digests Count : 1 + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: Digest : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 + NOTICE: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 + NOTICE: EventSize : 17 + NOTICE: Signature : StartupLocality + NOTICE: StartupLocality : 0 + NOTICE: PCR_Event2: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 1 + NOTICE: Digests Count : 1 + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: Digest : 58 26 32 6e 64 45 64 da 45 de 35 db 96 fd ed 63 + NOTICE: : 2a 6a d4 0d aa 94 b0 b1 55 e4 72 e7 1f 0a e0 d5 + NOTICE: EventSize : 5 + NOTICE: Event : BL_2 + NOTICE: PCR_Event2: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 1 + NOTICE: Digests Count : 1 + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: Digest : cf f9 7d a3 5c 73 ac cb 7b a0 25 80 6a 6e 50 a5 + NOTICE: : 6b 2e d2 8c c9 36 92 7d 46 c5 b9 c3 a4 6c 51 7c + NOTICE: EventSize : 6 + NOTICE: Event : BL_31 + NOTICE: PCR_Event2: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 1 + NOTICE: Digests Count : 1 + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: Digest : 23 b0 a3 5d 54 d9 43 1a 5c b9 89 63 1c da 06 c2 + NOTICE: : e5 de e7 7e 99 17 52 12 7d f7 45 ca 4f 4a 39 c0 + NOTICE: EventSize : 10 + NOTICE: Event : HW_CONFIG + NOTICE: PCR_Event2: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 1 + NOTICE: Digests Count : 1 + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: Digest : 4e e4 8e 5a e6 50 ed e0 b5 a3 54 8a 1f d6 0e 8a + NOTICE: : ea 0e 71 75 0e a4 3f 82 76 ce af cd 7c b0 91 e0 + NOTICE: EventSize : 14 + NOTICE: Event : SOC_FW_CONFIG + NOTICE: PCR_Event2: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 1 + NOTICE: Digests Count : 1 + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: Digest : 01 b0 80 47 a1 ce 86 cd df 89 d2 1f 2e fc 6c 22 + NOTICE: : f8 19 ec 6e 1e ec 73 ba 5a be d0 96 e3 5f 6d 75 + NOTICE: EventSize : 6 + NOTICE: Event : BL_32 + NOTICE: PCR_Event2: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 1 + NOTICE: Digests Count : 1 + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: Digest : 5d c6 ef 35 5a 90 81 b4 37 e6 3b 52 da 92 ab 8e + NOTICE: : d9 6e 93 98 2d 40 87 96 1b 5a a7 ee f1 f4 40 63 + NOTICE: EventSize : 18 + NOTICE: Event : BL32_EXTRA1_IMAGE + NOTICE: PCR_Event2: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 1 + NOTICE: Digests Count : 1 + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: Digest : 39 b7 13 b9 93 db 32 2f 1b 48 30 eb 2c f2 5c 25 + NOTICE: : 00 0f 38 dc 8e c8 02 cd 79 f2 48 d2 2c 25 ab e2 + NOTICE: EventSize : 6 + NOTICE: Event : BL_33 + NOTICE: PCR_Event2: + NOTICE: PCRIndex : 0 + NOTICE: EventType : 1 + NOTICE: Digests Count : 1 + NOTICE: #0 AlgorithmId : SHA256 + NOTICE: Digest : 25 10 60 5d d4 bc 9d 82 7a 16 9f 8a cc 47 95 a6 + NOTICE: : fd ca a0 c1 2b c9 99 8f 51 20 ff c6 ed 74 68 5a + NOTICE: EventSize : 13 + NOTICE: Event : NT_FW_CONFIG + NOTICE: BL1: Booting BL31 + NOTICE: BL31: v2.5(release):v2.5 + NOTICE: BL31: Built : 10:41:20, Jul 2 2021 + +Following up with the fTPM startup process, we can see that all the +measurements in the Event Log are extended and recorded in the appropriate PCR: + +.. code:: shell + + M/TA: TPM2_PCR_EXTEND_COMMAND returned value: + M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000 + M/TA: TPM2_PCR_EXTEND_COMMAND returned value: + M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000 + M/TA: TPM2_PCR_EXTEND_COMMAND returned value: + M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000 + M/TA: TPM2_PCR_EXTEND_COMMAND returned value: + M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000 + M/TA: TPM2_PCR_EXTEND_COMMAND returned value: + M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000 + M/TA: TPM2_PCR_EXTEND_COMMAND returned value: + M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000 + M/TA: TPM2_PCR_EXTEND_COMMAND returned value: + M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000 + M/TA: TPM2_PCR_EXTEND_COMMAND returned value: + M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000 + M/TA: TPM2_PCR_EXTEND_COMMAND returned value: + M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000 + M/TA: 9 Event logs processed + +After the fTPM TA is loaded, the call to ``insmod`` issued by the ``ftpm`` +alias to load the ftpm kernel module returns, and then the TPM PCRs are read +by means of ``tpm_pcrread`` command. Note that we are only interested in the +SHA256 logs here, as this is the algorithm we used on TF-A for the measurements +(see the field ``AlgorithmId`` on the logs above): + +.. code:: shell + + sha256: + 0 : 0xA6EB3A7417B8CFA9EBA2E7C22AD5A4C03CDB8F3FBDD7667F9C3EF2EA285A8C9F + 1 : 0x0000000000000000000000000000000000000000000000000000000000000000 + 2 : 0x0000000000000000000000000000000000000000000000000000000000000000 + 3 : 0x0000000000000000000000000000000000000000000000000000000000000000 + 4 : 0x0000000000000000000000000000000000000000000000000000000000000000 + 5 : 0x0000000000000000000000000000000000000000000000000000000000000000 + 6 : 0x0000000000000000000000000000000000000000000000000000000000000000 + 7 : 0x0000000000000000000000000000000000000000000000000000000000000000 + 8 : 0x0000000000000000000000000000000000000000000000000000000000000000 + 9 : 0x0000000000000000000000000000000000000000000000000000000000000000 + 10: 0x0000000000000000000000000000000000000000000000000000000000000000 + 11: 0x0000000000000000000000000000000000000000000000000000000000000000 + 12: 0x0000000000000000000000000000000000000000000000000000000000000000 + 13: 0x0000000000000000000000000000000000000000000000000000000000000000 + 14: 0x0000000000000000000000000000000000000000000000000000000000000000 + 15: 0x0000000000000000000000000000000000000000000000000000000000000000 + 16: 0x0000000000000000000000000000000000000000000000000000000000000000 + 17: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF + 18: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF + 19: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF + 20: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF + 21: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF + 22: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF + 23: 0x0000000000000000000000000000000000000000000000000000000000000000 + +In this PoC we are only interested in PCR0, which must be non-null. This is +because the boot process records all the images in this PCR (see field ``PCRIndex`` +on the Event Log above). The rest of the records must be 0 at this point. + +.. note:: + The fTPM service used has support only for 16 PCRs, therefore the content + of PCRs above 15 can be ignored. + +.. note:: + As stated earlier, Arm does not provide an fTPM implementation and therefore + we do not validate here if the content of PCR0 is correct or not. For this + PoC, we are only focused on the fact that the event log could be passed to a third + party fTPM and its records were properly extended. + +Fine-tuning the fTPM TA +~~~~~~~~~~~~~~~~~~~~~~~ + +As stated earlier, the OP-TEE Toolkit includes support to build a third party fTPM +service. The build options for this service are tailored for the PoC and defined in +the build environment variable ``FTPM_FLAGS`` (see ``<toolkit_home>/build/common.mk``) +but they can be modified if needed to better adapt it to a specific scenario. + +The most relevant options for Measured Boot support are: + + - **CFG_TA_DEBUG**: Enables debug logs in the Terminal_1 console. + - **CFG_TEE_TA_LOG_LEVEL**: Defines the log level used for the debug messages. + - **CFG_TA_MEASURED_BOOT**: Enables support for measured boot on the fTPM. + - **CFG_TA_EVENT_LOG_SIZE**: Defines the size, in bytes, of the larger event log that + the fTPM is able to store, as this buffer is allocated at build time. This must be at + least the same as the size of the event log generated by TF-A. If this build option + is not defined, the fTPM falls back to a default value of 1024 bytes, which is enough + for this PoC, so this variable is not defined in FTPM_FLAGS. + +-------------- + +*Copyright (c) 2021, Arm Limited. All rights reserved.* + +.. _OP-TEE Toolkit: https://github.com/OP-TEE/build +.. _ms-tpm-20-ref: https://github.com/microsoft/ms-tpm-20-ref +.. _Get and build the solution: https://optee.readthedocs.io/en/latest/building/gits/build.html#get-and-build-the-solution +.. _Armv8-A Foundation Platform (For Linux Hosts Only): https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models +.. _tpm2-tools: https://github.com/tpm2-software/tpm2-tools +.. _TGC event log: https://trustedcomputinggroup.org/resource/tcg-efi-platform-specification/ |