summaryrefslogtreecommitdiffstats
path: root/docs/plat/arm
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 09:13:47 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 09:13:47 +0000
commit102b0d2daa97dae68d3eed54d8fe37a9cc38a892 (patch)
treebcf648efac40ca6139842707f0eba5a4496a6dd2 /docs/plat/arm
parentInitial commit. (diff)
downloadarm-trusted-firmware-upstream.tar.xz
arm-trusted-firmware-upstream.zip
Adding upstream version 2.8.0+dfsg.upstream/2.8.0+dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--docs/plat/arm/arm-build-options.rst164
-rw-r--r--docs/plat/arm/arm_fpga/index.rst97
-rw-r--r--docs/plat/arm/corstone1000/index.rst61
-rw-r--r--docs/plat/arm/fvp-ve/index.rst84
-rw-r--r--docs/plat/arm/fvp/index.rst640
-rw-r--r--docs/plat/arm/fvp_r/index.rst46
-rw-r--r--docs/plat/arm/index.rst24
-rw-r--r--docs/plat/arm/juno/index.rst253
-rw-r--r--docs/plat/arm/morello/index.rst33
-rw-r--r--docs/plat/arm/tc/index.rst63
10 files changed, 1465 insertions, 0 deletions
diff --git a/docs/plat/arm/arm-build-options.rst b/docs/plat/arm/arm-build-options.rst
new file mode 100644
index 0000000..407c04b
--- /dev/null
+++ b/docs/plat/arm/arm-build-options.rst
@@ -0,0 +1,164 @@
+Arm Development Platform Build Options
+======================================
+
+Arm Platform Build Options
+--------------------------
+
+- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
+ DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
+ BL31 in TZC secured DRAM. If TSP is present, then setting this option also
+ sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
+ flag.
+
+- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
+ frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
+ frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which
+ should match the frame used by the Non-Secure image (normally the Linux
+ kernel). Default is true (access to the frame is allowed).
+
+- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
+ By default, Arm platforms use a watchdog to trigger a system reset in case
+ an error is encountered during the boot process (for example, when an image
+ could not be loaded or authenticated). The watchdog is enabled in the early
+ platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
+ Trusted Watchdog may be disabled at build time for testing or development
+ purposes.
+
+- ``ARM_LINUX_KERNEL_AS_BL33``: The Linux kernel expects registers x0-x3 to
+ have specific values at boot. This boolean option allows the Trusted Firmware
+ to have a Linux kernel image as BL33 by preparing the registers to these
+ values before jumping to BL33. This option defaults to 0 (disabled). For
+ AArch64 ``RESET_TO_BL31`` and for AArch32 ``RESET_TO_SP_MIN`` must be 1 when
+ using it. If this option is set to 1, ``ARM_PRELOADED_DTB_BASE`` must be set
+ to the location of a device tree blob (DTB) already loaded in memory. The
+ Linux Image address must be specified using the ``PRELOADED_BL33_BASE``
+ option.
+
+- ``ARM_PLAT_MT``: This flag determines whether the Arm platform layer has to
+ cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
+ is set, the functions which deal with MPIDR assume that the ``MT`` bit in
+ MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
+ this flag is 0. Note that this option is not used on FVP platforms.
+
+- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
+ for the construction of composite state-ID in the power-state parameter.
+ The existing PSCI clients currently do not support this encoding of
+ State-ID yet. Hence this flag is used to configure whether to use the
+ recommended State-ID encoding or not. The default value of this flag is 0,
+ in which case the platform is configured to expect NULL in the State-ID
+ field of power-state parameter.
+
+- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
+ location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
+ for Arm platforms. Depending on the selected option, the proper private key
+ must be specified using the ``ROT_KEY`` option when building the Trusted
+ Firmware. This private key will be used by the certificate generation tool
+ to sign the BL2 and Trusted Key certificates. Available options for
+ ``ARM_ROTPK_LOCATION`` are:
+
+ - ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
+ registers.
+ - ``devel_rsa`` : return a development public key hash embedded in the BL1
+ and BL2 binaries. This hash has been obtained from the RSA public key
+ ``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
+ this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY``
+ when creating the certificates.
+ - ``devel_ecdsa`` : return a development public key hash embedded in the BL1
+ and BL2 binaries. This hash has been obtained from the ECDSA public key
+ ``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To
+ use this option, ``arm_rotprivk_ecdsa.pem`` must be specified as
+ ``ROT_KEY`` when creating the certificates.
+
+- ``ARM_ROTPK_HASH``: used when ``ARM_ROTPK_LOCATION=devel_*``. Specifies the
+ location of the ROTPK hash. Not expected to be a build option. This defaults to
+ ``plat/arm/board/common/rotpk/*_sha256.bin`` depending on the specified algorithm.
+ Providing ``ROT_KEY`` enforces generation of the hash from the ``ROT_KEY`` and
+ overwrites the default hash file.
+
+- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
+
+ - ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
+ - ``tdram`` : Trusted DRAM (if available)
+ - ``dram`` : Secure region in DRAM (default option when TBB is enabled,
+ configured by the TrustZone controller)
+
+- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile TF-A with version 1
+ of the translation tables library instead of version 2. It is set to 0 by
+ default, which selects version 2.
+
+- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable TF-A to invoke Arm®
+ TrustZone® CryptoCell functionality for Trusted Board Boot on capable Arm
+ platforms. If this option is specified, then the path to the CryptoCell
+ SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
+
+- ``ARM_ETHOSN_NPU_DRIVER``: boolean option to enable a SiP service that can
+ configure an Arm® Ethos™-N NPU. To use this service the target platform's
+ ``HW_CONFIG`` must include the device tree nodes for the NPU. Currently, only
+ the Arm Juno platform has this included in its ``HW_CONFIG`` and the platform
+ only loads the ``HW_CONFIG`` in AArch64 builds. Default is 0.
+
+- ``ARM_SPMC_MANIFEST_DTS`` : path to an alternate manifest file used as the
+ SPMC Core manifest. Valid when ``SPD=spmd`` is selected.
+
+- ``ARM_BL2_SP_LIST_DTS``: Path to DTS file snippet to override the hardcoded
+ SP nodes in tb_fw_config.
+
+- ``OPTEE_SP_FW_CONFIG``: DTC build flag to include OP-TEE as SP in tb_fw_config
+ device tree. This flag is defined only when ``ARM_SPMC_MANIFEST_DTS`` manifest
+ file name contains pattern optee_sp.
+
+- ``TS_SP_FW_CONFIG``: DTC build flag to include Trusted Services (Crypto and
+ internal-trusted-storage) as SP in tb_fw_config device tree.
+
+- ``ARM_GPT_SUPPORT``: Enable GPT parser to get the entry address and length of
+ the various partitions present in the GPT image. This support is available
+ only for the BL2 component, and it is disabled by default.
+ The following diagram shows the view of the FIP partition inside the GPT
+ image:
+
+ |FIP in a GPT image|
+
+For a better understanding of these options, the Arm development platform memory
+map is explained in the :ref:`Firmware Design`.
+
+.. _build_options_arm_css_platform:
+
+Arm CSS Platform-Specific Build Options
+---------------------------------------
+
+- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
+ incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
+ compatible change to the MTL protocol, used for AP/SCP communication.
+ TF-A no longer supports earlier SCP versions. If this option is set to 1
+ then TF-A will detect if an earlier version is in use. Default is 1.
+
+- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP_BL2 and
+ SCP_BL2U to the FIP and FWU_FIP respectively, and enables them to be loaded
+ during boot. Default is 1.
+
+- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
+ instead of SCPI/BOM driver for communicating with the SCP during power
+ management operations and for SCP RAM Firmware transfer. If this option
+ is set to 1, then SCMI/SDS drivers will be used. Default is 0.
+
+ - ``CSS_SGI_CHIP_COUNT``: Configures the number of chips on a SGI/RD platform
+ which supports multi-chip operation. If ``CSS_SGI_CHIP_COUNT`` is set to any
+ valid value greater than 1, the platform code performs required configuration
+ to support multi-chip operation.
+
+- ``CSS_SGI_PLATFORM_VARIANT``: Selects the variant of a SGI/RD platform. A
+ particular SGI/RD platform may have multiple variants which may differ in
+ core count, cluster count or other peripherals. This build option is used
+ to select the appropriate platform variant for the build. The range of
+ valid values is platform specific.
+
+- ``CSS_SYSTEM_GRACEFUL_RESET``: Build option to enable graceful powerdown of
+ CPU core on reset. This build option can be used on CSS platforms that
+ require all the CPUs to execute the CPU specific power down sequence to
+ complete a warm reboot sequence in which only the CPUs are power cycled.
+
+--------------
+
+.. |FIP in a GPT image| image:: ../../resources/diagrams/FIP_in_a_GPT_image.png
+
+*Copyright (c) 2019-2021, Arm Limited. All rights reserved.*
diff --git a/docs/plat/arm/arm_fpga/index.rst b/docs/plat/arm/arm_fpga/index.rst
new file mode 100644
index 0000000..5427c1d
--- /dev/null
+++ b/docs/plat/arm/arm_fpga/index.rst
@@ -0,0 +1,97 @@
+Arm FPGA Platform
+=================
+
+This platform supports FPGA images used internally in Arm Ltd., for
+testing and bringup of new cores. With that focus, peripheral support is
+minimal: there is no mass storage or display output, for instance. Also
+this port ignores any power management features of the platform.
+Some interconnect setup is done internally by the platform, so the TF-A code
+just needs to setup UART and GIC.
+
+The FPGA platform requires to pass on a DTB for the non-secure payload
+(mostly Linux), so we let TF-A use information from the DTB for dynamic
+configuration: the UART and GIC base addresses are read from there.
+
+As a result this port is a fairly generic BL31-only port, which can serve
+as a template for a minimal new (and possibly DT-based) platform port.
+
+The aim of this port is to support as many FPGA images as possible with
+a single build. Image specific data must be described in the DTB or should
+be auto-detected at runtime.
+
+As the number and topology layout of the CPU cores differs significantly
+across the various images, this is detected at runtime by BL31.
+The /cpus node in the DT will be added and filled accordingly, as long as
+it does not exist already.
+
+Platform-specific build options
+-------------------------------
+
+- ``SUPPORT_UNKNOWN_MPID`` : Boolean option to allow unknown MPIDR registers.
+ Normally TF-A panics if it encounters a MPID value not matched to its
+ internal list, but for new or experimental cores this creates a lot of
+ churn. With this option, the code will fall back to some basic CPU support
+ code (only architectural system registers, and no errata).
+ Default value of this flag is 1.
+
+- ``PRELOADED_BL33_BASE`` : Physical address of the BL33 non-secure payload.
+ It must have been loaded into DRAM already, typically this is done by
+ the script that also loads BL31 and the DTB.
+ It defaults to 0x80080000, which is the traditional load address for an
+ arm64 Linux kernel.
+
+- ``FPGA_PRELOADED_DTB_BASE`` : Physical address of the flattened device
+ tree blob (DTB). This DT will be used by TF-A for dynamic configuration,
+ so it must describe at least the UART and a GICv3 interrupt controller.
+ The DT gets amended by the code, to potentially add a command line and
+ fill the CPU topology nodes. It will also be passed on to BL33, by
+ putting its address into the x0 register before jumping to the entry
+ point (following the Linux kernel boot protocol).
+ It defaults to 0x80070000, which is 64KB before the BL33 load address.
+
+- ``FPGA_PRELOADED_CMD_LINE`` : Physical address of the command line to
+ put into the devicetree blob. Due to the lack of a proper bootloader,
+ a command line can be put somewhere into memory, so that BL31 will
+ detect it and copy it into the DTB passed on to BL33.
+ To avoid random garbage, there needs to be a "CMD:" signature before the
+ actual command line.
+ Defaults to 0x1000, which is normally in the "ROM" space of the typical
+ FPGA image (which can be written by the FPGA payload uploader, but is
+ read-only to the CPU). The FPGA payload tool should be given a text file
+ containing the desired command line, prefixed by the "CMD:" signature.
+
+Building the TF-A image
+-----------------------
+
+ .. code:: shell
+
+ make PLAT=arm_fgpa DEBUG=1
+
+ This will use the default load addresses as described above. When those
+ addresses need to differ for a certain setup, they can be passed on the
+ make command line:
+
+ .. code:: shell
+
+ make PLAT=arm_fgpa DEBUG=1 PRELOADED_BL33_BASE=0x80200000 FPGA_PRELOADED_DTB_BASE=0x80180000 bl31
+
+Running the TF-A image
+----------------------
+
+After building TF-A, the actual TF-A code will be located in ``bl31.bin`` in
+the build directory.
+Additionally there is a ``bl31.axf`` ELF file, which contains BL31, as well
+as some simple ROM trampoline code (required by the Arm FPGA boot flow) and
+a generic DTB to support most of the FPGA images. This can be simply handed
+over to the FPGA payload uploader, which will take care of loading the
+components at their respective load addresses. In addition to this file
+you need at least a BL33 payload (typically a Linux kernel image), optionally
+a Linux initrd image file and possibly a command line:
+
+ .. code:: shell
+
+ fpga-run ... -m bl31.axf -l auto -m Image -l 0x80080000 -m initrd.gz -l 0x84000000 -m cmdline.txt -l 0x1000
+
+--------------
+
+*Copyright (c) 2020, Arm Limited. All rights reserved.*
diff --git a/docs/plat/arm/corstone1000/index.rst b/docs/plat/arm/corstone1000/index.rst
new file mode 100644
index 0000000..b889b7f
--- /dev/null
+++ b/docs/plat/arm/corstone1000/index.rst
@@ -0,0 +1,61 @@
+Corstone1000 Platform
+==========================
+
+Some of the features of the Corstone1000 platform referenced in TF-A include:
+
+- Cortex-A35 application processor (64-bit mode)
+- Secure Enclave
+- GIC-400
+- Trusted Board Boot
+
+Boot Sequence
+-------------
+
+The board boot relies on CoT (chain of trust). The trusted-firmware-a
+BL2 is extracted from the FIP and verified by the Secure Enclave
+processor. BL2 verification relies on the signature area at the
+beginning of the BL2 image. This area is needed by the SecureEnclave
+bootloader.
+
+Then, the application processor is released from reset and starts by
+executing BL2.
+
+BL2 performs the actions described in the trusted-firmware-a TBB design
+document.
+
+Build Procedure (TF-A only)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- Obtain AArch64 ELF bare-metal target `toolchain <https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads>`_.
+ Set the CROSS_COMPILE environment variable to point to the toolchain folder.
+
+- Build TF-A:
+
+ .. code:: shell
+
+ make LD=aarch64-none-elf-ld \
+ CC=aarch64-none-elf-gcc \
+ V=1 \
+ BUILD_BASE=<path to the build folder> \
+ PLAT=corstone1000 \
+ SPD=spmd \
+ SPMD_SPM_AT_SEL2=0 \
+ DEBUG=1 \
+ MBEDTLS_DIR=mbedtls \
+ OPENSSL_DIR=<path to openssl usr folder> \
+ RUNTIME_SYSROOT=<path to the sysroot> \
+ ARCH=aarch64 \
+ TARGET_PLATFORM=<fpga or fvp> \
+ ENABLE_PIE=1 \
+ BL2_AT_EL3=1 \
+ CREATE_KEYS=1 \
+ GENERATE_COT=1 \
+ TRUSTED_BOARD_BOOT=1 \
+ COT=tbbr \
+ ARM_ROTPK_LOCATION=devel_rsa \
+ ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
+ BL32=<path to optee binary> \
+ BL33=<path to u-boot binary> \
+ bl2
+
+*Copyright (c) 2021, Arm Limited. All rights reserved.*
diff --git a/docs/plat/arm/fvp-ve/index.rst b/docs/plat/arm/fvp-ve/index.rst
new file mode 100644
index 0000000..8ac0741
--- /dev/null
+++ b/docs/plat/arm/fvp-ve/index.rst
@@ -0,0 +1,84 @@
+Arm Versatile Express
+=====================
+
+Versatile Express (VE) family development platform provides an ultra fast
+environment for prototyping Armv7 System-on-Chip designs. VE Fixed Virtual
+Platforms (FVP) are simulations of Versatile Express boards. The platform in
+Trusted Firmware-A has been verified with Arm Cortex-A5 and Cortex-A7 VE FVP's.
+This platform is tested on and only expected to work with single core models.
+
+Boot Sequence
+-------------
+
+BL1 --> BL2 --> BL32(sp_min) --> BL33(u-boot) --> Linux kernel
+
+How to build
+------------
+
+Code Locations
+~~~~~~~~~~~~~~
+- `U-boot <https://git.linaro.org/landing-teams/working/arm/u-boot.git>`__
+
+- `Trusted Firmware-A <https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git>`__
+
+Build Procedure
+~~~~~~~~~~~~~~~
+
+- Obtain arm toolchain. The software stack has been verified with linaro 6.2
+ `arm-linux-gnueabihf <https://releases.linaro.org/components/toolchain/binaries/6.2-2016.11/arm-linux-gnueabihf/>`__.
+ Set the CROSS_COMPILE environment variable to point to the toolchain folder.
+
+- Fetch and build u-boot.
+ Make the .config file using the command:
+
+ .. code:: shell
+
+ make ARCH=arm vexpress_aemv8a_aarch32_config
+
+ Make the u-boot binary for Cortex-A5 using the command:
+
+ .. code:: shell
+
+ make ARCH=arm SUPPORT_ARCH_TIMER=no
+
+ Make the u-boot binary for Cortex-A7 using the command:
+
+ .. code:: shell
+
+ make ARCH=arm
+
+
+- Build TF-A:
+
+ The make command for Cortex-A5 is:
+
+ .. code:: shell
+
+ make PLAT=fvp_ve ARCH=aarch32 ARM_ARCH_MAJOR=7 ARM_CORTEX_A5=yes \
+ AARCH32_SP=sp_min FVP_HW_CONFIG_DTS=fdts/fvp-ve-Cortex-A5x1.dts \
+ ARM_XLAT_TABLES_LIB_V1=1 BL33=<path_to_u-boot.bin> all fip
+
+ The make command for Cortex-A7 is:
+
+ .. code:: shell
+
+ make PLAT=fvp_ve ARCH=aarch32 ARM_ARCH_MAJOR=7 ARM_CORTEX_A7=yes \
+ AARCH32_SP=sp_min FVP_HW_CONFIG_DTS=fdts/fvp-ve-Cortex-A7x1.dts \
+ BL33=<path_to_u-boot.bin> all fip
+
+Run Procedure
+~~~~~~~~~~~~~
+
+The following model parameters should be used to boot Linux using the build of
+Trusted Firmware-A made using the above make commands:
+
+ .. code:: shell
+
+ ./<path_to_model> <path_to_bl1.elf> \
+ -C motherboard.flashloader1.fname=<path_to_fip.bin> \
+ --data cluster.cpu0=<path_to_zImage>@0x80080000 \
+ --data cluster.cpu0=<path_to_ramdisk>@0x84000000
+
+--------------
+
+*Copyright (c) 2019, Arm Limited. All rights reserved.*
diff --git a/docs/plat/arm/fvp/index.rst b/docs/plat/arm/fvp/index.rst
new file mode 100644
index 0000000..42c0eda
--- /dev/null
+++ b/docs/plat/arm/fvp/index.rst
@@ -0,0 +1,640 @@
+Arm Fixed Virtual Platforms (FVP)
+=================================
+
+Fixed Virtual Platform (FVP) Support
+------------------------------------
+
+This section lists the supported Arm |FVP| platforms. Please refer to the FVP
+documentation for a detailed description of the model parameter options.
+
+The latest version of the AArch64 build of TF-A has been tested on the following
+Arm FVPs without shifted affinities, and that do not support threaded CPU cores
+(64-bit host machine only).
+
+.. note::
+ The FVP models used are Version 11.19 Build 14, unless otherwise stated.
+
+- ``Foundation_Platform``
+- ``FVP_Base_AEMv8A-AEMv8A-AEMv8A-AEMv8A-CCN502`` (Version 11.17/21)
+- ``FVP_Base_AEMv8A-GIC600AE`` (Version 11.17/21)
+- ``FVP_Base_AEMvA``
+- ``FVP_Base_AEMvA-AEMvA``
+- ``FVP_Base_Cortex-A32x4`` (Version 11.12/38)
+- ``FVP_Base_Cortex-A35x4``
+- ``FVP_Base_Cortex-A53x4``
+- ``FVP_Base_Cortex-A55``
+- ``FVP_Base_Cortex-A55x4+Cortex-A75x4``
+- ``FVP_Base_Cortex-A55x4+Cortex-A76x2``
+- ``FVP_Base_Cortex-A57x1-A53x1``
+- ``FVP_Base_Cortex-A57x2-A53x4``
+- ``FVP_Base_Cortex-A57x4``
+- ``FVP_Base_Cortex-A57x4-A53x4``
+- ``FVP_Base_Cortex-A65``
+- ``FVP_Base_Cortex-A65AE``
+- ``FVP_Base_Cortex-A710x4`` (Version 11.17/21)
+- ``FVP_Base_Cortex-A72x4``
+- ``FVP_Base_Cortex-A72x4-A53x4``
+- ``FVP_Base_Cortex-A73x4``
+- ``FVP_Base_Cortex-A73x4-A53x4``
+- ``FVP_Base_Cortex-A75``
+- ``FVP_Base_Cortex-A76``
+- ``FVP_Base_Cortex-A76AE``
+- ``FVP_Base_Cortex-A77``
+- ``FVP_Base_Cortex-A78``
+- ``FVP_Base_Cortex-A78C``
+- ``FVP_Base_Cortex-X2x4`` (Version 11.17/21)
+- ``FVP_Base_Neoverse-E1``
+- ``FVP_Base_Neoverse-N1``
+- ``FVP_Base_Neoverse-N2x4`` (Version 11.16/16)
+- ``FVP_Base_Neoverse-V1``
+- ``FVP_Base_RevC-2xAEMvA``
+- ``FVP_Morello`` (Version 0.11/33)
+- ``FVP_RD_E1_edge`` (Version 11.17/29)
+- ``FVP_RD_V1`` (Version 11.17/29)
+- ``FVP_TC0`` (Version 11.17/18)
+- ``FVP_TC1`` (Version 11.17/33)
+- ``FVP_TC2`` (Version 11.18/28)
+
+The latest version of the AArch32 build of TF-A has been tested on the
+following Arm FVPs without shifted affinities, and that do not support threaded
+CPU cores (64-bit host machine only).
+
+- ``FVP_Base_AEMvA``
+- ``FVP_Base_AEMvA-AEMvA``
+- ``FVP_Base_Cortex-A32x4``
+
+.. note::
+ The ``FVP_Base_RevC-2xAEMvA`` FVP only supports shifted affinities, which
+ is not compatible with legacy GIC configurations. Therefore this FVP does not
+ support these legacy GIC configurations.
+
+The *Foundation* and *Base* FVPs can be downloaded free of charge. See the `Arm
+FVP website`_. The Cortex-A models listed above are also available to download
+from `Arm's website`_.
+
+.. note::
+ The build numbers quoted above are those reported by launching the FVP
+ with the ``--version`` parameter.
+
+.. note::
+ Linaro provides a ramdisk image in prebuilt FVP configurations and full
+ file systems that can be downloaded separately. To run an FVP with a virtio
+ file system image an additional FVP configuration option
+ ``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
+ used.
+
+.. note::
+ The software will not work on Version 1.0 of the Foundation FVP.
+ The commands below would report an ``unhandled argument`` error in this case.
+
+.. note::
+ FVPs can be launched with ``--cadi-server`` option such that a
+ CADI-compliant debugger (for example, Arm DS-5) can connect to and control
+ its execution.
+
+.. warning::
+ Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
+ the internal synchronisation timings changed compared to older versions of
+ the models. The models can be launched with ``-Q 100`` option if they are
+ required to match the run time characteristics of the older versions.
+
+All the above platforms have been tested with `Linaro Release 20.01`_.
+
+.. _build_options_arm_fvp_platform:
+
+Arm FVP Platform Specific Build Options
+---------------------------------------
+
+- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
+ build the topology tree within TF-A. By default TF-A is configured for dual
+ cluster topology and this option can be used to override the default value.
+
+- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
+ default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
+ explained in the options below:
+
+ - ``FVP_CCI`` : The CCI driver is selected. This is the default
+ if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
+ - ``FVP_CCN`` : The CCN driver is selected. This is the default
+ if ``FVP_CLUSTER_COUNT`` > 2.
+
+- ``FVP_MAX_CPUS_PER_CLUSTER``: Sets the maximum number of CPUs implemented in
+ a single cluster. This option defaults to 4.
+
+- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
+ in the system. This option defaults to 1. Note that the build option
+ ``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
+
+- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
+
+ - ``FVP_GICV2`` : The GICv2 only driver is selected
+ - ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
+
+- ``FVP_HW_CONFIG_DTS`` : Specify the path to the DTS file to be compiled
+ to DTB and packaged in FIP as the HW_CONFIG. See :ref:`Firmware Design` for
+ details on HW_CONFIG. By default, this is initialized to a sensible DTS
+ file in ``fdts/`` folder depending on other build options. But some cases,
+ like shifted affinity format for MPIDR, cannot be detected at build time
+ and this option is needed to specify the appropriate DTS file.
+
+- ``FVP_HW_CONFIG`` : Specify the path to the HW_CONFIG blob to be packaged in
+ FIP. See :ref:`Firmware Design` for details on HW_CONFIG. This option is
+ similar to the ``FVP_HW_CONFIG_DTS`` option, but it directly specifies the
+ HW_CONFIG blob instead of the DTS file. This option is useful to override
+ the default HW_CONFIG selected by the build system.
+
+- ``FVP_GICR_REGION_PROTECTION``: Mark the redistributor pages of
+ inactive/fused CPU cores as read-only. The default value of this option
+ is ``0``, which means the redistributor pages of all CPU cores are marked
+ as read and write.
+
+Booting Firmware Update images
+------------------------------
+
+When Firmware Update (FWU) is enabled there are at least 2 new images
+that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
+FWU FIP.
+
+The additional fip images must be loaded with:
+
+::
+
+ --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
+ --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
+
+The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
+In the same way, the address ns_bl2u_base_address is the value of
+NS_BL2U_BASE.
+
+Booting an EL3 payload
+----------------------
+
+The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
+the secondary CPUs holding pen to work properly. Unfortunately, its reset value
+is undefined on the FVP platform and the FVP platform code doesn't clear it.
+Therefore, one must modify the way the model is normally invoked in order to
+clear the mailbox at start-up.
+
+One way to do that is to create an 8-byte file containing all zero bytes using
+the following command:
+
+.. code:: shell
+
+ dd if=/dev/zero of=mailbox.dat bs=1 count=8
+
+and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
+using the following model parameters:
+
+::
+
+ --data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
+ --data=mailbox.dat@0x04000000 [Foundation FVP]
+
+To provide the model with the EL3 payload image, the following methods may be
+used:
+
+#. If the EL3 payload is able to execute in place, it may be programmed into
+ flash memory. On Base Cortex and AEM FVPs, the following model parameter
+ loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
+ used for the FIP):
+
+ ::
+
+ -C bp.flashloader1.fname="<path-to>/<el3-payload>"
+
+ On Foundation FVP, there is no flash loader component and the EL3 payload
+ may be programmed anywhere in flash using method 3 below.
+
+#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
+ command may be used to load the EL3 payload ELF image over JTAG:
+
+ ::
+
+ load <path-to>/el3-payload.elf
+
+#. The EL3 payload may be pre-loaded in volatile memory using the following
+ model parameters:
+
+ ::
+
+ --data cluster0.cpu0="<path-to>/el3-payload>"@address [Base FVPs]
+ --data="<path-to>/<el3-payload>"@address [Foundation FVP]
+
+ The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
+ used when building TF-A.
+
+Booting a preloaded kernel image (Base FVP)
+-------------------------------------------
+
+The following example uses a simplified boot flow by directly jumping from the
+TF-A to the Linux kernel, which will use a ramdisk as filesystem. This can be
+useful if both the kernel and the device tree blob (DTB) are already present in
+memory (like in FVP).
+
+For example, if the kernel is loaded at ``0x80080000`` and the DTB is loaded at
+address ``0x82000000``, the firmware can be built like this:
+
+.. code:: shell
+
+ CROSS_COMPILE=aarch64-none-elf- \
+ make PLAT=fvp DEBUG=1 \
+ RESET_TO_BL31=1 \
+ ARM_LINUX_KERNEL_AS_BL33=1 \
+ PRELOADED_BL33_BASE=0x80080000 \
+ ARM_PRELOADED_DTB_BASE=0x82000000 \
+ all fip
+
+Now, it is needed to modify the DTB so that the kernel knows the address of the
+ramdisk. The following script generates a patched DTB from the provided one,
+assuming that the ramdisk is loaded at address ``0x84000000``. Note that this
+script assumes that the user is using a ramdisk image prepared for U-Boot, like
+the ones provided by Linaro. If using a ramdisk without this header,the ``0x40``
+offset in ``INITRD_START`` has to be removed.
+
+.. code:: bash
+
+ #!/bin/bash
+
+ # Path to the input DTB
+ KERNEL_DTB=<path-to>/<fdt>
+ # Path to the output DTB
+ PATCHED_KERNEL_DTB=<path-to>/<patched-fdt>
+ # Base address of the ramdisk
+ INITRD_BASE=0x84000000
+ # Path to the ramdisk
+ INITRD=<path-to>/<ramdisk.img>
+
+ # Skip uboot header (64 bytes)
+ INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)) )
+ INITRD_SIZE=$(stat -Lc %s ${INITRD})
+ INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})) )
+
+ CHOSEN_NODE=$(echo \
+ "/ { \
+ chosen { \
+ linux,initrd-start = <${INITRD_START}>; \
+ linux,initrd-end = <${INITRD_END}>; \
+ }; \
+ };")
+
+ echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} | \
+ dtc -O dtb -o ${PATCHED_KERNEL_DTB} -
+
+And the FVP binary can be run with the following command:
+
+.. code:: shell
+
+ <path-to>/FVP_Base_AEMv8A-AEMv8A \
+ -C pctl.startup=0.0.0.0 \
+ -C bp.secure_memory=1 \
+ -C cluster0.NUM_CORES=4 \
+ -C cluster1.NUM_CORES=4 \
+ -C cache_state_modelled=1 \
+ -C cluster0.cpu0.RVBAR=0x04001000 \
+ -C cluster0.cpu1.RVBAR=0x04001000 \
+ -C cluster0.cpu2.RVBAR=0x04001000 \
+ -C cluster0.cpu3.RVBAR=0x04001000 \
+ -C cluster1.cpu0.RVBAR=0x04001000 \
+ -C cluster1.cpu1.RVBAR=0x04001000 \
+ -C cluster1.cpu2.RVBAR=0x04001000 \
+ -C cluster1.cpu3.RVBAR=0x04001000 \
+ --data cluster0.cpu0="<path-to>/bl31.bin"@0x04001000 \
+ --data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000 \
+ --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+ --data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000
+
+Obtaining the Flattened Device Trees
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Depending on the FVP configuration and Linux configuration used, different
+FDT files are required. FDT source files for the Foundation and Base FVPs can
+be found in the TF-A source directory under ``fdts/``. The Foundation FVP has
+a subset of the Base FVP components. For example, the Foundation FVP lacks
+CLCD and MMC support, and has only one CPU cluster.
+
+.. note::
+ It is not recommended to use the FDTs built along the kernel because not
+ all FDTs are available from there.
+
+The dynamic configuration capability is enabled in the firmware for FVPs.
+This means that the firmware can authenticate and load the FDT if present in
+FIP. A default FDT is packaged into FIP during the build based on
+the build configuration. This can be overridden by using the ``FVP_HW_CONFIG``
+or ``FVP_HW_CONFIG_DTS`` build options (refer to
+:ref:`build_options_arm_fvp_platform` for details on the options).
+
+- ``fvp-base-gicv2-psci.dts``
+
+ For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs
+ without shifted affinities and with Base memory map configuration.
+
+- ``fvp-base-gicv3-psci.dts``
+
+ For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs
+ without shifted affinities and with Base memory map configuration and
+ Linux GICv3 support.
+
+- ``fvp-base-gicv3-psci-1t.dts``
+
+ For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
+ single threaded CPUs, Base memory map configuration and Linux GICv3 support.
+
+- ``fvp-base-gicv3-psci-dynamiq.dts``
+
+ For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
+ single cluster, single threaded CPUs, Base memory map configuration and Linux
+ GICv3 support.
+
+- ``fvp-foundation-gicv2-psci.dts``
+
+ For use with Foundation FVP with Base memory map configuration.
+
+- ``fvp-foundation-gicv3-psci.dts``
+
+ (Default) For use with Foundation FVP with Base memory map configuration
+ and Linux GICv3 support.
+
+
+Running on the Foundation FVP with reset to BL1 entrypoint
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following ``Foundation_Platform`` parameters should be used to boot Linux with
+4 CPUs using the AArch64 build of TF-A.
+
+.. code:: shell
+
+ <path-to>/Foundation_Platform \
+ --cores=4 \
+ --arm-v8.0 \
+ --secure-memory \
+ --visualization \
+ --gicv3 \
+ --data="<path-to>/<bl1-binary>"@0x0 \
+ --data="<path-to>/<FIP-binary>"@0x08000000 \
+ --data="<path-to>/<kernel-binary>"@0x80080000 \
+ --data="<path-to>/<ramdisk-binary>"@0x84000000
+
+Notes:
+
+- BL1 is loaded at the start of the Trusted ROM.
+- The Firmware Image Package is loaded at the start of NOR FLASH0.
+- The firmware loads the FDT packaged in FIP to the DRAM. The FDT load address
+ is specified via the ``load-address`` property in the ``hw-config`` node of
+ `FW_CONFIG for FVP`_.
+- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
+ and enable the GICv3 device in the model. Note that without this option,
+ the Foundation FVP defaults to legacy (Versatile Express) memory map which
+ is not supported by TF-A.
+- In order for TF-A to run correctly on the Foundation FVP, the architecture
+ versions must match. The Foundation FVP defaults to the highest v8.x
+ version it supports but the default build for TF-A is for v8.0. To avoid
+ issues either start the Foundation FVP to use v8.0 architecture using the
+ ``--arm-v8.0`` option, or build TF-A with an appropriate value for
+ ``ARM_ARCH_MINOR``.
+
+Running on the AEMv8 Base FVP with reset to BL1 entrypoint
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
+with 8 CPUs using the AArch64 build of TF-A.
+
+.. code:: shell
+
+ <path-to>/FVP_Base_RevC-2xAEMv8A \
+ -C pctl.startup=0.0.0.0 \
+ -C bp.secure_memory=1 \
+ -C bp.tzc_400.diagnostics=1 \
+ -C cluster0.NUM_CORES=4 \
+ -C cluster1.NUM_CORES=4 \
+ -C cache_state_modelled=1 \
+ -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
+ -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
+ --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+ --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+.. note::
+ The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires
+ a specific DTS for all the CPUs to be loaded.
+
+Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
+with 8 CPUs using the AArch32 build of TF-A.
+
+.. code:: shell
+
+ <path-to>/FVP_Base_AEMv8A-AEMv8A \
+ -C pctl.startup=0.0.0.0 \
+ -C bp.secure_memory=1 \
+ -C bp.tzc_400.diagnostics=1 \
+ -C cluster0.NUM_CORES=4 \
+ -C cluster1.NUM_CORES=4 \
+ -C cache_state_modelled=1 \
+ -C cluster0.cpu0.CONFIG64=0 \
+ -C cluster0.cpu1.CONFIG64=0 \
+ -C cluster0.cpu2.CONFIG64=0 \
+ -C cluster0.cpu3.CONFIG64=0 \
+ -C cluster1.cpu0.CONFIG64=0 \
+ -C cluster1.cpu1.CONFIG64=0 \
+ -C cluster1.cpu2.CONFIG64=0 \
+ -C cluster1.cpu3.CONFIG64=0 \
+ -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
+ -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
+ --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+ --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
+boot Linux with 8 CPUs using the AArch64 build of TF-A.
+
+.. code:: shell
+
+ <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
+ -C pctl.startup=0.0.0.0 \
+ -C bp.secure_memory=1 \
+ -C bp.tzc_400.diagnostics=1 \
+ -C cache_state_modelled=1 \
+ -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
+ -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
+ --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+ --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
+boot Linux with 4 CPUs using the AArch32 build of TF-A.
+
+.. code:: shell
+
+ <path-to>/FVP_Base_Cortex-A32x4 \
+ -C pctl.startup=0.0.0.0 \
+ -C bp.secure_memory=1 \
+ -C bp.tzc_400.diagnostics=1 \
+ -C cache_state_modelled=1 \
+ -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
+ -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
+ --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+ --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+
+Running on the AEMv8 Base FVP with reset to BL31 entrypoint
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
+with 8 CPUs using the AArch64 build of TF-A.
+
+.. code:: shell
+
+ <path-to>/FVP_Base_RevC-2xAEMv8A \
+ -C pctl.startup=0.0.0.0 \
+ -C bp.secure_memory=1 \
+ -C bp.tzc_400.diagnostics=1 \
+ -C cluster0.NUM_CORES=4 \
+ -C cluster1.NUM_CORES=4 \
+ -C cache_state_modelled=1 \
+ -C cluster0.cpu0.RVBAR=0x04010000 \
+ -C cluster0.cpu1.RVBAR=0x04010000 \
+ -C cluster0.cpu2.RVBAR=0x04010000 \
+ -C cluster0.cpu3.RVBAR=0x04010000 \
+ -C cluster1.cpu0.RVBAR=0x04010000 \
+ -C cluster1.cpu1.RVBAR=0x04010000 \
+ -C cluster1.cpu2.RVBAR=0x04010000 \
+ -C cluster1.cpu3.RVBAR=0x04010000 \
+ --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
+ --data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
+ --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
+ --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
+ --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+ --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Notes:
+
+- Position Independent Executable (PIE) support is enabled in this
+ config allowing BL31 to be loaded at any valid address for execution.
+
+- Since a FIP is not loaded when using BL31 as reset entrypoint, the
+ ``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
+ parameter is needed to load the individual bootloader images in memory.
+ BL32 image is only needed if BL31 has been built to expect a Secure-EL1
+ Payload. For the same reason, the FDT needs to be compiled from the DT source
+ and loaded via the ``--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000``
+ parameter.
+
+- The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires a
+ specific DTS for all the CPUs to be loaded.
+
+- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
+ X and Y are the cluster and CPU numbers respectively, is used to set the
+ reset vector for each core.
+
+- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
+ changing the value of
+ ``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
+ ``BL32_BASE``.
+
+
+Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
+with 8 CPUs using the AArch32 build of TF-A.
+
+.. code:: shell
+
+ <path-to>/FVP_Base_AEMv8A-AEMv8A \
+ -C pctl.startup=0.0.0.0 \
+ -C bp.secure_memory=1 \
+ -C bp.tzc_400.diagnostics=1 \
+ -C cluster0.NUM_CORES=4 \
+ -C cluster1.NUM_CORES=4 \
+ -C cache_state_modelled=1 \
+ -C cluster0.cpu0.CONFIG64=0 \
+ -C cluster0.cpu1.CONFIG64=0 \
+ -C cluster0.cpu2.CONFIG64=0 \
+ -C cluster0.cpu3.CONFIG64=0 \
+ -C cluster1.cpu0.CONFIG64=0 \
+ -C cluster1.cpu1.CONFIG64=0 \
+ -C cluster1.cpu2.CONFIG64=0 \
+ -C cluster1.cpu3.CONFIG64=0 \
+ -C cluster0.cpu0.RVBAR=0x04002000 \
+ -C cluster0.cpu1.RVBAR=0x04002000 \
+ -C cluster0.cpu2.RVBAR=0x04002000 \
+ -C cluster0.cpu3.RVBAR=0x04002000 \
+ -C cluster1.cpu0.RVBAR=0x04002000 \
+ -C cluster1.cpu1.RVBAR=0x04002000 \
+ -C cluster1.cpu2.RVBAR=0x04002000 \
+ -C cluster1.cpu3.RVBAR=0x04002000 \
+ --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
+ --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
+ --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
+ --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+ --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+.. note::
+ Position Independent Executable (PIE) support is enabled in this
+ config allowing SP_MIN to be loaded at any valid address for execution.
+
+Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
+boot Linux with 8 CPUs using the AArch64 build of TF-A.
+
+.. code:: shell
+
+ <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
+ -C pctl.startup=0.0.0.0 \
+ -C bp.secure_memory=1 \
+ -C bp.tzc_400.diagnostics=1 \
+ -C cache_state_modelled=1 \
+ -C cluster0.cpu0.RVBARADDR=0x04010000 \
+ -C cluster0.cpu1.RVBARADDR=0x04010000 \
+ -C cluster0.cpu2.RVBARADDR=0x04010000 \
+ -C cluster0.cpu3.RVBARADDR=0x04010000 \
+ -C cluster1.cpu0.RVBARADDR=0x04010000 \
+ -C cluster1.cpu1.RVBARADDR=0x04010000 \
+ -C cluster1.cpu2.RVBARADDR=0x04010000 \
+ -C cluster1.cpu3.RVBARADDR=0x04010000 \
+ --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
+ --data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
+ --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
+ --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
+ --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+ --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
+boot Linux with 4 CPUs using the AArch32 build of TF-A.
+
+.. code:: shell
+
+ <path-to>/FVP_Base_Cortex-A32x4 \
+ -C pctl.startup=0.0.0.0 \
+ -C bp.secure_memory=1 \
+ -C bp.tzc_400.diagnostics=1 \
+ -C cache_state_modelled=1 \
+ -C cluster0.cpu0.RVBARADDR=0x04002000 \
+ -C cluster0.cpu1.RVBARADDR=0x04002000 \
+ -C cluster0.cpu2.RVBARADDR=0x04002000 \
+ -C cluster0.cpu3.RVBARADDR=0x04002000 \
+ --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
+ --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
+ --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
+ --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+ --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+--------------
+
+*Copyright (c) 2019-2022, Arm Limited. All rights reserved.*
+
+.. _FW_CONFIG for FVP: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_fw_config.dts
+.. _Arm's website: `FVP models`_
+.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
+.. _Linaro Release 20.01: http://releases.linaro.org/members/arm/platforms/20.01
+.. _Arm FVP website: https://developer.arm.com/products/system-design/fixed-virtual-platforms
diff --git a/docs/plat/arm/fvp_r/index.rst b/docs/plat/arm/fvp_r/index.rst
new file mode 100644
index 0000000..8af16ba
--- /dev/null
+++ b/docs/plat/arm/fvp_r/index.rst
@@ -0,0 +1,46 @@
+ARM V8-R64 Fixed Virtual Platform (FVP)
+=======================================
+
+Some of the features of Armv8-R AArch64 FVP platform referenced in Trusted
+Boot R-class include:
+
+- Secure World Support Only
+- EL2 as Maximum EL support (No EL3)
+- MPU Support only at EL2
+- MPU or MMU Support at EL0/EL1
+- AArch64 Support Only
+- Trusted Board Boot
+
+Further information on v8-R64 FVP is available at `info <https://developer.arm.com/documentation/ddi0600/latest/>`_
+
+Boot Sequence
+-------------
+
+BL1 –> BL33
+
+The execution begins from BL1 which loads the BL33 image, a boot-wrapped (bootloader + Operating System)
+Operating System, from FIP to DRAM.
+
+Build Procedure
+~~~~~~~~~~~~~~~
+
+- Obtain arm `toolchain <https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads>`_.
+ Set the CROSS_COMPILE environment variable to point to the toolchain folder.
+
+- Build TF-A:
+
+ .. code:: shell
+
+ make PLAT=fvp_r BL33=<path_to_os.bin> all fip
+
+ Enable TBBR by adding the following options to the make command:
+
+ .. code:: shell
+
+ MBEDTLS_DIR=<path_to_mbedtls_directory> \
+ TRUSTED_BOARD_BOOT=1 \
+ GENERATE_COT=1 \
+ ARM_ROTPK_LOCATION=devel_rsa \
+ ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem
+
+*Copyright (c) 2021, Arm Limited. All rights reserved.*
diff --git a/docs/plat/arm/index.rst b/docs/plat/arm/index.rst
new file mode 100644
index 0000000..2f68522
--- /dev/null
+++ b/docs/plat/arm/index.rst
@@ -0,0 +1,24 @@
+Arm Development Platforms
+=========================
+
+.. toctree::
+ :maxdepth: 1
+ :caption: Contents
+
+ juno/index
+ fvp/index
+ fvp_r/index
+ fvp-ve/index
+ tc/index
+ arm_fpga/index
+ arm-build-options
+ morello/index
+ corstone1000/index
+
+This chapter holds documentation related to Arm's development platforms,
+including both software models (FVPs) and hardware development boards
+such as Juno.
+
+--------------
+
+*Copyright (c) 2019-2021, Arm Limited. All rights reserved.*
diff --git a/docs/plat/arm/juno/index.rst b/docs/plat/arm/juno/index.rst
new file mode 100644
index 0000000..91e681f
--- /dev/null
+++ b/docs/plat/arm/juno/index.rst
@@ -0,0 +1,253 @@
+Arm Juno Development Platform
+=============================
+
+Platform-specific build options
+-------------------------------
+
+- ``JUNO_TZMP1`` : Boolean option to configure Juno to be used for TrustZone
+ Media Protection (TZ-MP1). Default value of this flag is 0.
+
+Running software on Juno
+------------------------
+
+This version of TF-A has been tested on variants r0, r1 and r2 of Juno.
+
+To run TF-A on Juno, you need to first prepare an SD card with Juno software
+stack that includes TF-A. This version of TF-A is tested with pre-built
+`Linaro release software stack`_ version 20.01. You can alternatively
+build the software stack yourself by following the
+`Juno platform software user guide`_. Once you prepare the software stack
+on an SD card, you can replace the ``bl1.bin`` and ``fip.bin``
+binaries in the ``SOFTWARE/`` directory with custom built TF-A binaries.
+
+Preparing TF-A images
+---------------------
+
+This section provides Juno and FVP specific instructions to build Trusted
+Firmware, obtain the additional required firmware, and pack it all together in
+a single FIP binary. It assumes that a Linaro release software stack has been
+installed.
+
+.. note::
+ Pre-built binaries for AArch32 are available from Linaro Release 16.12
+ onwards. Before that release, pre-built binaries are only available for
+ AArch64.
+
+.. warning::
+ Follow the full instructions for one platform before switching to a
+ different one. Mixing instructions for different platforms may result in
+ corrupted binaries.
+
+.. warning::
+ The uboot image downloaded by the Linaro workspace script does not always
+ match the uboot image packaged as BL33 in the corresponding fip file. It is
+ recommended to use the version that is packaged in the fip file using the
+ instructions below.
+
+.. note::
+ For the FVP, the kernel FDT is packaged in FIP during build and loaded
+ by the firmware at runtime.
+
+#. Clean the working directory
+
+ .. code:: shell
+
+ make realclean
+
+#. Obtain SCP binaries (Juno)
+
+ This version of TF-A is tested with SCP version 2.8.0 on Juno. You can
+ download pre-built SCP binaries (``scp_bl1.bin`` and ``scp_bl2.bin``)
+ from `TF-A downloads page`_. Alternatively, you can `build
+ the binaries from source`_.
+
+#. Obtain BL33 (all platforms)
+
+ Use the fiptool to extract the BL33 image from the FIP
+ package included in the Linaro release:
+
+ .. code:: shell
+
+ # Build the fiptool
+ make [DEBUG=1] [V=1] fiptool
+
+ # Unpack firmware images from Linaro FIP
+ ./tools/fiptool/fiptool unpack <path-to-linaro-release>/[SOFTWARE]/fip.bin
+
+ The unpack operation will result in a set of binary images extracted to the
+ current working directory. BL33 corresponds to ``nt-fw.bin``.
+
+ .. note::
+ The fiptool will complain if the images to be unpacked already
+ exist in the current directory. If that is the case, either delete those
+ files or use the ``--force`` option to overwrite.
+
+ .. note::
+ For AArch32, the instructions below assume that nt-fw.bin is a
+ normal world boot loader that supports AArch32.
+
+#. Build TF-A images and create a new FIP for FVP
+
+ .. code:: shell
+
+ # AArch64
+ make PLAT=fvp BL33=nt-fw.bin all fip
+
+ # AArch32
+ make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
+
+#. Build TF-A images and create a new FIP for Juno
+
+ For AArch64:
+
+ Building for AArch64 on Juno simply requires the addition of ``SCP_BL2``
+ as a build parameter.
+
+ .. code:: shell
+
+ make PLAT=juno BL33=nt-fw.bin SCP_BL2=scp_bl2.bin all fip
+
+ For AArch32:
+
+ Hardware restrictions on Juno prevent cold reset into AArch32 execution mode,
+ therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled
+ separately for AArch32.
+
+ - Before building BL32, the environment variable ``CROSS_COMPILE`` must point
+ to the AArch32 Linaro cross compiler.
+
+ .. code:: shell
+
+ export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
+
+ - Build BL32 in AArch32.
+
+ .. code:: shell
+
+ make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
+ RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
+
+ - Save ``bl32.bin`` to a temporary location and clean the build products.
+
+ ::
+
+ cp <path-to-build>/bl32.bin <path-to-temporary>
+ make realclean
+
+ - Before building BL1 and BL2, the environment variable ``CROSS_COMPILE``
+ must point to the AArch64 Linaro cross compiler.
+
+ .. code:: shell
+
+ export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
+
+ - The following parameters should be used to build BL1 and BL2 in AArch64
+ and point to the BL32 file.
+
+ .. code:: shell
+
+ make ARCH=aarch64 PLAT=juno JUNO_AARCH32_EL3_RUNTIME=1 \
+ BL33=nt-fw.bin SCP_BL2=scp_bl2.bin \
+ BL32=<path-to-temporary>/bl32.bin all fip
+
+The resulting BL1 and FIP images may be found in:
+
+::
+
+ # Juno
+ ./build/juno/release/bl1.bin
+ ./build/juno/release/fip.bin
+
+ # FVP
+ ./build/fvp/release/bl1.bin
+ ./build/fvp/release/fip.bin
+
+After building TF-A, the files ``bl1.bin``, ``fip.bin`` and ``scp_bl1.bin``
+need to be copied to the ``SOFTWARE/`` directory on the Juno SD card.
+
+Booting Firmware Update images
+------------------------------
+
+The new images must be programmed in flash memory by adding
+an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
+on the Juno SD card (where ``x`` depends on the revision of the Juno board).
+Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
+programming" for more information. User should ensure these do not
+overlap with any other entries in the file.
+
+::
+
+ NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
+ NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_address]
+ NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name
+ NOR10LOAD: 00000000 ;Image Load Address
+ NOR10ENTRY: 00000000 ;Image Entry Point
+
+ NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
+ NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_address]
+ NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name
+ NOR11LOAD: 00000000 ;Image Load Address
+
+The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000.
+In the same way, the address ns_bl2u_base_address is the value of
+NS_BL2U_BASE - 0x8000000.
+
+.. _plat_juno_booting_el3_payload:
+
+Booting an EL3 payload
+----------------------
+
+If the EL3 payload is able to execute in place, it may be programmed in flash
+memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
+on the Juno SD card (where ``x`` depends on the revision of the Juno board).
+Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
+programming" for more information.
+
+Alternatively, the same DS-5 command mentioned in the FVP section above can
+be used to load the EL3 payload's ELF file over JTAG on Juno.
+
+For more information on EL3 payloads in general, see
+:ref:`alt_boot_flows_el3_payload`.
+
+Booting a preloaded kernel image
+--------------------------------
+
+The Trusted Firmware must be compiled in a similar way as for FVP explained
+above. The process to load binaries to memory is the one explained in
+`plat_juno_booting_el3_payload`_.
+
+Testing System Suspend
+----------------------
+
+The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
+to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend
+on Juno, at the linux shell prompt, issue the following command:
+
+.. code:: shell
+
+ echo +10 > /sys/class/rtc/rtc0/wakealarm
+ echo -n mem > /sys/power/state
+
+The Juno board should suspend to RAM and then wakeup after 10 seconds due to
+wakeup interrupt from RTC.
+
+Additional Resources
+--------------------
+
+Please visit the `Arm Platforms Portal`_ to get support and obtain any other Juno
+software information. Please also refer to the `Juno Getting Started Guide`_ to
+get more detailed information about the Juno Arm development platform and how to
+configure it.
+
+--------------
+
+*Copyright (c) 2019-2022, Arm Limited. All rights reserved.*
+
+.. _Linaro release software stack: http://releases.linaro.org/members/arm/platforms/
+.. _Juno platform software user guide: https://git.linaro.org/landing-teams/working/arm/arm-reference-platforms.git/about/docs/juno/user-guide.rst
+.. _TF-A downloads page: https://downloads.trustedfirmware.org/tf-a/css_scp_2.8.0/juno/
+.. _build the binaries from source: https://github.com/ARM-software/SCP-firmware/blob/master/user_guide.md#scp-firmware-user-guide
+.. _Arm Platforms Portal: https://community.arm.com/dev-platforms/
+.. _Juno Getting Started Guide: https://developer.arm.com/documentation/den0928/f/?lang=en
+.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
+.. _Juno Arm Development Platform: http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
diff --git a/docs/plat/arm/morello/index.rst b/docs/plat/arm/morello/index.rst
new file mode 100644
index 0000000..b18001c
--- /dev/null
+++ b/docs/plat/arm/morello/index.rst
@@ -0,0 +1,33 @@
+Morello Platform
+================
+
+Morello is an ARMv8-A platform that implements the capability architecture extension.
+The platform port present at `site <https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git>`_
+provides ARMv8-A architecture enablement.
+
+Capability architecture specific changes will be added `here <https://git.morello-project.org/morello>`_
+
+Further information on Morello Platform is available at `info <https://developer.arm.com/architectures/cpu-architecture/a-profile/morello>`_
+
+Boot Sequence
+-------------
+
+The execution begins from SCP_BL1 which loads the SCP_BL2 and starts its
+execution. SCP_BL2 powers up the AP which starts execution at AP_BL31. The AP
+then continues executing and hands off execution to Non-secure world (UEFI).
+
+Build Procedure (TF-A only)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- Obtain arm `toolchain <https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads>`_.
+ Set the CROSS_COMPILE environment variable to point to the toolchain folder.
+
+- Build TF-A:
+
+ .. code:: shell
+
+ export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
+
+ make PLAT=morello all
+
+*Copyright (c) 2020, Arm Limited. All rights reserved.*
diff --git a/docs/plat/arm/tc/index.rst b/docs/plat/arm/tc/index.rst
new file mode 100644
index 0000000..df1847d
--- /dev/null
+++ b/docs/plat/arm/tc/index.rst
@@ -0,0 +1,63 @@
+TC Total Compute Platform
+==========================
+
+Some of the features of TC platform referenced in TF-A include:
+
+- A `System Control Processor <https://github.com/ARM-software/SCP-firmware>`_
+ to abstract power and system management tasks away from application
+ processors. The RAM firmware for SCP is included in the TF-A FIP and is
+ loaded by AP BL2 from FIP in flash to SRAM for copying by SCP (SCP has access
+ to AP SRAM).
+- GICv4
+- Trusted Board Boot
+- SCMI
+- MHUv2
+
+Currently, the main difference between TC0 (TARGET_PLATFORM=0), TC1
+(TARGET_PLATFORM=1), TC2 (TARGET_PLATFORM=2) platforms w.r.t to TF-A
+is the CPUs supported as below:
+
+- TC0 has support for Cortex A510, Cortex A710 and Cortex X2.
+- TC1 has support for Cortex A510, Cortex Makalu and Cortex X3.
+- TC2 has support for Hayes and Hunter Arm CPUs.
+
+
+Boot Sequence
+-------------
+
+The execution begins from SCP_BL1. SCP_BL1 powers up the AP which starts
+executing AP_BL1 and then executes AP_BL2 which loads the SCP_BL2 from
+FIP to SRAM. The SCP has access to AP SRAM. The address and size of SCP_BL2
+is communicated to SCP using SDS. SCP copies SCP_BL2 from SRAM to its own
+RAM and starts executing it. The AP then continues executing the rest of TF-A
+stages including BL31 runtime stage and hands off executing to
+Non-secure world (u-boot).
+
+Build Procedure (TF-A only)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- Obtain `Arm toolchain`_ and set the CROSS_COMPILE environment variable to
+ point to the toolchain folder.
+
+- Build TF-A:
+
+ .. code:: shell
+
+ make PLAT=tc BL33=<path_to_uboot.bin> \
+ SCP_BL2=<path_to_scp_ramfw.bin> TARGET_PLATFORM={0,1,2} all fip
+
+ Enable TBBR by adding the following options to the make command:
+
+ .. code:: shell
+
+ MBEDTLS_DIR=<path_to_mbedtls_directory> \
+ TRUSTED_BOARD_BOOT=1 \
+ GENERATE_COT=1 \
+ ARM_ROTPK_LOCATION=devel_rsa \
+ ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem
+
+--------------
+
+*Copyright (c) 2020-2022, Arm Limited. All rights reserved.*
+
+.. _Arm Toolchain: https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads