diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 09:13:47 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 09:13:47 +0000 |
commit | 102b0d2daa97dae68d3eed54d8fe37a9cc38a892 (patch) | |
tree | bcf648efac40ca6139842707f0eba5a4496a6dd2 /drivers/st | |
parent | Initial commit. (diff) | |
download | arm-trusted-firmware-102b0d2daa97dae68d3eed54d8fe37a9cc38a892.tar.xz arm-trusted-firmware-102b0d2daa97dae68d3eed54d8fe37a9cc38a892.zip |
Adding upstream version 2.8.0+dfsg.upstream/2.8.0+dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
32 files changed, 19101 insertions, 0 deletions
diff --git a/drivers/st/bsec/bsec2.c b/drivers/st/bsec/bsec2.c new file mode 100644 index 0000000..68d3a5b --- /dev/null +++ b/drivers/st/bsec/bsec2.c @@ -0,0 +1,961 @@ +/* + * Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <limits.h> + +#include <arch_helpers.h> +#include <common/debug.h> +#include <drivers/st/bsec.h> +#include <drivers/st/bsec2_reg.h> +#include <lib/mmio.h> +#include <lib/spinlock.h> +#include <libfdt.h> + +#include <platform_def.h> + +#define BSEC_IP_VERSION_1_1 U(0x11) +#define BSEC_IP_VERSION_2_0 U(0x20) +#define BSEC_IP_ID_2 U(0x100032) + +#define OTP_ACCESS_SIZE (round_up(OTP_MAX_SIZE, __WORD_BIT) / __WORD_BIT) + +static uint32_t otp_nsec_access[OTP_ACCESS_SIZE] __unused; + +static uint32_t bsec_power_safmem(bool power); + +/* BSEC access protection */ +static spinlock_t bsec_spinlock; +static uintptr_t bsec_base; + +static void bsec_lock(void) +{ + if (stm32mp_lock_available()) { + spin_lock(&bsec_spinlock); + } +} + +static void bsec_unlock(void) +{ + if (stm32mp_lock_available()) { + spin_unlock(&bsec_spinlock); + } +} + +static bool is_otp_invalid_mode(void) +{ + bool ret = ((bsec_get_status() & BSEC_MODE_INVALID) == BSEC_MODE_INVALID); + + if (ret) { + ERROR("OTP mode is OTP-INVALID\n"); + } + + return ret; +} + +#if defined(IMAGE_BL32) +static int bsec_get_dt_node(struct dt_node_info *info) +{ + int node; + + node = dt_get_node(info, -1, DT_BSEC_COMPAT); + if (node < 0) { + return -FDT_ERR_NOTFOUND; + } + + return node; +} + +static void enable_non_secure_access(uint32_t otp) +{ + otp_nsec_access[otp / __WORD_BIT] |= BIT(otp % __WORD_BIT); + + if (bsec_shadow_register(otp) != BSEC_OK) { + panic(); + } +} + +static bool non_secure_can_access(uint32_t otp) +{ + return (otp_nsec_access[otp / __WORD_BIT] & + BIT(otp % __WORD_BIT)) != 0U; +} + +static void bsec_dt_otp_nsec_access(void *fdt, int bsec_node) +{ + int bsec_subnode; + + fdt_for_each_subnode(bsec_subnode, fdt, bsec_node) { + const fdt32_t *cuint; + uint32_t otp; + uint32_t i; + uint32_t size; + uint32_t offset; + uint32_t length; + + cuint = fdt_getprop(fdt, bsec_subnode, "reg", NULL); + if (cuint == NULL) { + panic(); + } + + offset = fdt32_to_cpu(*cuint); + cuint++; + length = fdt32_to_cpu(*cuint); + + otp = offset / sizeof(uint32_t); + + if (otp < STM32MP1_UPPER_OTP_START) { + unsigned int otp_end = round_up(offset + length, + sizeof(uint32_t)) / + sizeof(uint32_t); + + if (otp_end > STM32MP1_UPPER_OTP_START) { + /* + * OTP crosses Lower/Upper boundary, consider + * only the upper part. + */ + otp = STM32MP1_UPPER_OTP_START; + length -= (STM32MP1_UPPER_OTP_START * + sizeof(uint32_t)) - offset; + offset = STM32MP1_UPPER_OTP_START * + sizeof(uint32_t); + + WARN("OTP crosses Lower/Upper boundary\n"); + } else { + continue; + } + } + + if ((fdt_getprop(fdt, bsec_subnode, + "st,non-secure-otp", NULL)) == NULL) { + continue; + } + + if (((offset % sizeof(uint32_t)) != 0U) || + ((length % sizeof(uint32_t)) != 0U)) { + ERROR("Unaligned non-secure OTP\n"); + panic(); + } + + size = length / sizeof(uint32_t); + + for (i = otp; i < (otp + size); i++) { + enable_non_secure_access(i); + } + } +} + +static void bsec_late_init(void) +{ + void *fdt; + int node; + struct dt_node_info bsec_info; + + if (fdt_get_address(&fdt) == 0) { + panic(); + } + + node = bsec_get_dt_node(&bsec_info); + if (node < 0) { + panic(); + } + + assert(bsec_base == bsec_info.base); + + bsec_dt_otp_nsec_access(fdt, node); +} +#endif + +static uint32_t otp_bank_offset(uint32_t otp) +{ + assert(otp <= STM32MP1_OTP_MAX_ID); + + return ((otp & ~BSEC_OTP_MASK) >> BSEC_OTP_BANK_SHIFT) * + sizeof(uint32_t); +} + +/* + * bsec_check_error: check BSEC error status. + * otp: OTP number. + * check_disturbed: check only error (false), + * or error and disturbed status (true). + * return value: BSEC_OK if no error. + */ +static uint32_t bsec_check_error(uint32_t otp, bool check_disturbed) +{ + uint32_t bit = BIT(otp & BSEC_OTP_MASK); + uint32_t bank = otp_bank_offset(otp); + + if ((mmio_read_32(bsec_base + BSEC_ERROR_OFF + bank) & bit) != 0U) { + return BSEC_ERROR; + } + + if (!check_disturbed) { + return BSEC_OK; + } + + if ((mmio_read_32(bsec_base + BSEC_DISTURBED_OFF + bank) & bit) != 0U) { + return BSEC_DISTURBED; + } + + return BSEC_OK; +} + +/* + * bsec_probe: initialize BSEC driver. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_probe(void) +{ + bsec_base = BSEC_BASE; + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + if ((((bsec_get_version() & BSEC_IPVR_MSK) != BSEC_IP_VERSION_1_1) && + ((bsec_get_version() & BSEC_IPVR_MSK) != BSEC_IP_VERSION_2_0)) || + (bsec_get_id() != BSEC_IP_ID_2)) { + panic(); + } + +#if defined(IMAGE_BL32) + bsec_late_init(); +#endif + return BSEC_OK; +} + +/* + * bsec_get_base: return BSEC base address. + */ +uint32_t bsec_get_base(void) +{ + return bsec_base; +} + +/* + * bsec_set_config: enable and configure BSEC. + * cfg: pointer to param structure used to set register. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_set_config(struct bsec_config *cfg) +{ + uint32_t value; + uint32_t result; + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + value = ((((uint32_t)cfg->freq << BSEC_CONF_FRQ_SHIFT) & + BSEC_CONF_FRQ_MASK) | + (((uint32_t)cfg->pulse_width << BSEC_CONF_PRG_WIDTH_SHIFT) & + BSEC_CONF_PRG_WIDTH_MASK) | + (((uint32_t)cfg->tread << BSEC_CONF_TREAD_SHIFT) & + BSEC_CONF_TREAD_MASK)); + + bsec_lock(); + + mmio_write_32(bsec_base + BSEC_OTP_CONF_OFF, value); + + bsec_unlock(); + + result = bsec_power_safmem((bool)cfg->power & + BSEC_CONF_POWER_UP_MASK); + if (result != BSEC_OK) { + return result; + } + + value = ((((uint32_t)cfg->upper_otp_lock << UPPER_OTP_LOCK_SHIFT) & + UPPER_OTP_LOCK_MASK) | + (((uint32_t)cfg->den_lock << DENREG_LOCK_SHIFT) & + DENREG_LOCK_MASK) | + (((uint32_t)cfg->prog_lock << GPLOCK_LOCK_SHIFT) & + GPLOCK_LOCK_MASK)); + + bsec_lock(); + + mmio_write_32(bsec_base + BSEC_OTP_LOCK_OFF, value); + + bsec_unlock(); + + return BSEC_OK; +} + +/* + * bsec_get_config: return config parameters set in BSEC registers. + * cfg: config param return. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_get_config(struct bsec_config *cfg) +{ + uint32_t value; + + if (cfg == NULL) { + return BSEC_INVALID_PARAM; + } + + value = mmio_read_32(bsec_base + BSEC_OTP_CONF_OFF); + cfg->power = (uint8_t)((value & BSEC_CONF_POWER_UP_MASK) >> + BSEC_CONF_POWER_UP_SHIFT); + cfg->freq = (uint8_t)((value & BSEC_CONF_FRQ_MASK) >> + BSEC_CONF_FRQ_SHIFT); + cfg->pulse_width = (uint8_t)((value & BSEC_CONF_PRG_WIDTH_MASK) >> + BSEC_CONF_PRG_WIDTH_SHIFT); + cfg->tread = (uint8_t)((value & BSEC_CONF_TREAD_MASK) >> + BSEC_CONF_TREAD_SHIFT); + + value = mmio_read_32(bsec_base + BSEC_OTP_LOCK_OFF); + cfg->upper_otp_lock = (uint8_t)((value & UPPER_OTP_LOCK_MASK) >> + UPPER_OTP_LOCK_SHIFT); + cfg->den_lock = (uint8_t)((value & DENREG_LOCK_MASK) >> + DENREG_LOCK_SHIFT); + cfg->prog_lock = (uint8_t)((value & GPLOCK_LOCK_MASK) >> + GPLOCK_LOCK_SHIFT); + + return BSEC_OK; +} + +/* + * bsec_shadow_register: copy SAFMEM OTP to BSEC data. + * otp: OTP number. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_shadow_register(uint32_t otp) +{ + uint32_t result; + bool value; + bool power_up = false; + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + result = bsec_read_sr_lock(otp, &value); + if (result != BSEC_OK) { + ERROR("BSEC: %u Sticky-read bit read Error %u\n", otp, result); + return result; + } + + if (value) { + VERBOSE("BSEC: OTP %u is locked and will not be refreshed\n", + otp); + } + + if ((bsec_get_status() & BSEC_MODE_PWR_MASK) == 0U) { + result = bsec_power_safmem(true); + + if (result != BSEC_OK) { + return result; + } + + power_up = true; + } + + bsec_lock(); + + mmio_write_32(bsec_base + BSEC_OTP_CTRL_OFF, otp | BSEC_READ); + + while ((bsec_get_status() & BSEC_MODE_BUSY_MASK) != 0U) { + ; + } + + result = bsec_check_error(otp, true); + + bsec_unlock(); + + if (power_up) { + if (bsec_power_safmem(false) != BSEC_OK) { + panic(); + } + } + + return result; +} + +/* + * bsec_read_otp: read an OTP data value. + * val: read value. + * otp: OTP number. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_read_otp(uint32_t *val, uint32_t otp) +{ + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + *val = mmio_read_32(bsec_base + BSEC_OTP_DATA_OFF + + (otp * sizeof(uint32_t))); + + return BSEC_OK; +} + +/* + * bsec_write_otp: write value in BSEC data register. + * val: value to write. + * otp: OTP number. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_write_otp(uint32_t val, uint32_t otp) +{ + uint32_t result; + bool value; + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + result = bsec_read_sw_lock(otp, &value); + if (result != BSEC_OK) { + ERROR("BSEC: %u Sticky-write bit read Error %u\n", otp, result); + return result; + } + + if (value) { + VERBOSE("BSEC: OTP %u is locked and write will be ignored\n", + otp); + } + + /* Ensure integrity of each register access sequence */ + bsec_lock(); + + mmio_write_32(bsec_base + BSEC_OTP_DATA_OFF + + (otp * sizeof(uint32_t)), val); + + bsec_unlock(); + + return result; +} + +/* + * bsec_program_otp: program a bit in SAFMEM after the prog. + * The OTP data is not refreshed. + * val: value to program. + * otp: OTP number. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_program_otp(uint32_t val, uint32_t otp) +{ + uint32_t result; + bool power_up = false; + bool sp_lock; + bool perm_lock; + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + result = bsec_read_sp_lock(otp, &sp_lock); + if (result != BSEC_OK) { + ERROR("BSEC: %u Sticky-prog bit read Error %u\n", otp, result); + return result; + } + + result = bsec_read_permanent_lock(otp, &perm_lock); + if (result != BSEC_OK) { + ERROR("BSEC: %u permanent bit read Error %u\n", otp, result); + return result; + } + + if (sp_lock || perm_lock) { + WARN("BSEC: OTP locked, prog will be ignored\n"); + return BSEC_PROG_FAIL; + } + + if ((mmio_read_32(bsec_base + BSEC_OTP_LOCK_OFF) & + BIT(BSEC_LOCK_PROGRAM)) != 0U) { + WARN("BSEC: GPLOCK activated, prog will be ignored\n"); + } + + if ((bsec_get_status() & BSEC_MODE_PWR_MASK) == 0U) { + result = bsec_power_safmem(true); + + if (result != BSEC_OK) { + return result; + } + + power_up = true; + } + + bsec_lock(); + + mmio_write_32(bsec_base + BSEC_OTP_WRDATA_OFF, val); + + mmio_write_32(bsec_base + BSEC_OTP_CTRL_OFF, otp | BSEC_WRITE); + + while ((bsec_get_status() & BSEC_MODE_BUSY_MASK) != 0U) { + ; + } + + if ((bsec_get_status() & BSEC_MODE_PROGFAIL_MASK) != 0U) { + result = BSEC_PROG_FAIL; + } else { + result = bsec_check_error(otp, true); + } + + bsec_unlock(); + + if (power_up) { + if (bsec_power_safmem(false) != BSEC_OK) { + panic(); + } + } + + return result; +} + +/* + * bsec_permanent_lock_otp: permanent lock of OTP in SAFMEM. + * otp: OTP number. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_permanent_lock_otp(uint32_t otp) +{ + uint32_t result; + bool power_up = false; + uint32_t data; + uint32_t addr; + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + if ((bsec_get_status() & BSEC_MODE_PWR_MASK) == 0U) { + result = bsec_power_safmem(true); + + if (result != BSEC_OK) { + return result; + } + + power_up = true; + } + + if (otp < STM32MP1_UPPER_OTP_START) { + addr = otp >> ADDR_LOWER_OTP_PERLOCK_SHIFT; + data = DATA_LOWER_OTP_PERLOCK_BIT << + ((otp & DATA_LOWER_OTP_PERLOCK_MASK) << 1U); + } else { + addr = (otp >> ADDR_UPPER_OTP_PERLOCK_SHIFT) + 2U; + data = DATA_UPPER_OTP_PERLOCK_BIT << + (otp & DATA_UPPER_OTP_PERLOCK_MASK); + } + + bsec_lock(); + + mmio_write_32(bsec_base + BSEC_OTP_WRDATA_OFF, data); + + mmio_write_32(bsec_base + BSEC_OTP_CTRL_OFF, + addr | BSEC_WRITE | BSEC_LOCK); + + while ((bsec_get_status() & BSEC_MODE_BUSY_MASK) != 0U) { + ; + } + + if ((bsec_get_status() & BSEC_MODE_PROGFAIL_MASK) != 0U) { + result = BSEC_PROG_FAIL; + } else { + result = bsec_check_error(otp, false); + } + + bsec_unlock(); + + if (power_up) { + if (bsec_power_safmem(false) != BSEC_OK) { + panic(); + } + } + + return result; +} + +/* + * bsec_write_debug_conf: write value in debug feature. + * to enable/disable debug service. + * val: value to write. + * return value: none. + */ +void bsec_write_debug_conf(uint32_t val) +{ + if (is_otp_invalid_mode()) { + return; + } + + bsec_lock(); + mmio_write_32(bsec_base + BSEC_DEN_OFF, val & BSEC_DEN_ALL_MSK); + bsec_unlock(); +} + +/* + * bsec_read_debug_conf: return debug configuration register value. + */ +uint32_t bsec_read_debug_conf(void) +{ + return mmio_read_32(bsec_base + BSEC_DEN_OFF); +} + +/* + * bsec_write_scratch: write value in scratch register. + * val: value to write. + * return value: none. + */ +void bsec_write_scratch(uint32_t val) +{ +#if defined(IMAGE_BL32) + if (is_otp_invalid_mode()) { + return; + } + + bsec_lock(); + mmio_write_32(bsec_base + BSEC_SCRATCH_OFF, val); + bsec_unlock(); +#else + mmio_write_32(BSEC_BASE + BSEC_SCRATCH_OFF, val); +#endif +} + +/* + * bsec_read_scratch: return scratch register value. + */ +uint32_t bsec_read_scratch(void) +{ + return mmio_read_32(bsec_base + BSEC_SCRATCH_OFF); +} + +/* + * bsec_get_status: return status register value. + */ +uint32_t bsec_get_status(void) +{ + return mmio_read_32(bsec_base + BSEC_OTP_STATUS_OFF); +} + +/* + * bsec_get_hw_conf: return hardware configuration register value. + */ +uint32_t bsec_get_hw_conf(void) +{ + return mmio_read_32(bsec_base + BSEC_IPHW_CFG_OFF); +} + +/* + * bsec_get_version: return BSEC version register value. + */ +uint32_t bsec_get_version(void) +{ + return mmio_read_32(bsec_base + BSEC_IPVR_OFF); +} + +/* + * bsec_get_id: return BSEC ID register value. + */ +uint32_t bsec_get_id(void) +{ + return mmio_read_32(bsec_base + BSEC_IP_ID_OFF); +} + +/* + * bsec_get_magic_id: return BSEC magic number register value. + */ +uint32_t bsec_get_magic_id(void) +{ + return mmio_read_32(bsec_base + BSEC_IP_MAGIC_ID_OFF); +} + +/* + * bsec_set_sr_lock: set shadow-read lock. + * otp: OTP number. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_set_sr_lock(uint32_t otp) +{ + uint32_t bank = otp_bank_offset(otp); + uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK); + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + bsec_lock(); + mmio_write_32(bsec_base + BSEC_SRLOCK_OFF + bank, otp_mask); + bsec_unlock(); + + return BSEC_OK; +} + +/* + * bsec_read_sr_lock: read shadow-read lock. + * otp: OTP number. + * value: read value (true or false). + * return value: BSEC_OK if no error. + */ +uint32_t bsec_read_sr_lock(uint32_t otp, bool *value) +{ + uint32_t bank = otp_bank_offset(otp); + uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK); + uint32_t bank_value; + + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + bank_value = mmio_read_32(bsec_base + BSEC_SRLOCK_OFF + bank); + + *value = ((bank_value & otp_mask) != 0U); + + return BSEC_OK; +} + +/* + * bsec_set_sw_lock: set shadow-write lock. + * otp: OTP number. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_set_sw_lock(uint32_t otp) +{ + uint32_t bank = otp_bank_offset(otp); + uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK); + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + bsec_lock(); + mmio_write_32(bsec_base + BSEC_SWLOCK_OFF + bank, otp_mask); + bsec_unlock(); + + return BSEC_OK; +} + +/* + * bsec_read_sw_lock: read shadow-write lock. + * otp: OTP number. + * value: read value (true or false). + * return value: BSEC_OK if no error. + */ +uint32_t bsec_read_sw_lock(uint32_t otp, bool *value) +{ + uint32_t bank = otp_bank_offset(otp); + uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK); + uint32_t bank_value; + + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + bank_value = mmio_read_32(bsec_base + BSEC_SWLOCK_OFF + bank); + + *value = ((bank_value & otp_mask) != 0U); + + return BSEC_OK; +} + +/* + * bsec_set_sp_lock: set shadow-program lock. + * otp: OTP number. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_set_sp_lock(uint32_t otp) +{ + uint32_t bank = otp_bank_offset(otp); + uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK); + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + bsec_lock(); + mmio_write_32(bsec_base + BSEC_SPLOCK_OFF + bank, otp_mask); + bsec_unlock(); + + return BSEC_OK; +} + +/* + * bsec_read_sp_lock: read shadow-program lock. + * otp: OTP number. + * value: read value (true or false). + * return value: BSEC_OK if no error. + */ +uint32_t bsec_read_sp_lock(uint32_t otp, bool *value) +{ + uint32_t bank = otp_bank_offset(otp); + uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK); + uint32_t bank_value; + + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + bank_value = mmio_read_32(bsec_base + BSEC_SPLOCK_OFF + bank); + + *value = ((bank_value & otp_mask) != 0U); + + return BSEC_OK; +} + +/* + * bsec_read_permanent_lock: Read permanent lock status. + * otp: OTP number. + * value: read value (true or false). + * return value: BSEC_OK if no error. + */ +uint32_t bsec_read_permanent_lock(uint32_t otp, bool *value) +{ + uint32_t bank = otp_bank_offset(otp); + uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK); + uint32_t bank_value; + + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + bank_value = mmio_read_32(bsec_base + BSEC_WRLOCK_OFF + bank); + + *value = ((bank_value & otp_mask) != 0U); + + return BSEC_OK; +} + +/* + * bsec_otp_lock: Lock Upper OTP or Global Programming or Debug Enable. + * service: Service to lock, see header file. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_otp_lock(uint32_t service) +{ + uintptr_t reg = bsec_base + BSEC_OTP_LOCK_OFF; + + if (is_otp_invalid_mode()) { + return BSEC_ERROR; + } + + switch (service) { + case BSEC_LOCK_UPPER_OTP: + mmio_write_32(reg, BIT(BSEC_LOCK_UPPER_OTP)); + break; + case BSEC_LOCK_DEBUG: + mmio_write_32(reg, BIT(BSEC_LOCK_DEBUG)); + break; + case BSEC_LOCK_PROGRAM: + mmio_write_32(reg, BIT(BSEC_LOCK_PROGRAM)); + break; + default: + return BSEC_INVALID_PARAM; + } + + return BSEC_OK; +} + +/* + * bsec_power_safmem: Activate or deactivate SAFMEM power. + * power: true to power up, false to power down. + * return value: BSEC_OK if no error. + */ +static uint32_t bsec_power_safmem(bool power) +{ + uint32_t register_val; + uint32_t timeout = BSEC_TIMEOUT_VALUE; + + bsec_lock(); + + register_val = mmio_read_32(bsec_base + BSEC_OTP_CONF_OFF); + + if (power) { + register_val |= BSEC_CONF_POWER_UP_MASK; + } else { + register_val &= ~BSEC_CONF_POWER_UP_MASK; + } + + mmio_write_32(bsec_base + BSEC_OTP_CONF_OFF, register_val); + + if (power) { + while (((bsec_get_status() & BSEC_MODE_PWR_MASK) == 0U) && + (timeout != 0U)) { + timeout--; + } + } else { + while (((bsec_get_status() & BSEC_MODE_PWR_MASK) != 0U) && + (timeout != 0U)) { + timeout--; + } + } + + bsec_unlock(); + + if (timeout == 0U) { + return BSEC_TIMEOUT; + } + + return BSEC_OK; +} + +/* + * bsec_shadow_read_otp: Load OTP from SAFMEM and provide its value. + * otp_value: read value. + * word: OTP number. + * return value: BSEC_OK if no error. + */ +uint32_t bsec_shadow_read_otp(uint32_t *otp_value, uint32_t word) +{ + uint32_t result; + + result = bsec_shadow_register(word); + if (result != BSEC_OK) { + ERROR("BSEC: %u Shadowing Error %u\n", word, result); + return result; + } + + result = bsec_read_otp(otp_value, word); + if (result != BSEC_OK) { + ERROR("BSEC: %u Read Error %u\n", word, result); + } + + return result; +} + +/* + * bsec_check_nsec_access_rights: check non-secure access rights to target OTP. + * otp: OTP number. + * return value: BSEC_OK if authorized access. + */ +uint32_t bsec_check_nsec_access_rights(uint32_t otp) +{ +#if defined(IMAGE_BL32) + if (otp > STM32MP1_OTP_MAX_ID) { + return BSEC_INVALID_PARAM; + } + + if (otp >= STM32MP1_UPPER_OTP_START) { + if (!non_secure_can_access(otp)) { + return BSEC_ERROR; + } + } +#endif + + return BSEC_OK; +} + diff --git a/drivers/st/clk/clk-stm32-core.c b/drivers/st/clk/clk-stm32-core.c new file mode 100644 index 0000000..bb03125 --- /dev/null +++ b/drivers/st/clk/clk-stm32-core.c @@ -0,0 +1,1096 @@ +/* + * Copyright (C) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> + +#include "clk-stm32-core.h" +#include <common/debug.h> +#include <common/fdt_wrappers.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32mp_clkfunc.h> +#include <lib/mmio.h> +#include <lib/spinlock.h> + +static struct spinlock reg_lock; +static struct spinlock refcount_lock; + +static struct stm32_clk_priv *stm32_clock_data; + +const struct stm32_clk_ops clk_mux_ops; + +struct stm32_clk_priv *clk_stm32_get_priv(void) +{ + return stm32_clock_data; +} + +static void stm32mp1_clk_lock(struct spinlock *lock) +{ + if (stm32mp_lock_available()) { + /* Assume interrupts are masked */ + spin_lock(lock); + } +} + +static void stm32mp1_clk_unlock(struct spinlock *lock) +{ + if (stm32mp_lock_available()) { + spin_unlock(lock); + } +} + +void stm32mp1_clk_rcc_regs_lock(void) +{ + stm32mp1_clk_lock(®_lock); +} + +void stm32mp1_clk_rcc_regs_unlock(void) +{ + stm32mp1_clk_unlock(®_lock); +} + +#define TIMEOUT_US_1S U(1000000) +#define OSCRDY_TIMEOUT TIMEOUT_US_1S + +struct clk_oscillator_data *clk_oscillator_get_data(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct stm32_osc_cfg *osc_cfg = clk->clock_cfg; + int osc_id = osc_cfg->osc_id; + + return &priv->osci_data[osc_id]; +} + +void clk_oscillator_set_bypass(struct stm32_clk_priv *priv, int id, bool digbyp, bool bypass) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); + + struct stm32_clk_bypass *bypass_data = osc_data->bypass; + uintptr_t address; + + if (bypass_data == NULL) { + return; + } + + address = priv->base + bypass_data->offset; + + if (digbyp) { + mmio_setbits_32(address, BIT(bypass_data->bit_digbyp)); + } + + if (bypass || digbyp) { + mmio_setbits_32(address, BIT(bypass_data->bit_byp)); + } +} + +void clk_oscillator_set_css(struct stm32_clk_priv *priv, int id, bool css) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); + + struct stm32_clk_css *css_data = osc_data->css; + uintptr_t address; + + if (css_data == NULL) { + return; + } + + address = priv->base + css_data->offset; + + if (css) { + mmio_setbits_32(address, BIT(css_data->bit_css)); + } +} + +void clk_oscillator_set_drive(struct stm32_clk_priv *priv, int id, uint8_t lsedrv) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); + + struct stm32_clk_drive *drive_data = osc_data->drive; + uintptr_t address; + uint32_t mask; + uint32_t value; + + if (drive_data == NULL) { + return; + } + + address = priv->base + drive_data->offset; + + mask = (BIT(drive_data->drv_width) - 1U) << drive_data->drv_shift; + + /* + * Warning: not recommended to switch directly from "high drive" + * to "medium low drive", and vice-versa. + */ + value = (mmio_read_32(address) & mask) >> drive_data->drv_shift; + + while (value != lsedrv) { + if (value > lsedrv) { + value--; + } else { + value++; + } + + mmio_clrsetbits_32(address, mask, value << drive_data->drv_shift); + } +} + +int clk_oscillator_wait_ready(struct stm32_clk_priv *priv, int id, bool ready_on) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); + + return _clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, ready_on); +} + +int clk_oscillator_wait_ready_on(struct stm32_clk_priv *priv, int id) +{ + return clk_oscillator_wait_ready(priv, id, true); +} + +int clk_oscillator_wait_ready_off(struct stm32_clk_priv *priv, int id) +{ + return clk_oscillator_wait_ready(priv, id, false); +} + +static int clk_gate_enable(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct clk_gate_cfg *cfg = clk->clock_cfg; + + mmio_setbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx)); + + return 0; +} + +static void clk_gate_disable(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct clk_gate_cfg *cfg = clk->clock_cfg; + + mmio_clrbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx)); +} + +static bool clk_gate_is_enabled(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct clk_gate_cfg *cfg = clk->clock_cfg; + + return ((mmio_read_32(priv->base + cfg->offset) & BIT(cfg->bit_idx)) != 0U); +} + +const struct stm32_clk_ops clk_gate_ops = { + .enable = clk_gate_enable, + .disable = clk_gate_disable, + .is_enabled = clk_gate_is_enabled, +}; + +void _clk_stm32_gate_disable(struct stm32_clk_priv *priv, uint16_t gate_id) +{ + const struct gate_cfg *gate = &priv->gates[gate_id]; + uintptr_t addr = priv->base + gate->offset; + + if (gate->set_clr != 0U) { + mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx)); + } else { + mmio_clrbits_32(addr, BIT(gate->bit_idx)); + } +} + +int _clk_stm32_gate_enable(struct stm32_clk_priv *priv, uint16_t gate_id) +{ + const struct gate_cfg *gate = &priv->gates[gate_id]; + uintptr_t addr = priv->base + gate->offset; + + if (gate->set_clr != 0U) { + mmio_write_32(addr, BIT(gate->bit_idx)); + + } else { + mmio_setbits_32(addr, BIT(gate->bit_idx)); + } + + return 0; +} + +const struct clk_stm32 *_clk_get(struct stm32_clk_priv *priv, int id) +{ + if ((unsigned int)id < priv->num) { + return &priv->clks[id]; + } + + return NULL; +} + +#define clk_div_mask(_width) GENMASK(((_width) - 1U), 0U) + +static unsigned int _get_table_div(const struct clk_div_table *table, + unsigned int val) +{ + const struct clk_div_table *clkt; + + for (clkt = table; clkt->div; clkt++) { + if (clkt->val == val) { + return clkt->div; + } + } + + return 0; +} + +static unsigned int _get_div(const struct clk_div_table *table, + unsigned int val, unsigned long flags, + uint8_t width) +{ + if ((flags & CLK_DIVIDER_ONE_BASED) != 0UL) { + return val; + } + + if ((flags & CLK_DIVIDER_POWER_OF_TWO) != 0UL) { + return BIT(val); + } + + if ((flags & CLK_DIVIDER_MAX_AT_ZERO) != 0UL) { + return (val != 0U) ? val : BIT(width); + } + + if (table != NULL) { + return _get_table_div(table, val); + } + + return val + 1U; +} + +#define TIMEOUT_US_200MS U(200000) +#define CLKSRC_TIMEOUT TIMEOUT_US_200MS + +int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel) +{ + const struct parent_cfg *parents = &priv->parents[pid & MUX_PARENT_MASK]; + const struct mux_cfg *mux = parents->mux; + uintptr_t address = priv->base + mux->offset; + uint32_t mask; + uint64_t timeout; + + mask = MASK_WIDTH_SHIFT(mux->width, mux->shift); + + mmio_clrsetbits_32(address, mask, (sel << mux->shift) & mask); + + if (mux->bitrdy == MUX_NO_BIT_RDY) { + return 0; + } + + timeout = timeout_init_us(CLKSRC_TIMEOUT); + + mask = BIT(mux->bitrdy); + + while ((mmio_read_32(address) & mask) == 0U) { + if (timeout_elapsed(timeout)) { + return -ETIMEDOUT; + } + } + + return 0; +} + +int _clk_stm32_set_parent(struct stm32_clk_priv *priv, int clk, int clkp) +{ + const struct parent_cfg *parents; + uint16_t pid; + uint8_t sel; + int old_parent; + + pid = priv->clks[clk].parent; + + if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) { + return -EINVAL; + } + + old_parent = _clk_stm32_get_parent(priv, clk); + if (old_parent < 0) { + return old_parent; + } + if (old_parent == clkp) { + return 0; + } + + parents = &priv->parents[pid & MUX_PARENT_MASK]; + + for (sel = 0; sel < parents->num_parents; sel++) { + if (parents->id_parents[sel] == (uint16_t)clkp) { + bool clk_was_enabled = _clk_stm32_is_enabled(priv, clk); + int err = 0; + + /* Enable the parents (for glitch free mux) */ + _clk_stm32_enable(priv, clkp); + _clk_stm32_enable(priv, old_parent); + + err = clk_mux_set_parent(priv, pid, sel); + + _clk_stm32_disable(priv, old_parent); + + if (clk_was_enabled) { + _clk_stm32_disable(priv, old_parent); + } else { + _clk_stm32_disable(priv, clkp); + } + + return err; + } + } + + return -EINVAL; +} + +int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id) +{ + const struct parent_cfg *parent; + const struct mux_cfg *mux; + uint32_t mask; + + if (mux_id >= priv->nb_parents) { + panic(); + } + + parent = &priv->parents[mux_id]; + mux = parent->mux; + + mask = MASK_WIDTH_SHIFT(mux->width, mux->shift); + + return (mmio_read_32(priv->base + mux->offset) & mask) >> mux->shift; +} + +int _clk_stm32_set_parent_by_index(struct stm32_clk_priv *priv, int clk, int sel) +{ + uint16_t pid; + + pid = priv->clks[clk].parent; + + if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) { + return -EINVAL; + } + + return clk_mux_set_parent(priv, pid, sel); +} + +int _clk_stm32_get_parent(struct stm32_clk_priv *priv, int clk_id) +{ + const struct clk_stm32 *clk = _clk_get(priv, clk_id); + const struct parent_cfg *parent; + uint16_t mux_id; + int sel; + + mux_id = priv->clks[clk_id].parent; + if (mux_id == CLK_IS_ROOT) { + return CLK_IS_ROOT; + } + + if (mux_id < MUX_MAX_PARENTS) { + return mux_id & MUX_PARENT_MASK; + } + + mux_id &= MUX_PARENT_MASK; + parent = &priv->parents[mux_id]; + + if (clk->ops->get_parent != NULL) { + sel = clk->ops->get_parent(priv, clk_id); + } else { + sel = clk_mux_get_parent(priv, mux_id); + } + + if ((sel >= 0) && (sel < parent->num_parents)) { + return parent->id_parents[sel]; + } + + return -EINVAL; +} + +int _clk_stm32_get_parent_index(struct stm32_clk_priv *priv, int clk_id) +{ + uint16_t mux_id; + + mux_id = priv->clks[clk_id].parent; + if (mux_id == CLK_IS_ROOT) { + return CLK_IS_ROOT; + } + + if (mux_id < MUX_MAX_PARENTS) { + return mux_id & MUX_PARENT_MASK; + } + + mux_id &= MUX_PARENT_MASK; + + return clk_mux_get_parent(priv, mux_id); +} + +int _clk_stm32_get_parent_by_index(struct stm32_clk_priv *priv, int clk_id, int idx) +{ + const struct parent_cfg *parent; + uint16_t mux_id; + + mux_id = priv->clks[clk_id].parent; + if (mux_id == CLK_IS_ROOT) { + return CLK_IS_ROOT; + } + + if (mux_id < MUX_MAX_PARENTS) { + return mux_id & MUX_PARENT_MASK; + } + + mux_id &= MUX_PARENT_MASK; + parent = &priv->parents[mux_id]; + + if (idx < parent->num_parents) { + return parent->id_parents[idx]; + } + + return -EINVAL; +} + +int clk_get_index(struct stm32_clk_priv *priv, unsigned long binding_id) +{ + unsigned int i; + + for (i = 0U; i < priv->num; i++) { + if (binding_id == priv->clks[i].binding) { + return (int)i; + } + } + + return -EINVAL; +} + +unsigned long _clk_stm32_get_rate(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + int parent; + unsigned long rate = 0UL; + + if ((unsigned int)id >= priv->num) { + return rate; + } + + parent = _clk_stm32_get_parent(priv, id); + if (parent < 0) { + return 0UL; + } + + if (clk->ops->recalc_rate != NULL) { + unsigned long prate = 0UL; + + if (parent != CLK_IS_ROOT) { + prate = _clk_stm32_get_rate(priv, parent); + } + + rate = clk->ops->recalc_rate(priv, id, prate); + + return rate; + } + + switch (parent) { + case CLK_IS_ROOT: + panic(); + + default: + rate = _clk_stm32_get_rate(priv, parent); + break; + } + return rate; + +} + +unsigned long _clk_stm32_get_parent_rate(struct stm32_clk_priv *priv, int id) +{ + int parent_id = _clk_stm32_get_parent(priv, id); + + if (parent_id < 0) { + return 0UL; + } + + return _clk_stm32_get_rate(priv, parent_id); +} + +static uint8_t _stm32_clk_get_flags(struct stm32_clk_priv *priv, int id) +{ + return priv->clks[id].flags; +} + +bool _stm32_clk_is_flags(struct stm32_clk_priv *priv, int id, uint8_t flag) +{ + if (_stm32_clk_get_flags(priv, id) & flag) { + return true; + } + + return false; +} + +int clk_stm32_enable_call_ops(struct stm32_clk_priv *priv, uint16_t id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + + if (clk->ops->enable != NULL) { + clk->ops->enable(priv, id); + } + + return 0; +} + +static int _clk_stm32_enable_core(struct stm32_clk_priv *priv, int id) +{ + int parent; + int ret = 0; + + if (priv->gate_refcounts[id] == 0U) { + parent = _clk_stm32_get_parent(priv, id); + if (parent < 0) { + return parent; + } + if (parent != CLK_IS_ROOT) { + ret = _clk_stm32_enable_core(priv, parent); + if (ret) { + return ret; + } + } + clk_stm32_enable_call_ops(priv, id); + } + + priv->gate_refcounts[id]++; + + if (priv->gate_refcounts[id] == UINT_MAX) { + ERROR("%s: %d max enable count !", __func__, id); + panic(); + } + + return 0; +} + +int _clk_stm32_enable(struct stm32_clk_priv *priv, int id) +{ + int ret; + + stm32mp1_clk_lock(&refcount_lock); + ret = _clk_stm32_enable_core(priv, id); + stm32mp1_clk_unlock(&refcount_lock); + + return ret; +} + +void clk_stm32_disable_call_ops(struct stm32_clk_priv *priv, uint16_t id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + + if (clk->ops->disable != NULL) { + clk->ops->disable(priv, id); + } +} + +static void _clk_stm32_disable_core(struct stm32_clk_priv *priv, int id) +{ + int parent; + + if ((priv->gate_refcounts[id] == 1U) && _stm32_clk_is_flags(priv, id, CLK_IS_CRITICAL)) { + return; + } + + if (priv->gate_refcounts[id] == 0U) { + /* case of clock ignore unused */ + if (_clk_stm32_is_enabled(priv, id)) { + clk_stm32_disable_call_ops(priv, id); + return; + } + VERBOSE("%s: %d already disabled !\n\n", __func__, id); + return; + } + + if (--priv->gate_refcounts[id] > 0U) { + return; + } + + clk_stm32_disable_call_ops(priv, id); + + parent = _clk_stm32_get_parent(priv, id); + if ((parent >= 0) && (parent != CLK_IS_ROOT)) { + _clk_stm32_disable_core(priv, parent); + } +} + +void _clk_stm32_disable(struct stm32_clk_priv *priv, int id) +{ + stm32mp1_clk_lock(&refcount_lock); + + _clk_stm32_disable_core(priv, id); + + stm32mp1_clk_unlock(&refcount_lock); +} + +bool _clk_stm32_is_enabled(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + + if (clk->ops->is_enabled != NULL) { + return clk->ops->is_enabled(priv, id); + } + + return priv->gate_refcounts[id]; +} + +static int clk_stm32_enable(unsigned long binding_id) +{ + struct stm32_clk_priv *priv = clk_stm32_get_priv(); + int id; + + id = clk_get_index(priv, binding_id); + if (id == -EINVAL) { + return id; + } + + return _clk_stm32_enable(priv, id); +} + +static void clk_stm32_disable(unsigned long binding_id) +{ + struct stm32_clk_priv *priv = clk_stm32_get_priv(); + int id; + + id = clk_get_index(priv, binding_id); + if (id != -EINVAL) { + _clk_stm32_disable(priv, id); + } +} + +static bool clk_stm32_is_enabled(unsigned long binding_id) +{ + struct stm32_clk_priv *priv = clk_stm32_get_priv(); + int id; + + id = clk_get_index(priv, binding_id); + if (id == -EINVAL) { + return false; + } + + return _clk_stm32_is_enabled(priv, id); +} + +static unsigned long clk_stm32_get_rate(unsigned long binding_id) +{ + struct stm32_clk_priv *priv = clk_stm32_get_priv(); + int id; + + id = clk_get_index(priv, binding_id); + if (id == -EINVAL) { + return 0UL; + } + + return _clk_stm32_get_rate(priv, id); +} + +static int clk_stm32_get_parent(unsigned long binding_id) +{ + struct stm32_clk_priv *priv = clk_stm32_get_priv(); + int id; + + id = clk_get_index(priv, binding_id); + if (id == -EINVAL) { + return id; + } + + return _clk_stm32_get_parent(priv, id); +} + +static const struct clk_ops stm32mp_clk_ops = { + .enable = clk_stm32_enable, + .disable = clk_stm32_disable, + .is_enabled = clk_stm32_is_enabled, + .get_rate = clk_stm32_get_rate, + .get_parent = clk_stm32_get_parent, +}; + +void clk_stm32_enable_critical_clocks(void) +{ + struct stm32_clk_priv *priv = clk_stm32_get_priv(); + unsigned int i; + + for (i = 0U; i < priv->num; i++) { + if (_stm32_clk_is_flags(priv, i, CLK_IS_CRITICAL)) { + _clk_stm32_enable(priv, i); + } + } +} + +static void stm32_clk_register(void) +{ + clk_register(&stm32mp_clk_ops); +} + +uint32_t clk_stm32_div_get_value(struct stm32_clk_priv *priv, int div_id) +{ + const struct div_cfg *divider = &priv->div[div_id]; + uint32_t val = 0; + + val = mmio_read_32(priv->base + divider->offset) >> divider->shift; + val &= clk_div_mask(divider->width); + + return val; +} + +unsigned long _clk_stm32_divider_recalc(struct stm32_clk_priv *priv, + int div_id, + unsigned long prate) +{ + const struct div_cfg *divider = &priv->div[div_id]; + uint32_t val = clk_stm32_div_get_value(priv, div_id); + unsigned int div = 0U; + + div = _get_div(divider->table, val, divider->flags, divider->width); + if (div == 0U) { + return prate; + } + + return div_round_up((uint64_t)prate, div); +} + +unsigned long clk_stm32_divider_recalc(struct stm32_clk_priv *priv, int id, + unsigned long prate) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct clk_stm32_div_cfg *div_cfg = clk->clock_cfg; + + return _clk_stm32_divider_recalc(priv, div_cfg->id, prate); +} + +const struct stm32_clk_ops clk_stm32_divider_ops = { + .recalc_rate = clk_stm32_divider_recalc, +}; + +int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value) +{ + const struct div_cfg *divider; + uintptr_t address; + uint64_t timeout; + uint32_t mask; + + if (div_id >= priv->nb_div) { + panic(); + } + + divider = &priv->div[div_id]; + address = priv->base + divider->offset; + + mask = MASK_WIDTH_SHIFT(divider->width, divider->shift); + mmio_clrsetbits_32(address, mask, (value << divider->shift) & mask); + + if (divider->bitrdy == DIV_NO_BIT_RDY) { + return 0; + } + + timeout = timeout_init_us(CLKSRC_TIMEOUT); + mask = BIT(divider->bitrdy); + + while ((mmio_read_32(address) & mask) == 0U) { + if (timeout_elapsed(timeout)) { + return -ETIMEDOUT; + } + } + + return 0; +} + +int _clk_stm32_gate_wait_ready(struct stm32_clk_priv *priv, uint16_t gate_id, + bool ready_on) +{ + const struct gate_cfg *gate = &priv->gates[gate_id]; + uintptr_t address = priv->base + gate->offset; + uint32_t mask_rdy = BIT(gate->bit_idx); + uint64_t timeout; + uint32_t mask_test; + + if (ready_on) { + mask_test = BIT(gate->bit_idx); + } else { + mask_test = 0U; + } + + timeout = timeout_init_us(OSCRDY_TIMEOUT); + + while ((mmio_read_32(address) & mask_rdy) != mask_test) { + if (timeout_elapsed(timeout)) { + break; + } + } + + if ((mmio_read_32(address) & mask_rdy) != mask_test) { + return -ETIMEDOUT; + } + + return 0; +} + +int clk_stm32_gate_enable(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct clk_stm32_gate_cfg *cfg = clk->clock_cfg; + const struct gate_cfg *gate = &priv->gates[cfg->id]; + uintptr_t addr = priv->base + gate->offset; + + if (gate->set_clr != 0U) { + mmio_write_32(addr, BIT(gate->bit_idx)); + + } else { + mmio_setbits_32(addr, BIT(gate->bit_idx)); + } + + return 0; +} + +void clk_stm32_gate_disable(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct clk_stm32_gate_cfg *cfg = clk->clock_cfg; + const struct gate_cfg *gate = &priv->gates[cfg->id]; + uintptr_t addr = priv->base + gate->offset; + + if (gate->set_clr != 0U) { + mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx)); + } else { + mmio_clrbits_32(addr, BIT(gate->bit_idx)); + } +} + +bool _clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int gate_id) +{ + const struct gate_cfg *gate; + uint32_t addr; + + gate = &priv->gates[gate_id]; + addr = priv->base + gate->offset; + + return ((mmio_read_32(addr) & BIT(gate->bit_idx)) != 0U); +} + +bool clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct clk_stm32_gate_cfg *cfg = clk->clock_cfg; + + return _clk_stm32_gate_is_enabled(priv, cfg->id); +} + +const struct stm32_clk_ops clk_stm32_gate_ops = { + .enable = clk_stm32_gate_enable, + .disable = clk_stm32_gate_disable, + .is_enabled = clk_stm32_gate_is_enabled, +}; + +const struct stm32_clk_ops clk_fixed_factor_ops = { + .recalc_rate = fixed_factor_recalc_rate, +}; + +unsigned long fixed_factor_recalc_rate(struct stm32_clk_priv *priv, + int id, unsigned long prate) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + const struct fixed_factor_cfg *cfg = clk->clock_cfg; + unsigned long long rate; + + rate = (unsigned long long)prate * cfg->mult; + + if (cfg->div == 0U) { + ERROR("division by zero\n"); + panic(); + } + + return (unsigned long)(rate / cfg->div); +}; + +#define APB_DIV_MASK GENMASK(2, 0) +#define TIM_PRE_MASK BIT(0) + +static unsigned long timer_recalc_rate(struct stm32_clk_priv *priv, + int id, unsigned long prate) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + const struct clk_timer_cfg *cfg = clk->clock_cfg; + uint32_t prescaler, timpre; + uintptr_t rcc_base = priv->base; + + prescaler = mmio_read_32(rcc_base + cfg->apbdiv) & + APB_DIV_MASK; + + timpre = mmio_read_32(rcc_base + cfg->timpre) & + TIM_PRE_MASK; + + if (prescaler == 0U) { + return prate; + } + + return prate * (timpre + 1U) * 2U; +}; + +const struct stm32_clk_ops clk_timer_ops = { + .recalc_rate = timer_recalc_rate, +}; + +static unsigned long clk_fixed_rate_recalc(struct stm32_clk_priv *priv, int id, + unsigned long prate) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct clk_stm32_fixed_rate_cfg *cfg = clk->clock_cfg; + + return cfg->rate; +} + +const struct stm32_clk_ops clk_stm32_fixed_rate_ops = { + .recalc_rate = clk_fixed_rate_recalc, +}; + +static unsigned long clk_stm32_osc_recalc_rate(struct stm32_clk_priv *priv, + int id, unsigned long prate) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); + + return osc_data->frequency; +}; + +bool clk_stm32_osc_gate_is_enabled(struct stm32_clk_priv *priv, int id) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); + + return _clk_stm32_gate_is_enabled(priv, osc_data->gate_id); + +} + +int clk_stm32_osc_gate_enable(struct stm32_clk_priv *priv, int id) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); + + _clk_stm32_gate_enable(priv, osc_data->gate_id); + + if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, true) != 0U) { + ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__); + panic(); + } + + return 0; +} + +void clk_stm32_osc_gate_disable(struct stm32_clk_priv *priv, int id) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); + + _clk_stm32_gate_disable(priv, osc_data->gate_id); + + if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, false) != 0U) { + ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__); + panic(); + } +} + +static unsigned long clk_stm32_get_dt_oscillator_frequency(const char *name) +{ + void *fdt = NULL; + int node = 0; + int subnode = 0; + + if (fdt_get_address(&fdt) == 0) { + panic(); + } + + node = fdt_path_offset(fdt, "/clocks"); + if (node < 0) { + return 0UL; + } + + fdt_for_each_subnode(subnode, fdt, node) { + const char *cchar = NULL; + const fdt32_t *cuint = NULL; + int ret = 0; + + cchar = fdt_get_name(fdt, subnode, &ret); + if (cchar == NULL) { + continue; + } + + if (strncmp(cchar, name, (size_t)ret) || + fdt_get_status(subnode) == DT_DISABLED) { + continue; + } + + cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret); + if (cuint == NULL) { + return 0UL; + } + + return fdt32_to_cpu(*cuint); + } + + return 0UL; +} + +void clk_stm32_osc_init(struct stm32_clk_priv *priv, int id) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id); + const char *name = osc_data->name; + + osc_data->frequency = clk_stm32_get_dt_oscillator_frequency(name); +} + +const struct stm32_clk_ops clk_stm32_osc_ops = { + .recalc_rate = clk_stm32_osc_recalc_rate, + .is_enabled = clk_stm32_osc_gate_is_enabled, + .enable = clk_stm32_osc_gate_enable, + .disable = clk_stm32_osc_gate_disable, + .init = clk_stm32_osc_init, +}; + +const struct stm32_clk_ops clk_stm32_osc_nogate_ops = { + .recalc_rate = clk_stm32_osc_recalc_rate, + .init = clk_stm32_osc_init, +}; + +int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name, uint32_t *tab, uint32_t *nb) +{ + const fdt32_t *cell; + int len = 0; + uint32_t i; + + cell = fdt_getprop(fdt, node, name, &len); + if (cell == NULL) { + *nb = 0U; + return 0; + } + + for (i = 0; i < ((uint32_t)len / sizeof(uint32_t)); i++) { + uint32_t val = fdt32_to_cpu(cell[i]); + + tab[i] = val; + } + + *nb = (uint32_t)len / sizeof(uint32_t); + + return 0; +} + +int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base) +{ + unsigned int i; + + stm32_clock_data = priv; + + priv->base = base; + + for (i = 0U; i < priv->num; i++) { + const struct clk_stm32 *clk = _clk_get(priv, i); + + assert(clk->ops != NULL); + + if (clk->ops->init != NULL) { + clk->ops->init(priv, i); + } + } + + stm32_clk_register(); + + return 0; +} diff --git a/drivers/st/clk/clk-stm32-core.h b/drivers/st/clk/clk-stm32-core.h new file mode 100644 index 0000000..8bfb513 --- /dev/null +++ b/drivers/st/clk/clk-stm32-core.h @@ -0,0 +1,393 @@ +/* + * Copyright (C) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause + */ + +#ifndef CLK_STM32_CORE_H +#define CLK_STM32_CORE_H + +struct mux_cfg { + uint16_t offset; + uint8_t shift; + uint8_t width; + uint8_t bitrdy; +}; + +struct gate_cfg { + uint16_t offset; + uint8_t bit_idx; + uint8_t set_clr; +}; + +struct clk_div_table { + unsigned int val; + unsigned int div; +}; + +struct div_cfg { + uint16_t offset; + uint8_t shift; + uint8_t width; + uint8_t flags; + uint8_t bitrdy; + const struct clk_div_table *table; +}; + +struct parent_cfg { + uint8_t num_parents; + const uint16_t *id_parents; + struct mux_cfg *mux; +}; + +struct stm32_clk_priv; + +struct stm32_clk_ops { + unsigned long (*recalc_rate)(struct stm32_clk_priv *priv, int id, unsigned long rate); + int (*get_parent)(struct stm32_clk_priv *priv, int id); + int (*set_rate)(struct stm32_clk_priv *priv, int id, unsigned long rate, + unsigned long prate); + int (*enable)(struct stm32_clk_priv *priv, int id); + void (*disable)(struct stm32_clk_priv *priv, int id); + bool (*is_enabled)(struct stm32_clk_priv *priv, int id); + void (*init)(struct stm32_clk_priv *priv, int id); +}; + +struct clk_stm32 { + uint16_t binding; + uint16_t parent; + uint8_t flags; + void *clock_cfg; + const struct stm32_clk_ops *ops; +}; + +struct stm32_clk_priv { + uintptr_t base; + const uint32_t num; + const struct clk_stm32 *clks; + const struct parent_cfg *parents; + const uint32_t nb_parents; + const struct gate_cfg *gates; + const uint32_t nb_gates; + const struct div_cfg *div; + const uint32_t nb_div; + struct clk_oscillator_data *osci_data; + const uint32_t nb_osci_data; + uint32_t *gate_refcounts; + void *pdata; +}; + +struct stm32_clk_bypass { + uint16_t offset; + uint8_t bit_byp; + uint8_t bit_digbyp; +}; + +struct stm32_clk_css { + uint16_t offset; + uint8_t bit_css; +}; + +struct stm32_clk_drive { + uint16_t offset; + uint8_t drv_shift; + uint8_t drv_width; + uint8_t drv_default; +}; + +struct clk_oscillator_data { + const char *name; + uint16_t id_clk; + unsigned long frequency; + uint16_t gate_id; + uint16_t gate_rdy_id; + struct stm32_clk_bypass *bypass; + struct stm32_clk_css *css; + struct stm32_clk_drive *drive; +}; + +struct clk_fixed_rate { + const char *name; + unsigned long fixed_rate; +}; + +struct clk_gate_cfg { + uint32_t offset; + uint8_t bit_idx; +}; + +/* CLOCK FLAGS */ +#define CLK_IS_CRITICAL BIT(0) +#define CLK_IGNORE_UNUSED BIT(1) +#define CLK_SET_RATE_PARENT BIT(2) + +#define CLK_DIVIDER_ONE_BASED BIT(0) +#define CLK_DIVIDER_POWER_OF_TWO BIT(1) +#define CLK_DIVIDER_ALLOW_ZERO BIT(2) +#define CLK_DIVIDER_HIWORD_MASK BIT(3) +#define CLK_DIVIDER_ROUND_CLOSEST BIT(4) +#define CLK_DIVIDER_READ_ONLY BIT(5) +#define CLK_DIVIDER_MAX_AT_ZERO BIT(6) +#define CLK_DIVIDER_BIG_ENDIAN BIT(7) + +#define MUX_MAX_PARENTS U(0x8000) +#define MUX_PARENT_MASK GENMASK(14, 0) +#define MUX_FLAG U(0x8000) +#define MUX(mux) ((mux) | MUX_FLAG) + +#define NO_GATE 0 +#define _NO_ID UINT16_MAX +#define CLK_IS_ROOT UINT16_MAX +#define MUX_NO_BIT_RDY UINT8_MAX +#define DIV_NO_BIT_RDY UINT8_MAX + +#define MASK_WIDTH_SHIFT(_width, _shift) \ + GENMASK(((_width) + (_shift) - 1U), (_shift)) + +int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base); +void clk_stm32_enable_critical_clocks(void); + +struct stm32_clk_priv *clk_stm32_get_priv(void); + +int clk_get_index(struct stm32_clk_priv *priv, unsigned long binding_id); +const struct clk_stm32 *_clk_get(struct stm32_clk_priv *priv, int id); + +void clk_oscillator_set_bypass(struct stm32_clk_priv *priv, int id, bool digbyp, bool bypass); +void clk_oscillator_set_drive(struct stm32_clk_priv *priv, int id, uint8_t lsedrv); +void clk_oscillator_set_css(struct stm32_clk_priv *priv, int id, bool css); + +int _clk_stm32_gate_wait_ready(struct stm32_clk_priv *priv, uint16_t gate_id, bool ready_on); + +int clk_oscillator_wait_ready(struct stm32_clk_priv *priv, int id, bool ready_on); +int clk_oscillator_wait_ready_on(struct stm32_clk_priv *priv, int id); +int clk_oscillator_wait_ready_off(struct stm32_clk_priv *priv, int id); + +int clk_stm32_get_counter(unsigned long binding_id); + +void _clk_stm32_gate_disable(struct stm32_clk_priv *priv, uint16_t gate_id); +int _clk_stm32_gate_enable(struct stm32_clk_priv *priv, uint16_t gate_id); + +int _clk_stm32_set_parent(struct stm32_clk_priv *priv, int id, int src_id); +int _clk_stm32_set_parent_by_index(struct stm32_clk_priv *priv, int clk, int sel); + +int _clk_stm32_get_parent(struct stm32_clk_priv *priv, int id); +int _clk_stm32_get_parent_by_index(struct stm32_clk_priv *priv, int clk_id, int idx); +int _clk_stm32_get_parent_index(struct stm32_clk_priv *priv, int clk_id); + +unsigned long _clk_stm32_get_rate(struct stm32_clk_priv *priv, int id); +unsigned long _clk_stm32_get_parent_rate(struct stm32_clk_priv *priv, int id); + +bool _stm32_clk_is_flags(struct stm32_clk_priv *priv, int id, uint8_t flag); + +int _clk_stm32_enable(struct stm32_clk_priv *priv, int id); +void _clk_stm32_disable(struct stm32_clk_priv *priv, int id); + +int clk_stm32_enable_call_ops(struct stm32_clk_priv *priv, uint16_t id); +void clk_stm32_disable_call_ops(struct stm32_clk_priv *priv, uint16_t id); + +bool _clk_stm32_is_enabled(struct stm32_clk_priv *priv, int id); + +int _clk_stm32_divider_set_rate(struct stm32_clk_priv *priv, int div_id, + unsigned long rate, unsigned long parent_rate); + +int clk_stm32_divider_set_rate(struct stm32_clk_priv *priv, int id, unsigned long rate, + unsigned long prate); + +unsigned long _clk_stm32_divider_recalc(struct stm32_clk_priv *priv, + int div_id, + unsigned long prate); + +unsigned long clk_stm32_divider_recalc(struct stm32_clk_priv *priv, int idx, + unsigned long prate); + +int clk_stm32_gate_enable(struct stm32_clk_priv *priv, int idx); +void clk_stm32_gate_disable(struct stm32_clk_priv *priv, int idx); + +bool _clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int gate_id); +bool clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int idx); + +uint32_t clk_stm32_div_get_value(struct stm32_clk_priv *priv, int div_id); +int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value); +int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel); +int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id); + +int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name, uint32_t *tab, uint32_t *nb); + +#ifdef CFG_STM32_CLK_DEBUG +void clk_stm32_display_clock_info(void); +#endif + +struct clk_stm32_div_cfg { + int id; +}; + +#define STM32_DIV(idx, _binding, _parent, _flags, _div_id) \ + [(idx)] = (struct clk_stm32){ \ + .binding = (_binding),\ + .parent = (_parent),\ + .flags = (_flags),\ + .clock_cfg = &(struct clk_stm32_div_cfg){\ + .id = (_div_id),\ + },\ + .ops = &clk_stm32_divider_ops,\ + } + +struct clk_stm32_gate_cfg { + int id; +}; + +#define STM32_GATE(idx, _binding, _parent, _flags, _gate_id) \ + [(idx)] = (struct clk_stm32){ \ + .binding = (_binding),\ + .parent = (_parent),\ + .flags = (_flags),\ + .clock_cfg = &(struct clk_stm32_gate_cfg){\ + .id = (_gate_id),\ + },\ + .ops = &clk_stm32_gate_ops,\ + } + +struct fixed_factor_cfg { + unsigned int mult; + unsigned int div; +}; + +unsigned long fixed_factor_recalc_rate(struct stm32_clk_priv *priv, + int _idx, unsigned long prate); + +#define FIXED_FACTOR(idx, _idx, _parent, _mult, _div) \ + [(idx)] = (struct clk_stm32){ \ + .binding = (_idx),\ + .parent = (_parent),\ + .clock_cfg = &(struct fixed_factor_cfg){\ + .mult = (_mult),\ + .div = (_div),\ + },\ + .ops = &clk_fixed_factor_ops,\ + } + +#define GATE(idx, _binding, _parent, _flags, _offset, _bit_idx) \ + [(idx)] = (struct clk_stm32){ \ + .binding = (_binding),\ + .parent = (_parent),\ + .flags = (_flags),\ + .clock_cfg = &(struct clk_gate_cfg){\ + .offset = (_offset),\ + .bit_idx = (_bit_idx),\ + },\ + .ops = &clk_gate_ops,\ + } + +#define STM32_MUX(idx, _binding, _mux_id, _flags) \ + [(idx)] = (struct clk_stm32){ \ + .binding = (_binding),\ + .parent = (MUX(_mux_id)),\ + .flags = (_flags),\ + .clock_cfg = NULL,\ + .ops = (&clk_mux_ops),\ + } + +struct clk_timer_cfg { + uint32_t apbdiv; + uint32_t timpre; +}; + +#define CK_TIMER(idx, _idx, _parent, _flags, _apbdiv, _timpre) \ + [(idx)] = (struct clk_stm32){ \ + .binding = (_idx),\ + .parent = (_parent),\ + .flags = (CLK_SET_RATE_PARENT | (_flags)),\ + .clock_cfg = &(struct clk_timer_cfg){\ + .apbdiv = (_apbdiv),\ + .timpre = (_timpre),\ + },\ + .ops = &clk_timer_ops,\ + } + +struct clk_stm32_fixed_rate_cfg { + unsigned long rate; +}; + +#define CLK_FIXED_RATE(idx, _binding, _rate) \ + [(idx)] = (struct clk_stm32){ \ + .binding = (_binding),\ + .parent = (CLK_IS_ROOT),\ + .clock_cfg = &(struct clk_stm32_fixed_rate_cfg){\ + .rate = (_rate),\ + },\ + .ops = &clk_stm32_fixed_rate_ops,\ + } + +#define BYPASS(_offset, _bit_byp, _bit_digbyp) &(struct stm32_clk_bypass){\ + .offset = (_offset),\ + .bit_byp = (_bit_byp),\ + .bit_digbyp = (_bit_digbyp),\ +} + +#define CSS(_offset, _bit_css) &(struct stm32_clk_css){\ + .offset = (_offset),\ + .bit_css = (_bit_css),\ +} + +#define DRIVE(_offset, _shift, _width, _default) &(struct stm32_clk_drive){\ + .offset = (_offset),\ + .drv_shift = (_shift),\ + .drv_width = (_width),\ + .drv_default = (_default),\ +} + +#define OSCILLATOR(idx_osc, _id, _name, _gate_id, _gate_rdy_id, _bypass, _css, _drive) \ + [(idx_osc)] = (struct clk_oscillator_data){\ + .name = (_name),\ + .id_clk = (_id),\ + .gate_id = (_gate_id),\ + .gate_rdy_id = (_gate_rdy_id),\ + .bypass = (_bypass),\ + .css = (_css),\ + .drive = (_drive),\ + } + +struct clk_oscillator_data *clk_oscillator_get_data(struct stm32_clk_priv *priv, int id); + +void clk_stm32_osc_init(struct stm32_clk_priv *priv, int id); +bool clk_stm32_osc_gate_is_enabled(struct stm32_clk_priv *priv, int id); +int clk_stm32_osc_gate_enable(struct stm32_clk_priv *priv, int id); +void clk_stm32_osc_gate_disable(struct stm32_clk_priv *priv, int id); + +struct stm32_osc_cfg { + int osc_id; +}; + +#define CLK_OSC(idx, _idx, _parent, _osc_id) \ + [(idx)] = (struct clk_stm32){ \ + .binding = (_idx),\ + .parent = (_parent),\ + .flags = CLK_IS_CRITICAL,\ + .clock_cfg = &(struct stm32_osc_cfg){\ + .osc_id = (_osc_id),\ + },\ + .ops = &clk_stm32_osc_ops,\ + } + +#define CLK_OSC_FIXED(idx, _idx, _parent, _osc_id) \ + [(idx)] = (struct clk_stm32){ \ + .binding = (_idx),\ + .parent = (_parent),\ + .flags = CLK_IS_CRITICAL,\ + .clock_cfg = &(struct stm32_osc_cfg){\ + .osc_id = (_osc_id),\ + },\ + .ops = &clk_stm32_osc_nogate_ops,\ + } + +extern const struct stm32_clk_ops clk_mux_ops; +extern const struct stm32_clk_ops clk_stm32_divider_ops; +extern const struct stm32_clk_ops clk_stm32_gate_ops; +extern const struct stm32_clk_ops clk_fixed_factor_ops; +extern const struct stm32_clk_ops clk_gate_ops; +extern const struct stm32_clk_ops clk_timer_ops; +extern const struct stm32_clk_ops clk_stm32_fixed_rate_ops; +extern const struct stm32_clk_ops clk_stm32_osc_ops; +extern const struct stm32_clk_ops clk_stm32_osc_nogate_ops; + +#endif /* CLK_STM32_CORE_H */ diff --git a/drivers/st/clk/clk-stm32mp13.c b/drivers/st/clk/clk-stm32mp13.c new file mode 100644 index 0000000..c960928 --- /dev/null +++ b/drivers/st/clk/clk-stm32mp13.c @@ -0,0 +1,2332 @@ +/* + * Copyright (C) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <limits.h> +#include <stdint.h> +#include <stdio.h> + +#include <arch.h> +#include <arch_helpers.h> +#include "clk-stm32-core.h" +#include <common/debug.h> +#include <common/fdt_wrappers.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32mp13_rcc.h> +#include <drivers/st/stm32mp1_clk.h> +#include <drivers/st/stm32mp_clkfunc.h> +#include <dt-bindings/clock/stm32mp13-clksrc.h> +#include <lib/mmio.h> +#include <lib/spinlock.h> +#include <lib/utils_def.h> +#include <libfdt.h> +#include <plat/common/platform.h> + +#include <platform_def.h> + +struct stm32_osci_dt_cfg { + unsigned long freq; + bool bypass; + bool digbyp; + bool css; + uint32_t drive; +}; + +enum pll_mn { + PLL_CFG_M, + PLL_CFG_N, + PLL_DIV_MN_NB +}; + +enum pll_pqr { + PLL_CFG_P, + PLL_CFG_Q, + PLL_CFG_R, + PLL_DIV_PQR_NB +}; + +enum pll_csg { + PLL_CSG_MOD_PER, + PLL_CSG_INC_STEP, + PLL_CSG_SSCG_MODE, + PLL_CSG_NB +}; + +struct stm32_pll_vco { + uint32_t status; + uint32_t src; + uint32_t div_mn[PLL_DIV_MN_NB]; + uint32_t frac; + bool csg_enabled; + uint32_t csg[PLL_CSG_NB]; +}; + +struct stm32_pll_output { + uint32_t output[PLL_DIV_PQR_NB]; +}; + +struct stm32_pll_dt_cfg { + struct stm32_pll_vco vco; + struct stm32_pll_output output; +}; + +struct stm32_clk_platdata { + uint32_t nosci; + struct stm32_osci_dt_cfg *osci; + uint32_t npll; + struct stm32_pll_dt_cfg *pll; + uint32_t nclksrc; + uint32_t *clksrc; + uint32_t nclkdiv; + uint32_t *clkdiv; +}; + +enum stm32_clock { + /* ROOT CLOCKS */ + _CK_OFF, + _CK_HSI, + _CK_HSE, + _CK_CSI, + _CK_LSI, + _CK_LSE, + _I2SCKIN, + _CSI_DIV122, + _HSE_DIV, + _HSE_DIV2, + _CK_PLL1, + _CK_PLL2, + _CK_PLL3, + _CK_PLL4, + _PLL1P, + _PLL1P_DIV, + _PLL2P, + _PLL2Q, + _PLL2R, + _PLL3P, + _PLL3Q, + _PLL3R, + _PLL4P, + _PLL4Q, + _PLL4R, + _PCLK1, + _PCLK2, + _PCLK3, + _PCLK4, + _PCLK5, + _PCLK6, + _CKMPU, + _CKAXI, + _CKMLAHB, + _CKPER, + _CKTIMG1, + _CKTIMG2, + _CKTIMG3, + _USB_PHY_48, + _MCO1_K, + _MCO2_K, + _TRACECK, + /* BUS and KERNEL CLOCKS */ + _DDRC1, + _DDRC1LP, + _DDRPHYC, + _DDRPHYCLP, + _DDRCAPB, + _DDRCAPBLP, + _AXIDCG, + _DDRPHYCAPB, + _DDRPHYCAPBLP, + _SYSCFG, + _DDRPERFM, + _IWDG2APB, + _USBPHY_K, + _USBO_K, + _RTCAPB, + _TZC, + _ETZPC, + _IWDG1APB, + _BSEC, + _STGENC, + _USART1_K, + _USART2_K, + _I2C3_K, + _I2C4_K, + _I2C5_K, + _TIM12, + _TIM15, + _RTCCK, + _GPIOA, + _GPIOB, + _GPIOC, + _GPIOD, + _GPIOE, + _GPIOF, + _GPIOG, + _GPIOH, + _GPIOI, + _PKA, + _SAES_K, + _CRYP1, + _HASH1, + _RNG1_K, + _BKPSRAM, + _SDMMC1_K, + _SDMMC2_K, + _DBGCK, + _USART3_K, + _UART4_K, + _UART5_K, + _UART7_K, + _UART8_K, + _USART6_K, + _MCE, + _FMC_K, + _QSPI_K, +#if defined(IMAGE_BL32) + _LTDC, + _DMA1, + _DMA2, + _MDMA, + _ETH1MAC, + _USBH, + _TIM2, + _TIM3, + _TIM4, + _TIM5, + _TIM6, + _TIM7, + _LPTIM1_K, + _SPI2_K, + _SPI3_K, + _SPDIF_K, + _TIM1, + _TIM8, + _SPI1_K, + _SAI1_K, + _SAI2_K, + _DFSDM, + _FDCAN_K, + _TIM13, + _TIM14, + _TIM16, + _TIM17, + _SPI4_K, + _SPI5_K, + _I2C1_K, + _I2C2_K, + _ADFSDM, + _LPTIM2_K, + _LPTIM3_K, + _LPTIM4_K, + _LPTIM5_K, + _VREF, + _DTS, + _PMBCTRL, + _HDP, + _STGENRO, + _DCMIPP_K, + _DMAMUX1, + _DMAMUX2, + _DMA3, + _ADC1_K, + _ADC2_K, + _TSC, + _AXIMC, + _ETH1CK, + _ETH1TX, + _ETH1RX, + _CRC1, + _ETH2CK, + _ETH2TX, + _ETH2RX, + _ETH2MAC, +#endif + CK_LAST +}; + +/* PARENT CONFIG */ +static const uint16_t RTC_src[] = { + _CK_OFF, _CK_LSE, _CK_LSI, _CK_HSE +}; + +static const uint16_t MCO1_src[] = { + _CK_HSI, _CK_HSE, _CK_CSI, _CK_LSI, _CK_LSE +}; + +static const uint16_t MCO2_src[] = { + _CKMPU, _CKAXI, _CKMLAHB, _PLL4P, _CK_HSE, _CK_HSI +}; + +static const uint16_t PLL12_src[] = { + _CK_HSI, _CK_HSE +}; + +static const uint16_t PLL3_src[] = { + _CK_HSI, _CK_HSE, _CK_CSI +}; + +static const uint16_t PLL4_src[] = { + _CK_HSI, _CK_HSE, _CK_CSI, _I2SCKIN +}; + +static const uint16_t MPU_src[] = { + _CK_HSI, _CK_HSE, _PLL1P, _PLL1P_DIV +}; + +static const uint16_t AXI_src[] = { + _CK_HSI, _CK_HSE, _PLL2P +}; + +static const uint16_t MLAHBS_src[] = { + _CK_HSI, _CK_HSE, _CK_CSI, _PLL3P +}; + +static const uint16_t CKPER_src[] = { + _CK_HSI, _CK_CSI, _CK_HSE, _CK_OFF +}; + +static const uint16_t I2C12_src[] = { + _PCLK1, _PLL4R, _CK_HSI, _CK_CSI +}; + +static const uint16_t I2C3_src[] = { + _PCLK6, _PLL4R, _CK_HSI, _CK_CSI +}; + +static const uint16_t I2C4_src[] = { + _PCLK6, _PLL4R, _CK_HSI, _CK_CSI +}; + +static const uint16_t I2C5_src[] = { + _PCLK6, _PLL4R, _CK_HSI, _CK_CSI +}; + +static const uint16_t SPI1_src[] = { + _PLL4P, _PLL3Q, _I2SCKIN, _CKPER, _PLL3R +}; + +static const uint16_t SPI23_src[] = { + _PLL4P, _PLL3Q, _I2SCKIN, _CKPER, _PLL3R +}; + +static const uint16_t SPI4_src[] = { + _PCLK6, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE, _I2SCKIN +}; + +static const uint16_t SPI5_src[] = { + _PCLK6, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE +}; + +static const uint16_t UART1_src[] = { + _PCLK6, _PLL3Q, _CK_HSI, _CK_CSI, _PLL4Q, _CK_HSE +}; + +static const uint16_t UART2_src[] = { + _PCLK6, _PLL3Q, _CK_HSI, _CK_CSI, _PLL4Q, _CK_HSE +}; + +static const uint16_t UART35_src[] = { + _PCLK1, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE +}; + +static const uint16_t UART4_src[] = { + _PCLK1, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE +}; + +static const uint16_t UART6_src[] = { + _PCLK2, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE +}; + +static const uint16_t UART78_src[] = { + _PCLK1, _PLL4Q, _CK_HSI, _CK_CSI, _CK_HSE +}; + +static const uint16_t LPTIM1_src[] = { + _PCLK1, _PLL4P, _PLL3Q, _CK_LSE, _CK_LSI, _CKPER +}; + +static const uint16_t LPTIM2_src[] = { + _PCLK3, _PLL4Q, _CKPER, _CK_LSE, _CK_LSI +}; + +static const uint16_t LPTIM3_src[] = { + _PCLK3, _PLL4Q, _CKPER, _CK_LSE, _CK_LSI +}; + +static const uint16_t LPTIM45_src[] = { + _PCLK3, _PLL4P, _PLL3Q, _CK_LSE, _CK_LSI, _CKPER +}; + +static const uint16_t SAI1_src[] = { + _PLL4Q, _PLL3Q, _I2SCKIN, _CKPER, _PLL3R +}; + +static const uint16_t SAI2_src[] = { + _PLL4Q, _PLL3Q, _I2SCKIN, _CKPER, _NO_ID, _PLL3R +}; + +static const uint16_t FDCAN_src[] = { + _CK_HSE, _PLL3Q, _PLL4Q, _PLL4R +}; + +static const uint16_t SPDIF_src[] = { + _PLL4P, _PLL3Q, _CK_HSI +}; + +static const uint16_t ADC1_src[] = { + _PLL4R, _CKPER, _PLL3Q +}; + +static const uint16_t ADC2_src[] = { + _PLL4R, _CKPER, _PLL3Q +}; + +static const uint16_t SDMMC1_src[] = { + _CKAXI, _PLL3R, _PLL4P, _CK_HSI +}; + +static const uint16_t SDMMC2_src[] = { + _CKAXI, _PLL3R, _PLL4P, _CK_HSI +}; + +static const uint16_t ETH1_src[] = { + _PLL4P, _PLL3Q +}; + +static const uint16_t ETH2_src[] = { + _PLL4P, _PLL3Q +}; + +static const uint16_t USBPHY_src[] = { + _CK_HSE, _PLL4R, _HSE_DIV2 +}; + +static const uint16_t USBO_src[] = { + _PLL4R, _USB_PHY_48 +}; + +static const uint16_t QSPI_src[] = { + _CKAXI, _PLL3R, _PLL4P, _CKPER +}; + +static const uint16_t FMC_src[] = { + _CKAXI, _PLL3R, _PLL4P, _CKPER +}; + +/* Position 2 of RNG1 mux is reserved */ +static const uint16_t RNG1_src[] = { + _CK_CSI, _PLL4R, _CK_OFF, _CK_LSI +}; + +static const uint16_t STGEN_src[] = { + _CK_HSI, _CK_HSE +}; + +static const uint16_t DCMIPP_src[] = { + _CKAXI, _PLL2Q, _PLL4P, _CKPER +}; + +static const uint16_t SAES_src[] = { + _CKAXI, _CKPER, _PLL4R, _CK_LSI +}; + +#define MUX_CFG(id, src, _offset, _shift, _witdh)[id] = {\ + .id_parents = src,\ + .num_parents = ARRAY_SIZE(src),\ + .mux = &(struct mux_cfg) {\ + .offset = (_offset),\ + .shift = (_shift),\ + .width = (_witdh),\ + .bitrdy = MUX_NO_BIT_RDY,\ + },\ +} + +#define MUX_RDY_CFG(id, src, _offset, _shift, _witdh)[id] = {\ + .id_parents = src,\ + .num_parents = ARRAY_SIZE(src),\ + .mux = &(struct mux_cfg) {\ + .offset = (_offset),\ + .shift = (_shift),\ + .width = (_witdh),\ + .bitrdy = 31,\ + },\ +} + +static const struct parent_cfg parent_mp13[] = { + MUX_CFG(MUX_ADC1, ADC1_src, RCC_ADC12CKSELR, 0, 2), + MUX_CFG(MUX_ADC2, ADC2_src, RCC_ADC12CKSELR, 2, 2), + MUX_RDY_CFG(MUX_AXI, AXI_src, RCC_ASSCKSELR, 0, 3), + MUX_CFG(MUX_CKPER, CKPER_src, RCC_CPERCKSELR, 0, 2), + MUX_CFG(MUX_DCMIPP, DCMIPP_src, RCC_DCMIPPCKSELR, 0, 2), + MUX_CFG(MUX_ETH1, ETH1_src, RCC_ETH12CKSELR, 0, 2), + MUX_CFG(MUX_ETH2, ETH2_src, RCC_ETH12CKSELR, 8, 2), + MUX_CFG(MUX_FDCAN, FDCAN_src, RCC_FDCANCKSELR, 0, 2), + MUX_CFG(MUX_FMC, FMC_src, RCC_FMCCKSELR, 0, 2), + MUX_CFG(MUX_I2C12, I2C12_src, RCC_I2C12CKSELR, 0, 3), + MUX_CFG(MUX_I2C3, I2C3_src, RCC_I2C345CKSELR, 0, 3), + MUX_CFG(MUX_I2C4, I2C4_src, RCC_I2C345CKSELR, 3, 3), + MUX_CFG(MUX_I2C5, I2C5_src, RCC_I2C345CKSELR, 6, 3), + MUX_CFG(MUX_LPTIM1, LPTIM1_src, RCC_LPTIM1CKSELR, 0, 3), + MUX_CFG(MUX_LPTIM2, LPTIM2_src, RCC_LPTIM23CKSELR, 0, 3), + MUX_CFG(MUX_LPTIM3, LPTIM3_src, RCC_LPTIM23CKSELR, 3, 3), + MUX_CFG(MUX_LPTIM45, LPTIM45_src, RCC_LPTIM45CKSELR, 0, 3), + MUX_CFG(MUX_MCO1, MCO1_src, RCC_MCO1CFGR, 0, 3), + MUX_CFG(MUX_MCO2, MCO2_src, RCC_MCO2CFGR, 0, 3), + MUX_RDY_CFG(MUX_MLAHB, MLAHBS_src, RCC_MSSCKSELR, 0, 2), + MUX_RDY_CFG(MUX_MPU, MPU_src, RCC_MPCKSELR, 0, 2), + MUX_RDY_CFG(MUX_PLL12, PLL12_src, RCC_RCK12SELR, 0, 2), + MUX_RDY_CFG(MUX_PLL3, PLL3_src, RCC_RCK3SELR, 0, 2), + MUX_RDY_CFG(MUX_PLL4, PLL4_src, RCC_RCK4SELR, 0, 2), + MUX_CFG(MUX_QSPI, QSPI_src, RCC_QSPICKSELR, 0, 2), + MUX_CFG(MUX_RNG1, RNG1_src, RCC_RNG1CKSELR, 0, 2), + MUX_CFG(MUX_RTC, RTC_src, RCC_BDCR, 16, 2), + MUX_CFG(MUX_SAES, SAES_src, RCC_SAESCKSELR, 0, 2), + MUX_CFG(MUX_SAI1, SAI1_src, RCC_SAI1CKSELR, 0, 3), + MUX_CFG(MUX_SAI2, SAI2_src, RCC_SAI2CKSELR, 0, 3), + MUX_CFG(MUX_SDMMC1, SDMMC1_src, RCC_SDMMC12CKSELR, 0, 3), + MUX_CFG(MUX_SDMMC2, SDMMC2_src, RCC_SDMMC12CKSELR, 3, 3), + MUX_CFG(MUX_SPDIF, SPDIF_src, RCC_SPDIFCKSELR, 0, 2), + MUX_CFG(MUX_SPI1, SPI1_src, RCC_SPI2S1CKSELR, 0, 3), + MUX_CFG(MUX_SPI23, SPI23_src, RCC_SPI2S23CKSELR, 0, 3), + MUX_CFG(MUX_SPI4, SPI4_src, RCC_SPI45CKSELR, 0, 3), + MUX_CFG(MUX_SPI5, SPI5_src, RCC_SPI45CKSELR, 3, 3), + MUX_CFG(MUX_STGEN, STGEN_src, RCC_STGENCKSELR, 0, 2), + MUX_CFG(MUX_UART1, UART1_src, RCC_UART12CKSELR, 0, 3), + MUX_CFG(MUX_UART2, UART2_src, RCC_UART12CKSELR, 3, 3), + MUX_CFG(MUX_UART35, UART35_src, RCC_UART35CKSELR, 0, 3), + MUX_CFG(MUX_UART4, UART4_src, RCC_UART4CKSELR, 0, 3), + MUX_CFG(MUX_UART6, UART6_src, RCC_UART6CKSELR, 0, 3), + MUX_CFG(MUX_UART78, UART78_src, RCC_UART78CKSELR, 0, 3), + MUX_CFG(MUX_USBO, USBO_src, RCC_USBCKSELR, 4, 1), + MUX_CFG(MUX_USBPHY, USBPHY_src, RCC_USBCKSELR, 0, 2), +}; + +/* + * GATE CONFIG + */ + +enum enum_gate_cfg { + GATE_ZERO, /* reserved for no gate */ + GATE_LSE, + GATE_RTCCK, + GATE_LSI, + GATE_HSI, + GATE_CSI, + GATE_HSE, + GATE_LSI_RDY, + GATE_CSI_RDY, + GATE_LSE_RDY, + GATE_HSE_RDY, + GATE_HSI_RDY, + GATE_MCO1, + GATE_MCO2, + GATE_DBGCK, + GATE_TRACECK, + GATE_PLL1, + GATE_PLL1_DIVP, + GATE_PLL1_DIVQ, + GATE_PLL1_DIVR, + GATE_PLL2, + GATE_PLL2_DIVP, + GATE_PLL2_DIVQ, + GATE_PLL2_DIVR, + GATE_PLL3, + GATE_PLL3_DIVP, + GATE_PLL3_DIVQ, + GATE_PLL3_DIVR, + GATE_PLL4, + GATE_PLL4_DIVP, + GATE_PLL4_DIVQ, + GATE_PLL4_DIVR, + GATE_DDRC1, + GATE_DDRC1LP, + GATE_DDRPHYC, + GATE_DDRPHYCLP, + GATE_DDRCAPB, + GATE_DDRCAPBLP, + GATE_AXIDCG, + GATE_DDRPHYCAPB, + GATE_DDRPHYCAPBLP, + GATE_TIM2, + GATE_TIM3, + GATE_TIM4, + GATE_TIM5, + GATE_TIM6, + GATE_TIM7, + GATE_LPTIM1, + GATE_SPI2, + GATE_SPI3, + GATE_USART3, + GATE_UART4, + GATE_UART5, + GATE_UART7, + GATE_UART8, + GATE_I2C1, + GATE_I2C2, + GATE_SPDIF, + GATE_TIM1, + GATE_TIM8, + GATE_SPI1, + GATE_USART6, + GATE_SAI1, + GATE_SAI2, + GATE_DFSDM, + GATE_ADFSDM, + GATE_FDCAN, + GATE_LPTIM2, + GATE_LPTIM3, + GATE_LPTIM4, + GATE_LPTIM5, + GATE_VREF, + GATE_DTS, + GATE_PMBCTRL, + GATE_HDP, + GATE_SYSCFG, + GATE_DCMIPP, + GATE_DDRPERFM, + GATE_IWDG2APB, + GATE_USBPHY, + GATE_STGENRO, + GATE_LTDC, + GATE_RTCAPB, + GATE_TZC, + GATE_ETZPC, + GATE_IWDG1APB, + GATE_BSEC, + GATE_STGENC, + GATE_USART1, + GATE_USART2, + GATE_SPI4, + GATE_SPI5, + GATE_I2C3, + GATE_I2C4, + GATE_I2C5, + GATE_TIM12, + GATE_TIM13, + GATE_TIM14, + GATE_TIM15, + GATE_TIM16, + GATE_TIM17, + GATE_DMA1, + GATE_DMA2, + GATE_DMAMUX1, + GATE_DMA3, + GATE_DMAMUX2, + GATE_ADC1, + GATE_ADC2, + GATE_USBO, + GATE_TSC, + GATE_GPIOA, + GATE_GPIOB, + GATE_GPIOC, + GATE_GPIOD, + GATE_GPIOE, + GATE_GPIOF, + GATE_GPIOG, + GATE_GPIOH, + GATE_GPIOI, + GATE_PKA, + GATE_SAES, + GATE_CRYP1, + GATE_HASH1, + GATE_RNG1, + GATE_BKPSRAM, + GATE_AXIMC, + GATE_MCE, + GATE_ETH1CK, + GATE_ETH1TX, + GATE_ETH1RX, + GATE_ETH1MAC, + GATE_FMC, + GATE_QSPI, + GATE_SDMMC1, + GATE_SDMMC2, + GATE_CRC1, + GATE_USBH, + GATE_ETH2CK, + GATE_ETH2TX, + GATE_ETH2RX, + GATE_ETH2MAC, + GATE_MDMA, + + LAST_GATE +}; + +#define GATE_CFG(id, _offset, _bit_idx, _offset_clr)[id] = {\ + .offset = (_offset),\ + .bit_idx = (_bit_idx),\ + .set_clr = (_offset_clr),\ +} + +static const struct gate_cfg gates_mp13[LAST_GATE] = { + GATE_CFG(GATE_LSE, RCC_BDCR, 0, 0), + GATE_CFG(GATE_RTCCK, RCC_BDCR, 20, 0), + GATE_CFG(GATE_LSI, RCC_RDLSICR, 0, 0), + GATE_CFG(GATE_HSI, RCC_OCENSETR, 0, 1), + GATE_CFG(GATE_CSI, RCC_OCENSETR, 4, 1), + GATE_CFG(GATE_HSE, RCC_OCENSETR, 8, 1), + GATE_CFG(GATE_LSI_RDY, RCC_RDLSICR, 1, 0), + GATE_CFG(GATE_CSI_RDY, RCC_OCRDYR, 4, 0), + GATE_CFG(GATE_LSE_RDY, RCC_BDCR, 2, 0), + GATE_CFG(GATE_HSE_RDY, RCC_OCRDYR, 8, 0), + GATE_CFG(GATE_HSI_RDY, RCC_OCRDYR, 0, 0), + GATE_CFG(GATE_MCO1, RCC_MCO1CFGR, 12, 0), + GATE_CFG(GATE_MCO2, RCC_MCO2CFGR, 12, 0), + GATE_CFG(GATE_DBGCK, RCC_DBGCFGR, 8, 0), + GATE_CFG(GATE_TRACECK, RCC_DBGCFGR, 9, 0), + GATE_CFG(GATE_PLL1, RCC_PLL1CR, 0, 0), + GATE_CFG(GATE_PLL1_DIVP, RCC_PLL1CR, 4, 0), + GATE_CFG(GATE_PLL1_DIVQ, RCC_PLL1CR, 5, 0), + GATE_CFG(GATE_PLL1_DIVR, RCC_PLL1CR, 6, 0), + GATE_CFG(GATE_PLL2, RCC_PLL2CR, 0, 0), + GATE_CFG(GATE_PLL2_DIVP, RCC_PLL2CR, 4, 0), + GATE_CFG(GATE_PLL2_DIVQ, RCC_PLL2CR, 5, 0), + GATE_CFG(GATE_PLL2_DIVR, RCC_PLL2CR, 6, 0), + GATE_CFG(GATE_PLL3, RCC_PLL3CR, 0, 0), + GATE_CFG(GATE_PLL3_DIVP, RCC_PLL3CR, 4, 0), + GATE_CFG(GATE_PLL3_DIVQ, RCC_PLL3CR, 5, 0), + GATE_CFG(GATE_PLL3_DIVR, RCC_PLL3CR, 6, 0), + GATE_CFG(GATE_PLL4, RCC_PLL4CR, 0, 0), + GATE_CFG(GATE_PLL4_DIVP, RCC_PLL4CR, 4, 0), + GATE_CFG(GATE_PLL4_DIVQ, RCC_PLL4CR, 5, 0), + GATE_CFG(GATE_PLL4_DIVR, RCC_PLL4CR, 6, 0), + GATE_CFG(GATE_DDRC1, RCC_DDRITFCR, 0, 0), + GATE_CFG(GATE_DDRC1LP, RCC_DDRITFCR, 1, 0), + GATE_CFG(GATE_DDRPHYC, RCC_DDRITFCR, 4, 0), + GATE_CFG(GATE_DDRPHYCLP, RCC_DDRITFCR, 5, 0), + GATE_CFG(GATE_DDRCAPB, RCC_DDRITFCR, 6, 0), + GATE_CFG(GATE_DDRCAPBLP, RCC_DDRITFCR, 7, 0), + GATE_CFG(GATE_AXIDCG, RCC_DDRITFCR, 8, 0), + GATE_CFG(GATE_DDRPHYCAPB, RCC_DDRITFCR, 9, 0), + GATE_CFG(GATE_DDRPHYCAPBLP, RCC_DDRITFCR, 10, 0), + GATE_CFG(GATE_TIM2, RCC_MP_APB1ENSETR, 0, 1), + GATE_CFG(GATE_TIM3, RCC_MP_APB1ENSETR, 1, 1), + GATE_CFG(GATE_TIM4, RCC_MP_APB1ENSETR, 2, 1), + GATE_CFG(GATE_TIM5, RCC_MP_APB1ENSETR, 3, 1), + GATE_CFG(GATE_TIM6, RCC_MP_APB1ENSETR, 4, 1), + GATE_CFG(GATE_TIM7, RCC_MP_APB1ENSETR, 5, 1), + GATE_CFG(GATE_LPTIM1, RCC_MP_APB1ENSETR, 9, 1), + GATE_CFG(GATE_SPI2, RCC_MP_APB1ENSETR, 11, 1), + GATE_CFG(GATE_SPI3, RCC_MP_APB1ENSETR, 12, 1), + GATE_CFG(GATE_USART3, RCC_MP_APB1ENSETR, 15, 1), + GATE_CFG(GATE_UART4, RCC_MP_APB1ENSETR, 16, 1), + GATE_CFG(GATE_UART5, RCC_MP_APB1ENSETR, 17, 1), + GATE_CFG(GATE_UART7, RCC_MP_APB1ENSETR, 18, 1), + GATE_CFG(GATE_UART8, RCC_MP_APB1ENSETR, 19, 1), + GATE_CFG(GATE_I2C1, RCC_MP_APB1ENSETR, 21, 1), + GATE_CFG(GATE_I2C2, RCC_MP_APB1ENSETR, 22, 1), + GATE_CFG(GATE_SPDIF, RCC_MP_APB1ENSETR, 26, 1), + GATE_CFG(GATE_TIM1, RCC_MP_APB2ENSETR, 0, 1), + GATE_CFG(GATE_TIM8, RCC_MP_APB2ENSETR, 1, 1), + GATE_CFG(GATE_SPI1, RCC_MP_APB2ENSETR, 8, 1), + GATE_CFG(GATE_USART6, RCC_MP_APB2ENSETR, 13, 1), + GATE_CFG(GATE_SAI1, RCC_MP_APB2ENSETR, 16, 1), + GATE_CFG(GATE_SAI2, RCC_MP_APB2ENSETR, 17, 1), + GATE_CFG(GATE_DFSDM, RCC_MP_APB2ENSETR, 20, 1), + GATE_CFG(GATE_ADFSDM, RCC_MP_APB2ENSETR, 21, 1), + GATE_CFG(GATE_FDCAN, RCC_MP_APB2ENSETR, 24, 1), + GATE_CFG(GATE_LPTIM2, RCC_MP_APB3ENSETR, 0, 1), + GATE_CFG(GATE_LPTIM3, RCC_MP_APB3ENSETR, 1, 1), + GATE_CFG(GATE_LPTIM4, RCC_MP_APB3ENSETR, 2, 1), + GATE_CFG(GATE_LPTIM5, RCC_MP_APB3ENSETR, 3, 1), + GATE_CFG(GATE_VREF, RCC_MP_APB3ENSETR, 13, 1), + GATE_CFG(GATE_DTS, RCC_MP_APB3ENSETR, 16, 1), + GATE_CFG(GATE_PMBCTRL, RCC_MP_APB3ENSETR, 17, 1), + GATE_CFG(GATE_HDP, RCC_MP_APB3ENSETR, 20, 1), + GATE_CFG(GATE_SYSCFG, RCC_MP_S_APB3ENSETR, 0, 1), + GATE_CFG(GATE_DCMIPP, RCC_MP_APB4ENSETR, 1, 1), + GATE_CFG(GATE_DDRPERFM, RCC_MP_APB4ENSETR, 8, 1), + GATE_CFG(GATE_IWDG2APB, RCC_MP_APB4ENSETR, 15, 1), + GATE_CFG(GATE_USBPHY, RCC_MP_APB4ENSETR, 16, 1), + GATE_CFG(GATE_STGENRO, RCC_MP_APB4ENSETR, 20, 1), + GATE_CFG(GATE_LTDC, RCC_MP_S_APB4ENSETR, 0, 1), + GATE_CFG(GATE_RTCAPB, RCC_MP_APB5ENSETR, 8, 1), + GATE_CFG(GATE_TZC, RCC_MP_APB5ENSETR, 11, 1), + GATE_CFG(GATE_ETZPC, RCC_MP_APB5ENSETR, 13, 1), + GATE_CFG(GATE_IWDG1APB, RCC_MP_APB5ENSETR, 15, 1), + GATE_CFG(GATE_BSEC, RCC_MP_APB5ENSETR, 16, 1), + GATE_CFG(GATE_STGENC, RCC_MP_APB5ENSETR, 20, 1), + GATE_CFG(GATE_USART1, RCC_MP_APB6ENSETR, 0, 1), + GATE_CFG(GATE_USART2, RCC_MP_APB6ENSETR, 1, 1), + GATE_CFG(GATE_SPI4, RCC_MP_APB6ENSETR, 2, 1), + GATE_CFG(GATE_SPI5, RCC_MP_APB6ENSETR, 3, 1), + GATE_CFG(GATE_I2C3, RCC_MP_APB6ENSETR, 4, 1), + GATE_CFG(GATE_I2C4, RCC_MP_APB6ENSETR, 5, 1), + GATE_CFG(GATE_I2C5, RCC_MP_APB6ENSETR, 6, 1), + GATE_CFG(GATE_TIM12, RCC_MP_APB6ENSETR, 7, 1), + GATE_CFG(GATE_TIM13, RCC_MP_APB6ENSETR, 8, 1), + GATE_CFG(GATE_TIM14, RCC_MP_APB6ENSETR, 9, 1), + GATE_CFG(GATE_TIM15, RCC_MP_APB6ENSETR, 10, 1), + GATE_CFG(GATE_TIM16, RCC_MP_APB6ENSETR, 11, 1), + GATE_CFG(GATE_TIM17, RCC_MP_APB6ENSETR, 12, 1), + GATE_CFG(GATE_DMA1, RCC_MP_AHB2ENSETR, 0, 1), + GATE_CFG(GATE_DMA2, RCC_MP_AHB2ENSETR, 1, 1), + GATE_CFG(GATE_DMAMUX1, RCC_MP_AHB2ENSETR, 2, 1), + GATE_CFG(GATE_DMA3, RCC_MP_AHB2ENSETR, 3, 1), + GATE_CFG(GATE_DMAMUX2, RCC_MP_AHB2ENSETR, 4, 1), + GATE_CFG(GATE_ADC1, RCC_MP_AHB2ENSETR, 5, 1), + GATE_CFG(GATE_ADC2, RCC_MP_AHB2ENSETR, 6, 1), + GATE_CFG(GATE_USBO, RCC_MP_AHB2ENSETR, 8, 1), + GATE_CFG(GATE_TSC, RCC_MP_AHB4ENSETR, 15, 1), + + GATE_CFG(GATE_GPIOA, RCC_MP_S_AHB4ENSETR, 0, 1), + GATE_CFG(GATE_GPIOB, RCC_MP_S_AHB4ENSETR, 1, 1), + GATE_CFG(GATE_GPIOC, RCC_MP_S_AHB4ENSETR, 2, 1), + GATE_CFG(GATE_GPIOD, RCC_MP_S_AHB4ENSETR, 3, 1), + GATE_CFG(GATE_GPIOE, RCC_MP_S_AHB4ENSETR, 4, 1), + GATE_CFG(GATE_GPIOF, RCC_MP_S_AHB4ENSETR, 5, 1), + GATE_CFG(GATE_GPIOG, RCC_MP_S_AHB4ENSETR, 6, 1), + GATE_CFG(GATE_GPIOH, RCC_MP_S_AHB4ENSETR, 7, 1), + GATE_CFG(GATE_GPIOI, RCC_MP_S_AHB4ENSETR, 8, 1), + + GATE_CFG(GATE_PKA, RCC_MP_AHB5ENSETR, 2, 1), + GATE_CFG(GATE_SAES, RCC_MP_AHB5ENSETR, 3, 1), + GATE_CFG(GATE_CRYP1, RCC_MP_AHB5ENSETR, 4, 1), + GATE_CFG(GATE_HASH1, RCC_MP_AHB5ENSETR, 5, 1), + GATE_CFG(GATE_RNG1, RCC_MP_AHB5ENSETR, 6, 1), + GATE_CFG(GATE_BKPSRAM, RCC_MP_AHB5ENSETR, 8, 1), + GATE_CFG(GATE_AXIMC, RCC_MP_AHB5ENSETR, 16, 1), + GATE_CFG(GATE_MCE, RCC_MP_AHB6ENSETR, 1, 1), + GATE_CFG(GATE_ETH1CK, RCC_MP_AHB6ENSETR, 7, 1), + GATE_CFG(GATE_ETH1TX, RCC_MP_AHB6ENSETR, 8, 1), + GATE_CFG(GATE_ETH1RX, RCC_MP_AHB6ENSETR, 9, 1), + GATE_CFG(GATE_ETH1MAC, RCC_MP_AHB6ENSETR, 10, 1), + GATE_CFG(GATE_FMC, RCC_MP_AHB6ENSETR, 12, 1), + GATE_CFG(GATE_QSPI, RCC_MP_AHB6ENSETR, 14, 1), + GATE_CFG(GATE_SDMMC1, RCC_MP_AHB6ENSETR, 16, 1), + GATE_CFG(GATE_SDMMC2, RCC_MP_AHB6ENSETR, 17, 1), + GATE_CFG(GATE_CRC1, RCC_MP_AHB6ENSETR, 20, 1), + GATE_CFG(GATE_USBH, RCC_MP_AHB6ENSETR, 24, 1), + GATE_CFG(GATE_ETH2CK, RCC_MP_AHB6ENSETR, 27, 1), + GATE_CFG(GATE_ETH2TX, RCC_MP_AHB6ENSETR, 28, 1), + GATE_CFG(GATE_ETH2RX, RCC_MP_AHB6ENSETR, 29, 1), + GATE_CFG(GATE_ETH2MAC, RCC_MP_AHB6ENSETR, 30, 1), + GATE_CFG(GATE_MDMA, RCC_MP_S_AHB6ENSETR, 0, 1), +}; + +/* + * DIV CONFIG + */ + +static const struct clk_div_table axi_div_table[] = { + { 0, 1 }, { 1, 2 }, { 2, 3 }, { 3, 4 }, + { 4, 4 }, { 5, 4 }, { 6, 4 }, { 7, 4 }, + { 0 }, +}; + +static const struct clk_div_table mlahb_div_table[] = { + { 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 }, + { 4, 16 }, { 5, 32 }, { 6, 64 }, { 7, 128 }, + { 8, 256 }, { 9, 512 }, { 10, 512}, { 11, 512 }, + { 12, 512 }, { 13, 512 }, { 14, 512}, { 15, 512 }, + { 0 }, +}; + +static const struct clk_div_table apb_div_table[] = { + { 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 }, + { 4, 16 }, { 5, 16 }, { 6, 16 }, { 7, 16 }, + { 0 }, +}; + +#define DIV_CFG(id, _offset, _shift, _width, _flags, _table, _bitrdy)[id] = {\ + .offset = _offset,\ + .shift = _shift,\ + .width = _width,\ + .flags = _flags,\ + .table = _table,\ + .bitrdy = _bitrdy,\ +} + +static const struct div_cfg dividers_mp13[] = { + DIV_CFG(DIV_PLL1DIVP, RCC_PLL1CFGR2, 0, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_PLL2DIVP, RCC_PLL2CFGR2, 0, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_PLL2DIVQ, RCC_PLL2CFGR2, 8, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_PLL2DIVR, RCC_PLL2CFGR2, 16, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_PLL3DIVP, RCC_PLL3CFGR2, 0, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_PLL3DIVQ, RCC_PLL3CFGR2, 8, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_PLL3DIVR, RCC_PLL3CFGR2, 16, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_PLL4DIVP, RCC_PLL4CFGR2, 0, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_PLL4DIVQ, RCC_PLL4CFGR2, 8, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_PLL4DIVR, RCC_PLL4CFGR2, 16, 7, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_MPU, RCC_MPCKDIVR, 0, 4, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_AXI, RCC_AXIDIVR, 0, 3, 0, axi_div_table, 31), + DIV_CFG(DIV_MLAHB, RCC_MLAHBDIVR, 0, 4, 0, mlahb_div_table, 31), + DIV_CFG(DIV_APB1, RCC_APB1DIVR, 0, 3, 0, apb_div_table, 31), + DIV_CFG(DIV_APB2, RCC_APB2DIVR, 0, 3, 0, apb_div_table, 31), + DIV_CFG(DIV_APB3, RCC_APB3DIVR, 0, 3, 0, apb_div_table, 31), + DIV_CFG(DIV_APB4, RCC_APB4DIVR, 0, 3, 0, apb_div_table, 31), + DIV_CFG(DIV_APB5, RCC_APB5DIVR, 0, 3, 0, apb_div_table, 31), + DIV_CFG(DIV_APB6, RCC_APB6DIVR, 0, 3, 0, apb_div_table, 31), + DIV_CFG(DIV_RTC, RCC_RTCDIVR, 0, 6, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_MCO1, RCC_MCO1CFGR, 4, 4, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_MCO2, RCC_MCO2CFGR, 4, 4, 0, NULL, DIV_NO_BIT_RDY), + + DIV_CFG(DIV_HSI, RCC_HSICFGR, 0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_TRACE, RCC_DBGCFGR, 0, 3, CLK_DIVIDER_POWER_OF_TWO, NULL, DIV_NO_BIT_RDY), + + DIV_CFG(DIV_ETH1PTP, RCC_ETH12CKSELR, 4, 4, 0, NULL, DIV_NO_BIT_RDY), + DIV_CFG(DIV_ETH2PTP, RCC_ETH12CKSELR, 12, 4, 0, NULL, DIV_NO_BIT_RDY), +}; + +#define MAX_HSI_HZ 64000000 +#define USB_PHY_48_MHZ 48000000 + +#define TIMEOUT_US_200MS U(200000) +#define TIMEOUT_US_1S U(1000000) + +#define PLLRDY_TIMEOUT TIMEOUT_US_200MS +#define CLKSRC_TIMEOUT TIMEOUT_US_200MS +#define CLKDIV_TIMEOUT TIMEOUT_US_200MS +#define HSIDIV_TIMEOUT TIMEOUT_US_200MS +#define OSCRDY_TIMEOUT TIMEOUT_US_1S + +enum stm32_osc { + OSC_HSI, + OSC_HSE, + OSC_CSI, + OSC_LSI, + OSC_LSE, + OSC_I2SCKIN, + NB_OSCILLATOR +}; + +enum stm32mp1_pll_id { + _PLL1, + _PLL2, + _PLL3, + _PLL4, + _PLL_NB +}; + +enum stm32mp1_plltype { + PLL_800, + PLL_1600, + PLL_2000, + PLL_TYPE_NB +}; + +#define RCC_OFFSET_PLLXCR 0 +#define RCC_OFFSET_PLLXCFGR1 4 +#define RCC_OFFSET_PLLXCFGR2 8 +#define RCC_OFFSET_PLLXFRACR 12 +#define RCC_OFFSET_PLLXCSGR 16 + +struct stm32_clk_pll { + enum stm32mp1_plltype plltype; + uint16_t clk_id; + uint16_t reg_pllxcr; +}; + +struct stm32mp1_pll { + uint8_t refclk_min; + uint8_t refclk_max; +}; + +/* Define characteristic of PLL according type */ +static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = { + [PLL_800] = { + .refclk_min = 4, + .refclk_max = 16, + }, + [PLL_1600] = { + .refclk_min = 8, + .refclk_max = 16, + }, + [PLL_2000] = { + .refclk_min = 8, + .refclk_max = 16, + }, +}; + +#if STM32MP_USB_PROGRAMMER +static bool pll4_bootrom; +#endif + +/* RCC clock device driver private */ +static unsigned int refcounts_mp13[CK_LAST]; + +static const struct stm32_clk_pll *clk_st32_pll_data(unsigned int idx); + +#if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER +static void clk_oscillator_check_bypass(struct stm32_clk_priv *priv, int idx, + bool digbyp, bool bypass) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, idx); + struct stm32_clk_bypass *bypass_data = osc_data->bypass; + uintptr_t address; + + if (bypass_data == NULL) { + return; + } + + address = priv->base + bypass_data->offset; + if ((mmio_read_32(address) & RCC_OCENR_HSEBYP) && + (!(digbyp || bypass))) { + panic(); + } +} +#endif + +static void stm32_enable_oscillator_hse(struct stm32_clk_priv *priv) +{ + struct stm32_clk_platdata *pdata = priv->pdata; + struct stm32_osci_dt_cfg *osci = &pdata->osci[OSC_HSE]; + bool digbyp = osci->digbyp; + bool bypass = osci->bypass; + bool css = osci->css; + + if (_clk_stm32_get_rate(priv, _CK_HSE) == 0U) { + return; + } + + clk_oscillator_set_bypass(priv, _CK_HSE, digbyp, bypass); + + _clk_stm32_enable(priv, _CK_HSE); + +#if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER + clk_oscillator_check_bypass(priv, _CK_HSE, digbyp, bypass); +#endif + + clk_oscillator_set_css(priv, _CK_HSE, css); +} + +static void stm32_enable_oscillator_lse(struct stm32_clk_priv *priv) +{ + struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, _CK_LSE); + struct stm32_clk_platdata *pdata = priv->pdata; + struct stm32_osci_dt_cfg *osci = &pdata->osci[OSC_LSE]; + bool digbyp = osci->digbyp; + bool bypass = osci->bypass; + uint8_t drive = osci->drive; + + if (_clk_stm32_get_rate(priv, _CK_LSE) == 0U) { + return; + } + + clk_oscillator_set_bypass(priv, _CK_LSE, digbyp, bypass); + + clk_oscillator_set_drive(priv, _CK_LSE, drive); + + _clk_stm32_gate_enable(priv, osc_data->gate_id); +} + +static int stm32mp1_set_hsidiv(uint8_t hsidiv) +{ + uint64_t timeout; + uintptr_t rcc_base = stm32mp_rcc_base(); + uintptr_t address = rcc_base + RCC_OCRDYR; + + mmio_clrsetbits_32(rcc_base + RCC_HSICFGR, + RCC_HSICFGR_HSIDIV_MASK, + RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv); + + timeout = timeout_init_us(HSIDIV_TIMEOUT); + while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("HSIDIV failed @ 0x%lx: 0x%x\n", + address, mmio_read_32(address)); + return -ETIMEDOUT; + } + } + + return 0; +} + +static int stm32mp1_hsidiv(unsigned long hsifreq) +{ + uint8_t hsidiv; + uint32_t hsidivfreq = MAX_HSI_HZ; + + for (hsidiv = 0; hsidiv < 4U; hsidiv++) { + if (hsidivfreq == hsifreq) { + break; + } + + hsidivfreq /= 2U; + } + + if (hsidiv == 4U) { + ERROR("Invalid clk-hsi frequency\n"); + return -EINVAL; + } + + if (hsidiv != 0U) { + return stm32mp1_set_hsidiv(hsidiv); + } + + return 0; +} + +static int stm32_clk_oscillators_lse_set_css(struct stm32_clk_priv *priv) +{ + struct stm32_clk_platdata *pdata = priv->pdata; + struct stm32_osci_dt_cfg *osci = &pdata->osci[OSC_LSE]; + + clk_oscillator_set_css(priv, _CK_LSE, osci->css); + + return 0; +} + +static int stm32mp1_come_back_to_hsi(void) +{ + int ret; + struct stm32_clk_priv *priv = clk_stm32_get_priv(); + + /* Come back to HSI */ + ret = _clk_stm32_set_parent(priv, _CKMPU, _CK_HSI); + if (ret != 0) { + return ret; + } + + ret = _clk_stm32_set_parent(priv, _CKAXI, _CK_HSI); + if (ret != 0) { + return ret; + } + + ret = _clk_stm32_set_parent(priv, _CKMLAHB, _CK_HSI); + if (ret != 0) { + return ret; + } + + return 0; +} + +static int stm32_clk_configure_clk_get_binding_id(struct stm32_clk_priv *priv, uint32_t data) +{ + unsigned long binding_id = ((unsigned long)data & CLK_ID_MASK) >> CLK_ID_SHIFT; + + return clk_get_index(priv, binding_id); +} + +static int stm32_clk_configure_clk(struct stm32_clk_priv *priv, uint32_t data) +{ + int sel = (data & CLK_SEL_MASK) >> CLK_SEL_SHIFT; + int enable = (data & CLK_ON_MASK) >> CLK_ON_SHIFT; + int clk_id; + int ret; + + clk_id = stm32_clk_configure_clk_get_binding_id(priv, data); + if (clk_id < 0) { + return clk_id; + } + + ret = _clk_stm32_set_parent_by_index(priv, clk_id, sel); + if (ret != 0) { + return ret; + } + + if (enable) { + clk_stm32_enable_call_ops(priv, clk_id); + } else { + clk_stm32_disable_call_ops(priv, clk_id); + } + + return 0; +} + +static int stm32_clk_configure_mux(struct stm32_clk_priv *priv, uint32_t data) +{ + int mux = (data & MUX_ID_MASK) >> MUX_ID_SHIFT; + int sel = (data & MUX_SEL_MASK) >> MUX_SEL_SHIFT; + + return clk_mux_set_parent(priv, mux, sel); +} + +static int stm32_clk_dividers_configure(struct stm32_clk_priv *priv) +{ + struct stm32_clk_platdata *pdata = priv->pdata; + uint32_t i; + + for (i = 0; i < pdata->nclkdiv; i++) { + int div_id, div_n; + int val; + int ret; + + val = pdata->clkdiv[i] & CMD_DATA_MASK; + div_id = (val & DIV_ID_MASK) >> DIV_ID_SHIFT; + div_n = (val & DIV_DIVN_MASK) >> DIV_DIVN_SHIFT; + + ret = clk_stm32_set_div(priv, div_id, div_n); + if (ret != 0) { + return ret; + } + } + + return 0; +} + +static int stm32_clk_source_configure(struct stm32_clk_priv *priv) +{ + struct stm32_clk_platdata *pdata = priv->pdata; + bool ckper_disabled = false; + int clk_id; + int ret; + uint32_t i; + + for (i = 0; i < pdata->nclksrc; i++) { + uint32_t val = pdata->clksrc[i]; + uint32_t cmd, cmd_data; + + if (val == (uint32_t)CLK_CKPER_DISABLED) { + ckper_disabled = true; + continue; + } + + if (val == (uint32_t)CLK_RTC_DISABLED) { + continue; + } + + cmd = (val & CMD_MASK) >> CMD_SHIFT; + cmd_data = val & ~CMD_MASK; + + switch (cmd) { + case CMD_MUX: + ret = stm32_clk_configure_mux(priv, cmd_data); + break; + + case CMD_CLK: + clk_id = stm32_clk_configure_clk_get_binding_id(priv, cmd_data); + + if (clk_id == _RTCCK) { + if ((_clk_stm32_is_enabled(priv, _RTCCK) == true)) { + continue; + } + } + + ret = stm32_clk_configure_clk(priv, cmd_data); + break; + default: + ret = -EINVAL; + break; + } + + if (ret != 0) { + return ret; + } + } + + /* + * CKPER is source for some peripheral clocks + * (FMC-NAND / QPSI-NOR) and switching source is allowed + * only if previous clock is still ON + * => deactivate CKPER only after switching clock + */ + if (ckper_disabled) { + ret = stm32_clk_configure_mux(priv, CLK_CKPER_DISABLED & CMD_MASK); + if (ret != 0) { + return ret; + } + } + + return 0; +} + +static int stm32_clk_stgen_configure(struct stm32_clk_priv *priv, int id) +{ + unsigned long stgen_freq; + + stgen_freq = _clk_stm32_get_rate(priv, id); + + stm32mp_stgen_config(stgen_freq); + + return 0; +} + +#define CLK_PLL_CFG(_idx, _clk_id, _type, _reg)\ + [(_idx)] = {\ + .clk_id = (_clk_id),\ + .plltype = (_type),\ + .reg_pllxcr = (_reg),\ + } + +static int clk_stm32_pll_compute_cfgr1(struct stm32_clk_priv *priv, + const struct stm32_clk_pll *pll, + struct stm32_pll_vco *vco, + uint32_t *value) +{ + uint32_t divm = vco->div_mn[PLL_CFG_M]; + uint32_t divn = vco->div_mn[PLL_CFG_N]; + unsigned long prate = 0UL; + unsigned long refclk = 0UL; + + prate = _clk_stm32_get_parent_rate(priv, pll->clk_id); + refclk = prate / (divm + 1U); + + if ((refclk < (stm32mp1_pll[pll->plltype].refclk_min * 1000000U)) || + (refclk > (stm32mp1_pll[pll->plltype].refclk_max * 1000000U))) { + return -EINVAL; + } + + *value = 0; + + if ((pll->plltype == PLL_800) && (refclk >= 8000000U)) { + *value = 1U << RCC_PLLNCFGR1_IFRGE_SHIFT; + } + + *value |= (divn << RCC_PLLNCFGR1_DIVN_SHIFT) & RCC_PLLNCFGR1_DIVN_MASK; + *value |= (divm << RCC_PLLNCFGR1_DIVM_SHIFT) & RCC_PLLNCFGR1_DIVM_MASK; + + return 0; +} + +static uint32_t clk_stm32_pll_compute_cfgr2(struct stm32_pll_output *out) +{ + uint32_t value = 0; + + value |= (out->output[PLL_CFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) & RCC_PLLNCFGR2_DIVP_MASK; + value |= (out->output[PLL_CFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) & RCC_PLLNCFGR2_DIVQ_MASK; + value |= (out->output[PLL_CFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) & RCC_PLLNCFGR2_DIVR_MASK; + + return value; +} + +static void clk_stm32_pll_config_vco(struct stm32_clk_priv *priv, + const struct stm32_clk_pll *pll, + struct stm32_pll_vco *vco) +{ + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + uint32_t value = 0; + + if (clk_stm32_pll_compute_cfgr1(priv, pll, vco, &value) != 0) { + ERROR("Invalid Vref clock !\n"); + panic(); + } + + /* Write N / M / IFREGE fields */ + mmio_write_32(pll_base + RCC_OFFSET_PLLXCFGR1, value); + + /* Fractional configuration */ + mmio_write_32(pll_base + RCC_OFFSET_PLLXFRACR, 0); + + /* Frac must be enabled only once its configuration is loaded */ + mmio_write_32(pll_base + RCC_OFFSET_PLLXFRACR, vco->frac << RCC_PLLNFRACR_FRACV_SHIFT); + mmio_setbits_32(pll_base + RCC_OFFSET_PLLXFRACR, RCC_PLLNFRACR_FRACLE); +} + +static void clk_stm32_pll_config_csg(struct stm32_clk_priv *priv, + const struct stm32_clk_pll *pll, + struct stm32_pll_vco *vco) +{ + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + uint32_t mod_per = 0; + uint32_t inc_step = 0; + uint32_t sscg_mode = 0; + uint32_t value = 0; + + if (!vco->csg_enabled) { + return; + } + + mod_per = vco->csg[PLL_CSG_MOD_PER]; + inc_step = vco->csg[PLL_CSG_INC_STEP]; + sscg_mode = vco->csg[PLL_CSG_SSCG_MODE]; + + value |= (mod_per << RCC_PLLNCSGR_MOD_PER_SHIFT) & RCC_PLLNCSGR_MOD_PER_MASK; + value |= (inc_step << RCC_PLLNCSGR_INC_STEP_SHIFT) & RCC_PLLNCSGR_INC_STEP_MASK; + value |= (sscg_mode << RCC_PLLNCSGR_SSCG_MODE_SHIFT) & RCC_PLLNCSGR_SSCG_MODE_MASK; + + mmio_write_32(pll_base + RCC_OFFSET_PLLXCSGR, value); + mmio_setbits_32(pll_base + RCC_OFFSET_PLLXCR, RCC_PLLNCR_SSCG_CTRL); +} + +static void clk_stm32_pll_config_out(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll, + struct stm32_pll_output *out) +{ + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + uint32_t value = 0; + + value = clk_stm32_pll_compute_cfgr2(out); + + mmio_write_32(pll_base + RCC_OFFSET_PLLXCFGR2, value); +} + +static inline struct stm32_pll_dt_cfg *clk_stm32_pll_get_pdata(int pll_idx) +{ + struct stm32_clk_priv *priv = clk_stm32_get_priv(); + struct stm32_clk_platdata *pdata = priv->pdata; + + return &pdata->pll[pll_idx]; +} + +static bool _clk_stm32_pll_is_enabled(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll) +{ + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + + return ((mmio_read_32(pll_base) & RCC_PLLNCR_PLLON) != 0U); +} + +static void _clk_stm32_pll_set_on(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll) +{ + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + + /* Preserve RCC_PLLNCR_SSCG_CTRL value */ + mmio_clrsetbits_32(pll_base, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN, + RCC_PLLNCR_PLLON); +} + +static void _clk_stm32_pll_set_off(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll) +{ + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + + /* Stop all output */ + mmio_clrbits_32(pll_base, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN); + + /* Stop PLL */ + mmio_clrbits_32(pll_base, RCC_PLLNCR_PLLON); +} + +static int _clk_stm32_pll_wait_ready_on(struct stm32_clk_priv *priv, + const struct stm32_clk_pll *pll) +{ + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT); + + /* Wait PLL lock */ + while ((mmio_read_32(pll_base) & RCC_PLLNCR_PLLRDY) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("%d clock start failed @ 0x%x: 0x%x\n", + pll->clk_id, pll->reg_pllxcr, mmio_read_32(pll_base)); + return -EINVAL; + } + } + + return 0; +} + +static int _clk_stm32_pll_wait_ready_off(struct stm32_clk_priv *priv, + const struct stm32_clk_pll *pll) +{ + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT); + + /* Wait PLL lock */ + while ((mmio_read_32(pll_base) & RCC_PLLNCR_PLLRDY) != 0U) { + if (timeout_elapsed(timeout)) { + ERROR("%d clock stop failed @ 0x%x: 0x%x\n", + pll->clk_id, pll->reg_pllxcr, mmio_read_32(pll_base)); + return -EINVAL; + } + } + + return 0; +} + +static int _clk_stm32_pll_enable(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll) +{ + if (_clk_stm32_pll_is_enabled(priv, pll)) { + return 0; + } + + /* Preserve RCC_PLLNCR_SSCG_CTRL value */ + _clk_stm32_pll_set_on(priv, pll); + + /* Wait PLL lock */ + return _clk_stm32_pll_wait_ready_on(priv, pll); +} + +static void _clk_stm32_pll_disable(struct stm32_clk_priv *priv, const struct stm32_clk_pll *pll) +{ + if (!_clk_stm32_pll_is_enabled(priv, pll)) { + return; + } + + /* Stop all outputs and the PLL */ + _clk_stm32_pll_set_off(priv, pll); + + /* Wait PLL stopped */ + _clk_stm32_pll_wait_ready_off(priv, pll); +} + +static int _clk_stm32_pll_init(struct stm32_clk_priv *priv, int pll_idx, + struct stm32_pll_dt_cfg *pll_conf) +{ + const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_idx); + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + int ret = 0; + + /* Configure PLLs source */ + ret = stm32_clk_configure_mux(priv, pll_conf->vco.src); + if (ret) { + return ret; + } + +#if STM32MP_USB_PROGRAMMER + if ((pll_idx == _PLL4) && pll4_bootrom) { + clk_stm32_pll_config_out(priv, pll, &pll_conf->output); + + mmio_setbits_32(pll_base, + RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN); + + return 0; + } +#endif + /* Stop the PLL before */ + _clk_stm32_pll_disable(priv, pll); + + clk_stm32_pll_config_vco(priv, pll, &pll_conf->vco); + clk_stm32_pll_config_out(priv, pll, &pll_conf->output); + clk_stm32_pll_config_csg(priv, pll, &pll_conf->vco); + + ret = _clk_stm32_pll_enable(priv, pll); + if (ret != 0) { + return ret; + } + + mmio_setbits_32(pll_base, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN); + + return 0; +} + +static int clk_stm32_pll_init(struct stm32_clk_priv *priv, int pll_idx) +{ + struct stm32_pll_dt_cfg *pll_conf = clk_stm32_pll_get_pdata(pll_idx); + + if (pll_conf->vco.status) { + return _clk_stm32_pll_init(priv, pll_idx, pll_conf); + } + + return 0; +} + +static int stm32_clk_pll_configure(struct stm32_clk_priv *priv) +{ + int err = 0; + + err = clk_stm32_pll_init(priv, _PLL1); + if (err) { + return err; + } + + err = clk_stm32_pll_init(priv, _PLL2); + if (err) { + return err; + } + + err = clk_stm32_pll_init(priv, _PLL3); + if (err) { + return err; + } + + err = clk_stm32_pll_init(priv, _PLL4); + if (err) { + return err; + } + + return 0; +} + +static int stm32_clk_oscillators_wait_lse_ready(struct stm32_clk_priv *priv) +{ + int ret = 0; + + if (_clk_stm32_get_rate(priv, _CK_LSE) != 0U) { + ret = clk_oscillator_wait_ready_on(priv, _CK_LSE); + } + + return ret; +} + +static void stm32_clk_oscillators_enable(struct stm32_clk_priv *priv) +{ + stm32_enable_oscillator_hse(priv); + stm32_enable_oscillator_lse(priv); + _clk_stm32_enable(priv, _CK_LSI); + _clk_stm32_enable(priv, _CK_CSI); +} + +static int stm32_clk_hsidiv_configure(struct stm32_clk_priv *priv) +{ + return stm32mp1_hsidiv(_clk_stm32_get_rate(priv, _CK_HSI)); +} + +#if STM32MP_USB_PROGRAMMER +static bool stm32mp1_clk_is_pll4_used_by_bootrom(struct stm32_clk_priv *priv, int usbphy_p) +{ + /* Don't initialize PLL4, when used by BOOTROM */ + if ((stm32mp_get_boot_itf_selected() == + BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) && + (usbphy_p == _PLL4R)) { + return true; + } + + return false; +} + +static int stm32mp1_clk_check_usb_conflict(struct stm32_clk_priv *priv, int usbphy_p, int usbo_p) +{ + int _usbo_p; + int _usbphy_p; + + if (!pll4_bootrom) { + return 0; + } + + _usbo_p = _clk_stm32_get_parent(priv, _USBO_K); + _usbphy_p = _clk_stm32_get_parent(priv, _USBPHY_K); + + if ((_usbo_p != usbo_p) || (_usbphy_p != usbphy_p)) { + return -FDT_ERR_BADVALUE; + } + + return 0; +} +#endif + +static struct clk_oscillator_data stm32mp13_osc_data[NB_OSCILLATOR] = { + OSCILLATOR(OSC_HSI, _CK_HSI, "clk-hsi", GATE_HSI, GATE_HSI_RDY, + NULL, NULL, NULL), + + OSCILLATOR(OSC_LSI, _CK_LSI, "clk-lsi", GATE_LSI, GATE_LSI_RDY, + NULL, NULL, NULL), + + OSCILLATOR(OSC_CSI, _CK_CSI, "clk-csi", GATE_CSI, GATE_CSI_RDY, + NULL, NULL, NULL), + + OSCILLATOR(OSC_LSE, _CK_LSE, "clk-lse", GATE_LSE, GATE_LSE_RDY, + BYPASS(RCC_BDCR, 1, 3), + CSS(RCC_BDCR, 8), + DRIVE(RCC_BDCR, 4, 2, 2)), + + OSCILLATOR(OSC_HSE, _CK_HSE, "clk-hse", GATE_HSE, GATE_HSE_RDY, + BYPASS(RCC_OCENSETR, 10, 7), + CSS(RCC_OCENSETR, 11), + NULL), + + OSCILLATOR(OSC_I2SCKIN, _I2SCKIN, "i2s_ckin", NO_GATE, NO_GATE, + NULL, NULL, NULL), +}; + +static const char *clk_stm32_get_oscillator_name(enum stm32_osc id) +{ + if (id < NB_OSCILLATOR) { + return stm32mp13_osc_data[id].name; + } + + return NULL; +} + +#define CLK_PLL_CFG(_idx, _clk_id, _type, _reg)\ + [(_idx)] = {\ + .clk_id = (_clk_id),\ + .plltype = (_type),\ + .reg_pllxcr = (_reg),\ + } + +static const struct stm32_clk_pll stm32_mp13_clk_pll[_PLL_NB] = { + CLK_PLL_CFG(_PLL1, _CK_PLL1, PLL_2000, RCC_PLL1CR), + CLK_PLL_CFG(_PLL2, _CK_PLL2, PLL_1600, RCC_PLL2CR), + CLK_PLL_CFG(_PLL3, _CK_PLL3, PLL_800, RCC_PLL3CR), + CLK_PLL_CFG(_PLL4, _CK_PLL4, PLL_800, RCC_PLL4CR), +}; + +static const struct stm32_clk_pll *clk_st32_pll_data(unsigned int idx) +{ + return &stm32_mp13_clk_pll[idx]; +} + +struct stm32_pll_cfg { + int pll_id; +}; + +static unsigned long clk_stm32_pll_recalc_rate(struct stm32_clk_priv *priv, int id, + unsigned long prate) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct stm32_pll_cfg *pll_cfg = clk->clock_cfg; + const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_cfg->pll_id); + uintptr_t pll_base = priv->base + pll->reg_pllxcr; + uint32_t cfgr1, fracr, divm, divn; + unsigned long fvco; + + cfgr1 = mmio_read_32(pll_base + RCC_OFFSET_PLLXCFGR1); + fracr = mmio_read_32(pll_base + RCC_OFFSET_PLLXFRACR); + + divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT; + divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK; + + /* + * With FRACV : + * Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1) + * Without FRACV + * Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1) + */ + if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) { + uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >> + RCC_PLLNFRACR_FRACV_SHIFT; + unsigned long long numerator, denominator; + + numerator = (((unsigned long long)divn + 1U) << 13) + fracv; + numerator = prate * numerator; + denominator = ((unsigned long long)divm + 1U) << 13; + fvco = (unsigned long)(numerator / denominator); + } else { + fvco = (unsigned long)(prate * (divn + 1U) / (divm + 1U)); + } + + return fvco; +}; + +static bool clk_stm32_pll_is_enabled(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct stm32_pll_cfg *pll_cfg = clk->clock_cfg; + const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_cfg->pll_id); + + return _clk_stm32_pll_is_enabled(priv, pll); +} + +static int clk_stm32_pll_enable(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct stm32_pll_cfg *pll_cfg = clk->clock_cfg; + const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_cfg->pll_id); + + return _clk_stm32_pll_enable(priv, pll); +} + +static void clk_stm32_pll_disable(struct stm32_clk_priv *priv, int id) +{ + const struct clk_stm32 *clk = _clk_get(priv, id); + struct stm32_pll_cfg *pll_cfg = clk->clock_cfg; + const struct stm32_clk_pll *pll = clk_st32_pll_data(pll_cfg->pll_id); + + _clk_stm32_pll_disable(priv, pll); +} + +static const struct stm32_clk_ops clk_stm32_pll_ops = { + .recalc_rate = clk_stm32_pll_recalc_rate, + .enable = clk_stm32_pll_enable, + .disable = clk_stm32_pll_disable, + .is_enabled = clk_stm32_pll_is_enabled, +}; + +#define CLK_PLL(idx, _idx, _parent, _gate, _pll_id, _flags)[idx] = {\ + .binding = _idx,\ + .parent = _parent,\ + .flags = (_flags),\ + .clock_cfg = &(struct stm32_pll_cfg) {\ + .pll_id = _pll_id,\ + },\ + .ops = &clk_stm32_pll_ops,\ +} + +struct clk_stm32_composite_cfg { + int gate_id; + int div_id; +}; + +static unsigned long clk_stm32_composite_recalc_rate(struct stm32_clk_priv *priv, + int idx, unsigned long prate) +{ + const struct clk_stm32 *clk = _clk_get(priv, idx); + struct clk_stm32_composite_cfg *composite_cfg = clk->clock_cfg; + + return _clk_stm32_divider_recalc(priv, composite_cfg->div_id, prate); +}; + +static bool clk_stm32_composite_gate_is_enabled(struct stm32_clk_priv *priv, int idx) +{ + const struct clk_stm32 *clk = _clk_get(priv, idx); + struct clk_stm32_composite_cfg *composite_cfg = clk->clock_cfg; + + return _clk_stm32_gate_is_enabled(priv, composite_cfg->gate_id); +} + +static int clk_stm32_composite_gate_enable(struct stm32_clk_priv *priv, int idx) +{ + const struct clk_stm32 *clk = _clk_get(priv, idx); + struct clk_stm32_composite_cfg *composite_cfg = clk->clock_cfg; + + return _clk_stm32_gate_enable(priv, composite_cfg->gate_id); +} + +static void clk_stm32_composite_gate_disable(struct stm32_clk_priv *priv, int idx) +{ + const struct clk_stm32 *clk = _clk_get(priv, idx); + struct clk_stm32_composite_cfg *composite_cfg = clk->clock_cfg; + + _clk_stm32_gate_disable(priv, composite_cfg->gate_id); +} + +static const struct stm32_clk_ops clk_stm32_composite_ops = { + .recalc_rate = clk_stm32_composite_recalc_rate, + .is_enabled = clk_stm32_composite_gate_is_enabled, + .enable = clk_stm32_composite_gate_enable, + .disable = clk_stm32_composite_gate_disable, +}; + +#define STM32_COMPOSITE(idx, _binding, _parent, _flags, _gate_id,\ + _div_id)[idx] = {\ + .binding = (_binding),\ + .parent = (_parent),\ + .flags = (_flags),\ + .clock_cfg = &(struct clk_stm32_composite_cfg) {\ + .gate_id = (_gate_id),\ + .div_id = (_div_id),\ + },\ + .ops = &clk_stm32_composite_ops,\ +} + +static const struct clk_stm32 stm32mp13_clk[CK_LAST] = { + /* ROOT CLOCKS */ + CLK_FIXED_RATE(_CK_OFF, _NO_ID, 0), + CLK_OSC(_CK_HSE, CK_HSE, CLK_IS_ROOT, OSC_HSE), + CLK_OSC(_CK_HSI, CK_HSI, CLK_IS_ROOT, OSC_HSI), + CLK_OSC(_CK_CSI, CK_CSI, CLK_IS_ROOT, OSC_CSI), + CLK_OSC(_CK_LSI, CK_LSI, CLK_IS_ROOT, OSC_LSI), + CLK_OSC(_CK_LSE, CK_LSE, CLK_IS_ROOT, OSC_LSE), + + CLK_OSC_FIXED(_I2SCKIN, _NO_ID, CLK_IS_ROOT, OSC_I2SCKIN), + + CLK_FIXED_RATE(_USB_PHY_48, _NO_ID, USB_PHY_48_MHZ), + + STM32_DIV(_HSE_DIV, _NO_ID, _CK_HSE, 0, DIV_RTC), + + FIXED_FACTOR(_HSE_DIV2, CK_HSE_DIV2, _CK_HSE, 1, 2), + FIXED_FACTOR(_CSI_DIV122, _NO_ID, _CK_CSI, 1, 122), + + CLK_PLL(_CK_PLL1, PLL1, MUX(MUX_PLL12), GATE_PLL1, _PLL1, 0), + CLK_PLL(_CK_PLL2, PLL2, MUX(MUX_PLL12), GATE_PLL2, _PLL2, 0), + CLK_PLL(_CK_PLL3, PLL3, MUX(MUX_PLL3), GATE_PLL3, _PLL3, 0), + CLK_PLL(_CK_PLL4, PLL4, MUX(MUX_PLL4), GATE_PLL4, _PLL4, 0), + + STM32_COMPOSITE(_PLL1P, PLL1_P, _CK_PLL1, CLK_IS_CRITICAL, GATE_PLL1_DIVP, DIV_PLL1DIVP), + STM32_DIV(_PLL1P_DIV, _NO_ID, _CK_PLL1, 0, DIV_MPU), + + STM32_COMPOSITE(_PLL2P, PLL2_P, _CK_PLL2, CLK_IS_CRITICAL, GATE_PLL2_DIVP, DIV_PLL2DIVP), + STM32_COMPOSITE(_PLL2Q, PLL2_Q, _CK_PLL2, 0, GATE_PLL2_DIVQ, DIV_PLL2DIVQ), + STM32_COMPOSITE(_PLL2R, PLL2_R, _CK_PLL2, CLK_IS_CRITICAL, GATE_PLL2_DIVR, DIV_PLL2DIVR), + + STM32_COMPOSITE(_PLL3P, PLL3_P, _CK_PLL3, 0, GATE_PLL3_DIVP, DIV_PLL3DIVP), + STM32_COMPOSITE(_PLL3Q, PLL3_Q, _CK_PLL3, 0, GATE_PLL3_DIVQ, DIV_PLL3DIVQ), + STM32_COMPOSITE(_PLL3R, PLL3_R, _CK_PLL3, 0, GATE_PLL3_DIVR, DIV_PLL3DIVR), + + STM32_COMPOSITE(_PLL4P, PLL4_P, _CK_PLL4, 0, GATE_PLL4_DIVP, DIV_PLL4DIVP), + STM32_COMPOSITE(_PLL4Q, PLL4_Q, _CK_PLL4, 0, GATE_PLL4_DIVQ, DIV_PLL4DIVQ), + STM32_COMPOSITE(_PLL4R, PLL4_R, _CK_PLL4, 0, GATE_PLL4_DIVR, DIV_PLL4DIVR), + + STM32_MUX(_CKMPU, CK_MPU, MUX_MPU, 0), + STM32_DIV(_CKAXI, CK_AXI, MUX(MUX_AXI), 0, DIV_AXI), + STM32_DIV(_CKMLAHB, CK_MLAHB, MUX(MUX_MLAHB), CLK_IS_CRITICAL, DIV_MLAHB), + STM32_MUX(_CKPER, CK_PER, MUX(MUX_CKPER), 0), + + STM32_DIV(_PCLK1, PCLK1, _CKMLAHB, 0, DIV_APB1), + STM32_DIV(_PCLK2, PCLK2, _CKMLAHB, 0, DIV_APB2), + STM32_DIV(_PCLK3, PCLK3, _CKMLAHB, 0, DIV_APB3), + STM32_DIV(_PCLK4, PCLK4, _CKAXI, 0, DIV_APB4), + STM32_DIV(_PCLK5, PCLK5, _CKAXI, 0, DIV_APB5), + STM32_DIV(_PCLK6, PCLK6, _CKMLAHB, 0, DIV_APB6), + + CK_TIMER(_CKTIMG1, CK_TIMG1, _PCLK1, 0, RCC_APB1DIVR, RCC_TIMG1PRER), + CK_TIMER(_CKTIMG2, CK_TIMG2, _PCLK2, 0, RCC_APB2DIVR, RCC_TIMG2PRER), + CK_TIMER(_CKTIMG3, CK_TIMG3, _PCLK6, 0, RCC_APB6DIVR, RCC_TIMG3PRER), + + /* END ROOT CLOCKS */ + + STM32_GATE(_DDRC1, DDRC1, _CKAXI, CLK_IS_CRITICAL, GATE_DDRC1), + STM32_GATE(_DDRC1LP, DDRC1LP, _CKAXI, CLK_IS_CRITICAL, GATE_DDRC1LP), + STM32_GATE(_DDRPHYC, DDRPHYC, _PLL2R, CLK_IS_CRITICAL, GATE_DDRPHYC), + STM32_GATE(_DDRPHYCLP, DDRPHYCLP, _PLL2R, CLK_IS_CRITICAL, GATE_DDRPHYCLP), + STM32_GATE(_DDRCAPB, DDRCAPB, _PCLK4, CLK_IS_CRITICAL, GATE_DDRCAPB), + STM32_GATE(_DDRCAPBLP, DDRCAPBLP, _PCLK4, CLK_IS_CRITICAL, GATE_DDRCAPBLP), + STM32_GATE(_AXIDCG, AXIDCG, _CKAXI, CLK_IS_CRITICAL, GATE_AXIDCG), + STM32_GATE(_DDRPHYCAPB, DDRPHYCAPB, _PCLK4, CLK_IS_CRITICAL, GATE_DDRPHYCAPB), + STM32_GATE(_DDRPHYCAPBLP, DDRPHYCAPBLP, _PCLK4, CLK_IS_CRITICAL, GATE_DDRPHYCAPBLP), + + STM32_GATE(_SYSCFG, SYSCFG, _PCLK3, 0, GATE_SYSCFG), + STM32_GATE(_DDRPERFM, DDRPERFM, _PCLK4, 0, GATE_DDRPERFM), + STM32_GATE(_IWDG2APB, IWDG2, _PCLK4, 0, GATE_IWDG2APB), + STM32_GATE(_USBPHY_K, USBPHY_K, MUX(MUX_USBPHY), 0, GATE_USBPHY), + STM32_GATE(_USBO_K, USBO_K, MUX(MUX_USBO), 0, GATE_USBO), + + STM32_GATE(_RTCAPB, RTCAPB, _PCLK5, CLK_IS_CRITICAL, GATE_RTCAPB), + STM32_GATE(_TZC, TZC, _PCLK5, CLK_IS_CRITICAL, GATE_TZC), + STM32_GATE(_ETZPC, TZPC, _PCLK5, CLK_IS_CRITICAL, GATE_ETZPC), + STM32_GATE(_IWDG1APB, IWDG1, _PCLK5, 0, GATE_IWDG1APB), + STM32_GATE(_BSEC, BSEC, _PCLK5, CLK_IS_CRITICAL, GATE_BSEC), + STM32_GATE(_STGENC, STGEN_K, MUX(MUX_STGEN), CLK_IS_CRITICAL, GATE_STGENC), + + STM32_GATE(_USART1_K, USART1_K, MUX(MUX_UART1), 0, GATE_USART1), + STM32_GATE(_USART2_K, USART2_K, MUX(MUX_UART2), 0, GATE_USART2), + STM32_GATE(_I2C3_K, I2C3_K, MUX(MUX_I2C3), 0, GATE_I2C3), + STM32_GATE(_I2C4_K, I2C4_K, MUX(MUX_I2C4), 0, GATE_I2C4), + STM32_GATE(_I2C5_K, I2C5_K, MUX(MUX_I2C5), 0, GATE_I2C5), + STM32_GATE(_TIM12, TIM12_K, _CKTIMG3, 0, GATE_TIM12), + STM32_GATE(_TIM15, TIM15_K, _CKTIMG3, 0, GATE_TIM15), + + STM32_GATE(_RTCCK, RTC, MUX(MUX_RTC), 0, GATE_RTCCK), + + STM32_GATE(_GPIOA, GPIOA, _CKMLAHB, 0, GATE_GPIOA), + STM32_GATE(_GPIOB, GPIOB, _CKMLAHB, 0, GATE_GPIOB), + STM32_GATE(_GPIOC, GPIOC, _CKMLAHB, 0, GATE_GPIOC), + STM32_GATE(_GPIOD, GPIOD, _CKMLAHB, 0, GATE_GPIOD), + STM32_GATE(_GPIOE, GPIOE, _CKMLAHB, 0, GATE_GPIOE), + STM32_GATE(_GPIOF, GPIOF, _CKMLAHB, 0, GATE_GPIOF), + STM32_GATE(_GPIOG, GPIOG, _CKMLAHB, 0, GATE_GPIOG), + STM32_GATE(_GPIOH, GPIOH, _CKMLAHB, 0, GATE_GPIOH), + STM32_GATE(_GPIOI, GPIOI, _CKMLAHB, 0, GATE_GPIOI), + + STM32_GATE(_PKA, PKA, _CKAXI, 0, GATE_PKA), + STM32_GATE(_SAES_K, SAES_K, MUX(MUX_SAES), 0, GATE_SAES), + STM32_GATE(_CRYP1, CRYP1, _PCLK5, 0, GATE_CRYP1), + STM32_GATE(_HASH1, HASH1, _PCLK5, 0, GATE_HASH1), + + STM32_GATE(_RNG1_K, RNG1_K, MUX(MUX_RNG1), 0, GATE_RNG1), + STM32_GATE(_BKPSRAM, BKPSRAM, _PCLK5, CLK_IS_CRITICAL, GATE_BKPSRAM), + + STM32_GATE(_SDMMC1_K, SDMMC1_K, MUX(MUX_SDMMC1), 0, GATE_SDMMC1), + STM32_GATE(_SDMMC2_K, SDMMC2_K, MUX(MUX_SDMMC2), 0, GATE_SDMMC2), + STM32_GATE(_DBGCK, CK_DBG, _CKAXI, 0, GATE_DBGCK), + +/* TODO: CHECK CLOCK FOR BL2/BL32 AND IF ONLY FOR TEST OR NOT */ + STM32_GATE(_USART3_K, USART3_K, MUX(MUX_UART35), 0, GATE_USART3), + STM32_GATE(_UART4_K, UART4_K, MUX(MUX_UART4), 0, GATE_UART4), + STM32_GATE(_UART5_K, UART5_K, MUX(MUX_UART35), 0, GATE_UART5), + STM32_GATE(_UART7_K, UART7_K, MUX(MUX_UART78), 0, GATE_UART7), + STM32_GATE(_UART8_K, UART8_K, MUX(MUX_UART78), 0, GATE_UART8), + STM32_GATE(_USART6_K, USART6_K, MUX(MUX_UART6), 0, GATE_USART6), + STM32_GATE(_MCE, MCE, _CKAXI, CLK_IS_CRITICAL, GATE_MCE), + STM32_GATE(_FMC_K, FMC_K, MUX(MUX_FMC), 0, GATE_FMC), + STM32_GATE(_QSPI_K, QSPI_K, MUX(MUX_QSPI), 0, GATE_QSPI), + + STM32_COMPOSITE(_MCO1_K, CK_MCO1, MUX(MUX_MCO1), 0, GATE_MCO1, DIV_MCO1), + STM32_COMPOSITE(_MCO2_K, CK_MCO2, MUX(MUX_MCO2), 0, GATE_MCO2, DIV_MCO2), + STM32_COMPOSITE(_TRACECK, CK_TRACE, _CKAXI, 0, GATE_TRACECK, DIV_TRACE), + +#if defined(IMAGE_BL32) + STM32_GATE(_TIM2, TIM2_K, _CKTIMG1, 0, GATE_TIM2), + STM32_GATE(_TIM3, TIM3_K, _CKTIMG1, 0, GATE_TIM3), + STM32_GATE(_TIM4, TIM4_K, _CKTIMG1, 0, GATE_TIM4), + STM32_GATE(_TIM5, TIM5_K, _CKTIMG1, 0, GATE_TIM5), + STM32_GATE(_TIM6, TIM6_K, _CKTIMG1, 0, GATE_TIM6), + STM32_GATE(_TIM7, TIM7_K, _CKTIMG1, 0, GATE_TIM7), + STM32_GATE(_TIM13, TIM13_K, _CKTIMG3, 0, GATE_TIM13), + STM32_GATE(_TIM14, TIM14_K, _CKTIMG3, 0, GATE_TIM14), + STM32_GATE(_LPTIM1_K, LPTIM1_K, MUX(MUX_LPTIM1), 0, GATE_LPTIM1), + STM32_GATE(_SPI2_K, SPI2_K, MUX(MUX_SPI23), 0, GATE_SPI2), + STM32_GATE(_SPI3_K, SPI3_K, MUX(MUX_SPI23), 0, GATE_SPI3), + STM32_GATE(_SPDIF_K, SPDIF_K, MUX(MUX_SPDIF), 0, GATE_SPDIF), + STM32_GATE(_TIM1, TIM1_K, _CKTIMG2, 0, GATE_TIM1), + STM32_GATE(_TIM8, TIM8_K, _CKTIMG2, 0, GATE_TIM8), + STM32_GATE(_TIM16, TIM16_K, _CKTIMG3, 0, GATE_TIM16), + STM32_GATE(_TIM17, TIM17_K, _CKTIMG3, 0, GATE_TIM17), + STM32_GATE(_SPI1_K, SPI1_K, MUX(MUX_SPI1), 0, GATE_SPI1), + STM32_GATE(_SPI4_K, SPI4_K, MUX(MUX_SPI4), 0, GATE_SPI4), + STM32_GATE(_SPI5_K, SPI5_K, MUX(MUX_SPI5), 0, GATE_SPI5), + STM32_GATE(_SAI1_K, SAI1_K, MUX(MUX_SAI1), 0, GATE_SAI1), + STM32_GATE(_SAI2_K, SAI2_K, MUX(MUX_SAI2), 0, GATE_SAI2), + STM32_GATE(_DFSDM, DFSDM_K, MUX(MUX_SAI1), 0, GATE_DFSDM), + STM32_GATE(_FDCAN_K, FDCAN_K, MUX(MUX_FDCAN), 0, GATE_FDCAN), + STM32_GATE(_USBH, USBH, _CKAXI, 0, GATE_USBH), + STM32_GATE(_I2C1_K, I2C1_K, MUX(MUX_I2C12), 0, GATE_I2C1), + STM32_GATE(_I2C2_K, I2C2_K, MUX(MUX_I2C12), 0, GATE_I2C2), + STM32_GATE(_ADFSDM, ADFSDM_K, MUX(MUX_SAI1), 0, GATE_ADFSDM), + STM32_GATE(_LPTIM2_K, LPTIM2_K, MUX(MUX_LPTIM2), 0, GATE_LPTIM2), + STM32_GATE(_LPTIM3_K, LPTIM3_K, MUX(MUX_LPTIM3), 0, GATE_LPTIM3), + STM32_GATE(_LPTIM4_K, LPTIM4_K, MUX(MUX_LPTIM45), 0, GATE_LPTIM4), + STM32_GATE(_LPTIM5_K, LPTIM5_K, MUX(MUX_LPTIM45), 0, GATE_LPTIM5), + STM32_GATE(_VREF, VREF, _PCLK3, 0, GATE_VREF), + STM32_GATE(_DTS, TMPSENS, _PCLK3, 0, GATE_DTS), + STM32_GATE(_PMBCTRL, PMBCTRL, _PCLK3, 0, GATE_HDP), + STM32_GATE(_HDP, HDP, _PCLK3, 0, GATE_PMBCTRL), + STM32_GATE(_STGENRO, STGENRO, _PCLK4, 0, GATE_DCMIPP), + STM32_GATE(_DCMIPP_K, DCMIPP_K, MUX(MUX_DCMIPP), 0, GATE_DCMIPP), + STM32_GATE(_DMAMUX1, DMAMUX1, _CKAXI, 0, GATE_DMAMUX1), + STM32_GATE(_DMAMUX2, DMAMUX2, _CKAXI, 0, GATE_DMAMUX2), + STM32_GATE(_DMA3, DMA3, _CKAXI, 0, GATE_DMAMUX2), + STM32_GATE(_ADC1_K, ADC1_K, MUX(MUX_ADC1), 0, GATE_ADC1), + STM32_GATE(_ADC2_K, ADC2_K, MUX(MUX_ADC2), 0, GATE_ADC2), + STM32_GATE(_TSC, TSC, _CKAXI, 0, GATE_TSC), + STM32_GATE(_AXIMC, AXIMC, _CKAXI, 0, GATE_AXIMC), + STM32_GATE(_CRC1, CRC1, _CKAXI, 0, GATE_ETH1TX), + STM32_GATE(_ETH1CK, ETH1CK_K, MUX(MUX_ETH1), 0, GATE_ETH1CK), + STM32_GATE(_ETH1TX, ETH1TX, _CKAXI, 0, GATE_ETH1TX), + STM32_GATE(_ETH1RX, ETH1RX, _CKAXI, 0, GATE_ETH1RX), + STM32_GATE(_ETH2CK, ETH2CK_K, MUX(MUX_ETH2), 0, GATE_ETH2CK), + STM32_GATE(_ETH2TX, ETH2TX, _CKAXI, 0, GATE_ETH2TX), + STM32_GATE(_ETH2RX, ETH2RX, _CKAXI, 0, GATE_ETH2RX), + STM32_GATE(_ETH2MAC, ETH2MAC, _CKAXI, 0, GATE_ETH2MAC), +#endif +}; + +static struct stm32_pll_dt_cfg mp13_pll[_PLL_NB]; + +static struct stm32_osci_dt_cfg mp13_osci[NB_OSCILLATOR]; + +static uint32_t mp13_clksrc[MUX_MAX]; + +static uint32_t mp13_clkdiv[DIV_MAX]; + +static struct stm32_clk_platdata stm32mp13_clock_pdata = { + .osci = mp13_osci, + .nosci = NB_OSCILLATOR, + .pll = mp13_pll, + .npll = _PLL_NB, + .clksrc = mp13_clksrc, + .nclksrc = MUX_MAX, + .clkdiv = mp13_clkdiv, + .nclkdiv = DIV_MAX, +}; + +static struct stm32_clk_priv stm32mp13_clock_data = { + .base = RCC_BASE, + .num = ARRAY_SIZE(stm32mp13_clk), + .clks = stm32mp13_clk, + .parents = parent_mp13, + .nb_parents = ARRAY_SIZE(parent_mp13), + .gates = gates_mp13, + .nb_gates = ARRAY_SIZE(gates_mp13), + .div = dividers_mp13, + .nb_div = ARRAY_SIZE(dividers_mp13), + .osci_data = stm32mp13_osc_data, + .nb_osci_data = ARRAY_SIZE(stm32mp13_osc_data), + .gate_refcounts = refcounts_mp13, + .pdata = &stm32mp13_clock_pdata, +}; + +static int stm32mp1_init_clock_tree(void) +{ + struct stm32_clk_priv *priv = clk_stm32_get_priv(); + int ret; + +#if STM32MP_USB_PROGRAMMER + int usbphy_p = _clk_stm32_get_parent(priv, _USBPHY_K); + int usbo_p = _clk_stm32_get_parent(priv, _USBO_K); + + /* Don't initialize PLL4, when used by BOOTROM */ + pll4_bootrom = stm32mp1_clk_is_pll4_used_by_bootrom(priv, usbphy_p); +#endif + + /* + * Switch ON oscillators found in device-tree. + * Note: HSI already ON after BootROM stage. + */ + stm32_clk_oscillators_enable(priv); + + /* Come back to HSI */ + ret = stm32mp1_come_back_to_hsi(); + if (ret != 0) { + return ret; + } + + ret = stm32_clk_hsidiv_configure(priv); + if (ret != 0) { + return ret; + } + + ret = stm32_clk_stgen_configure(priv, _STGENC); + if (ret != 0) { + panic(); + } + + ret = stm32_clk_dividers_configure(priv); + if (ret != 0) { + panic(); + } + + ret = stm32_clk_pll_configure(priv); + if (ret != 0) { + panic(); + } + + /* Wait LSE ready before to use it */ + ret = stm32_clk_oscillators_wait_lse_ready(priv); + if (ret != 0) { + panic(); + } + + /* Configure with expected clock source */ + ret = stm32_clk_source_configure(priv); + if (ret != 0) { + panic(); + } + + /* Configure LSE css after RTC source configuration */ + ret = stm32_clk_oscillators_lse_set_css(priv); + if (ret != 0) { + panic(); + } + +#if STM32MP_USB_PROGRAMMER + ret = stm32mp1_clk_check_usb_conflict(priv, usbphy_p, usbo_p); + if (ret != 0) { + return ret; + } +#endif + /* reconfigure STGEN with DT config */ + ret = stm32_clk_stgen_configure(priv, _STGENC); + if (ret != 0) { + panic(); + } + + /* Software Self-Refresh mode (SSR) during DDR initilialization */ + mmio_clrsetbits_32(priv->base + RCC_DDRITFCR, + RCC_DDRITFCR_DDRCKMOD_MASK, + RCC_DDRITFCR_DDRCKMOD_SSR << + RCC_DDRITFCR_DDRCKMOD_SHIFT); + + return 0; +} + +#define LSEDRV_MEDIUM_HIGH 2 + +static int clk_stm32_parse_oscillator_fdt(void *fdt, int node, const char *name, + struct stm32_osci_dt_cfg *osci) +{ + int subnode = 0; + + /* default value oscillator not found, freq=0 */ + osci->freq = 0; + + fdt_for_each_subnode(subnode, fdt, node) { + const char *cchar = NULL; + const fdt32_t *cuint = NULL; + int ret = 0; + + cchar = fdt_get_name(fdt, subnode, &ret); + if (cchar == NULL) { + return ret; + } + + if (strncmp(cchar, name, (size_t)ret) || + fdt_get_status(subnode) == DT_DISABLED) { + continue; + } + + cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret); + if (cuint == NULL) { + return ret; + } + + osci->freq = fdt32_to_cpu(*cuint); + + if (fdt_getprop(fdt, subnode, "st,bypass", NULL) != NULL) { + osci->bypass = true; + } + + if (fdt_getprop(fdt, subnode, "st,digbypass", NULL) != NULL) { + osci->digbyp = true; + } + + if (fdt_getprop(fdt, subnode, "st,css", NULL) != NULL) { + osci->css = true; + } + + osci->drive = fdt_read_uint32_default(fdt, subnode, "st,drive", LSEDRV_MEDIUM_HIGH); + + return 0; + } + + return 0; +} + +static int stm32_clk_parse_fdt_all_oscillator(void *fdt, struct stm32_clk_platdata *pdata) +{ + int fdt_err = 0; + uint32_t i = 0; + int node = 0; + + node = fdt_path_offset(fdt, "/clocks"); + if (node < 0) { + return -FDT_ERR_NOTFOUND; + } + + for (i = 0; i < pdata->nosci; i++) { + const char *name = NULL; + + name = clk_stm32_get_oscillator_name((enum stm32_osc)i); + if (name == NULL) { + continue; + } + + fdt_err = clk_stm32_parse_oscillator_fdt(fdt, node, name, &pdata->osci[i]); + if (fdt_err < 0) { + panic(); + } + } + + return 0; +} + +#define RCC_PLL_NAME_SIZE 12 + +static int clk_stm32_load_vco_config(void *fdt, int subnode, struct stm32_pll_vco *vco) +{ + int err = 0; + + err = fdt_read_uint32_array(fdt, subnode, "divmn", (int)PLL_DIV_MN_NB, vco->div_mn); + if (err != 0) { + return err; + } + + err = fdt_read_uint32_array(fdt, subnode, "csg", (int)PLL_CSG_NB, vco->csg); + + vco->csg_enabled = (err == 0); + + if (err == -FDT_ERR_NOTFOUND) { + err = 0; + } + + if (err != 0) { + return err; + } + + vco->status = RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN | RCC_PLLNCR_PLLON; + + vco->frac = fdt_read_uint32_default(fdt, subnode, "frac", 0); + + vco->src = fdt_read_uint32_default(fdt, subnode, "src", UINT32_MAX); + + return 0; +} + +static int clk_stm32_load_output_config(void *fdt, int subnode, struct stm32_pll_output *output) +{ + int err = 0; + + err = fdt_read_uint32_array(fdt, subnode, "st,pll_div_pqr", (int)PLL_DIV_PQR_NB, + output->output); + if (err != 0) { + return err; + } + + return 0; +} + +static int clk_stm32_parse_pll_fdt(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll) +{ + const fdt32_t *cuint = NULL; + int subnode_pll = 0; + int subnode_vco = 0; + int err = 0; + + cuint = fdt_getprop(fdt, subnode, "st,pll", NULL); + if (!cuint) { + return -FDT_ERR_NOTFOUND; + } + + subnode_pll = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint)); + if (subnode_pll < 0) { + return -FDT_ERR_NOTFOUND; + } + + cuint = fdt_getprop(fdt, subnode_pll, "st,pll_vco", NULL); + if (!cuint) { + return -FDT_ERR_NOTFOUND; + } + + subnode_vco = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint)); + if (subnode_vco < 0) { + return -FDT_ERR_NOTFOUND; + } + + err = clk_stm32_load_vco_config(fdt, subnode_vco, &pll->vco); + if (err != 0) { + return err; + } + + err = clk_stm32_load_output_config(fdt, subnode_pll, &pll->output); + if (err != 0) { + return err; + } + + return 0; +} + +static int stm32_clk_parse_fdt_all_pll(void *fdt, int node, struct stm32_clk_platdata *pdata) +{ + size_t i = 0U; + + for (i = _PLL1; i < pdata->npll; i++) { + struct stm32_pll_dt_cfg *pll = pdata->pll + i; + char name[RCC_PLL_NAME_SIZE]; + int subnode = 0; + int err = 0; + + snprintf(name, sizeof(name), "st,pll@%u", i); + + subnode = fdt_subnode_offset(fdt, node, name); + if (!fdt_check_node(subnode)) { + continue; + } + + err = clk_stm32_parse_pll_fdt(fdt, subnode, pll); + if (err != 0) { + panic(); + } + } + + return 0; +} + +static int stm32_clk_parse_fdt(struct stm32_clk_platdata *pdata) +{ + void *fdt = NULL; + int node; + uint32_t err; + + if (fdt_get_address(&fdt) == 0) { + return -ENOENT; + } + + node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT); + if (node < 0) { + panic(); + } + + err = stm32_clk_parse_fdt_all_oscillator(fdt, pdata); + if (err != 0) { + return err; + } + + err = stm32_clk_parse_fdt_all_pll(fdt, node, pdata); + if (err != 0) { + return err; + } + + err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clkdiv", pdata->clkdiv, &pdata->nclkdiv); + if (err != 0) { + return err; + } + + err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clksrc", pdata->clksrc, &pdata->nclksrc); + if (err != 0) { + return err; + } + + return 0; +} + +int stm32mp1_clk_init(void) +{ + return 0; +} + +int stm32mp1_clk_probe(void) +{ + uintptr_t base = RCC_BASE; + int ret; + + ret = stm32_clk_parse_fdt(&stm32mp13_clock_pdata); + if (ret != 0) { + return ret; + } + + ret = clk_stm32_init(&stm32mp13_clock_data, base); + if (ret != 0) { + return ret; + } + + ret = stm32mp1_init_clock_tree(); + if (ret != 0) { + return ret; + } + + clk_stm32_enable_critical_clocks(); + + return 0; +} diff --git a/drivers/st/clk/stm32mp1_clk.c b/drivers/st/clk/stm32mp1_clk.c new file mode 100644 index 0000000..aa5db6f --- /dev/null +++ b/drivers/st/clk/stm32mp1_clk.c @@ -0,0 +1,2373 @@ +/* + * Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <stdint.h> +#include <stdio.h> + +#include <arch.h> +#include <arch_helpers.h> +#include <common/debug.h> +#include <common/fdt_wrappers.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32mp_clkfunc.h> +#include <drivers/st/stm32mp1_clk.h> +#include <drivers/st/stm32mp1_rcc.h> +#include <dt-bindings/clock/stm32mp1-clksrc.h> +#include <lib/mmio.h> +#include <lib/spinlock.h> +#include <lib/utils_def.h> +#include <libfdt.h> +#include <plat/common/platform.h> + +#include <platform_def.h> + +#define MAX_HSI_HZ 64000000 +#define USB_PHY_48_MHZ 48000000 + +#define TIMEOUT_US_200MS U(200000) +#define TIMEOUT_US_1S U(1000000) + +#define PLLRDY_TIMEOUT TIMEOUT_US_200MS +#define CLKSRC_TIMEOUT TIMEOUT_US_200MS +#define CLKDIV_TIMEOUT TIMEOUT_US_200MS +#define HSIDIV_TIMEOUT TIMEOUT_US_200MS +#define OSCRDY_TIMEOUT TIMEOUT_US_1S + +const char *stm32mp_osc_node_label[NB_OSC] = { + [_LSI] = "clk-lsi", + [_LSE] = "clk-lse", + [_HSI] = "clk-hsi", + [_HSE] = "clk-hse", + [_CSI] = "clk-csi", + [_I2S_CKIN] = "i2s_ckin", +}; + +enum stm32mp1_parent_id { +/* Oscillators are defined in enum stm32mp_osc_id */ + +/* Other parent source */ + _HSI_KER = NB_OSC, + _HSE_KER, + _HSE_KER_DIV2, + _HSE_RTC, + _CSI_KER, + _PLL1_P, + _PLL1_Q, + _PLL1_R, + _PLL2_P, + _PLL2_Q, + _PLL2_R, + _PLL3_P, + _PLL3_Q, + _PLL3_R, + _PLL4_P, + _PLL4_Q, + _PLL4_R, + _ACLK, + _PCLK1, + _PCLK2, + _PCLK3, + _PCLK4, + _PCLK5, + _HCLK6, + _HCLK2, + _CK_PER, + _CK_MPU, + _CK_MCU, + _USB_PHY_48, + _PARENT_NB, + _UNKNOWN_ID = 0xff, +}; + +/* Lists only the parent clock we are interested in */ +enum stm32mp1_parent_sel { + _I2C12_SEL, + _I2C35_SEL, + _STGEN_SEL, + _I2C46_SEL, + _SPI6_SEL, + _UART1_SEL, + _RNG1_SEL, + _UART6_SEL, + _UART24_SEL, + _UART35_SEL, + _UART78_SEL, + _SDMMC12_SEL, + _SDMMC3_SEL, + _QSPI_SEL, + _FMC_SEL, + _AXIS_SEL, + _MCUS_SEL, + _USBPHY_SEL, + _USBO_SEL, + _MPU_SEL, + _CKPER_SEL, + _RTC_SEL, + _PARENT_SEL_NB, + _UNKNOWN_SEL = 0xff, +}; + +/* State the parent clock ID straight related to a clock */ +static const uint8_t parent_id_clock_id[_PARENT_NB] = { + [_HSE] = CK_HSE, + [_HSI] = CK_HSI, + [_CSI] = CK_CSI, + [_LSE] = CK_LSE, + [_LSI] = CK_LSI, + [_I2S_CKIN] = _UNKNOWN_ID, + [_USB_PHY_48] = _UNKNOWN_ID, + [_HSI_KER] = CK_HSI, + [_HSE_KER] = CK_HSE, + [_HSE_KER_DIV2] = CK_HSE_DIV2, + [_HSE_RTC] = _UNKNOWN_ID, + [_CSI_KER] = CK_CSI, + [_PLL1_P] = PLL1_P, + [_PLL1_Q] = PLL1_Q, + [_PLL1_R] = PLL1_R, + [_PLL2_P] = PLL2_P, + [_PLL2_Q] = PLL2_Q, + [_PLL2_R] = PLL2_R, + [_PLL3_P] = PLL3_P, + [_PLL3_Q] = PLL3_Q, + [_PLL3_R] = PLL3_R, + [_PLL4_P] = PLL4_P, + [_PLL4_Q] = PLL4_Q, + [_PLL4_R] = PLL4_R, + [_ACLK] = CK_AXI, + [_PCLK1] = CK_AXI, + [_PCLK2] = CK_AXI, + [_PCLK3] = CK_AXI, + [_PCLK4] = CK_AXI, + [_PCLK5] = CK_AXI, + [_CK_PER] = CK_PER, + [_CK_MPU] = CK_MPU, + [_CK_MCU] = CK_MCU, +}; + +static unsigned int clock_id2parent_id(unsigned long id) +{ + unsigned int n; + + for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) { + if (parent_id_clock_id[n] == id) { + return n; + } + } + + return _UNKNOWN_ID; +} + +enum stm32mp1_pll_id { + _PLL1, + _PLL2, + _PLL3, + _PLL4, + _PLL_NB +}; + +enum stm32mp1_div_id { + _DIV_P, + _DIV_Q, + _DIV_R, + _DIV_NB, +}; + +enum stm32mp1_clksrc_id { + CLKSRC_MPU, + CLKSRC_AXI, + CLKSRC_MCU, + CLKSRC_PLL12, + CLKSRC_PLL3, + CLKSRC_PLL4, + CLKSRC_RTC, + CLKSRC_MCO1, + CLKSRC_MCO2, + CLKSRC_NB +}; + +enum stm32mp1_clkdiv_id { + CLKDIV_MPU, + CLKDIV_AXI, + CLKDIV_MCU, + CLKDIV_APB1, + CLKDIV_APB2, + CLKDIV_APB3, + CLKDIV_APB4, + CLKDIV_APB5, + CLKDIV_RTC, + CLKDIV_MCO1, + CLKDIV_MCO2, + CLKDIV_NB +}; + +enum stm32mp1_pllcfg { + PLLCFG_M, + PLLCFG_N, + PLLCFG_P, + PLLCFG_Q, + PLLCFG_R, + PLLCFG_O, + PLLCFG_NB +}; + +enum stm32mp1_pllcsg { + PLLCSG_MOD_PER, + PLLCSG_INC_STEP, + PLLCSG_SSCG_MODE, + PLLCSG_NB +}; + +enum stm32mp1_plltype { + PLL_800, + PLL_1600, + PLL_TYPE_NB +}; + +struct stm32mp1_pll { + uint8_t refclk_min; + uint8_t refclk_max; +}; + +struct stm32mp1_clk_gate { + uint16_t offset; + uint8_t bit; + uint8_t index; + uint8_t set_clr; + uint8_t secure; + uint8_t sel; /* Relates to enum stm32mp1_parent_sel */ + uint8_t fixed; /* Relates to enum stm32mp1_parent_id */ +}; + +struct stm32mp1_clk_sel { + uint16_t offset; + uint8_t src; + uint8_t msk; + uint8_t nb_parent; + const uint8_t *parent; +}; + +#define REFCLK_SIZE 4 +struct stm32mp1_clk_pll { + enum stm32mp1_plltype plltype; + uint16_t rckxselr; + uint16_t pllxcfgr1; + uint16_t pllxcfgr2; + uint16_t pllxfracr; + uint16_t pllxcr; + uint16_t pllxcsgr; + enum stm32mp_osc_id refclk[REFCLK_SIZE]; +}; + +/* Clocks with selectable source and non set/clr register access */ +#define _CLK_SELEC(sec, off, b, idx, s) \ + { \ + .offset = (off), \ + .bit = (b), \ + .index = (idx), \ + .set_clr = 0, \ + .secure = (sec), \ + .sel = (s), \ + .fixed = _UNKNOWN_ID, \ + } + +/* Clocks with fixed source and non set/clr register access */ +#define _CLK_FIXED(sec, off, b, idx, f) \ + { \ + .offset = (off), \ + .bit = (b), \ + .index = (idx), \ + .set_clr = 0, \ + .secure = (sec), \ + .sel = _UNKNOWN_SEL, \ + .fixed = (f), \ + } + +/* Clocks with selectable source and set/clr register access */ +#define _CLK_SC_SELEC(sec, off, b, idx, s) \ + { \ + .offset = (off), \ + .bit = (b), \ + .index = (idx), \ + .set_clr = 1, \ + .secure = (sec), \ + .sel = (s), \ + .fixed = _UNKNOWN_ID, \ + } + +/* Clocks with fixed source and set/clr register access */ +#define _CLK_SC_FIXED(sec, off, b, idx, f) \ + { \ + .offset = (off), \ + .bit = (b), \ + .index = (idx), \ + .set_clr = 1, \ + .secure = (sec), \ + .sel = _UNKNOWN_SEL, \ + .fixed = (f), \ + } + +#define _CLK_PARENT_SEL(_label, _rcc_selr, _parents) \ + [_ ## _label ## _SEL] = { \ + .offset = _rcc_selr, \ + .src = _rcc_selr ## _ ## _label ## SRC_SHIFT, \ + .msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \ + (_rcc_selr ## _ ## _label ## SRC_SHIFT), \ + .parent = (_parents), \ + .nb_parent = ARRAY_SIZE(_parents) \ + } + +#define _CLK_PLL(idx, type, off1, off2, off3, \ + off4, off5, off6, \ + p1, p2, p3, p4) \ + [(idx)] = { \ + .plltype = (type), \ + .rckxselr = (off1), \ + .pllxcfgr1 = (off2), \ + .pllxcfgr2 = (off3), \ + .pllxfracr = (off4), \ + .pllxcr = (off5), \ + .pllxcsgr = (off6), \ + .refclk[0] = (p1), \ + .refclk[1] = (p2), \ + .refclk[2] = (p3), \ + .refclk[3] = (p4), \ + } + +#define NB_GATES ARRAY_SIZE(stm32mp1_clk_gate) + +#define SEC 1 +#define N_S 0 + +static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = { + _CLK_FIXED(SEC, RCC_DDRITFCR, 0, DDRC1, _ACLK), + _CLK_FIXED(SEC, RCC_DDRITFCR, 1, DDRC1LP, _ACLK), + _CLK_FIXED(SEC, RCC_DDRITFCR, 2, DDRC2, _ACLK), + _CLK_FIXED(SEC, RCC_DDRITFCR, 3, DDRC2LP, _ACLK), + _CLK_FIXED(SEC, RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R), + _CLK_FIXED(SEC, RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R), + _CLK_FIXED(SEC, RCC_DDRITFCR, 6, DDRCAPB, _PCLK4), + _CLK_FIXED(SEC, RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4), + _CLK_FIXED(SEC, RCC_DDRITFCR, 8, AXIDCG, _ACLK), + _CLK_FIXED(SEC, RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4), + _CLK_FIXED(SEC, RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4), + +#if defined(IMAGE_BL32) + _CLK_SC_FIXED(N_S, RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1), +#endif + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL), + +#if defined(IMAGE_BL32) + _CLK_SC_FIXED(N_S, RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2), +#endif + _CLK_SC_SELEC(N_S, RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL), + + _CLK_SC_FIXED(N_S, RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID), + + _CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL), + + _CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL), + _CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL), + _CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL), + _CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL), + _CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5), + _CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5), + _CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5), + _CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5), + _CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5), + _CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5), + _CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL), + +#if defined(IMAGE_BL32) + _CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL), +#endif + + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL), + + _CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5), + _CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5), + _CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5), + _CLK_SC_SELEC(SEC, RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL), + _CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5), + +#if defined(IMAGE_BL2) + _CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL), +#endif + _CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL), + _CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL), +#if defined(IMAGE_BL32) + _CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL), +#endif + + _CLK_SELEC(SEC, RCC_BDCR, 20, RTC, _RTC_SEL), + _CLK_SELEC(N_S, RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL), +}; + +static const uint8_t i2c12_parents[] = { + _PCLK1, _PLL4_R, _HSI_KER, _CSI_KER +}; + +static const uint8_t i2c35_parents[] = { + _PCLK1, _PLL4_R, _HSI_KER, _CSI_KER +}; + +static const uint8_t stgen_parents[] = { + _HSI_KER, _HSE_KER +}; + +static const uint8_t i2c46_parents[] = { + _PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER +}; + +static const uint8_t spi6_parents[] = { + _PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q +}; + +static const uint8_t usart1_parents[] = { + _PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER +}; + +static const uint8_t rng1_parents[] = { + _CSI, _PLL4_R, _LSE, _LSI +}; + +static const uint8_t uart6_parents[] = { + _PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER +}; + +static const uint8_t uart234578_parents[] = { + _PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER +}; + +static const uint8_t sdmmc12_parents[] = { + _HCLK6, _PLL3_R, _PLL4_P, _HSI_KER +}; + +static const uint8_t sdmmc3_parents[] = { + _HCLK2, _PLL3_R, _PLL4_P, _HSI_KER +}; + +static const uint8_t qspi_parents[] = { + _ACLK, _PLL3_R, _PLL4_P, _CK_PER +}; + +static const uint8_t fmc_parents[] = { + _ACLK, _PLL3_R, _PLL4_P, _CK_PER +}; + +static const uint8_t axiss_parents[] = { + _HSI, _HSE, _PLL2_P +}; + +static const uint8_t mcuss_parents[] = { + _HSI, _HSE, _CSI, _PLL3_P +}; + +static const uint8_t usbphy_parents[] = { + _HSE_KER, _PLL4_R, _HSE_KER_DIV2 +}; + +static const uint8_t usbo_parents[] = { + _PLL4_R, _USB_PHY_48 +}; + +static const uint8_t mpu_parents[] = { + _HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */ +}; + +static const uint8_t per_parents[] = { + _HSI, _HSE, _CSI, +}; + +static const uint8_t rtc_parents[] = { + _UNKNOWN_ID, _LSE, _LSI, _HSE_RTC +}; + +static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = { + _CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents), + _CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents), + _CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents), + _CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents), + _CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents), + _CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents), + _CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents), + _CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents), + _CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents), + _CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents), + _CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents), + _CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents), + _CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents), + _CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents), + _CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents), + _CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents), + _CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents), + _CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents), + _CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents), + _CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents), + _CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents), + _CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents), +}; + +/* Define characteristic of PLL according type */ +#define DIVN_MIN 24 +static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = { + [PLL_800] = { + .refclk_min = 4, + .refclk_max = 16, + }, + [PLL_1600] = { + .refclk_min = 8, + .refclk_max = 16, + }, +}; + +/* PLLNCFGR2 register divider by output */ +static const uint8_t pllncfgr2[_DIV_NB] = { + [_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT, + [_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT, + [_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT, +}; + +static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = { + _CLK_PLL(_PLL1, PLL_1600, + RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2, + RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR, + _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID), + _CLK_PLL(_PLL2, PLL_1600, + RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2, + RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR, + _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID), + _CLK_PLL(_PLL3, PLL_800, + RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2, + RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR, + _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID), + _CLK_PLL(_PLL4, PLL_800, + RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2, + RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR, + _HSI, _HSE, _CSI, _I2S_CKIN), +}; + +/* Prescaler table lookups for clock computation */ +/* div = /1 /2 /4 /8 / 16 /64 /128 /512 */ +static const uint8_t stm32mp1_mcu_div[16] = { + 0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9 +}; + +/* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */ +#define stm32mp1_mpu_div stm32mp1_mpu_apbx_div +#define stm32mp1_apbx_div stm32mp1_mpu_apbx_div +static const uint8_t stm32mp1_mpu_apbx_div[8] = { + 0, 1, 2, 3, 4, 4, 4, 4 +}; + +/* div = /1 /2 /3 /4 */ +static const uint8_t stm32mp1_axi_div[8] = { + 1, 2, 3, 4, 4, 4, 4, 4 +}; + +static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = { + [_HSI] = "HSI", + [_HSE] = "HSE", + [_CSI] = "CSI", + [_LSI] = "LSI", + [_LSE] = "LSE", + [_I2S_CKIN] = "I2S_CKIN", + [_HSI_KER] = "HSI_KER", + [_HSE_KER] = "HSE_KER", + [_HSE_KER_DIV2] = "HSE_KER_DIV2", + [_HSE_RTC] = "HSE_RTC", + [_CSI_KER] = "CSI_KER", + [_PLL1_P] = "PLL1_P", + [_PLL1_Q] = "PLL1_Q", + [_PLL1_R] = "PLL1_R", + [_PLL2_P] = "PLL2_P", + [_PLL2_Q] = "PLL2_Q", + [_PLL2_R] = "PLL2_R", + [_PLL3_P] = "PLL3_P", + [_PLL3_Q] = "PLL3_Q", + [_PLL3_R] = "PLL3_R", + [_PLL4_P] = "PLL4_P", + [_PLL4_Q] = "PLL4_Q", + [_PLL4_R] = "PLL4_R", + [_ACLK] = "ACLK", + [_PCLK1] = "PCLK1", + [_PCLK2] = "PCLK2", + [_PCLK3] = "PCLK3", + [_PCLK4] = "PCLK4", + [_PCLK5] = "PCLK5", + [_HCLK6] = "KCLK6", + [_HCLK2] = "HCLK2", + [_CK_PER] = "CK_PER", + [_CK_MPU] = "CK_MPU", + [_CK_MCU] = "CK_MCU", + [_USB_PHY_48] = "USB_PHY_48", +}; + +/* RCC clock device driver private */ +static unsigned long stm32mp1_osc[NB_OSC]; +static struct spinlock reg_lock; +static unsigned int gate_refcounts[NB_GATES]; +static struct spinlock refcount_lock; + +static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx) +{ + return &stm32mp1_clk_gate[idx]; +} + +#if defined(IMAGE_BL32) +static bool gate_is_non_secure(const struct stm32mp1_clk_gate *gate) +{ + return gate->secure == N_S; +} +#endif + +static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx) +{ + return &stm32mp1_clk_sel[idx]; +} + +static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx) +{ + return &stm32mp1_clk_pll[idx]; +} + +static void stm32mp1_clk_lock(struct spinlock *lock) +{ + if (stm32mp_lock_available()) { + /* Assume interrupts are masked */ + spin_lock(lock); + } +} + +static void stm32mp1_clk_unlock(struct spinlock *lock) +{ + if (stm32mp_lock_available()) { + spin_unlock(lock); + } +} + +bool stm32mp1_rcc_is_secure(void) +{ + uintptr_t rcc_base = stm32mp_rcc_base(); + uint32_t mask = RCC_TZCR_TZEN; + + return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask; +} + +bool stm32mp1_rcc_is_mckprot(void) +{ + uintptr_t rcc_base = stm32mp_rcc_base(); + uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT; + + return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask; +} + +void stm32mp1_clk_rcc_regs_lock(void) +{ + stm32mp1_clk_lock(®_lock); +} + +void stm32mp1_clk_rcc_regs_unlock(void) +{ + stm32mp1_clk_unlock(®_lock); +} + +static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx) +{ + if (idx >= NB_OSC) { + return 0; + } + + return stm32mp1_osc[idx]; +} + +static int stm32mp1_clk_get_gated_id(unsigned long id) +{ + unsigned int i; + + for (i = 0U; i < NB_GATES; i++) { + if (gate_ref(i)->index == id) { + return i; + } + } + + ERROR("%s: clk id %lu not found\n", __func__, id); + + return -EINVAL; +} + +static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i) +{ + return (enum stm32mp1_parent_sel)(gate_ref(i)->sel); +} + +static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i) +{ + return (enum stm32mp1_parent_id)(gate_ref(i)->fixed); +} + +static int stm32mp1_clk_get_parent(unsigned long id) +{ + const struct stm32mp1_clk_sel *sel; + uint32_t p_sel; + int i; + enum stm32mp1_parent_id p; + enum stm32mp1_parent_sel s; + uintptr_t rcc_base = stm32mp_rcc_base(); + + /* Few non gateable clock have a static parent ID, find them */ + i = (int)clock_id2parent_id(id); + if (i != _UNKNOWN_ID) { + return i; + } + + i = stm32mp1_clk_get_gated_id(id); + if (i < 0) { + panic(); + } + + p = stm32mp1_clk_get_fixed_parent(i); + if (p < _PARENT_NB) { + return (int)p; + } + + s = stm32mp1_clk_get_sel(i); + if (s == _UNKNOWN_SEL) { + return -EINVAL; + } + if (s >= _PARENT_SEL_NB) { + panic(); + } + + sel = clk_sel_ref(s); + p_sel = (mmio_read_32(rcc_base + sel->offset) & + (sel->msk << sel->src)) >> sel->src; + if (p_sel < sel->nb_parent) { + return (int)sel->parent[p_sel]; + } + + return -EINVAL; +} + +static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll) +{ + uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr); + uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK; + + return stm32mp1_clk_get_fixed(pll->refclk[src]); +} + +/* + * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL + * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1) + * - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1) + * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1) + */ +static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll) +{ + unsigned long refclk, fvco; + uint32_t cfgr1, fracr, divm, divn; + uintptr_t rcc_base = stm32mp_rcc_base(); + + cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1); + fracr = mmio_read_32(rcc_base + pll->pllxfracr); + + divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT; + divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK; + + refclk = stm32mp1_pll_get_fref(pll); + + /* + * With FRACV : + * Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1) + * Without FRACV + * Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1) + */ + if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) { + uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >> + RCC_PLLNFRACR_FRACV_SHIFT; + unsigned long long numerator, denominator; + + numerator = (((unsigned long long)divn + 1U) << 13) + fracv; + numerator = refclk * numerator; + denominator = ((unsigned long long)divm + 1U) << 13; + fvco = (unsigned long)(numerator / denominator); + } else { + fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U)); + } + + return fvco; +} + +static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id, + enum stm32mp1_div_id div_id) +{ + const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); + unsigned long dfout; + uint32_t cfgr2, divy; + + if (div_id >= _DIV_NB) { + return 0; + } + + cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2); + divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK; + + dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U); + + return dfout; +} + +static unsigned long get_clock_rate(int p) +{ + uint32_t reg, clkdiv; + unsigned long clock = 0; + uintptr_t rcc_base = stm32mp_rcc_base(); + + switch (p) { + case _CK_MPU: + /* MPU sub system */ + reg = mmio_read_32(rcc_base + RCC_MPCKSELR); + switch (reg & RCC_SELR_SRC_MASK) { + case RCC_MPCKSELR_HSI: + clock = stm32mp1_clk_get_fixed(_HSI); + break; + case RCC_MPCKSELR_HSE: + clock = stm32mp1_clk_get_fixed(_HSE); + break; + case RCC_MPCKSELR_PLL: + clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P); + break; + case RCC_MPCKSELR_PLL_MPUDIV: + clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P); + + reg = mmio_read_32(rcc_base + RCC_MPCKDIVR); + clkdiv = reg & RCC_MPUDIV_MASK; + clock >>= stm32mp1_mpu_div[clkdiv]; + break; + default: + break; + } + break; + /* AXI sub system */ + case _ACLK: + case _HCLK2: + case _HCLK6: + case _PCLK4: + case _PCLK5: + reg = mmio_read_32(rcc_base + RCC_ASSCKSELR); + switch (reg & RCC_SELR_SRC_MASK) { + case RCC_ASSCKSELR_HSI: + clock = stm32mp1_clk_get_fixed(_HSI); + break; + case RCC_ASSCKSELR_HSE: + clock = stm32mp1_clk_get_fixed(_HSE); + break; + case RCC_ASSCKSELR_PLL: + clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P); + break; + default: + break; + } + + /* System clock divider */ + reg = mmio_read_32(rcc_base + RCC_AXIDIVR); + clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK]; + + switch (p) { + case _PCLK4: + reg = mmio_read_32(rcc_base + RCC_APB4DIVR); + clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; + break; + case _PCLK5: + reg = mmio_read_32(rcc_base + RCC_APB5DIVR); + clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; + break; + default: + break; + } + break; + /* MCU sub system */ + case _CK_MCU: + case _PCLK1: + case _PCLK2: + case _PCLK3: + reg = mmio_read_32(rcc_base + RCC_MSSCKSELR); + switch (reg & RCC_SELR_SRC_MASK) { + case RCC_MSSCKSELR_HSI: + clock = stm32mp1_clk_get_fixed(_HSI); + break; + case RCC_MSSCKSELR_HSE: + clock = stm32mp1_clk_get_fixed(_HSE); + break; + case RCC_MSSCKSELR_CSI: + clock = stm32mp1_clk_get_fixed(_CSI); + break; + case RCC_MSSCKSELR_PLL: + clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P); + break; + default: + break; + } + + /* MCU clock divider */ + reg = mmio_read_32(rcc_base + RCC_MCUDIVR); + clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK]; + + switch (p) { + case _PCLK1: + reg = mmio_read_32(rcc_base + RCC_APB1DIVR); + clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; + break; + case _PCLK2: + reg = mmio_read_32(rcc_base + RCC_APB2DIVR); + clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; + break; + case _PCLK3: + reg = mmio_read_32(rcc_base + RCC_APB3DIVR); + clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK]; + break; + case _CK_MCU: + default: + break; + } + break; + case _CK_PER: + reg = mmio_read_32(rcc_base + RCC_CPERCKSELR); + switch (reg & RCC_SELR_SRC_MASK) { + case RCC_CPERCKSELR_HSI: + clock = stm32mp1_clk_get_fixed(_HSI); + break; + case RCC_CPERCKSELR_HSE: + clock = stm32mp1_clk_get_fixed(_HSE); + break; + case RCC_CPERCKSELR_CSI: + clock = stm32mp1_clk_get_fixed(_CSI); + break; + default: + break; + } + break; + case _HSI: + case _HSI_KER: + clock = stm32mp1_clk_get_fixed(_HSI); + break; + case _CSI: + case _CSI_KER: + clock = stm32mp1_clk_get_fixed(_CSI); + break; + case _HSE: + case _HSE_KER: + clock = stm32mp1_clk_get_fixed(_HSE); + break; + case _HSE_KER_DIV2: + clock = stm32mp1_clk_get_fixed(_HSE) >> 1; + break; + case _HSE_RTC: + clock = stm32mp1_clk_get_fixed(_HSE); + clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U; + break; + case _LSI: + clock = stm32mp1_clk_get_fixed(_LSI); + break; + case _LSE: + clock = stm32mp1_clk_get_fixed(_LSE); + break; + /* PLL */ + case _PLL1_P: + clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P); + break; + case _PLL1_Q: + clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q); + break; + case _PLL1_R: + clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R); + break; + case _PLL2_P: + clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P); + break; + case _PLL2_Q: + clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q); + break; + case _PLL2_R: + clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R); + break; + case _PLL3_P: + clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P); + break; + case _PLL3_Q: + clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q); + break; + case _PLL3_R: + clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R); + break; + case _PLL4_P: + clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P); + break; + case _PLL4_Q: + clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q); + break; + case _PLL4_R: + clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R); + break; + /* Other */ + case _USB_PHY_48: + clock = USB_PHY_48_MHZ; + break; + default: + break; + } + + return clock; +} + +static void __clk_enable(struct stm32mp1_clk_gate const *gate) +{ + uintptr_t rcc_base = stm32mp_rcc_base(); + + VERBOSE("Enable clock %u\n", gate->index); + + if (gate->set_clr != 0U) { + mmio_write_32(rcc_base + gate->offset, BIT(gate->bit)); + } else { + mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit)); + } +} + +static void __clk_disable(struct stm32mp1_clk_gate const *gate) +{ + uintptr_t rcc_base = stm32mp_rcc_base(); + + VERBOSE("Disable clock %u\n", gate->index); + + if (gate->set_clr != 0U) { + mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET, + BIT(gate->bit)); + } else { + mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit)); + } +} + +static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate) +{ + uintptr_t rcc_base = stm32mp_rcc_base(); + + return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit); +} + +/* Oscillators and PLLs are not gated at runtime */ +static bool clock_is_always_on(unsigned long id) +{ + switch (id) { + case CK_HSE: + case CK_CSI: + case CK_LSI: + case CK_LSE: + case CK_HSI: + case CK_HSE_DIV2: + case PLL1_Q: + case PLL1_R: + case PLL2_P: + case PLL2_Q: + case PLL2_R: + case PLL3_P: + case PLL3_Q: + case PLL3_R: + case CK_AXI: + case CK_MPU: + case CK_MCU: + case RTC: + return true; + default: + return false; + } +} + +static void __stm32mp1_clk_enable(unsigned long id, bool with_refcnt) +{ + const struct stm32mp1_clk_gate *gate; + int i; + + if (clock_is_always_on(id)) { + return; + } + + i = stm32mp1_clk_get_gated_id(id); + if (i < 0) { + ERROR("Clock %lu can't be enabled\n", id); + panic(); + } + + gate = gate_ref(i); + + if (!with_refcnt) { + __clk_enable(gate); + return; + } + +#if defined(IMAGE_BL32) + if (gate_is_non_secure(gate)) { + /* Enable non-secure clock w/o any refcounting */ + __clk_enable(gate); + return; + } +#endif + + stm32mp1_clk_lock(&refcount_lock); + + if (gate_refcounts[i] == 0U) { + __clk_enable(gate); + } + + gate_refcounts[i]++; + if (gate_refcounts[i] == UINT_MAX) { + ERROR("Clock %lu refcount reached max value\n", id); + panic(); + } + + stm32mp1_clk_unlock(&refcount_lock); +} + +static void __stm32mp1_clk_disable(unsigned long id, bool with_refcnt) +{ + const struct stm32mp1_clk_gate *gate; + int i; + + if (clock_is_always_on(id)) { + return; + } + + i = stm32mp1_clk_get_gated_id(id); + if (i < 0) { + ERROR("Clock %lu can't be disabled\n", id); + panic(); + } + + gate = gate_ref(i); + + if (!with_refcnt) { + __clk_disable(gate); + return; + } + +#if defined(IMAGE_BL32) + if (gate_is_non_secure(gate)) { + /* Don't disable non-secure clocks */ + return; + } +#endif + + stm32mp1_clk_lock(&refcount_lock); + + if (gate_refcounts[i] == 0U) { + ERROR("Clock %lu refcount reached 0\n", id); + panic(); + } + gate_refcounts[i]--; + + if (gate_refcounts[i] == 0U) { + __clk_disable(gate); + } + + stm32mp1_clk_unlock(&refcount_lock); +} + +static int stm32mp_clk_enable(unsigned long id) +{ + __stm32mp1_clk_enable(id, true); + + return 0; +} + +static void stm32mp_clk_disable(unsigned long id) +{ + __stm32mp1_clk_disable(id, true); +} + +static bool stm32mp_clk_is_enabled(unsigned long id) +{ + int i; + + if (clock_is_always_on(id)) { + return true; + } + + i = stm32mp1_clk_get_gated_id(id); + if (i < 0) { + panic(); + } + + return __clk_is_enabled(gate_ref(i)); +} + +static unsigned long stm32mp_clk_get_rate(unsigned long id) +{ + uintptr_t rcc_base = stm32mp_rcc_base(); + int p = stm32mp1_clk_get_parent(id); + uint32_t prescaler, timpre; + unsigned long parent_rate; + + if (p < 0) { + return 0; + } + + parent_rate = get_clock_rate(p); + + switch (id) { + case TIM2_K: + case TIM3_K: + case TIM4_K: + case TIM5_K: + case TIM6_K: + case TIM7_K: + case TIM12_K: + case TIM13_K: + case TIM14_K: + prescaler = mmio_read_32(rcc_base + RCC_APB1DIVR) & + RCC_APBXDIV_MASK; + timpre = mmio_read_32(rcc_base + RCC_TIMG1PRER) & + RCC_TIMGXPRER_TIMGXPRE; + break; + + case TIM1_K: + case TIM8_K: + case TIM15_K: + case TIM16_K: + case TIM17_K: + prescaler = mmio_read_32(rcc_base + RCC_APB2DIVR) & + RCC_APBXDIV_MASK; + timpre = mmio_read_32(rcc_base + RCC_TIMG2PRER) & + RCC_TIMGXPRER_TIMGXPRE; + break; + + default: + return parent_rate; + } + + if (prescaler == 0U) { + return parent_rate; + } + + return parent_rate * (timpre + 1U) * 2U; +} + +static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on) +{ + uintptr_t address = stm32mp_rcc_base() + offset; + + if (enable) { + mmio_setbits_32(address, mask_on); + } else { + mmio_clrbits_32(address, mask_on); + } +} + +static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on) +{ + uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR; + uintptr_t address = stm32mp_rcc_base() + offset; + + mmio_write_32(address, mask_on); +} + +static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy) +{ + uint64_t timeout; + uint32_t mask_test; + uintptr_t address = stm32mp_rcc_base() + offset; + + if (enable) { + mask_test = mask_rdy; + } else { + mask_test = 0; + } + + timeout = timeout_init_us(OSCRDY_TIMEOUT); + while ((mmio_read_32(address) & mask_rdy) != mask_test) { + if (timeout_elapsed(timeout)) { + ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n", + mask_rdy, address, enable, mmio_read_32(address)); + return -ETIMEDOUT; + } + } + + return 0; +} + +static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv) +{ + uint32_t value; + uintptr_t rcc_base = stm32mp_rcc_base(); + + if (digbyp) { + mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP); + } + + if (bypass || digbyp) { + mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP); + } + + /* + * Warning: not recommended to switch directly from "high drive" + * to "medium low drive", and vice-versa. + */ + value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >> + RCC_BDCR_LSEDRV_SHIFT; + + while (value != lsedrv) { + if (value > lsedrv) { + value--; + } else { + value++; + } + + mmio_clrsetbits_32(rcc_base + RCC_BDCR, + RCC_BDCR_LSEDRV_MASK, + value << RCC_BDCR_LSEDRV_SHIFT); + } + + stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON); +} + +static void stm32mp1_lse_wait(void) +{ + if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) { + VERBOSE("%s: failed\n", __func__); + } +} + +static void stm32mp1_lsi_set(bool enable) +{ + stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION); + + if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) { + VERBOSE("%s: failed\n", __func__); + } +} + +static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css) +{ + uintptr_t rcc_base = stm32mp_rcc_base(); + + if (digbyp) { + mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP); + } + + if (bypass || digbyp) { + mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP); + } + + stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON); + if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) { + VERBOSE("%s: failed\n", __func__); + } + + if (css) { + mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON); + } + +#if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER + if ((mmio_read_32(rcc_base + RCC_OCENSETR) & RCC_OCENR_HSEBYP) && + (!(digbyp || bypass))) { + panic(); + } +#endif +} + +static void stm32mp1_csi_set(bool enable) +{ + stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION); + if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) { + VERBOSE("%s: failed\n", __func__); + } +} + +static void stm32mp1_hsi_set(bool enable) +{ + stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION); + if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) { + VERBOSE("%s: failed\n", __func__); + } +} + +static int stm32mp1_set_hsidiv(uint8_t hsidiv) +{ + uint64_t timeout; + uintptr_t rcc_base = stm32mp_rcc_base(); + uintptr_t address = rcc_base + RCC_OCRDYR; + + mmio_clrsetbits_32(rcc_base + RCC_HSICFGR, + RCC_HSICFGR_HSIDIV_MASK, + RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv); + + timeout = timeout_init_us(HSIDIV_TIMEOUT); + while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("HSIDIV failed @ 0x%lx: 0x%x\n", + address, mmio_read_32(address)); + return -ETIMEDOUT; + } + } + + return 0; +} + +static int stm32mp1_hsidiv(unsigned long hsifreq) +{ + uint8_t hsidiv; + uint32_t hsidivfreq = MAX_HSI_HZ; + + for (hsidiv = 0; hsidiv < 4U; hsidiv++) { + if (hsidivfreq == hsifreq) { + break; + } + + hsidivfreq /= 2U; + } + + if (hsidiv == 4U) { + ERROR("Invalid clk-hsi frequency\n"); + return -1; + } + + if (hsidiv != 0U) { + return stm32mp1_set_hsidiv(hsidiv); + } + + return 0; +} + +static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id, + unsigned int clksrc, + uint32_t *pllcfg, int plloff) +{ + const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); + uintptr_t rcc_base = stm32mp_rcc_base(); + uintptr_t pllxcr = rcc_base + pll->pllxcr; + enum stm32mp1_plltype type = pll->plltype; + uintptr_t clksrc_address = rcc_base + (clksrc >> 4); + unsigned long refclk; + uint32_t ifrge = 0U; + uint32_t src, value, fracv = 0; + void *fdt; + + /* Check PLL output */ + if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) { + return false; + } + + /* Check current clksrc */ + src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK; + if (src != (clksrc & RCC_SELR_SRC_MASK)) { + return false; + } + + /* Check Div */ + src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK; + + refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) / + (pllcfg[PLLCFG_M] + 1U); + + if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) || + (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) { + return false; + } + + if ((type == PLL_800) && (refclk >= 8000000U)) { + ifrge = 1U; + } + + value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) & + RCC_PLLNCFGR1_DIVN_MASK; + value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) & + RCC_PLLNCFGR1_DIVM_MASK; + value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) & + RCC_PLLNCFGR1_IFRGE_MASK; + if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) { + return false; + } + + /* Fractional configuration */ + if (fdt_get_address(&fdt) == 1) { + fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0); + } + + value = fracv << RCC_PLLNFRACR_FRACV_SHIFT; + value |= RCC_PLLNFRACR_FRACLE; + if (mmio_read_32(rcc_base + pll->pllxfracr) != value) { + return false; + } + + /* Output config */ + value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) & + RCC_PLLNCFGR2_DIVP_MASK; + value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) & + RCC_PLLNCFGR2_DIVQ_MASK; + value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) & + RCC_PLLNCFGR2_DIVR_MASK; + if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) { + return false; + } + + return true; +} + +static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id) +{ + const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); + uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr; + + /* Preserve RCC_PLLNCR_SSCG_CTRL value */ + mmio_clrsetbits_32(pllxcr, + RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | + RCC_PLLNCR_DIVREN, + RCC_PLLNCR_PLLON); +} + +static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output) +{ + const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); + uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr; + uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT); + + /* Wait PLL lock */ + while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("PLL%u start failed @ 0x%lx: 0x%x\n", + pll_id, pllxcr, mmio_read_32(pllxcr)); + return -ETIMEDOUT; + } + } + + /* Start the requested output */ + mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT); + + return 0; +} + +static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id) +{ + const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); + uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr; + uint64_t timeout; + + /* Stop all output */ + mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | + RCC_PLLNCR_DIVREN); + + /* Stop PLL */ + mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON); + + timeout = timeout_init_us(PLLRDY_TIMEOUT); + /* Wait PLL stopped */ + while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) { + if (timeout_elapsed(timeout)) { + ERROR("PLL%u stop failed @ 0x%lx: 0x%x\n", + pll_id, pllxcr, mmio_read_32(pllxcr)); + return -ETIMEDOUT; + } + } + + return 0; +} + +static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id, + uint32_t *pllcfg) +{ + const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); + uintptr_t rcc_base = stm32mp_rcc_base(); + uint32_t value; + + value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) & + RCC_PLLNCFGR2_DIVP_MASK; + value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) & + RCC_PLLNCFGR2_DIVQ_MASK; + value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) & + RCC_PLLNCFGR2_DIVR_MASK; + mmio_write_32(rcc_base + pll->pllxcfgr2, value); +} + +static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id, + uint32_t *pllcfg, uint32_t fracv) +{ + const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); + uintptr_t rcc_base = stm32mp_rcc_base(); + enum stm32mp1_plltype type = pll->plltype; + unsigned long refclk; + uint32_t ifrge = 0; + uint32_t src, value; + + src = mmio_read_32(rcc_base + pll->rckxselr) & + RCC_SELR_REFCLK_SRC_MASK; + + refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) / + (pllcfg[PLLCFG_M] + 1U); + + if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) || + (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) { + return -EINVAL; + } + + if ((type == PLL_800) && (refclk >= 8000000U)) { + ifrge = 1U; + } + + value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) & + RCC_PLLNCFGR1_DIVN_MASK; + value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) & + RCC_PLLNCFGR1_DIVM_MASK; + value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) & + RCC_PLLNCFGR1_IFRGE_MASK; + mmio_write_32(rcc_base + pll->pllxcfgr1, value); + + /* Fractional configuration */ + value = 0; + mmio_write_32(rcc_base + pll->pllxfracr, value); + + value = fracv << RCC_PLLNFRACR_FRACV_SHIFT; + mmio_write_32(rcc_base + pll->pllxfracr, value); + + value |= RCC_PLLNFRACR_FRACLE; + mmio_write_32(rcc_base + pll->pllxfracr, value); + + stm32mp1_pll_config_output(pll_id, pllcfg); + + return 0; +} + +static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg) +{ + const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); + uint32_t pllxcsg = 0; + + pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) & + RCC_PLLNCSGR_MOD_PER_MASK; + + pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) & + RCC_PLLNCSGR_INC_STEP_MASK; + + pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) & + RCC_PLLNCSGR_SSCG_MODE_MASK; + + mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg); + + mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr, + RCC_PLLNCR_SSCG_CTRL); +} + +static int stm32mp1_set_clksrc(unsigned int clksrc) +{ + uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4); + uint64_t timeout; + + mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK, + clksrc & RCC_SELR_SRC_MASK); + + timeout = timeout_init_us(CLKSRC_TIMEOUT); + while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc, + clksrc_address, mmio_read_32(clksrc_address)); + return -ETIMEDOUT; + } + } + + return 0; +} + +static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address) +{ + uint64_t timeout; + + mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK, + clkdiv & RCC_DIVR_DIV_MASK); + + timeout = timeout_init_us(CLKDIV_TIMEOUT); + while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n", + clkdiv, address, mmio_read_32(address)); + return -ETIMEDOUT; + } + } + + return 0; +} + +static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv) +{ + uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4); + + /* + * Binding clksrc : + * bit15-4 offset + * bit3: disable + * bit2-0: MCOSEL[2:0] + */ + if ((clksrc & 0x8U) != 0U) { + mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON); + } else { + mmio_clrsetbits_32(clksrc_address, + RCC_MCOCFG_MCOSRC_MASK, + clksrc & RCC_MCOCFG_MCOSRC_MASK); + mmio_clrsetbits_32(clksrc_address, + RCC_MCOCFG_MCODIV_MASK, + clkdiv << RCC_MCOCFG_MCODIV_SHIFT); + mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON); + } +} + +static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css) +{ + uintptr_t address = stm32mp_rcc_base() + RCC_BDCR; + + if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) || + (clksrc != (uint32_t)CLK_RTC_DISABLED)) { + mmio_clrsetbits_32(address, + RCC_BDCR_RTCSRC_MASK, + (clksrc & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT); + + mmio_setbits_32(address, RCC_BDCR_RTCCKEN); + } + + if (lse_css) { + mmio_setbits_32(address, RCC_BDCR_LSECSSON); + } +} + +static void stm32mp1_pkcs_config(uint32_t pkcs) +{ + uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU); + uint32_t value = pkcs & 0xFU; + uint32_t mask = 0xFU; + + if ((pkcs & BIT(31)) != 0U) { + mask <<= 4; + value <<= 4; + } + + mmio_clrsetbits_32(address, mask, value); +} + +static int clk_get_pll_settings_from_dt(int plloff, unsigned int *pllcfg, + uint32_t *fracv, uint32_t *csg, + bool *csg_set) +{ + void *fdt; + int ret; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + ret = fdt_read_uint32_array(fdt, plloff, "cfg", (uint32_t)PLLCFG_NB, + pllcfg); + if (ret < 0) { + return -FDT_ERR_NOTFOUND; + } + + *fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0); + + ret = fdt_read_uint32_array(fdt, plloff, "csg", (uint32_t)PLLCSG_NB, + csg); + + *csg_set = (ret == 0); + + if (ret == -FDT_ERR_NOTFOUND) { + ret = 0; + } + + return ret; +} + +int stm32mp1_clk_init(void) +{ + uintptr_t rcc_base = stm32mp_rcc_base(); + uint32_t pllfracv[_PLL_NB]; + uint32_t pllcsg[_PLL_NB][PLLCSG_NB]; + unsigned int clksrc[CLKSRC_NB]; + unsigned int clkdiv[CLKDIV_NB]; + unsigned int pllcfg[_PLL_NB][PLLCFG_NB]; + int plloff[_PLL_NB]; + int ret, len; + enum stm32mp1_pll_id i; + bool pllcsg_set[_PLL_NB]; + bool pllcfg_valid[_PLL_NB]; + bool lse_css = false; + bool pll3_preserve = false; + bool pll4_preserve = false; + bool pll4_bootrom = false; + const fdt32_t *pkcs_cell; + void *fdt; + int stgen_p = stm32mp1_clk_get_parent(STGEN_K); + int usbphy_p = stm32mp1_clk_get_parent(USBPHY_K); + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB, + clksrc); + if (ret < 0) { + return -FDT_ERR_NOTFOUND; + } + + ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB, + clkdiv); + if (ret < 0) { + return -FDT_ERR_NOTFOUND; + } + + for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) { + char name[12]; + + snprintf(name, sizeof(name), "st,pll@%u", i); + plloff[i] = fdt_rcc_subnode_offset(name); + + pllcfg_valid[i] = fdt_check_node(plloff[i]); + if (!pllcfg_valid[i]) { + continue; + } + + ret = clk_get_pll_settings_from_dt(plloff[i], pllcfg[i], + &pllfracv[i], pllcsg[i], + &pllcsg_set[i]); + if (ret != 0) { + return ret; + } + } + + stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]); + stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]); + + /* + * Switch ON oscillator found in device-tree. + * Note: HSI already ON after BootROM stage. + */ + if (stm32mp1_osc[_LSI] != 0U) { + stm32mp1_lsi_set(true); + } + if (stm32mp1_osc[_LSE] != 0U) { + const char *name = stm32mp_osc_node_label[_LSE]; + bool bypass, digbyp; + uint32_t lsedrv; + + bypass = fdt_clk_read_bool(name, "st,bypass"); + digbyp = fdt_clk_read_bool(name, "st,digbypass"); + lse_css = fdt_clk_read_bool(name, "st,css"); + lsedrv = fdt_clk_read_uint32_default(name, "st,drive", + LSEDRV_MEDIUM_HIGH); + stm32mp1_lse_enable(bypass, digbyp, lsedrv); + } + if (stm32mp1_osc[_HSE] != 0U) { + const char *name = stm32mp_osc_node_label[_HSE]; + bool bypass, digbyp, css; + + bypass = fdt_clk_read_bool(name, "st,bypass"); + digbyp = fdt_clk_read_bool(name, "st,digbypass"); + css = fdt_clk_read_bool(name, "st,css"); + stm32mp1_hse_enable(bypass, digbyp, css); + } + /* + * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR) + * => switch on CSI even if node is not present in device tree + */ + stm32mp1_csi_set(true); + + /* Come back to HSI */ + ret = stm32mp1_set_clksrc(CLK_MPU_HSI); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clksrc(CLK_AXI_HSI); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clksrc(CLK_MCU_HSI); + if (ret != 0) { + return ret; + } + + if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) & + RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) { + if (pllcfg_valid[_PLL3]) { + pll3_preserve = + stm32mp1_check_pll_conf(_PLL3, + clksrc[CLKSRC_PLL3], + pllcfg[_PLL3], + plloff[_PLL3]); + } + + if (pllcfg_valid[_PLL4]) { + pll4_preserve = + stm32mp1_check_pll_conf(_PLL4, + clksrc[CLKSRC_PLL4], + pllcfg[_PLL4], + plloff[_PLL4]); + } + } + /* Don't initialize PLL4, when used by BOOTROM */ + if ((stm32mp_get_boot_itf_selected() == + BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) && + ((stgen_p == (int)_PLL4_R) || (usbphy_p == (int)_PLL4_R))) { + pll4_bootrom = true; + pll4_preserve = true; + } + + for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) { + if (((i == _PLL3) && pll3_preserve) || + ((i == _PLL4) && pll4_preserve)) { + continue; + } + + ret = stm32mp1_pll_stop(i); + if (ret != 0) { + return ret; + } + } + + /* Configure HSIDIV */ + if (stm32mp1_osc[_HSI] != 0U) { + ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]); + if (ret != 0) { + return ret; + } + + stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K)); + } + + /* Select DIV */ + /* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */ + mmio_write_32(rcc_base + RCC_MPCKDIVR, + clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK); + ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR); + if (ret != 0) { + return ret; + } + + /* No ready bit for RTC */ + mmio_write_32(rcc_base + RCC_RTCDIVR, + clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK); + + /* Configure PLLs source */ + ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]); + if (ret != 0) { + return ret; + } + + if (!pll3_preserve) { + ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]); + if (ret != 0) { + return ret; + } + } + + if (!pll4_preserve) { + ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]); + if (ret != 0) { + return ret; + } + } + + /* Configure and start PLLs */ + for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) { + if (((i == _PLL3) && pll3_preserve) || + ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) { + continue; + } + + if (!pllcfg_valid[i]) { + continue; + } + + if ((i == _PLL4) && pll4_bootrom) { + /* Set output divider if not done by the Bootrom */ + stm32mp1_pll_config_output(i, pllcfg[i]); + continue; + } + + ret = stm32mp1_pll_config(i, pllcfg[i], pllfracv[i]); + if (ret != 0) { + return ret; + } + + if (pllcsg_set[i]) { + stm32mp1_pll_csg(i, pllcsg[i]); + } + + stm32mp1_pll_start(i); + } + /* Wait and start PLLs ouptut when ready */ + for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) { + if (!pllcfg_valid[i]) { + continue; + } + + ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]); + if (ret != 0) { + return ret; + } + } + /* Wait LSE ready before to use it */ + if (stm32mp1_osc[_LSE] != 0U) { + stm32mp1_lse_wait(); + } + + /* Configure with expected clock source */ + ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]); + if (ret != 0) { + return ret; + } + ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]); + if (ret != 0) { + return ret; + } + stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css); + + /* Configure PKCK */ + pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len); + if (pkcs_cell != NULL) { + bool ckper_disabled = false; + uint32_t j; + uint32_t usbreg_bootrom = 0U; + + if (pll4_bootrom) { + usbreg_bootrom = mmio_read_32(rcc_base + RCC_USBCKSELR); + } + + for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) { + uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]); + + if (pkcs == (uint32_t)CLK_CKPER_DISABLED) { + ckper_disabled = true; + continue; + } + stm32mp1_pkcs_config(pkcs); + } + + /* + * CKPER is source for some peripheral clocks + * (FMC-NAND / QPSI-NOR) and switching source is allowed + * only if previous clock is still ON + * => deactivated CKPER only after switching clock + */ + if (ckper_disabled) { + stm32mp1_pkcs_config(CLK_CKPER_DISABLED); + } + + if (pll4_bootrom) { + uint32_t usbreg_value, usbreg_mask; + const struct stm32mp1_clk_sel *sel; + + sel = clk_sel_ref(_USBPHY_SEL); + usbreg_mask = (uint32_t)sel->msk << sel->src; + sel = clk_sel_ref(_USBO_SEL); + usbreg_mask |= (uint32_t)sel->msk << sel->src; + + usbreg_value = mmio_read_32(rcc_base + RCC_USBCKSELR) & + usbreg_mask; + usbreg_bootrom &= usbreg_mask; + if (usbreg_bootrom != usbreg_value) { + VERBOSE("forbidden new USB clk path\n"); + VERBOSE("vs bootrom on USB boot\n"); + return -FDT_ERR_BADVALUE; + } + } + } + + /* Switch OFF HSI if not found in device-tree */ + if (stm32mp1_osc[_HSI] == 0U) { + stm32mp1_hsi_set(false); + } + + stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K)); + + /* Software Self-Refresh mode (SSR) during DDR initilialization */ + mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR, + RCC_DDRITFCR_DDRCKMOD_MASK, + RCC_DDRITFCR_DDRCKMOD_SSR << + RCC_DDRITFCR_DDRCKMOD_SHIFT); + + return 0; +} + +static void stm32mp1_osc_clk_init(const char *name, + enum stm32mp_osc_id index) +{ + uint32_t frequency; + + if (fdt_osc_read_freq(name, &frequency) == 0) { + stm32mp1_osc[index] = frequency; + } +} + +static void stm32mp1_osc_init(void) +{ + enum stm32mp_osc_id i; + + for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) { + stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i); + } +} + +#ifdef STM32MP_SHARED_RESOURCES +/* + * Get the parent ID of the target parent clock, for tagging as secure + * shared clock dependencies. + */ +static int get_parent_id_parent(unsigned int parent_id) +{ + enum stm32mp1_parent_sel s = _UNKNOWN_SEL; + enum stm32mp1_pll_id pll_id; + uint32_t p_sel; + uintptr_t rcc_base = stm32mp_rcc_base(); + + switch (parent_id) { + case _ACLK: + case _PCLK4: + case _PCLK5: + s = _AXIS_SEL; + break; + case _PLL1_P: + case _PLL1_Q: + case _PLL1_R: + pll_id = _PLL1; + break; + case _PLL2_P: + case _PLL2_Q: + case _PLL2_R: + pll_id = _PLL2; + break; + case _PLL3_P: + case _PLL3_Q: + case _PLL3_R: + pll_id = _PLL3; + break; + case _PLL4_P: + case _PLL4_Q: + case _PLL4_R: + pll_id = _PLL4; + break; + case _PCLK1: + case _PCLK2: + case _HCLK2: + case _HCLK6: + case _CK_PER: + case _CK_MPU: + case _CK_MCU: + case _USB_PHY_48: + /* We do not expect to access these */ + panic(); + break; + default: + /* Other parents have no parent */ + return -1; + } + + if (s != _UNKNOWN_SEL) { + const struct stm32mp1_clk_sel *sel = clk_sel_ref(s); + + p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) & + sel->msk; + + if (p_sel < sel->nb_parent) { + return (int)sel->parent[p_sel]; + } + } else { + const struct stm32mp1_clk_pll *pll = pll_ref(pll_id); + + p_sel = mmio_read_32(rcc_base + pll->rckxselr) & + RCC_SELR_REFCLK_SRC_MASK; + + if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) { + return (int)pll->refclk[p_sel]; + } + } + + VERBOSE("No parent selected for %s\n", + stm32mp1_clk_parent_name[parent_id]); + + return -1; +} + +static void secure_parent_clocks(unsigned long parent_id) +{ + int grandparent_id; + + switch (parent_id) { + case _PLL3_P: + case _PLL3_Q: + case _PLL3_R: + stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3); + break; + + /* These clocks are always secure when RCC is secure */ + case _ACLK: + case _HCLK2: + case _HCLK6: + case _PCLK4: + case _PCLK5: + case _PLL1_P: + case _PLL1_Q: + case _PLL1_R: + case _PLL2_P: + case _PLL2_Q: + case _PLL2_R: + case _HSI: + case _HSI_KER: + case _LSI: + case _CSI: + case _CSI_KER: + case _HSE: + case _HSE_KER: + case _HSE_KER_DIV2: + case _HSE_RTC: + case _LSE: + break; + + default: + VERBOSE("Cannot secure parent clock %s\n", + stm32mp1_clk_parent_name[parent_id]); + panic(); + } + + grandparent_id = get_parent_id_parent(parent_id); + if (grandparent_id >= 0) { + secure_parent_clocks(grandparent_id); + } +} + +void stm32mp1_register_clock_parents_secure(unsigned long clock_id) +{ + int parent_id; + + if (!stm32mp1_rcc_is_secure()) { + return; + } + + switch (clock_id) { + case PLL1: + case PLL2: + /* PLL1/PLL2 are always secure: nothing to do */ + break; + case PLL3: + stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3); + break; + case PLL4: + ERROR("PLL4 cannot be secured\n"); + panic(); + break; + default: + /* Others are expected gateable clock */ + parent_id = stm32mp1_clk_get_parent(clock_id); + if (parent_id < 0) { + INFO("No parent found for clock %lu\n", clock_id); + } else { + secure_parent_clocks(parent_id); + } + break; + } +} +#endif /* STM32MP_SHARED_RESOURCES */ + +static void sync_earlyboot_clocks_state(void) +{ + unsigned int idx; + const unsigned long secure_enable[] = { + AXIDCG, + BSEC, + DDRC1, DDRC1LP, + DDRC2, DDRC2LP, + DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP, + DDRPHYC, DDRPHYCLP, + RTCAPB, + TZC1, TZC2, + TZPC, + STGEN_K, + }; + + for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) { + stm32mp_clk_enable(secure_enable[idx]); + } +} + +static const struct clk_ops stm32mp_clk_ops = { + .enable = stm32mp_clk_enable, + .disable = stm32mp_clk_disable, + .is_enabled = stm32mp_clk_is_enabled, + .get_rate = stm32mp_clk_get_rate, + .get_parent = stm32mp1_clk_get_parent, +}; + +int stm32mp1_clk_probe(void) +{ +#if defined(IMAGE_BL32) + if (!fdt_get_rcc_secure_state()) { + mmio_write_32(stm32mp_rcc_base() + RCC_TZCR, 0U); + } +#endif + + stm32mp1_osc_init(); + + sync_earlyboot_clocks_state(); + + clk_register(&stm32mp_clk_ops); + + return 0; +} diff --git a/drivers/st/clk/stm32mp_clkfunc.c b/drivers/st/clk/stm32mp_clkfunc.c new file mode 100644 index 0000000..01d1420 --- /dev/null +++ b/drivers/st/clk/stm32mp_clkfunc.c @@ -0,0 +1,377 @@ +/* + * Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <errno.h> + +#include <arch_helpers.h> +#include <common/fdt_wrappers.h> +#include <drivers/clk.h> +#include <drivers/generic_delay_timer.h> +#include <drivers/st/stm32_gpio.h> +#include <drivers/st/stm32mp_clkfunc.h> +#include <lib/mmio.h> +#include <libfdt.h> + +#include <platform_def.h> + +/* + * Get the frequency of an oscillator from its name in device tree. + * @param name: oscillator name + * @param freq: stores the frequency of the oscillator + * @return: 0 on success, and a negative FDT/ERRNO error code on failure. + */ +int fdt_osc_read_freq(const char *name, uint32_t *freq) +{ + int node, subnode; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -ENOENT; + } + + node = fdt_path_offset(fdt, "/clocks"); + if (node < 0) { + return -FDT_ERR_NOTFOUND; + } + + fdt_for_each_subnode(subnode, fdt, node) { + const char *cchar; + int ret; + + cchar = fdt_get_name(fdt, subnode, &ret); + if (cchar == NULL) { + return ret; + } + + if ((strncmp(cchar, name, (size_t)ret) == 0) && + (fdt_get_status(subnode) != DT_DISABLED)) { + const fdt32_t *cuint; + + cuint = fdt_getprop(fdt, subnode, "clock-frequency", + &ret); + if (cuint == NULL) { + return ret; + } + + *freq = fdt32_to_cpu(*cuint); + + return 0; + } + } + + /* Oscillator not found, freq=0 */ + *freq = 0; + return 0; +} + +/* + * Check the presence of an oscillator property from its id. + * @param node_label: clock node name + * @param prop_name: property name + * @return: true/false regarding search result. + */ +bool fdt_clk_read_bool(const char *node_label, const char *prop_name) +{ + int node, subnode; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return false; + } + + node = fdt_path_offset(fdt, "/clocks"); + if (node < 0) { + return false; + } + + fdt_for_each_subnode(subnode, fdt, node) { + const char *cchar; + int ret; + + cchar = fdt_get_name(fdt, subnode, &ret); + if (cchar == NULL) { + return false; + } + + if (strncmp(cchar, node_label, (size_t)ret) != 0) { + continue; + } + + if (fdt_getprop(fdt, subnode, prop_name, NULL) != NULL) { + return true; + } + } + + return false; +} + +/* + * Get the value of a oscillator property from its name. + * @param node_label: oscillator name + * @param prop_name: property name + * @param dflt_value: default value + * @return oscillator value on success, default value if property not found. + */ +uint32_t fdt_clk_read_uint32_default(const char *node_label, + const char *prop_name, uint32_t dflt_value) +{ + int node, subnode; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return dflt_value; + } + + node = fdt_path_offset(fdt, "/clocks"); + if (node < 0) { + return dflt_value; + } + + fdt_for_each_subnode(subnode, fdt, node) { + const char *cchar; + int ret; + + cchar = fdt_get_name(fdt, subnode, &ret); + if (cchar == NULL) { + return dflt_value; + } + + if (strncmp(cchar, node_label, (size_t)ret) != 0) { + continue; + } + + return fdt_read_uint32_default(fdt, subnode, prop_name, + dflt_value); + } + + return dflt_value; +} + +/* + * Get the RCC node offset from the device tree + * @param fdt: Device tree reference + * @return: Node offset or a negative value on error + */ +static int fdt_get_rcc_node(void *fdt) +{ + static int node; + + if (node <= 0) { + node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT); + } + + return node; +} + +/* + * Read a series of parameters in rcc-clk section in device tree + * @param prop_name: Name of the RCC property to be read + * @param array: the array to store the property parameters + * @param count: number of parameters to be read + * @return: 0 on succes or a negative value on error + */ +int fdt_rcc_read_uint32_array(const char *prop_name, uint32_t count, + uint32_t *array) +{ + int node; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -ENOENT; + } + + node = fdt_get_rcc_node(fdt); + if (node < 0) { + return -FDT_ERR_NOTFOUND; + } + + return fdt_read_uint32_array(fdt, node, prop_name, count, array); +} + +/* + * Get the subnode offset in rcc-clk section from its name in device tree + * @param name: name of the RCC property + * @return: offset on success, and a negative FDT/ERRNO error code on failure. + */ +int fdt_rcc_subnode_offset(const char *name) +{ + int node, subnode; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -ENOENT; + } + + node = fdt_get_rcc_node(fdt); + if (node < 0) { + return -FDT_ERR_NOTFOUND; + } + + subnode = fdt_subnode_offset(fdt, node, name); + if (subnode <= 0) { + return -FDT_ERR_NOTFOUND; + } + + return subnode; +} + +/* + * Get the pointer to a rcc-clk property from its name. + * @param name: name of the RCC property + * @param lenp: stores the length of the property. + * @return: pointer to the property on success, and NULL value on failure. + */ +const fdt32_t *fdt_rcc_read_prop(const char *prop_name, int *lenp) +{ + const fdt32_t *cuint; + int node, len; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return NULL; + } + + node = fdt_get_rcc_node(fdt); + if (node < 0) { + return NULL; + } + + cuint = fdt_getprop(fdt, node, prop_name, &len); + if (cuint == NULL) { + return NULL; + } + + *lenp = len; + return cuint; +} + +/* + * Get the secure state for rcc node in device tree. + * @return: true if rcc is configured for secure world access, false if not. + */ +bool fdt_get_rcc_secure_state(void) +{ + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return false; + } + + if (fdt_node_offset_by_compatible(fdt, -1, DT_RCC_SEC_CLK_COMPAT) < 0) { + return false; + } + + return true; +} + +/* + * Get the clock ID of the given node in device tree. + * @param node: node offset + * @return: Clock ID on success, and a negative FDT/ERRNO error code on failure. + */ +int fdt_get_clock_id(int node) +{ + const fdt32_t *cuint; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -ENOENT; + } + + cuint = fdt_getprop(fdt, node, "clocks", NULL); + if (cuint == NULL) { + return -FDT_ERR_NOTFOUND; + } + + cuint++; + return (int)fdt32_to_cpu(*cuint); +} + +/* + * Get the frequency of the specified UART instance. + * @param instance: UART interface registers base address. + * @return: clock frequency on success, 0 value on failure. + */ +unsigned long fdt_get_uart_clock_freq(uintptr_t instance) +{ + void *fdt; + int node; + int clk_id; + + if (fdt_get_address(&fdt) == 0) { + return 0UL; + } + + /* Check for UART nodes */ + node = dt_match_instance_by_compatible(DT_UART_COMPAT, instance); + if (node < 0) { + return 0UL; + } + + clk_id = fdt_get_clock_id(node); + if (clk_id < 0) { + return 0UL; + } + + return clk_get_rate((unsigned long)clk_id); +} + +/******************************************************************************* + * This function configures and restores the STGEN counter depending on the + * connected clock. + ******************************************************************************/ +void stm32mp_stgen_config(unsigned long rate) +{ + uint32_t cntfid0; + unsigned long long counter; + + cntfid0 = mmio_read_32(STGEN_BASE + CNTFID_OFF); + + if (cntfid0 == rate) { + return; + } + + mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); + counter = stm32mp_stgen_get_counter() * rate / cntfid0; + + mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)counter); + mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(counter >> 32)); + mmio_write_32(STGEN_BASE + CNTFID_OFF, rate); + mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); + + write_cntfrq_el0(rate); + + /* Need to update timer with new frequency */ + generic_delay_timer_init(); +} + +/******************************************************************************* + * This function returns the STGEN counter value. + ******************************************************************************/ +unsigned long long stm32mp_stgen_get_counter(void) +{ + return (((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF) << 32) | + mmio_read_32(STGEN_BASE + CNTCVL_OFF)); +} + +/******************************************************************************* + * This function restores the STGEN counter value. + * It takes a first input value as a counter backup value to be restored and a + * offset in ms to be added. + ******************************************************************************/ +void stm32mp_stgen_restore_counter(unsigned long long value, + unsigned long long offset_in_ms) +{ + unsigned long long cnt; + + cnt = value + ((offset_in_ms * + mmio_read_32(STGEN_BASE + CNTFID_OFF)) / 1000U); + + mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); + mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)cnt); + mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(cnt >> 32)); + mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN); +} diff --git a/drivers/st/crypto/stm32_hash.c b/drivers/st/crypto/stm32_hash.c new file mode 100644 index 0000000..e92f980 --- /dev/null +++ b/drivers/st/crypto/stm32_hash.c @@ -0,0 +1,364 @@ +/* + * Copyright (c) 2019-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <stdint.h> + +#include <arch_helpers.h> +#include <common/debug.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_hash.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils.h> +#include <libfdt.h> +#include <plat/common/platform.h> + +#include <platform_def.h> + +#if STM32_HASH_VER == 2 +#define DT_HASH_COMPAT "st,stm32f756-hash" +#endif +#if STM32_HASH_VER == 4 +#define DT_HASH_COMPAT "st,stm32mp13-hash" +#endif + +#define HASH_CR 0x00U +#define HASH_DIN 0x04U +#define HASH_STR 0x08U +#define HASH_SR 0x24U +#define HASH_HREG(x) (0x310U + ((x) * 0x04U)) + +/* Control Register */ +#define HASH_CR_INIT BIT(2) +#define HASH_CR_DATATYPE_SHIFT U(4) +#if STM32_HASH_VER == 2 +#define HASH_CR_ALGO_SHA1 0x0U +#define HASH_CR_ALGO_MD5 BIT(7) +#define HASH_CR_ALGO_SHA224 BIT(18) +#define HASH_CR_ALGO_SHA256 (BIT(18) | BIT(7)) +#endif +#if STM32_HASH_VER == 4 +#define HASH_CR_ALGO_SHIFT U(17) +#define HASH_CR_ALGO_SHA1 (0x0U << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA224 (0x2U << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA256 (0x3U << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA384 (0xCU << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA512_224 (0xDU << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA512_256 (0xEU << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA512 (0xFU << HASH_CR_ALGO_SHIFT) +#endif + +/* Status Flags */ +#define HASH_SR_DCIS BIT(1) +#define HASH_SR_BUSY BIT(3) + +/* STR Register */ +#define HASH_STR_NBLW_MASK GENMASK(4, 0) +#define HASH_STR_DCAL BIT(8) + +#define MD5_DIGEST_SIZE 16U +#define SHA1_DIGEST_SIZE 20U +#define SHA224_DIGEST_SIZE 28U +#define SHA256_DIGEST_SIZE 32U +#define SHA384_DIGEST_SIZE 48U +#define SHA512_224_DIGEST_SIZE 28U +#define SHA512_256_DIGEST_SIZE 32U +#define SHA512_DIGEST_SIZE 64U + +#define RESET_TIMEOUT_US_1MS 1000U +#define HASH_TIMEOUT_US 10000U + +enum stm32_hash_data_format { + HASH_DATA_32_BITS, + HASH_DATA_16_BITS, + HASH_DATA_8_BITS, + HASH_DATA_1_BIT +}; + +struct stm32_hash_instance { + uintptr_t base; + unsigned int clock; + size_t digest_size; +}; + +struct stm32_hash_remain { + uint32_t buffer; + size_t length; +}; + +/* Expect a single HASH peripheral */ +static struct stm32_hash_instance stm32_hash; +static struct stm32_hash_remain stm32_remain; + +static uintptr_t hash_base(void) +{ + return stm32_hash.base; +} + +static int hash_wait_busy(void) +{ + uint64_t timeout = timeout_init_us(HASH_TIMEOUT_US); + + while ((mmio_read_32(hash_base() + HASH_SR) & HASH_SR_BUSY) != 0U) { + if (timeout_elapsed(timeout)) { + ERROR("%s: busy timeout\n", __func__); + return -ETIMEDOUT; + } + } + + return 0; +} + +static int hash_wait_computation(void) +{ + uint64_t timeout = timeout_init_us(HASH_TIMEOUT_US); + + while ((mmio_read_32(hash_base() + HASH_SR) & HASH_SR_DCIS) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("%s: busy timeout\n", __func__); + return -ETIMEDOUT; + } + } + + return 0; +} + +static int hash_write_data(uint32_t data) +{ + int ret; + + ret = hash_wait_busy(); + if (ret != 0) { + return ret; + } + + mmio_write_32(hash_base() + HASH_DIN, data); + + return 0; +} + +static void hash_hw_init(enum stm32_hash_algo_mode mode) +{ + uint32_t reg; + + reg = HASH_CR_INIT | (HASH_DATA_8_BITS << HASH_CR_DATATYPE_SHIFT); + + switch (mode) { +#if STM32_HASH_VER == 2 + case HASH_MD5SUM: + reg |= HASH_CR_ALGO_MD5; + stm32_hash.digest_size = MD5_DIGEST_SIZE; + break; +#endif + case HASH_SHA1: + reg |= HASH_CR_ALGO_SHA1; + stm32_hash.digest_size = SHA1_DIGEST_SIZE; + break; + case HASH_SHA224: + reg |= HASH_CR_ALGO_SHA224; + stm32_hash.digest_size = SHA224_DIGEST_SIZE; + break; +#if STM32_HASH_VER == 4 + case HASH_SHA384: + reg |= HASH_CR_ALGO_SHA384; + stm32_hash.digest_size = SHA384_DIGEST_SIZE; + break; + case HASH_SHA512: + reg |= HASH_CR_ALGO_SHA512; + stm32_hash.digest_size = SHA512_DIGEST_SIZE; + break; +#endif + /* Default selected algo is SHA256 */ + case HASH_SHA256: + default: + reg |= HASH_CR_ALGO_SHA256; + stm32_hash.digest_size = SHA256_DIGEST_SIZE; + break; + } + + mmio_write_32(hash_base() + HASH_CR, reg); +} + +static int hash_get_digest(uint8_t *digest) +{ + int ret; + uint32_t i; + uint32_t dsg; + + ret = hash_wait_computation(); + if (ret != 0) { + return ret; + } + + for (i = 0U; i < (stm32_hash.digest_size / sizeof(uint32_t)); i++) { + dsg = __builtin_bswap32(mmio_read_32(hash_base() + + HASH_HREG(i))); + memcpy(digest + (i * sizeof(uint32_t)), &dsg, sizeof(uint32_t)); + } + + /* + * Clean hardware context as HASH could be used later + * by non-secure software + */ + hash_hw_init(HASH_SHA256); + + return 0; +} + +int stm32_hash_update(const uint8_t *buffer, size_t length) +{ + size_t remain_length = length; + int ret = 0; + + if ((length == 0U) || (buffer == NULL)) { + return 0; + } + + clk_enable(stm32_hash.clock); + + if (stm32_remain.length != 0U) { + uint32_t copysize; + + copysize = MIN((sizeof(uint32_t) - stm32_remain.length), + length); + memcpy(((uint8_t *)&stm32_remain.buffer) + stm32_remain.length, + buffer, copysize); + remain_length -= copysize; + buffer += copysize; + if (stm32_remain.length == sizeof(uint32_t)) { + ret = hash_write_data(stm32_remain.buffer); + if (ret != 0) { + goto exit; + } + + zeromem(&stm32_remain, sizeof(stm32_remain)); + } + } + + while (remain_length / sizeof(uint32_t) != 0U) { + uint32_t tmp_buf; + + memcpy(&tmp_buf, buffer, sizeof(uint32_t)); + ret = hash_write_data(tmp_buf); + if (ret != 0) { + goto exit; + } + + buffer += sizeof(uint32_t); + remain_length -= sizeof(uint32_t); + } + + if (remain_length != 0U) { + assert(stm32_remain.length == 0U); + + memcpy((uint8_t *)&stm32_remain.buffer, buffer, remain_length); + stm32_remain.length = remain_length; + } + +exit: + clk_disable(stm32_hash.clock); + + return ret; +} + +int stm32_hash_final(uint8_t *digest) +{ + int ret; + + clk_enable(stm32_hash.clock); + + if (stm32_remain.length != 0U) { + ret = hash_write_data(stm32_remain.buffer); + if (ret != 0) { + clk_disable(stm32_hash.clock); + return ret; + } + + mmio_clrsetbits_32(hash_base() + HASH_STR, HASH_STR_NBLW_MASK, + 8U * stm32_remain.length); + zeromem(&stm32_remain, sizeof(stm32_remain)); + } else { + mmio_clrbits_32(hash_base() + HASH_STR, HASH_STR_NBLW_MASK); + } + + mmio_setbits_32(hash_base() + HASH_STR, HASH_STR_DCAL); + + ret = hash_get_digest(digest); + + clk_disable(stm32_hash.clock); + + return ret; +} + +int stm32_hash_final_update(const uint8_t *buffer, uint32_t length, + uint8_t *digest) +{ + int ret; + + ret = stm32_hash_update(buffer, length); + if (ret != 0) { + return ret; + } + + return stm32_hash_final(digest); +} + +void stm32_hash_init(enum stm32_hash_algo_mode mode) +{ + clk_enable(stm32_hash.clock); + + hash_hw_init(mode); + + clk_disable(stm32_hash.clock); + + zeromem(&stm32_remain, sizeof(stm32_remain)); +} + +int stm32_hash_register(void) +{ + struct dt_node_info hash_info; + int node; + + for (node = dt_get_node(&hash_info, -1, DT_HASH_COMPAT); + node != -FDT_ERR_NOTFOUND; + node = dt_get_node(&hash_info, node, DT_HASH_COMPAT)) { + if (hash_info.status != DT_DISABLED) { + break; + } + } + + if (node == -FDT_ERR_NOTFOUND) { + return -ENODEV; + } + + if (hash_info.clock < 0) { + return -EINVAL; + } + + stm32_hash.base = hash_info.base; + stm32_hash.clock = hash_info.clock; + + clk_enable(stm32_hash.clock); + + if (hash_info.reset >= 0) { + uint32_t id = (uint32_t)hash_info.reset; + + if (stm32mp_reset_assert(id, RESET_TIMEOUT_US_1MS) != 0) { + panic(); + } + udelay(20); + if (stm32mp_reset_deassert(id, RESET_TIMEOUT_US_1MS) != 0) { + panic(); + } + } + + clk_disable(stm32_hash.clock); + + return 0; +} diff --git a/drivers/st/crypto/stm32_pka.c b/drivers/st/crypto/stm32_pka.c new file mode 100644 index 0000000..e03cf0f --- /dev/null +++ b/drivers/st/crypto/stm32_pka.c @@ -0,0 +1,707 @@ +/* + * Copyright (c) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <stdint.h> + +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_pka.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils.h> +#include <libfdt.h> +#include <plat/common/platform.h> + +#include <platform_def.h> + +/* + * For our comprehension in this file + * _len are in BITs + * _size are in BYTEs + * _nbw are in number of PKA_word (PKA_word = u64) + */ + +#define UINT8_LEN 8U +#define UINT64_LEN (UINT8_LEN * sizeof(uint64_t)) +#define WORD_SIZE (sizeof(uint64_t)) +#define OP_NBW_FROM_LEN(len) (DIV_ROUND_UP_2EVAL((len), UINT64_LEN) + 1) +#define OP_NBW_FROM_SIZE(s) OP_NBW_FROM_LEN((s) * UINT8_LEN) +#define OP_SIZE_FROM_SIZE(s) (OP_NBW_FROM_SIZE(s) * WORD_SIZE) + +#define DT_PKA_COMPAT "st,stm32-pka64" + +#define MAX_ECC_SIZE_LEN 640U +#define MAX_EO_NBW OP_NBW_FROM_LEN(MAX_ECC_SIZE_LEN) + +/* PKA registers */ +/* PKA control register */ +#define _PKA_CR 0x0U +/* PKA status register */ +#define _PKA_SR 0x4U +/* PKA clear flag register */ +#define _PKA_CLRFR 0x8U +/* PKA version register */ +#define _PKA_VERR 0x1FF4U +/* PKA identification register */ +#define _PKA_IPIDR 0x1FF8U + +/* PKA control register fields */ +#define _PKA_CR_MODE_MASK GENMASK(13, 8) +#define _PKA_CR_MODE_SHIFT 8U +#define _PKA_CR_MODE_ADD 0x9U +#define _PKA_CR_MODE_ECDSA_VERIF 0x26U +#define _PKA_CR_START BIT(1) +#define _PKA_CR_EN BIT(0) + +/* PKA status register fields */ +#define _PKA_SR_BUSY BIT(16) +#define _PKA_SR_LMF BIT(1) +#define _PKA_SR_INITOK BIT(0) + +/* PKA it flag fields (used in CR, SR and CLRFR) */ +#define _PKA_IT_MASK (GENMASK(21, 19) | BIT(17)) +#define _PKA_IT_SHIFT 17U +#define _PKA_IT_OPERR BIT(21) +#define _PKA_IT_ADDRERR BIT(20) +#define _PKA_IT_RAMERR BIT(19) +#define _PKA_IT_PROCEND BIT(17) + +/* PKA version register fields */ +#define _PKA_VERR_MAJREV_MASK GENMASK(7, 4) +#define _PKA_VERR_MAJREV_SHIFT 4U +#define _PKA_VERR_MINREV_MASK GENMASK(3, 0) +#define _PKA_VERR_MINREV_SHIFT 0U + +/* RAM magic offset */ +#define _PKA_RAM_START 0x400U +#define _PKA_RAM_SIZE 5336U + +/* ECDSA verification */ +#define _PKA_RAM_N_LEN 0x408U /* 64 */ +#define _PKA_RAM_P_LEN 0x4C8U /* 64 */ +#define _PKA_RAM_A_SIGN 0x468U /* 64 */ +#define _PKA_RAM_A 0x470U /* EOS */ +#define _PKA_RAM_P 0x4D0U /* EOS */ +#define _PKA_RAM_XG 0x678U /* EOS */ +#define _PKA_RAM_YG 0x6D0U /* EOS */ +#define _PKA_RAM_XQ 0x12F8U /* EOS */ +#define _PKA_RAM_YQ 0x1350U /* EOS */ +#define _PKA_RAM_SIGN_R 0x10E0U /* EOS */ +#define _PKA_RAM_SIGN_S 0xC68U /* EOS */ +#define _PKA_RAM_HASH_Z 0x13A8U /* EOS */ +#define _PKA_RAM_PRIME_N 0x1088U /* EOS */ +#define _PKA_RAM_ECDSA_VERIFY 0x5D0U /* 64 */ +#define _PKA_RAM_ECDSA_VERIFY_VALID 0xD60DULL +#define _PKA_RAM_ECDSA_VERIFY_INVALID 0xA3B7ULL + +#define PKA_TIMEOUT_US 1000000U +#define TIMEOUT_US_1MS 1000U +#define PKA_RESET_DELAY 20U + +struct curve_parameters { + uint32_t a_sign; /* 0 positive, 1 negative */ + uint8_t *a; /* Curve coefficient |a| */ + size_t a_size; + uint8_t *p; /* Curve modulus value */ + uint32_t p_len; + uint8_t *xg; /* Curve base point G coordinate x */ + size_t xg_size; + uint8_t *yg; /* Curve base point G coordinate y */ + size_t yg_size; + uint8_t *n; /* Curve prime order n */ + uint32_t n_len; +}; + +static const struct curve_parameters curve_def[] = { +#if PKA_USE_NIST_P256 + [PKA_NIST_P256] = { + .p_len = 256U, + .n_len = 256U, + .p = (uint8_t[]){0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, + .n = (uint8_t[]){0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, + 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51}, + .a_sign = 1U, + .a = (uint8_t[]){0x03}, + .a_size = 1U, + .xg = (uint8_t[]){0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, + 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, + 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, + 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96}, + .xg_size = 32U, + .yg = (uint8_t[]){0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B, + 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, + 0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, + 0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5}, + .yg_size = 32U, + }, +#endif +#if PKA_USE_BRAINPOOL_P256R1 + [PKA_BRAINPOOL_P256R1] = { + .p_len = 256, + .n_len = 256, + .p = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, + 0x6E, 0x3B, 0xF6, 0x23, 0xD5, 0x26, 0x20, 0x28, + 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, 0x53, 0x77}, + .n = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x71, + 0x8C, 0x39, 0x7A, 0xA3, 0xB5, 0x61, 0xA6, 0xF7, + 0x90, 0x1E, 0x0E, 0x82, 0x97, 0x48, 0x56, 0xA7}, + .a = (uint8_t[]){0x7D, 0x5A, 0x09, 0x75, 0xFC, 0x2C, 0x30, 0x57, + 0xEE, 0xF6, 0x75, 0x30, 0x41, 0x7A, 0xFF, 0xE7, + 0xFB, 0x80, 0x55, 0xC1, 0x26, 0xDC, 0x5C, 0x6C, + 0xE9, 0x4A, 0x4B, 0x44, 0xF3, 0x30, 0xB5, 0xD9}, + .a_size = 32U, + .xg = (uint8_t[]){0x8B, 0xD2, 0xAE, 0xB9, 0xCB, 0x7E, 0x57, 0xCB, + 0x2C, 0x4B, 0x48, 0x2F, 0xFC, 0x81, 0xB7, 0xAF, + 0xB9, 0xDE, 0x27, 0xE1, 0xE3, 0xBD, 0x23, 0xC2, + 0x3A, 0x44, 0x53, 0xBD, 0x9A, 0xCE, 0x32, 0x62}, + .xg_size = 32U, + .yg = (uint8_t[]){0x54, 0x7E, 0xF8, 0x35, 0xC3, 0xDA, 0xC4, 0xFD, + 0x97, 0xF8, 0x46, 0x1A, 0x14, 0x61, 0x1D, 0xC9, + 0xC2, 0x77, 0x45, 0x13, 0x2D, 0xED, 0x8E, 0x54, + 0x5C, 0x1D, 0x54, 0xC7, 0x2F, 0x04, 0x69, 0x97}, + .yg_size = 32U, + }, +#endif +#if PKA_USE_BRAINPOOL_P256T1 + [PKA_BRAINPOOL_P256T1] = { + .p_len = 256, + .n_len = 256, + .p = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, + 0x6E, 0x3B, 0xF6, 0x23, 0xD5, 0x26, 0x20, 0x28, + 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, 0x53, 0x77}, + .n = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x71, + 0x8C, 0x39, 0x7A, 0xA3, 0xB5, 0x61, 0xA6, 0xF7, + 0x90, 0x1E, 0x0E, 0x82, 0x97, 0x48, 0x56, 0xA7}, + .a = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, + 0x6E, 0x3B, 0xF6, 0x23, 0xD5, 0x26, 0x20, 0x28, + 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, 0x53, 0x74}, + .a_size = 32U, + .xg = (uint8_t[]){0xA3, 0xE8, 0xEB, 0x3C, 0xC1, 0xCF, 0xE7, 0xB7, + 0x73, 0x22, 0x13, 0xB2, 0x3A, 0x65, 0x61, 0x49, + 0xAF, 0xA1, 0x42, 0xC4, 0x7A, 0xAF, 0xBC, 0x2B, + 0x79, 0xA1, 0x91, 0x56, 0x2E, 0x13, 0x05, 0xF4}, + .xg_size = 32U, + .yg = (uint8_t[]){0x2D, 0x99, 0x6C, 0x82, 0x34, 0x39, 0xC5, 0x6D, + 0x7F, 0x7B, 0x22, 0xE1, 0x46, 0x44, 0x41, 0x7E, + 0x69, 0xBC, 0xB6, 0xDE, 0x39, 0xD0, 0x27, 0x00, + 0x1D, 0xAB, 0xE8, 0xF3, 0x5B, 0x25, 0xC9, 0xBE}, + .yg_size = 32U, + }, +#endif +#if PKA_USE_NIST_P521 + [PKA_NIST_P521] = { + .p_len = 521, + .n_len = 521, + .p = (uint8_t[]){ 0x01, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + .n = (uint8_t[]){ 0x01, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfa, + 0x51, 0x86, 0x87, 0x83, 0xbf, 0x2f, 0x96, 0x6b, + 0x7f, 0xcc, 0x01, 0x48, 0xf7, 0x09, 0xa5, 0xd0, + 0x3b, 0xb5, 0xc9, 0xb8, 0x89, 0x9c, 0x47, 0xae, + 0xbb, 0x6f, 0xb7, 0x1e, 0x91, 0x38, 0x64, 0x09}, + .a_sign = 1, + .a = (uint8_t[]){0x03}, + .a_size = 1U, + .xg = (uint8_t[]){ 0xc6, + 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, 0xe9, 0xcd, + 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, 0xb4, 0x42, + 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, 0xb5, 0x21, + 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 0x3d, 0xba, + 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, 0x59, 0x28, + 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, 0xa8, 0xde, + 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 0x42, 0x9b, + 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, 0xbd, 0x66}, + .xg_size = 65U, + .yg = (uint8_t[]){ 0x01, 0x18, + 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, + 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, + 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, + 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, + 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, + 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, + 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, + 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50}, + .yg_size = 66U, + }, +#endif +}; + +static struct stm32_pka_platdata pka_pdata; + +#pragma weak stm32_pka_get_platdata + +int stm32_pka_get_platdata(struct stm32_pka_platdata *pdata) +{ + return -ENODEV; +} + +static int stm32_pka_parse_fdt(void) +{ + int node; + struct dt_node_info info; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + node = dt_get_node(&info, -1, DT_PKA_COMPAT); + if (node < 0) { + ERROR("No PKA entry in DT\n"); + return -FDT_ERR_NOTFOUND; + } + + if (info.status == DT_DISABLED) { + return -FDT_ERR_NOTFOUND; + } + + if ((info.base == 0) || (info.clock < 0) || (info.reset < 0)) { + return -FDT_ERR_BADVALUE; + } + + pka_pdata.base = (uintptr_t)info.base; + pka_pdata.clock_id = (unsigned long)info.clock; + pka_pdata.reset_id = (unsigned int)info.reset; + + return 0; +} + +static int pka_wait_bit(uintptr_t base, uint32_t bit) +{ + uint64_t timeout = timeout_init_us(PKA_TIMEOUT_US); + + while ((mmio_read_32(base + _PKA_SR) & bit) != bit) { + if (timeout_elapsed(timeout)) { + WARN("timeout waiting %x\n", bit); + return -ETIMEDOUT; + } + } + + return 0; + +} + +static void pka_disable(uintptr_t base) +{ + mmio_clrbits_32(base + _PKA_CR, _PKA_CR_EN); +} + +static int pka_enable(uintptr_t base, uint32_t mode) +{ + /* Set mode and disable interrupts */ + mmio_clrsetbits_32(base + _PKA_CR, _PKA_IT_MASK | _PKA_CR_MODE_MASK, + _PKA_CR_MODE_MASK & (mode << _PKA_CR_MODE_SHIFT)); + + mmio_setbits_32(base + _PKA_CR, _PKA_CR_EN); + + return pka_wait_bit(base, _PKA_SR_INITOK); +} + +/* + * Data are already loaded in PKA internal RAM + * MODE is set + * We start process, and wait for its end. + */ +static int stm32_pka_process(uintptr_t base) +{ + mmio_setbits_32(base + _PKA_CR, _PKA_CR_START); + + return pka_wait_bit(base, _PKA_IT_PROCEND); +} + +/** + * @brief Write ECC operand to PKA RAM. + * @note PKA expect to write u64 word, each u64 are: the least significant bit is + * bit 0; the most significant bit is bit 63. + * We write eo_nbw (ECC operand Size) u64, value that depends of the chosen + * prime modulus length in bits. + * First less signicant u64 is written to low address + * Most significant u64 to higher address. + * And at last address we write a u64(0x0) + * @note This function doesn't only manage endianness (as bswap64 do), but also + * complete most significant incomplete u64 with 0 (if data is not a u64 + * multiple), and fill u64 last address with 0. + * @param addr: PKA_RAM address to write the buffer 'data' + * @param data: is a BYTE list with most significant bytes first + * @param data_size: nb of byte in data + * @param eo_nbw: is ECC Operand size in 64bits word (including the extra 0) + * (note it depends of the prime modulus length, not the data size) + * @retval 0 if OK. + * -EINVAL if data_size and eo_nbw are inconsistent, ie data doesn't + * fit in defined eo_nbw, or eo_nbw bigger than hardware limit. + */ +static int write_eo_data(uintptr_t addr, uint8_t *data, unsigned int data_size, + unsigned int eo_nbw) +{ + uint32_t word_index; + int data_index; + + if ((eo_nbw < OP_NBW_FROM_SIZE(data_size)) || (eo_nbw > MAX_EO_NBW)) { + return -EINVAL; + } + + /* Fill value */ + data_index = (int)data_size - 1; + for (word_index = 0U; word_index < eo_nbw; word_index++) { + uint64_t tmp = 0ULL; + unsigned int i = 0U; /* index in the tmp U64 word */ + + /* Stop if end of tmp or end of data */ + while ((i < sizeof(tmp)) && (data_index >= 0)) { + tmp |= (uint64_t)(data[data_index]) << (UINT8_LEN * i); + i++; /* Move byte index in current (u64)tmp */ + data_index--; /* Move to just next most significat byte */ + } + + mmio_write_64(addr + word_index * sizeof(tmp), tmp); + } + + return 0; +} + +static unsigned int get_ecc_op_nbword(enum stm32_pka_ecdsa_curve_id cid) +{ + if (cid >= ARRAY_SIZE(curve_def)) { + ERROR("CID %u is out of boundaries\n", cid); + panic(); + } + + return OP_NBW_FROM_LEN(curve_def[cid].n_len); +} + +static int stm32_pka_ecdsa_verif_configure_curve(uintptr_t base, enum stm32_pka_ecdsa_curve_id cid) +{ + int ret; + unsigned int eo_nbw = get_ecc_op_nbword(cid); + + mmio_write_64(base + _PKA_RAM_N_LEN, curve_def[cid].n_len); + mmio_write_64(base + _PKA_RAM_P_LEN, curve_def[cid].p_len); + mmio_write_64(base + _PKA_RAM_A_SIGN, curve_def[cid].a_sign); + + ret = write_eo_data(base + _PKA_RAM_A, curve_def[cid].a, curve_def[cid].a_size, eo_nbw); + if (ret < 0) { + return ret; + } + + ret = write_eo_data(base + _PKA_RAM_PRIME_N, + curve_def[cid].n, div_round_up(curve_def[cid].n_len, UINT8_LEN), + eo_nbw); + if (ret < 0) { + return ret; + } + + ret = write_eo_data(base + _PKA_RAM_P, curve_def[cid].p, + div_round_up(curve_def[cid].p_len, UINT8_LEN), eo_nbw); + if (ret < 0) { + return ret; + } + + ret = write_eo_data(base + _PKA_RAM_XG, curve_def[cid].xg, curve_def[cid].xg_size, eo_nbw); + if (ret < 0) { + return ret; + } + + ret = write_eo_data(base + _PKA_RAM_YG, curve_def[cid].yg, curve_def[cid].yg_size, eo_nbw); + if (ret < 0) { + return ret; + } + + return 0; +} + +static int stm32_pka_ecdsa_verif_check_return(uintptr_t base) +{ + uint64_t value; + uint32_t sr; + + sr = mmio_read_32(base + _PKA_SR); + if ((sr & (_PKA_IT_OPERR | _PKA_IT_ADDRERR | _PKA_IT_RAMERR)) != 0) { + WARN("Detected error(s): %s%s%s\n", + (sr & _PKA_IT_OPERR) ? "Operation " : "", + (sr & _PKA_IT_ADDRERR) ? "Address " : "", + (sr & _PKA_IT_RAMERR) ? "RAM" : ""); + return -EINVAL; + } + + value = mmio_read_64(base + _PKA_RAM_ECDSA_VERIFY); + if (value == _PKA_RAM_ECDSA_VERIFY_VALID) { + return 0; + } + + if (value == _PKA_RAM_ECDSA_VERIFY_INVALID) { + return -EAUTH; + } + + return -EINVAL; +} + +/** + * @brief Check if BigInt stored in data is 0 + * + * @param data: a BYTE array with most significant bytes first + * @param size: data size + * + * @retval: true: if data represents a 0 value (ie all bytes == 0) + * false: if data represents a non-zero value. + */ +static bool is_zero(uint8_t *data, unsigned int size) +{ + unsigned int i; + + for (i = 0U; i < size; i++) { + if (data[i] != 0U) { + return false; + } + } + + return true; +} + +/** + * @brief Compare two BigInt: + * @param xdata_a: a BYTE array with most significant bytes first + * @param size_a: nb of Byte of 'a' + * @param data_b: a BYTE array with most significant bytes first + * @param size_b: nb of Byte of 'b' + * + * @retval: true if data_a < data_b + * false if data_a >= data_b + */ +static bool is_smaller(uint8_t *data_a, unsigned int size_a, + uint8_t *data_b, unsigned int size_b) +{ + unsigned int i; + + i = MAX(size_a, size_b) + 1U; + do { + uint8_t a, b; + + i--; + if (size_a < i) { + a = 0U; + } else { + a = data_a[size_a - i]; + } + + if (size_b < i) { + b = 0U; + } else { + b = data_b[size_b - i]; + } + + if (a < b) { + return true; + } + + if (a > b) { + return false; + } + } while (i != 0U); + + return false; +} + +static int stm32_pka_ecdsa_check_param(void *sig_r_ptr, unsigned int sig_r_size, + void *sig_s_ptr, unsigned int sig_s_size, + void *pk_x_ptr, unsigned int pk_x_size, + void *pk_y_ptr, unsigned int pk_y_size, + enum stm32_pka_ecdsa_curve_id cid) +{ + /* Public Key check */ + /* Check Xq < p */ + if (!is_smaller(pk_x_ptr, pk_x_size, + curve_def[cid].p, div_round_up(curve_def[cid].p_len, UINT8_LEN))) { + WARN("%s Xq < p inval\n", __func__); + return -EINVAL; + } + + /* Check Yq < p */ + if (!is_smaller(pk_y_ptr, pk_y_size, + curve_def[cid].p, div_round_up(curve_def[cid].p_len, UINT8_LEN))) { + WARN("%s Yq < p inval\n", __func__); + return -EINVAL; + } + + /* Signature check */ + /* Check 0 < r < n */ + if (!is_smaller(sig_r_ptr, sig_r_size, + curve_def[cid].n, div_round_up(curve_def[cid].n_len, UINT8_LEN)) && + !is_zero(sig_r_ptr, sig_r_size)) { + WARN("%s 0< r < n inval\n", __func__); + return -EINVAL; + } + + /* Check 0 < s < n */ + if (!is_smaller(sig_s_ptr, sig_s_size, + curve_def[cid].n, div_round_up(curve_def[cid].n_len, UINT8_LEN)) && + !is_zero(sig_s_ptr, sig_s_size)) { + WARN("%s 0< s < n inval\n", __func__); + return -EINVAL; + } + + return 0; +} + +/* + * @brief Initialize the PKA driver. + * @param None. + * @retval 0 if OK, negative value else. + */ +int stm32_pka_init(void) +{ + int err; +#if LOG_LEVEL >= LOG_LEVEL_VERBOSE + uint32_t ver; + uint32_t id; +#endif + + err = stm32_pka_parse_fdt(); + if (err != 0) { + err = stm32_pka_get_platdata(&pka_pdata); + if (err != 0) { + return err; + } + } + + clk_enable(pka_pdata.clock_id); + + if (stm32mp_reset_assert((unsigned long)pka_pdata.reset_id, TIMEOUT_US_1MS) != 0) { + panic(); + } + + udelay(PKA_RESET_DELAY); + if (stm32mp_reset_deassert((unsigned long)pka_pdata.reset_id, TIMEOUT_US_1MS) != 0) { + panic(); + } + +#if LOG_LEVEL >= LOG_LEVEL_VERBOSE + id = mmio_read_32(pka_pdata.base + _PKA_IPIDR); + ver = mmio_read_32(pka_pdata.base + _PKA_VERR); + + VERBOSE("STM32 PKA[%x] V%u.%u\n", id, + (ver & _PKA_VERR_MAJREV_MASK) >> _PKA_VERR_MAJREV_SHIFT, + (ver & _PKA_VERR_MINREV_MASK) >> _PKA_VERR_MINREV_SHIFT); +#endif + return 0; +} + +int stm32_pka_ecdsa_verif(void *hash, unsigned int hash_size, + void *sig_r_ptr, unsigned int sig_r_size, + void *sig_s_ptr, unsigned int sig_s_size, + void *pk_x_ptr, unsigned int pk_x_size, + void *pk_y_ptr, unsigned int pk_y_size, + enum stm32_pka_ecdsa_curve_id cid) +{ + int ret; + uintptr_t base = pka_pdata.base; + unsigned int eo_nbw = get_ecc_op_nbword(cid); + + if ((hash == NULL) || (sig_r_ptr == NULL) || (sig_s_ptr == NULL) || + (pk_x_ptr == NULL) || (pk_y_ptr == NULL)) { + INFO("%s invalid input param\n", __func__); + return -EINVAL; + } + + ret = stm32_pka_ecdsa_check_param(sig_r_ptr, sig_r_size, + sig_s_ptr, sig_s_size, + pk_x_ptr, pk_x_size, + pk_y_ptr, pk_y_size, + cid); + if (ret < 0) { + INFO("%s check param error %d\n", __func__, ret); + goto out; + } + + if ((mmio_read_32(base + _PKA_SR) & _PKA_SR_BUSY) == _PKA_SR_BUSY) { + INFO("%s busy\n", __func__); + ret = -EBUSY; + goto out; + } + + /* Fill PKA RAM */ + /* With curve id values */ + ret = stm32_pka_ecdsa_verif_configure_curve(base, cid); + if (ret < 0) { + goto out; + } + + /* With pubkey */ + ret = write_eo_data(base + _PKA_RAM_XQ, pk_x_ptr, pk_x_size, eo_nbw); + if (ret < 0) { + goto out; + } + + ret = write_eo_data(base + _PKA_RAM_YQ, pk_y_ptr, pk_y_size, eo_nbw); + if (ret < 0) { + goto out; + } + + /* With hash */ + ret = write_eo_data(base + _PKA_RAM_HASH_Z, hash, hash_size, eo_nbw); + if (ret < 0) { + goto out; + } + + /* With signature */ + ret = write_eo_data(base + _PKA_RAM_SIGN_R, sig_r_ptr, sig_r_size, eo_nbw); + if (ret < 0) { + goto out; + } + + ret = write_eo_data(base + _PKA_RAM_SIGN_S, sig_s_ptr, sig_s_size, eo_nbw); + if (ret < 0) { + goto out; + } + + /* Set mode to ecdsa signature verification */ + ret = pka_enable(base, _PKA_CR_MODE_ECDSA_VERIF); + if (ret < 0) { + WARN("%s set mode pka error %d\n", __func__, ret); + goto out; + } + + /* Start processing and wait end */ + ret = stm32_pka_process(base); + if (ret < 0) { + WARN("%s process error %d\n", __func__, ret); + goto out; + } + + /* Check return status */ + ret = stm32_pka_ecdsa_verif_check_return(base); + + /* Unset end proc */ + mmio_setbits_32(base + _PKA_CLRFR, _PKA_IT_PROCEND); + +out: + /* Disable PKA (will stop all pending proccess and reset RAM) */ + pka_disable(base); + + return ret; +} diff --git a/drivers/st/crypto/stm32_rng.c b/drivers/st/crypto/stm32_rng.c new file mode 100644 index 0000000..a9dc43f --- /dev/null +++ b/drivers/st/crypto/stm32_rng.c @@ -0,0 +1,269 @@ +/* + * Copyright (c) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <stdbool.h> + +#include <arch_helpers.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_rng.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <libfdt.h> + +#include <platform_def.h> + +#if STM32_RNG_VER == 2 +#define DT_RNG_COMPAT "st,stm32-rng" +#endif +#if STM32_RNG_VER == 4 +#define DT_RNG_COMPAT "st,stm32mp13-rng" +#endif +#define RNG_CR 0x00U +#define RNG_SR 0x04U +#define RNG_DR 0x08U + +#define RNG_CR_RNGEN BIT(2) +#define RNG_CR_IE BIT(3) +#define RNG_CR_CED BIT(5) +#define RNG_CR_CLKDIV GENMASK(19, 16) +#define RNG_CR_CLKDIV_SHIFT 16U +#define RNG_CR_CONDRST BIT(30) + +#define RNG_SR_DRDY BIT(0) +#define RNG_SR_CECS BIT(1) +#define RNG_SR_SECS BIT(2) +#define RNG_SR_CEIS BIT(5) +#define RNG_SR_SEIS BIT(6) + +#define RNG_TIMEOUT_US 100000U +#define RNG_TIMEOUT_STEP_US 10U + +#define TIMEOUT_US_1MS 1000U + +#define RNG_NIST_CONFIG_A 0x00F40F00U +#define RNG_NIST_CONFIG_B 0x01801000U +#define RNG_NIST_CONFIG_C 0x00F00D00U +#define RNG_NIST_CONFIG_MASK GENMASK(25, 8) + +#define RNG_MAX_NOISE_CLK_FREQ 48000000U + +struct stm32_rng_instance { + uintptr_t base; + unsigned long clock; +}; + +static struct stm32_rng_instance stm32_rng; + +static void seed_error_recovery(void) +{ + uint8_t i __maybe_unused; + + /* Recommended by the SoC reference manual */ + mmio_clrbits_32(stm32_rng.base + RNG_SR, RNG_SR_SEIS); + dmbsy(); + +#if STM32_RNG_VER == 2 + /* No Auto-reset on version 2, need to clean FIFO */ + for (i = 12U; i != 0U; i--) { + (void)mmio_read_32(stm32_rng.base + RNG_DR); + } + + dmbsy(); +#endif + + if ((mmio_read_32(stm32_rng.base + RNG_SR) & RNG_SR_SEIS) != 0U) { + ERROR("RNG noise\n"); + panic(); + } +} + +static uint32_t stm32_rng_clock_freq_restrain(void) +{ + unsigned long clock_rate; + uint32_t clock_div = 0U; + + clock_rate = clk_get_rate(stm32_rng.clock); + + /* + * Get the exponent to apply on the CLKDIV field in RNG_CR register + * No need to handle the case when clock-div > 0xF as it is physically + * impossible + */ + while ((clock_rate >> clock_div) > RNG_MAX_NOISE_CLK_FREQ) { + clock_div++; + } + + VERBOSE("RNG clk rate : %lu\n", clk_get_rate(stm32_rng.clock) >> clock_div); + + return clock_div; +} + +static int stm32_rng_enable(void) +{ + uint32_t sr; + uint64_t timeout; + uint32_t clock_div __maybe_unused; + +#if STM32_RNG_VER == 2 + mmio_write_32(stm32_rng.base + RNG_CR, RNG_CR_RNGEN | RNG_CR_CED); +#endif +#if STM32_RNG_VER == 4 + /* Reset internal block and disable CED bit */ + clock_div = stm32_rng_clock_freq_restrain(); + + /* Update configuration fields */ + mmio_clrsetbits_32(stm32_rng.base + RNG_CR, RNG_NIST_CONFIG_MASK, + RNG_NIST_CONFIG_A | RNG_CR_CONDRST | RNG_CR_CED); + + mmio_clrsetbits_32(stm32_rng.base + RNG_CR, RNG_CR_CLKDIV, + (clock_div << RNG_CR_CLKDIV_SHIFT)); + + mmio_clrsetbits_32(stm32_rng.base + RNG_CR, RNG_CR_CONDRST, RNG_CR_RNGEN); +#endif + timeout = timeout_init_us(RNG_TIMEOUT_US); + sr = mmio_read_32(stm32_rng.base + RNG_SR); + while ((sr & RNG_SR_DRDY) == 0U) { + if (timeout_elapsed(timeout)) { + WARN("Timeout waiting\n"); + return -ETIMEDOUT; + } + + if ((sr & (RNG_SR_SECS | RNG_SR_SEIS)) != 0U) { + seed_error_recovery(); + timeout = timeout_init_us(RNG_TIMEOUT_US); + } + + udelay(RNG_TIMEOUT_STEP_US); + sr = mmio_read_32(stm32_rng.base + RNG_SR); + } + + VERBOSE("Init RNG done\n"); + + return 0; +} + +/* + * stm32_rng_read - Read a number of random bytes from RNG + * out: pointer to the output buffer + * size: number of bytes to be read + * Return 0 on success, non-0 on failure + */ +int stm32_rng_read(uint8_t *out, uint32_t size) +{ + uint8_t *buf = out; + size_t len = size; + int nb_tries; + uint32_t data32; + int rc = 0; + unsigned int count; + + if (stm32_rng.base == 0U) { + return -EPERM; + } + + while (len != 0U) { + nb_tries = RNG_TIMEOUT_US / RNG_TIMEOUT_STEP_US; + do { + uint32_t status = mmio_read_32(stm32_rng.base + RNG_SR); + + if ((status & (RNG_SR_SECS | RNG_SR_SEIS)) != 0U) { + seed_error_recovery(); + } + + udelay(RNG_TIMEOUT_STEP_US); + nb_tries--; + if (nb_tries == 0) { + rc = -ETIMEDOUT; + goto bail; + } + } while ((mmio_read_32(stm32_rng.base + RNG_SR) & + RNG_SR_DRDY) == 0U); + + count = 4U; + while (len != 0U) { + data32 = mmio_read_32(stm32_rng.base + RNG_DR); + count--; + + memcpy(buf, &data32, MIN(len, sizeof(uint32_t))); + buf += MIN(len, sizeof(uint32_t)); + len -= MIN(len, sizeof(uint32_t)); + + if (count == 0U) { + break; + } + } + } + +bail: + if (rc != 0) { + memset(out, 0, buf - out); + } + + return rc; +} + +/* + * stm32_rng_init: Initialize rng from DT + * return 0 on success, negative value on failure + */ +int stm32_rng_init(void) +{ + void *fdt; + struct dt_node_info dt_rng; + int node; + + if (stm32_rng.base != 0U) { + /* Driver is already initialized */ + return 0; + } + + if (fdt_get_address(&fdt) == 0) { + panic(); + } + + node = dt_get_node(&dt_rng, -1, DT_RNG_COMPAT); + if (node < 0) { + return 0; + } + + if (dt_rng.status == DT_DISABLED) { + return 0; + } + + assert(dt_rng.base != 0U); + + stm32_rng.base = dt_rng.base; + + if (dt_rng.clock < 0) { + panic(); + } + + stm32_rng.clock = (unsigned long)dt_rng.clock; + clk_enable(stm32_rng.clock); + + if (dt_rng.reset >= 0) { + int ret; + + ret = stm32mp_reset_assert((unsigned long)dt_rng.reset, + TIMEOUT_US_1MS); + if (ret != 0) { + panic(); + } + + udelay(20); + + ret = stm32mp_reset_deassert((unsigned long)dt_rng.reset, + TIMEOUT_US_1MS); + if (ret != 0) { + panic(); + } + } + + return stm32_rng_enable(); +} diff --git a/drivers/st/crypto/stm32_saes.c b/drivers/st/crypto/stm32_saes.c new file mode 100644 index 0000000..02baf21 --- /dev/null +++ b/drivers/st/crypto/stm32_saes.c @@ -0,0 +1,913 @@ +/* + * Copyright (c) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ +#include <assert.h> +#include <endian.h> +#include <errno.h> +#include <stdint.h> + +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_saes.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils_def.h> +#include <libfdt.h> + +#include <platform_def.h> + +#define UINT8_BIT 8U +#define AES_BLOCK_SIZE_BIT 128U +#define AES_BLOCK_SIZE (AES_BLOCK_SIZE_BIT / UINT8_BIT) + +#define AES_KEYSIZE_128 16U +#define AES_KEYSIZE_256 32U +#define AES_IVSIZE 16U + +/* SAES control register */ +#define _SAES_CR 0x0U +/* SAES status register */ +#define _SAES_SR 0x04U +/* SAES data input register */ +#define _SAES_DINR 0x08U +/* SAES data output register */ +#define _SAES_DOUTR 0x0CU +/* SAES key registers [0-3] */ +#define _SAES_KEYR0 0x10U +#define _SAES_KEYR1 0x14U +#define _SAES_KEYR2 0x18U +#define _SAES_KEYR3 0x1CU +/* SAES initialization vector registers [0-3] */ +#define _SAES_IVR0 0x20U +#define _SAES_IVR1 0x24U +#define _SAES_IVR2 0x28U +#define _SAES_IVR3 0x2CU +/* SAES key registers [4-7] */ +#define _SAES_KEYR4 0x30U +#define _SAES_KEYR5 0x34U +#define _SAES_KEYR6 0x38U +#define _SAES_KEYR7 0x3CU +/* SAES suspend registers [0-7] */ +#define _SAES_SUSPR0 0x40U +#define _SAES_SUSPR1 0x44U +#define _SAES_SUSPR2 0x48U +#define _SAES_SUSPR3 0x4CU +#define _SAES_SUSPR4 0x50U +#define _SAES_SUSPR5 0x54U +#define _SAES_SUSPR6 0x58U +#define _SAES_SUSPR7 0x5CU +/* SAES Interrupt Enable Register */ +#define _SAES_IER 0x300U +/* SAES Interrupt Status Register */ +#define _SAES_ISR 0x304U +/* SAES Interrupt Clear Register */ +#define _SAES_ICR 0x308U + +/* SAES control register fields */ +#define _SAES_CR_RESET_VALUE 0x0U +#define _SAES_CR_IPRST BIT(31) +#define _SAES_CR_KEYSEL_MASK GENMASK(30, 28) +#define _SAES_CR_KEYSEL_SHIFT 28U +#define _SAES_CR_KEYSEL_SOFT 0x0U +#define _SAES_CR_KEYSEL_DHUK 0x1U +#define _SAES_CR_KEYSEL_BHK 0x2U +#define _SAES_CR_KEYSEL_BHU_XOR_BH_K 0x4U +#define _SAES_CR_KEYSEL_TEST 0x7U +#define _SAES_CR_KSHAREID_MASK GENMASK(27, 26) +#define _SAES_CR_KSHAREID_SHIFT 26U +#define _SAES_CR_KSHAREID_CRYP 0x0U +#define _SAES_CR_KEYMOD_MASK GENMASK(25, 24) +#define _SAES_CR_KEYMOD_SHIFT 24U +#define _SAES_CR_KEYMOD_NORMAL 0x0U +#define _SAES_CR_KEYMOD_WRAPPED 0x1U +#define _SAES_CR_KEYMOD_SHARED 0x2U +#define _SAES_CR_NPBLB_MASK GENMASK(23, 20) +#define _SAES_CR_NPBLB_SHIFT 20U +#define _SAES_CR_KEYPROT BIT(19) +#define _SAES_CR_KEYSIZE BIT(18) +#define _SAES_CR_GCMPH_MASK GENMASK(14, 13) +#define _SAES_CR_GCMPH_SHIFT 13U +#define _SAES_CR_GCMPH_INIT 0U +#define _SAES_CR_GCMPH_HEADER 1U +#define _SAES_CR_GCMPH_PAYLOAD 2U +#define _SAES_CR_GCMPH_FINAL 3U +#define _SAES_CR_DMAOUTEN BIT(12) +#define _SAES_CR_DMAINEN BIT(11) +#define _SAES_CR_CHMOD_MASK (BIT(16) | GENMASK(6, 5)) +#define _SAES_CR_CHMOD_SHIFT 5U +#define _SAES_CR_CHMOD_ECB 0x0U +#define _SAES_CR_CHMOD_CBC 0x1U +#define _SAES_CR_CHMOD_CTR 0x2U +#define _SAES_CR_CHMOD_GCM 0x3U +#define _SAES_CR_CHMOD_GMAC 0x3U +#define _SAES_CR_CHMOD_CCM 0x800U +#define _SAES_CR_MODE_MASK GENMASK(4, 3) +#define _SAES_CR_MODE_SHIFT 3U +#define _SAES_CR_MODE_ENC 0U +#define _SAES_CR_MODE_KEYPREP 1U +#define _SAES_CR_MODE_DEC 2U +#define _SAES_CR_DATATYPE_MASK GENMASK(2, 1) +#define _SAES_CR_DATATYPE_SHIFT 1U +#define _SAES_CR_DATATYPE_NONE 0U +#define _SAES_CR_DATATYPE_HALF_WORD 1U +#define _SAES_CR_DATATYPE_BYTE 2U +#define _SAES_CR_DATATYPE_BIT 3U +#define _SAES_CR_EN BIT(0) + +/* SAES status register fields */ +#define _SAES_SR_KEYVALID BIT(7) +#define _SAES_SR_BUSY BIT(3) +#define _SAES_SR_WRERR BIT(2) +#define _SAES_SR_RDERR BIT(1) +#define _SAES_SR_CCF BIT(0) + +/* SAES interrupt registers fields */ +#define _SAES_I_RNG_ERR BIT(3) +#define _SAES_I_KEY_ERR BIT(2) +#define _SAES_I_RW_ERR BIT(1) +#define _SAES_I_CC BIT(0) + +#define SAES_TIMEOUT_US 100000U +#define TIMEOUT_US_1MS 1000U +#define SAES_RESET_DELAY 20U + +#define IS_CHAINING_MODE(mod, cr) \ + (((cr) & _SAES_CR_CHMOD_MASK) == (_SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT)) + +#define SET_CHAINING_MODE(mod, cr) \ + mmio_clrsetbits_32((cr), _SAES_CR_CHMOD_MASK, _SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT) + +#define pragma weak stm32_saes_get_platdata + +static struct stm32_saes_platdata saes_pdata; + +int stm32_saes_get_platdata(struct stm32_saes_platdata *pdata) +{ + return -ENODEV; +} + +static int stm32_saes_parse_fdt(struct stm32_saes_platdata *pdata) +{ + int node; + struct dt_node_info info; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + node = dt_get_node(&info, -1, DT_SAES_COMPAT); + if (node < 0) { + ERROR("No SAES entry in DT\n"); + return -FDT_ERR_NOTFOUND; + } + + if (info.status == DT_DISABLED) { + return -FDT_ERR_NOTFOUND; + } + + if ((info.base == 0U) || (info.clock < 0) || (info.reset < 0)) { + return -FDT_ERR_BADVALUE; + } + + pdata->base = (uintptr_t)info.base; + pdata->clock_id = (unsigned long)info.clock; + pdata->reset_id = (unsigned int)info.reset; + + return 0; +} + +static bool does_chaining_mode_need_iv(uint32_t cr) +{ + return !(IS_CHAINING_MODE(ECB, cr)); +} + +static bool is_encrypt(uint32_t cr) +{ + return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT); +} + +static bool is_decrypt(uint32_t cr) +{ + return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT); +} + +static int wait_computation_completed(uintptr_t base) +{ + uint64_t timeout = timeout_init_us(SAES_TIMEOUT_US); + + while ((mmio_read_32(base + _SAES_SR) & _SAES_SR_CCF) != _SAES_SR_CCF) { + if (timeout_elapsed(timeout)) { + WARN("%s: timeout\n", __func__); + return -ETIMEDOUT; + } + } + + return 0; +} + +static void clear_computation_completed(uintptr_t base) +{ + mmio_setbits_32(base + _SAES_ICR, _SAES_I_CC); +} + +static int saes_start(struct stm32_saes_context *ctx) +{ + uint64_t timeout; + + /* Reset IP */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + udelay(SAES_RESET_DELAY); + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + + timeout = timeout_init_us(SAES_TIMEOUT_US); + while ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_BUSY) == _SAES_SR_BUSY) { + if (timeout_elapsed(timeout)) { + WARN("%s: timeout\n", __func__); + return -ETIMEDOUT; + } + } + + return 0; +} + +static void saes_end(struct stm32_saes_context *ctx, int prev_error) +{ + if (prev_error != 0) { + /* Reset IP */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + udelay(SAES_RESET_DELAY); + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + } + + /* Disable the SAES peripheral */ + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); +} + +static void saes_write_iv(struct stm32_saes_context *ctx) +{ + /* If chaining mode need to restore IV */ + if (does_chaining_mode_need_iv(ctx->cr)) { + uint8_t i; + + /* Restore the _SAES_IVRx */ + for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) { + mmio_write_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t), ctx->iv[i]); + } + } + +} + +static void saes_write_key(struct stm32_saes_context *ctx) +{ + /* Restore the _SAES_KEYRx if SOFTWARE key */ + if ((ctx->cr & _SAES_CR_KEYSEL_MASK) == (_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT)) { + uint8_t i; + + for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) { + mmio_write_32(ctx->base + _SAES_KEYR0 + i * sizeof(uint32_t), ctx->key[i]); + } + + if ((ctx->cr & _SAES_CR_KEYSIZE) == _SAES_CR_KEYSIZE) { + for (i = 0U; i < (AES_KEYSIZE_256 / 2U) / sizeof(uint32_t); i++) { + mmio_write_32(ctx->base + _SAES_KEYR4 + i * sizeof(uint32_t), + ctx->key[i + 4U]); + } + } + } +} + +static int saes_prepare_key(struct stm32_saes_context *ctx) +{ + /* Disable the SAES peripheral */ + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + /* Set key size */ + if ((ctx->cr & _SAES_CR_KEYSIZE) != 0U) { + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE); + } else { + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE); + } + + saes_write_key(ctx); + + /* For ECB/CBC decryption, key preparation mode must be selected to populate the key */ + if ((IS_CHAINING_MODE(ECB, ctx->cr) || IS_CHAINING_MODE(CBC, ctx->cr)) && + is_decrypt(ctx->cr)) { + int ret; + + /* Select Mode 2 */ + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK, + _SAES_CR_MODE_KEYPREP << _SAES_CR_MODE_SHIFT); + + /* Enable SAES */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + /* Wait Computation completed */ + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + return ret; + } + + clear_computation_completed(ctx->base); + + /* Set Mode 3 */ + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK, + _SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT); + } + + return 0; +} + +static int save_context(struct stm32_saes_context *ctx) +{ + if ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_CCF) != 0U) { + /* Device should not be in a processing phase */ + return -EINVAL; + } + + /* Save CR */ + ctx->cr = mmio_read_32(ctx->base + _SAES_CR); + + /* If chaining mode need to save current IV */ + if (does_chaining_mode_need_iv(ctx->cr)) { + uint8_t i; + + /* Save IV */ + for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) { + ctx->iv[i] = mmio_read_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t)); + } + } + + /* Disable the SAES peripheral */ + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + return 0; +} + +/* To resume the processing of a message */ +static int restore_context(struct stm32_saes_context *ctx) +{ + int ret; + + /* IP should be disabled */ + if ((mmio_read_32(ctx->base + _SAES_CR) & _SAES_CR_EN) != 0U) { + VERBOSE("%s: Device is still enabled\n", __func__); + return -EINVAL; + } + + /* Reset internal state */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + + /* Restore the _SAES_CR */ + mmio_write_32(ctx->base + _SAES_CR, ctx->cr); + + /* Preparation decrypt key */ + ret = saes_prepare_key(ctx); + if (ret != 0) { + return ret; + } + + saes_write_iv(ctx); + + /* Enable the SAES peripheral */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + return 0; +} + +/** + * @brief Initialize SAES driver. + * @param None. + * @retval 0 if OK; negative value else. + */ +int stm32_saes_driver_init(void) +{ + int err; + + err = stm32_saes_parse_fdt(&saes_pdata); + if (err != 0) { + err = stm32_saes_get_platdata(&saes_pdata); + if (err != 0) { + return err; + } + } + + clk_enable(saes_pdata.clock_id); + if (stm32mp_reset_assert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) { + panic(); + } + + udelay(SAES_RESET_DELAY); + if (stm32mp_reset_deassert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) { + panic(); + } + + return 0; +} + +/** + * @brief Start a AES computation. + * @param ctx: SAES process context + * @param is_dec: true if decryption, false if encryption + * @param ch_mode: define the chaining mode + * @param key_select: define where the key comes from. + * @param key: pointer to key (if key_select is KEY_SOFT, else unused) + * @param key_size: key size + * @param iv: pointer to initialization vectore (unsed if ch_mode is ECB) + * @param iv_size: iv size + * @note this function doesn't access to hardware but store in ctx the values + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_init(struct stm32_saes_context *ctx, bool is_dec, + enum stm32_saes_chaining_mode ch_mode, enum stm32_saes_key_selection key_select, + const void *key, size_t key_size, const void *iv, size_t iv_size) +{ + unsigned int i; + const uint32_t *iv_u32; + const uint32_t *key_u32; + + ctx->assoc_len = 0U; + ctx->load_len = 0U; + + ctx->base = saes_pdata.base; + ctx->cr = _SAES_CR_RESET_VALUE; + + /* We want buffer to be u32 aligned */ + assert((uintptr_t)key % __alignof__(uint32_t) == 0); + assert((uintptr_t)iv % __alignof__(uint32_t) == 0); + + iv_u32 = iv; + key_u32 = key; + + if (is_dec) { + /* Save Mode 3 = decrypt */ + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK, + _SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT); + } else { + /* Save Mode 1 = crypt */ + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK, + _SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT); + } + + /* Save chaining mode */ + switch (ch_mode) { + case STM32_SAES_MODE_ECB: + SET_CHAINING_MODE(ECB, (uintptr_t)&(ctx->cr)); + break; + case STM32_SAES_MODE_CBC: + SET_CHAINING_MODE(CBC, (uintptr_t)&(ctx->cr)); + break; + case STM32_SAES_MODE_CTR: + SET_CHAINING_MODE(CTR, (uintptr_t)&(ctx->cr)); + break; + case STM32_SAES_MODE_GCM: + SET_CHAINING_MODE(GCM, (uintptr_t)&(ctx->cr)); + break; + case STM32_SAES_MODE_CCM: + SET_CHAINING_MODE(CCM, (uintptr_t)&(ctx->cr)); + break; + default: + return -EINVAL; + } + + /* We will use HW Byte swap (_SAES_CR_DATATYPE_BYTE) for data. + * so we won't need to + * htobe32(data) before write to DINR + * nor + * be32toh after reading from DOUTR + * + * But note that wrap key only accept _SAES_CR_DATATYPE_NONE + */ + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_DATATYPE_MASK, + _SAES_CR_DATATYPE_BYTE << _SAES_CR_DATATYPE_SHIFT); + + /* Configure keysize */ + switch (key_size) { + case AES_KEYSIZE_128: + mmio_clrbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE); + break; + case AES_KEYSIZE_256: + mmio_setbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE); + break; + default: + return -EINVAL; + } + + /* Configure key */ + switch (key_select) { + case STM32_SAES_KEY_SOFT: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT); + /* Save key */ + switch (key_size) { + case AES_KEYSIZE_128: + /* First 16 bytes == 4 u32 */ + for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) { + mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[3 - i])); + /* /!\ we save the key in HW byte order + * and word order : key[i] is for _SAES_KEYRi + */ + } + break; + case AES_KEYSIZE_256: + for (i = 0U; i < AES_KEYSIZE_256 / sizeof(uint32_t); i++) { + mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[7 - i])); + /* /!\ we save the key in HW byte order + * and word order : key[i] is for _SAES_KEYRi + */ + } + break; + default: + return -EINVAL; + } + + break; + case STM32_SAES_KEY_DHU: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_DHUK << _SAES_CR_KEYSEL_SHIFT); + break; + case STM32_SAES_KEY_BH: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_BHK << _SAES_CR_KEYSEL_SHIFT); + break; + case STM32_SAES_KEY_BHU_XOR_BH: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_BHU_XOR_BH_K << _SAES_CR_KEYSEL_SHIFT); + break; + case STM32_SAES_KEY_WRAPPED: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT); + break; + + default: + return -EINVAL; + } + + /* Save IV */ + if (ch_mode != STM32_SAES_MODE_ECB) { + if ((iv == NULL) || (iv_size != AES_IVSIZE)) { + return -EINVAL; + } + + for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) { + mmio_write_32((uintptr_t)(ctx->iv + i), htobe32(iv_u32[3 - i])); + /* /!\ We save the iv in HW byte order */ + } + } + + return saes_start(ctx); +} + +/** + * @brief Update (or start) a AES authentificate process of associated data (CCM or GCM). + * @param ctx: SAES process context + * @param last_block: true if last assoc data block + * @param data: pointer to associated data + * @param data_size: data size + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_update_assodata(struct stm32_saes_context *ctx, bool last_block, + uint8_t *data, size_t data_size) +{ + int ret; + uint32_t *data_u32; + unsigned int i = 0U; + + /* We want buffers to be u32 aligned */ + assert((uintptr_t)data % __alignof__(uint32_t) == 0); + data_u32 = (uint32_t *)data; + + /* Init phase */ + ret = restore_context(ctx); + if (ret != 0) { + goto out; + } + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + return ret; + } + + clear_computation_completed(ctx->base); + + if ((data == NULL) || (data_size == 0U)) { + /* No associated data */ + /* ret already = 0 */ + goto out; + } + + /* There is an header/associated data phase */ + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK, + _SAES_CR_GCMPH_HEADER << _SAES_CR_GCMPH_SHIFT); + + /* Enable the SAES peripheral */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + while (i < round_down(data_size, AES_BLOCK_SIZE)) { + unsigned int w; /* Word index */ + + w = i / sizeof(uint32_t); + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 0U]); + mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 1U]); + mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 2U]); + mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 3U]); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + goto out; + } + + clear_computation_completed(ctx->base); + + /* Process next block */ + i += AES_BLOCK_SIZE; + ctx->assoc_len += AES_BLOCK_SIZE_BIT; + } + + /* Manage last block if not a block size multiple */ + if ((last_block) && (i < data_size)) { + /* We don't manage unaligned last block yet */ + ret = -ENODEV; + goto out; + } + +out: + if (ret != 0) { + saes_end(ctx, ret); + } + + return ret; +} + +/** + * @brief Update (or start) a AES authenticate and de/encrypt with payload data (CCM or GCM). + * @param ctx: SAES process context + * @param last_block: true if last payload data block + * @param data_in: pointer to payload + * @param data_out: pointer where to save de/encrypted payload + * @param data_size: payload size + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_update_load(struct stm32_saes_context *ctx, bool last_block, + uint8_t *data_in, uint8_t *data_out, size_t data_size) +{ + int ret = 0; + uint32_t *data_in_u32; + uint32_t *data_out_u32; + unsigned int i = 0U; + uint32_t prev_cr; + + /* We want buffers to be u32 aligned */ + assert((uintptr_t)data_in % __alignof__(uint32_t) == 0); + assert((uintptr_t)data_out % __alignof__(uint32_t) == 0); + data_in_u32 = (uint32_t *)data_in; + data_out_u32 = (uint32_t *)data_out; + + prev_cr = mmio_read_32(ctx->base + _SAES_CR); + + if ((data_in == NULL) || (data_size == 0U)) { + /* there is no data */ + goto out; + } + + /* There is a load phase */ + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK, + _SAES_CR_GCMPH_PAYLOAD << _SAES_CR_GCMPH_SHIFT); + + if ((prev_cr & _SAES_CR_GCMPH_MASK) == + (_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) { + /* Still in initialization phase, no header + * We need to enable the SAES peripheral + */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + } + + while (i < round_down(data_size, AES_BLOCK_SIZE)) { + unsigned int w; /* Word index */ + + w = i / sizeof(uint32_t); + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + goto out; + } + + /* No need to htobe() as we configure the HW to swap bytes */ + data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR); + + clear_computation_completed(ctx->base); + + /* Process next block */ + i += AES_BLOCK_SIZE; + ctx->load_len += AES_BLOCK_SIZE_BIT; + } + /* Manage last block if not a block size multiple */ + if ((last_block) && (i < data_size)) { + uint32_t block_in[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0}; + uint32_t block_out[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0}; + + memcpy(block_in, data_in + i, data_size - i); + + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, block_in[0U]); + mmio_write_32(ctx->base + _SAES_DINR, block_in[1U]); + mmio_write_32(ctx->base + _SAES_DINR, block_in[2U]); + mmio_write_32(ctx->base + _SAES_DINR, block_in[3U]); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + VERBOSE("%s %d\n", __func__, __LINE__); + goto out; + } + + /* No need to htobe() as we configure the HW to swap bytes */ + block_out[0U] = mmio_read_32(ctx->base + _SAES_DOUTR); + block_out[1U] = mmio_read_32(ctx->base + _SAES_DOUTR); + block_out[2U] = mmio_read_32(ctx->base + _SAES_DOUTR); + block_out[3U] = mmio_read_32(ctx->base + _SAES_DOUTR); + + clear_computation_completed(ctx->base); + + memcpy(data_out + i, block_out, data_size - i); + + ctx->load_len += (data_size - i) * UINT8_BIT; + } + +out: + if (ret != 0) { + saes_end(ctx, ret); + } + + return ret; +} + +/** + * @brief Get authentication tag for AES authenticated algorithms (CCM or GCM). + * @param ctx: SAES process context + * @param tag: pointer where to save the tag + * @param data_size: tag size + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_final(struct stm32_saes_context *ctx, uint8_t *tag, + size_t tag_size) +{ + int ret; + uint32_t tag_u32[4]; + uint32_t prev_cr; + + prev_cr = mmio_read_32(ctx->base + _SAES_CR); + + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK, + _SAES_CR_GCMPH_FINAL << _SAES_CR_GCMPH_SHIFT); + + if ((prev_cr & _SAES_CR_GCMPH_MASK) == (_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) { + /* Still in initialization phase, no header + * We need to enable the SAES peripheral + */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + } + + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, 0); + mmio_write_32(ctx->base + _SAES_DINR, ctx->assoc_len); + mmio_write_32(ctx->base + _SAES_DINR, 0); + mmio_write_32(ctx->base + _SAES_DINR, ctx->load_len); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + goto out; + } + + /* No need to htobe() as we configure the HW to swap bytes */ + tag_u32[0] = mmio_read_32(ctx->base + _SAES_DOUTR); + tag_u32[1] = mmio_read_32(ctx->base + _SAES_DOUTR); + tag_u32[2] = mmio_read_32(ctx->base + _SAES_DOUTR); + tag_u32[3] = mmio_read_32(ctx->base + _SAES_DOUTR); + + clear_computation_completed(ctx->base); + + memcpy(tag, tag_u32, MIN(sizeof(tag_u32), tag_size)); + +out: + saes_end(ctx, ret); + + return ret; +} + +/** + * @brief Update (or start) a AES de/encrypt process (ECB, CBC or CTR). + * @param ctx: SAES process context + * @param last_block: true if last payload data block + * @param data_in: pointer to payload + * @param data_out: pointer where to save de/encrypted payload + * @param data_size: payload size + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_update(struct stm32_saes_context *ctx, bool last_block, + uint8_t *data_in, uint8_t *data_out, size_t data_size) +{ + int ret; + uint32_t *data_in_u32; + uint32_t *data_out_u32; + unsigned int i = 0U; + + /* We want buffers to be u32 aligned */ + assert((uintptr_t)data_in % __alignof__(uint32_t) == 0); + assert((uintptr_t)data_out % __alignof__(uint32_t) == 0); + data_in_u32 = (uint32_t *)data_in; + data_out_u32 = (uint32_t *)data_out; + + if ((!last_block) && + (round_down(data_size, AES_BLOCK_SIZE) != data_size)) { + ERROR("%s: non last block must be multiple of 128 bits\n", + __func__); + ret = -EINVAL; + goto out; + } + + /* In CBC encryption we need to manage specifically last 2 128bits + * blocks if total size in not a block size aligned + * work TODO. Currently return ENODEV. + * Morevoer as we need to know last 2 block, if unaligned and + * call with less than two block, return -EINVAL. + */ + if (last_block && IS_CHAINING_MODE(CBC, ctx->cr) && is_encrypt(ctx->cr) && + (round_down(data_size, AES_BLOCK_SIZE) != data_size)) { + if (data_size < AES_BLOCK_SIZE * 2U) { + ERROR("if CBC, last part size should be at least 2 * AES_BLOCK_SIZE\n"); + ret = -EINVAL; + goto out; + } + /* Moreover the CBC specific padding for encrypt is not yet implemented */ + ret = -ENODEV; + goto out; + } + + ret = restore_context(ctx); + if (ret != 0) { + goto out; + } + + while (i < round_down(data_size, AES_BLOCK_SIZE)) { + unsigned int w; /* Word index */ + + w = i / sizeof(uint32_t); + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + goto out; + } + + /* No need to htobe() as we configure the HW to swap bytes */ + data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR); + + clear_computation_completed(ctx->base); + + /* Process next block */ + i += AES_BLOCK_SIZE; + } + /* Manage last block if not a block size multiple */ + + if ((last_block) && (i < data_size)) { + /* In and out buffer have same size so should be AES_BLOCK_SIZE multiple */ + ret = -ENODEV; + goto out; + } + + if (!last_block) { + ret = save_context(ctx); + } + +out: + /* If last block or error, end of SAES process */ + if (last_block || (ret != 0)) { + saes_end(ctx, ret); + } + + return ret; +} diff --git a/drivers/st/ddr/stm32mp1_ddr.c b/drivers/st/ddr/stm32mp1_ddr.c new file mode 100644 index 0000000..4719e1e --- /dev/null +++ b/drivers/st/ddr/stm32mp1_ddr.c @@ -0,0 +1,764 @@ +/* + * Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause + */ + +#include <errno.h> +#include <stddef.h> + +#include <arch.h> +#include <arch_helpers.h> +#include <common/debug.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32mp1_ddr.h> +#include <drivers/st/stm32mp1_ddr_regs.h> +#include <drivers/st/stm32mp1_pwr.h> +#include <drivers/st/stm32mp1_ram.h> +#include <drivers/st/stm32mp_ddr.h> +#include <lib/mmio.h> +#include <plat/common/platform.h> + +#include <platform_def.h> + +#define DDRCTL_REG(x, y) \ + { \ + .name = #x, \ + .offset = offsetof(struct stm32mp_ddrctl, x), \ + .par_offset = offsetof(struct y, x) \ + } + +#define DDRPHY_REG(x, y) \ + { \ + .name = #x, \ + .offset = offsetof(struct stm32mp_ddrphy, x), \ + .par_offset = offsetof(struct y, x) \ + } + +/* + * PARAMETERS: value get from device tree : + * size / order need to be aligned with binding + * modification NOT ALLOWED !!! + */ +#define DDRCTL_REG_REG_SIZE 25 /* st,ctl-reg */ +#define DDRCTL_REG_TIMING_SIZE 12 /* st,ctl-timing */ +#define DDRCTL_REG_MAP_SIZE 9 /* st,ctl-map */ +#if STM32MP_DDR_DUAL_AXI_PORT +#define DDRCTL_REG_PERF_SIZE 17 /* st,ctl-perf */ +#else +#define DDRCTL_REG_PERF_SIZE 11 /* st,ctl-perf */ +#endif + +#if STM32MP_DDR_32BIT_INTERFACE +#define DDRPHY_REG_REG_SIZE 11 /* st,phy-reg */ +#else +#define DDRPHY_REG_REG_SIZE 9 /* st,phy-reg */ +#endif +#define DDRPHY_REG_TIMING_SIZE 10 /* st,phy-timing */ + +#define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg) +static const struct stm32mp_ddr_reg_desc ddr_reg[DDRCTL_REG_REG_SIZE] = { + DDRCTL_REG_REG(mstr), + DDRCTL_REG_REG(mrctrl0), + DDRCTL_REG_REG(mrctrl1), + DDRCTL_REG_REG(derateen), + DDRCTL_REG_REG(derateint), + DDRCTL_REG_REG(pwrctl), + DDRCTL_REG_REG(pwrtmg), + DDRCTL_REG_REG(hwlpctl), + DDRCTL_REG_REG(rfshctl0), + DDRCTL_REG_REG(rfshctl3), + DDRCTL_REG_REG(crcparctl0), + DDRCTL_REG_REG(zqctl0), + DDRCTL_REG_REG(dfitmg0), + DDRCTL_REG_REG(dfitmg1), + DDRCTL_REG_REG(dfilpcfg0), + DDRCTL_REG_REG(dfiupd0), + DDRCTL_REG_REG(dfiupd1), + DDRCTL_REG_REG(dfiupd2), + DDRCTL_REG_REG(dfiphymstr), + DDRCTL_REG_REG(odtmap), + DDRCTL_REG_REG(dbg0), + DDRCTL_REG_REG(dbg1), + DDRCTL_REG_REG(dbgcmd), + DDRCTL_REG_REG(poisoncfg), + DDRCTL_REG_REG(pccfg), +}; + +#define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing) +static const struct stm32mp_ddr_reg_desc ddr_timing[DDRCTL_REG_TIMING_SIZE] = { + DDRCTL_REG_TIMING(rfshtmg), + DDRCTL_REG_TIMING(dramtmg0), + DDRCTL_REG_TIMING(dramtmg1), + DDRCTL_REG_TIMING(dramtmg2), + DDRCTL_REG_TIMING(dramtmg3), + DDRCTL_REG_TIMING(dramtmg4), + DDRCTL_REG_TIMING(dramtmg5), + DDRCTL_REG_TIMING(dramtmg6), + DDRCTL_REG_TIMING(dramtmg7), + DDRCTL_REG_TIMING(dramtmg8), + DDRCTL_REG_TIMING(dramtmg14), + DDRCTL_REG_TIMING(odtcfg), +}; + +#define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map) +static const struct stm32mp_ddr_reg_desc ddr_map[DDRCTL_REG_MAP_SIZE] = { + DDRCTL_REG_MAP(addrmap1), + DDRCTL_REG_MAP(addrmap2), + DDRCTL_REG_MAP(addrmap3), + DDRCTL_REG_MAP(addrmap4), + DDRCTL_REG_MAP(addrmap5), + DDRCTL_REG_MAP(addrmap6), + DDRCTL_REG_MAP(addrmap9), + DDRCTL_REG_MAP(addrmap10), + DDRCTL_REG_MAP(addrmap11), +}; + +#define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf) +static const struct stm32mp_ddr_reg_desc ddr_perf[DDRCTL_REG_PERF_SIZE] = { + DDRCTL_REG_PERF(sched), + DDRCTL_REG_PERF(sched1), + DDRCTL_REG_PERF(perfhpr1), + DDRCTL_REG_PERF(perflpr1), + DDRCTL_REG_PERF(perfwr1), + DDRCTL_REG_PERF(pcfgr_0), + DDRCTL_REG_PERF(pcfgw_0), + DDRCTL_REG_PERF(pcfgqos0_0), + DDRCTL_REG_PERF(pcfgqos1_0), + DDRCTL_REG_PERF(pcfgwqos0_0), + DDRCTL_REG_PERF(pcfgwqos1_0), +#if STM32MP_DDR_DUAL_AXI_PORT + DDRCTL_REG_PERF(pcfgr_1), + DDRCTL_REG_PERF(pcfgw_1), + DDRCTL_REG_PERF(pcfgqos0_1), + DDRCTL_REG_PERF(pcfgqos1_1), + DDRCTL_REG_PERF(pcfgwqos0_1), + DDRCTL_REG_PERF(pcfgwqos1_1), +#endif +}; + +#define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg) +static const struct stm32mp_ddr_reg_desc ddrphy_reg[DDRPHY_REG_REG_SIZE] = { + DDRPHY_REG_REG(pgcr), + DDRPHY_REG_REG(aciocr), + DDRPHY_REG_REG(dxccr), + DDRPHY_REG_REG(dsgcr), + DDRPHY_REG_REG(dcr), + DDRPHY_REG_REG(odtcr), + DDRPHY_REG_REG(zq0cr1), + DDRPHY_REG_REG(dx0gcr), + DDRPHY_REG_REG(dx1gcr), +#if STM32MP_DDR_32BIT_INTERFACE + DDRPHY_REG_REG(dx2gcr), + DDRPHY_REG_REG(dx3gcr), +#endif +}; + +#define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing) +static const struct stm32mp_ddr_reg_desc ddrphy_timing[DDRPHY_REG_TIMING_SIZE] = { + DDRPHY_REG_TIMING(ptr0), + DDRPHY_REG_TIMING(ptr1), + DDRPHY_REG_TIMING(ptr2), + DDRPHY_REG_TIMING(dtpr0), + DDRPHY_REG_TIMING(dtpr1), + DDRPHY_REG_TIMING(dtpr2), + DDRPHY_REG_TIMING(mr0), + DDRPHY_REG_TIMING(mr1), + DDRPHY_REG_TIMING(mr2), + DDRPHY_REG_TIMING(mr3), +}; + +/* + * REGISTERS ARRAY: used to parse device tree and interactive mode + */ +static const struct stm32mp_ddr_reg_info ddr_registers[REG_TYPE_NB] = { + [REG_REG] = { + .name = "static", + .desc = ddr_reg, + .size = DDRCTL_REG_REG_SIZE, + .base = DDR_BASE + }, + [REG_TIMING] = { + .name = "timing", + .desc = ddr_timing, + .size = DDRCTL_REG_TIMING_SIZE, + .base = DDR_BASE + }, + [REG_PERF] = { + .name = "perf", + .desc = ddr_perf, + .size = DDRCTL_REG_PERF_SIZE, + .base = DDR_BASE + }, + [REG_MAP] = { + .name = "map", + .desc = ddr_map, + .size = DDRCTL_REG_MAP_SIZE, + .base = DDR_BASE + }, + [REGPHY_REG] = { + .name = "static", + .desc = ddrphy_reg, + .size = DDRPHY_REG_REG_SIZE, + .base = DDRPHY_BASE + }, + [REGPHY_TIMING] = { + .name = "timing", + .desc = ddrphy_timing, + .size = DDRPHY_REG_TIMING_SIZE, + .base = DDRPHY_BASE + }, +}; + +static void stm32mp1_ddrphy_idone_wait(struct stm32mp_ddrphy *phy) +{ + uint32_t pgsr; + int error = 0; + uint64_t timeout = timeout_init_us(TIMEOUT_US_1S); + + do { + pgsr = mmio_read_32((uintptr_t)&phy->pgsr); + + VERBOSE(" > [0x%lx] pgsr = 0x%x &\n", + (uintptr_t)&phy->pgsr, pgsr); + + if (timeout_elapsed(timeout)) { + panic(); + } + + if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) { + VERBOSE("DQS Gate Trainig Error\n"); + error++; + } + + if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) { + VERBOSE("DQS Gate Trainig Intermittent Error\n"); + error++; + } + + if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) { + VERBOSE("DQS Drift Error\n"); + error++; + } + + if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) { + VERBOSE("Read Valid Training Error\n"); + error++; + } + + if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) { + VERBOSE("Read Valid Training Intermittent Error\n"); + error++; + } + } while (((pgsr & DDRPHYC_PGSR_IDONE) == 0U) && (error == 0)); + VERBOSE("\n[0x%lx] pgsr = 0x%x\n", + (uintptr_t)&phy->pgsr, pgsr); +} + +static void stm32mp1_ddrphy_init(struct stm32mp_ddrphy *phy, uint32_t pir) +{ + uint32_t pir_init = pir | DDRPHYC_PIR_INIT; + + mmio_write_32((uintptr_t)&phy->pir, pir_init); + VERBOSE("[0x%lx] pir = 0x%x -> 0x%x\n", + (uintptr_t)&phy->pir, pir_init, + mmio_read_32((uintptr_t)&phy->pir)); + + /* Need to wait 10 configuration clock before start polling */ + udelay(10); + + /* Wait DRAM initialization and Gate Training Evaluation complete */ + stm32mp1_ddrphy_idone_wait(phy); +} + +/* Wait quasi dynamic register update */ +static void stm32mp1_wait_operating_mode(struct stm32mp_ddr_priv *priv, uint32_t mode) +{ + uint64_t timeout; + uint32_t stat; + int break_loop = 0; + + timeout = timeout_init_us(TIMEOUT_US_1S); + for ( ; ; ) { + uint32_t operating_mode; + uint32_t selref_type; + + stat = mmio_read_32((uintptr_t)&priv->ctl->stat); + operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK; + selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK; + VERBOSE("[0x%lx] stat = 0x%x\n", + (uintptr_t)&priv->ctl->stat, stat); + if (timeout_elapsed(timeout)) { + panic(); + } + + if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) { + /* + * Self-refresh due to software + * => checking also STAT.selfref_type. + */ + if ((operating_mode == + DDRCTRL_STAT_OPERATING_MODE_SR) && + (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) { + break_loop = 1; + } + } else if (operating_mode == mode) { + break_loop = 1; + } else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) && + (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) && + (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) { + /* Normal mode: handle also automatic self refresh */ + break_loop = 1; + } + + if (break_loop == 1) { + break; + } + } + + VERBOSE("[0x%lx] stat = 0x%x\n", + (uintptr_t)&priv->ctl->stat, stat); +} + +/* Mode Register Writes (MRW or MRS) */ +static void stm32mp1_mode_register_write(struct stm32mp_ddr_priv *priv, uint8_t addr, + uint32_t data) +{ + uint32_t mrctrl0; + + VERBOSE("MRS: %d = %x\n", addr, data); + + /* + * 1. Poll MRSTAT.mr_wr_busy until it is '0'. + * This checks that there is no outstanding MR transaction. + * No write should be performed to MRCTRL0 and MRCTRL1 + * if MRSTAT.mr_wr_busy = 1. + */ + while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) & + DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { + ; + } + + /* + * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank + * and (for MRWs) MRCTRL1.mr_data to define the MR transaction. + */ + mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE | + DDRCTRL_MRCTRL0_MR_RANK_ALL | + (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) & + DDRCTRL_MRCTRL0_MR_ADDR_MASK); + mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0); + VERBOSE("[0x%lx] mrctrl0 = 0x%x (0x%x)\n", + (uintptr_t)&priv->ctl->mrctrl0, + mmio_read_32((uintptr_t)&priv->ctl->mrctrl0), mrctrl0); + mmio_write_32((uintptr_t)&priv->ctl->mrctrl1, data); + VERBOSE("[0x%lx] mrctrl1 = 0x%x\n", + (uintptr_t)&priv->ctl->mrctrl1, + mmio_read_32((uintptr_t)&priv->ctl->mrctrl1)); + + /* + * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This + * bit is self-clearing, and triggers the MR transaction. + * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs + * the MR transaction to SDRAM, and no further access can be + * initiated until it is deasserted. + */ + mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR; + mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0); + + while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) & + DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { + ; + } + + VERBOSE("[0x%lx] mrctrl0 = 0x%x\n", + (uintptr_t)&priv->ctl->mrctrl0, mrctrl0); +} + +/* Switch DDR3 from DLL-on to DLL-off */ +static void stm32mp1_ddr3_dll_off(struct stm32mp_ddr_priv *priv) +{ + uint32_t mr1 = mmio_read_32((uintptr_t)&priv->phy->mr1); + uint32_t mr2 = mmio_read_32((uintptr_t)&priv->phy->mr2); + uint32_t dbgcam; + + VERBOSE("mr1: 0x%x\n", mr1); + VERBOSE("mr2: 0x%x\n", mr2); + + /* + * 1. Set the DBG1.dis_hif = 1. + * This prevents further reads/writes being received on the HIF. + */ + mmio_setbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); + VERBOSE("[0x%lx] dbg1 = 0x%x\n", + (uintptr_t)&priv->ctl->dbg1, + mmio_read_32((uintptr_t)&priv->ctl->dbg1)); + + /* + * 2. Ensure all commands have been flushed from the uMCTL2 by polling + * DBGCAM.wr_data_pipeline_empty = 1, + * DBGCAM.rd_data_pipeline_empty = 1, + * DBGCAM.dbg_wr_q_depth = 0 , + * DBGCAM.dbg_lpr_q_depth = 0, and + * DBGCAM.dbg_hpr_q_depth = 0. + */ + do { + dbgcam = mmio_read_32((uintptr_t)&priv->ctl->dbgcam); + VERBOSE("[0x%lx] dbgcam = 0x%x\n", + (uintptr_t)&priv->ctl->dbgcam, dbgcam); + } while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) == + DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) && + ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U)); + + /* + * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) + * to disable RTT_NOM: + * a. DDR3: Write to MR1[9], MR1[6] and MR1[2] + * b. DDR4: Write to MR1[10:8] + */ + mr1 &= ~(BIT(9) | BIT(6) | BIT(2)); + stm32mp1_mode_register_write(priv, 1, mr1); + + /* + * 4. For DDR4 only: Perform an MRS command + * (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6] + * to disable RTT_PARK + */ + + /* + * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) + * to write to MR2[10:9], to disable RTT_WR + * (and therefore disable dynamic ODT). + * This applies for both DDR3 and DDR4. + */ + mr2 &= ~GENMASK(10, 9); + stm32mp1_mode_register_write(priv, 2, mr2); + + /* + * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) + * to disable the DLL. The timing of this MRS is automatically + * handled by the uMCTL2. + * a. DDR3: Write to MR1[0] + * b. DDR4: Write to MR1[0] + */ + mr1 |= BIT(0); + stm32mp1_mode_register_write(priv, 1, mr1); + + /* + * 7. Put the SDRAM into self-refresh mode by setting + * PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure + * the DDRC has entered self-refresh. + */ + mmio_setbits_32((uintptr_t)&priv->ctl->pwrctl, + DDRCTRL_PWRCTL_SELFREF_SW); + VERBOSE("[0x%lx] pwrctl = 0x%x\n", + (uintptr_t)&priv->ctl->pwrctl, + mmio_read_32((uintptr_t)&priv->ctl->pwrctl)); + + /* + * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the + * DWC_ddr_umctl2 core is in self-refresh mode. + * Ensure transition to self-refresh was due to software + * by checking that STAT.selfref_type[1:0]=2. + */ + stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR); + + /* + * 9. Set the MSTR.dll_off_mode = 1. + * warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field + */ + stm32mp_ddr_start_sw_done(priv->ctl); + + mmio_setbits_32((uintptr_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE); + VERBOSE("[0x%lx] mstr = 0x%x\n", + (uintptr_t)&priv->ctl->mstr, + mmio_read_32((uintptr_t)&priv->ctl->mstr)); + + stm32mp_ddr_wait_sw_done_ack(priv->ctl); + + /* 10. Change the clock frequency to the desired value. */ + + /* + * 11. Update any registers which may be required to change for the new + * frequency. This includes static and dynamic registers. + * This includes both uMCTL2 registers and PHY registers. + */ + + /* Change Bypass Mode Frequency Range */ + if (clk_get_rate(DDRPHYC) < 100000000U) { + mmio_clrbits_32((uintptr_t)&priv->phy->dllgcr, + DDRPHYC_DLLGCR_BPS200); + } else { + mmio_setbits_32((uintptr_t)&priv->phy->dllgcr, + DDRPHYC_DLLGCR_BPS200); + } + + mmio_setbits_32((uintptr_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS); + + mmio_setbits_32((uintptr_t)&priv->phy->dx0dllcr, + DDRPHYC_DXNDLLCR_DLLDIS); + mmio_setbits_32((uintptr_t)&priv->phy->dx1dllcr, + DDRPHYC_DXNDLLCR_DLLDIS); +#if STM32MP_DDR_32BIT_INTERFACE + mmio_setbits_32((uintptr_t)&priv->phy->dx2dllcr, + DDRPHYC_DXNDLLCR_DLLDIS); + mmio_setbits_32((uintptr_t)&priv->phy->dx3dllcr, + DDRPHYC_DXNDLLCR_DLLDIS); +#endif + + /* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */ + mmio_clrbits_32((uintptr_t)&priv->ctl->pwrctl, + DDRCTRL_PWRCTL_SELFREF_SW); + stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); + + /* + * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command + * at this point. + */ + + /* + * 14. Perform MRS commands as required to re-program timing registers + * in the SDRAM for the new frequency + * (in particular, CL, CWL and WR may need to be changed). + */ + + /* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */ + mmio_clrbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); + VERBOSE("[0x%lx] dbg1 = 0x%x\n", + (uintptr_t)&priv->ctl->dbg1, + mmio_read_32((uintptr_t)&priv->ctl->dbg1)); +} + +static void stm32mp1_refresh_disable(struct stm32mp_ddrctl *ctl) +{ + stm32mp_ddr_start_sw_done(ctl); + /* Quasi-dynamic register update*/ + mmio_setbits_32((uintptr_t)&ctl->rfshctl3, + DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); + mmio_clrbits_32((uintptr_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN); + mmio_clrbits_32((uintptr_t)&ctl->dfimisc, + DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); + stm32mp_ddr_wait_sw_done_ack(ctl); +} + +static void stm32mp1_refresh_restore(struct stm32mp_ddrctl *ctl, + uint32_t rfshctl3, uint32_t pwrctl) +{ + stm32mp_ddr_start_sw_done(ctl); + if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) { + mmio_clrbits_32((uintptr_t)&ctl->rfshctl3, + DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); + } + if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) { + mmio_setbits_32((uintptr_t)&ctl->pwrctl, + DDRCTRL_PWRCTL_POWERDOWN_EN); + } + mmio_setbits_32((uintptr_t)&ctl->dfimisc, + DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); + stm32mp_ddr_wait_sw_done_ack(ctl); +} + +void stm32mp1_ddr_init(struct stm32mp_ddr_priv *priv, + struct stm32mp_ddr_config *config) +{ + uint32_t pir; + int ret = -EINVAL; + + if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { + ret = stm32mp_board_ddr_power_init(STM32MP_DDR3); + } else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) != 0U) { + ret = stm32mp_board_ddr_power_init(STM32MP_LPDDR2); + } else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR3) != 0U) { + ret = stm32mp_board_ddr_power_init(STM32MP_LPDDR3); + } else { + ERROR("DDR type not supported\n"); + } + + if (ret != 0) { + panic(); + } + + VERBOSE("name = %s\n", config->info.name); + VERBOSE("speed = %u kHz\n", config->info.speed); + VERBOSE("size = 0x%x\n", config->info.size); + + /* DDR INIT SEQUENCE */ + + /* + * 1. Program the DWC_ddr_umctl2 registers + * nota: check DFIMISC.dfi_init_complete = 0 + */ + + /* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */ + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); + + /* 1.2. start CLOCK */ + if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) { + panic(); + } + + /* 1.3. deassert reset */ + /* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */ + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); + /* + * De-assert presetn once the clocks are active + * and stable via DDRCAPBRST bit. + */ + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); + + /* 1.4. wait 128 cycles to permit initialization of end logic */ + udelay(2); + /* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */ + + /* 1.5. initialize registers ddr_umctl2 */ + /* Stop uMCTL2 before PHY is ready */ + mmio_clrbits_32((uintptr_t)&priv->ctl->dfimisc, + DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); + VERBOSE("[0x%lx] dfimisc = 0x%x\n", + (uintptr_t)&priv->ctl->dfimisc, + mmio_read_32((uintptr_t)&priv->ctl->dfimisc)); + + stm32mp_ddr_set_reg(priv, REG_REG, &config->c_reg, ddr_registers); + + /* DDR3 = don't set DLLOFF for init mode */ + if ((config->c_reg.mstr & + (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) + == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { + VERBOSE("deactivate DLL OFF in mstr\n"); + mmio_clrbits_32((uintptr_t)&priv->ctl->mstr, + DDRCTRL_MSTR_DLL_OFF_MODE); + VERBOSE("[0x%lx] mstr = 0x%x\n", + (uintptr_t)&priv->ctl->mstr, + mmio_read_32((uintptr_t)&priv->ctl->mstr)); + } + + stm32mp_ddr_set_reg(priv, REG_TIMING, &config->c_timing, ddr_registers); + stm32mp_ddr_set_reg(priv, REG_MAP, &config->c_map, ddr_registers); + + /* Skip CTRL init, SDRAM init is done by PHY PUBL */ + mmio_clrsetbits_32((uintptr_t)&priv->ctl->init0, + DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK, + DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL); + VERBOSE("[0x%lx] init0 = 0x%x\n", + (uintptr_t)&priv->ctl->init0, + mmio_read_32((uintptr_t)&priv->ctl->init0)); + + stm32mp_ddr_set_reg(priv, REG_PERF, &config->c_perf, ddr_registers); + + /* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */ + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); + + /* + * 3. start PHY init by accessing relevant PUBL registers + * (DXGCR, DCR, PTR*, MR*, DTPR*) + */ + stm32mp_ddr_set_reg(priv, REGPHY_REG, &config->p_reg, ddr_registers); + stm32mp_ddr_set_reg(priv, REGPHY_TIMING, &config->p_timing, ddr_registers); + + /* DDR3 = don't set DLLOFF for init mode */ + if ((config->c_reg.mstr & + (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) + == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { + VERBOSE("deactivate DLL OFF in mr1\n"); + mmio_clrbits_32((uintptr_t)&priv->phy->mr1, BIT(0)); + VERBOSE("[0x%lx] mr1 = 0x%x\n", + (uintptr_t)&priv->phy->mr1, + mmio_read_32((uintptr_t)&priv->phy->mr1)); + } + + /* + * 4. Monitor PHY init status by polling PUBL register PGSR.IDONE + * Perform DDR PHY DRAM initialization and Gate Training Evaluation + */ + stm32mp1_ddrphy_idone_wait(priv->phy); + + /* + * 5. Indicate to PUBL that controller performs SDRAM initialization + * by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE + * DRAM init is done by PHY, init0.skip_dram.init = 1 + */ + + pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL | + DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC; + + if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { + pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */ + } + + stm32mp1_ddrphy_init(priv->phy, pir); + + /* + * 6. SET DFIMISC.dfi_init_complete_en to 1 + * Enable quasi-dynamic register programming. + */ + stm32mp_ddr_start_sw_done(priv->ctl); + + mmio_setbits_32((uintptr_t)&priv->ctl->dfimisc, + DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); + VERBOSE("[0x%lx] dfimisc = 0x%x\n", + (uintptr_t)&priv->ctl->dfimisc, + mmio_read_32((uintptr_t)&priv->ctl->dfimisc)); + + stm32mp_ddr_wait_sw_done_ack(priv->ctl); + + /* + * 7. Wait for DWC_ddr_umctl2 to move to normal operation mode + * by monitoring STAT.operating_mode signal + */ + + /* Wait uMCTL2 ready */ + stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); + + /* Switch to DLL OFF mode */ + if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) { + stm32mp1_ddr3_dll_off(priv); + } + + VERBOSE("DDR DQS training : "); + + /* + * 8. Disable Auto refresh and power down by setting + * - RFSHCTL3.dis_au_refresh = 1 + * - PWRCTL.powerdown_en = 0 + * - DFIMISC.dfiinit_complete_en = 0 + */ + stm32mp1_refresh_disable(priv->ctl); + + /* + * 9. Program PUBL PGCR to enable refresh during training + * and rank to train + * not done => keep the programed value in PGCR + */ + + /* + * 10. configure PUBL PIR register to specify which training step + * to run + * RVTRN is executed only on LPDDR2/LPDDR3 + */ + pir = DDRPHYC_PIR_QSTRN; + if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) == 0U) { + pir |= DDRPHYC_PIR_RVTRN; + } + + stm32mp1_ddrphy_init(priv->phy, pir); + + /* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */ + stm32mp1_ddrphy_idone_wait(priv->phy); + + /* + * 12. set back registers in step 8 to the orginal values if desidered + */ + stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3, + config->c_reg.pwrctl); + + stm32mp_ddr_enable_axi_port(priv->ctl); +} diff --git a/drivers/st/ddr/stm32mp1_ddr_helpers.c b/drivers/st/ddr/stm32mp1_ddr_helpers.c new file mode 100644 index 0000000..e0621b5 --- /dev/null +++ b/drivers/st/ddr/stm32mp1_ddr_helpers.c @@ -0,0 +1,26 @@ +/* + * Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <drivers/st/stm32mp1_ddr_helpers.h> +#include <lib/mmio.h> + +#include <platform_def.h> + +void ddr_enable_clock(void) +{ + stm32mp1_clk_rcc_regs_lock(); + + mmio_setbits_32(stm32mp_rcc_base() + RCC_DDRITFCR, + RCC_DDRITFCR_DDRC1EN | +#if STM32MP_DDR_DUAL_AXI_PORT + RCC_DDRITFCR_DDRC2EN | +#endif + RCC_DDRITFCR_DDRPHYCEN | + RCC_DDRITFCR_DDRPHYCAPBEN | + RCC_DDRITFCR_DDRCAPBEN); + + stm32mp1_clk_rcc_regs_unlock(); +} diff --git a/drivers/st/ddr/stm32mp1_ram.c b/drivers/st/ddr/stm32mp1_ram.c new file mode 100644 index 0000000..b510c8f --- /dev/null +++ b/drivers/st/ddr/stm32mp1_ram.c @@ -0,0 +1,151 @@ +/* + * Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause + */ + +#include <errno.h> + +#include <arch_helpers.h> +#include <common/debug.h> +#include <common/fdt_wrappers.h> +#include <drivers/clk.h> +#include <drivers/st/stm32mp1_ddr.h> +#include <drivers/st/stm32mp1_ddr_helpers.h> +#include <drivers/st/stm32mp1_ram.h> +#include <drivers/st/stm32mp_ddr.h> +#include <drivers/st/stm32mp_ddr_test.h> +#include <drivers/st/stm32mp_ram.h> +#include <lib/mmio.h> +#include <libfdt.h> + +#include <platform_def.h> + +static struct stm32mp_ddr_priv ddr_priv_data; + +int stm32mp1_ddr_clk_enable(struct stm32mp_ddr_priv *priv, uint32_t mem_speed) +{ + unsigned long ddrphy_clk, ddr_clk, mem_speed_hz; + + ddr_enable_clock(); + + ddrphy_clk = clk_get_rate(DDRPHYC); + + VERBOSE("DDR: mem_speed (%u kHz), RCC %lu kHz\n", + mem_speed, ddrphy_clk / 1000U); + + mem_speed_hz = mem_speed * 1000U; + + /* Max 10% frequency delta */ + if (ddrphy_clk > mem_speed_hz) { + ddr_clk = ddrphy_clk - mem_speed_hz; + } else { + ddr_clk = mem_speed_hz - ddrphy_clk; + } + if (ddr_clk > (mem_speed_hz / 10)) { + ERROR("DDR expected freq %u kHz, current is %lu kHz\n", + mem_speed, ddrphy_clk / 1000U); + return -1; + } + return 0; +} + +static int stm32mp1_ddr_setup(void) +{ + struct stm32mp_ddr_priv *priv = &ddr_priv_data; + int ret; + struct stm32mp_ddr_config config; + int node; + uint32_t uret; + void *fdt; + + const struct stm32mp_ddr_param param[] = { + CTL_PARAM(reg), + CTL_PARAM(timing), + CTL_PARAM(map), + CTL_PARAM(perf), + PHY_PARAM(reg), + PHY_PARAM(timing), + }; + + if (fdt_get_address(&fdt) == 0) { + return -ENOENT; + } + + node = fdt_node_offset_by_compatible(fdt, -1, DT_DDR_COMPAT); + if (node < 0) { + ERROR("%s: Cannot read DDR node in DT\n", __func__); + return -EINVAL; + } + + ret = stm32mp_ddr_dt_get_info(fdt, node, &config.info); + if (ret < 0) { + return ret; + } + + ret = stm32mp_ddr_dt_get_param(fdt, node, param, ARRAY_SIZE(param), (uintptr_t)&config); + if (ret < 0) { + return ret; + } + + /* Disable axidcg clock gating during init */ + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_AXIDCGEN); + + stm32mp1_ddr_init(priv, &config); + + /* Enable axidcg clock gating */ + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_AXIDCGEN); + + priv->info.size = config.info.size; + + VERBOSE("%s : ram size(%x, %x)\n", __func__, + (uint32_t)priv->info.base, (uint32_t)priv->info.size); + + if (stm32mp_map_ddr_non_cacheable() != 0) { + panic(); + } + + uret = stm32mp_ddr_test_data_bus(); + if (uret != 0U) { + ERROR("DDR data bus test: can't access memory @ 0x%x\n", + uret); + panic(); + } + + uret = stm32mp_ddr_test_addr_bus(config.info.size); + if (uret != 0U) { + ERROR("DDR addr bus test: can't access memory @ 0x%x\n", + uret); + panic(); + } + + uret = stm32mp_ddr_check_size(); + if (uret < config.info.size) { + ERROR("DDR size: 0x%x does not match DT config: 0x%x\n", + uret, config.info.size); + panic(); + } + + if (stm32mp_unmap_ddr() != 0) { + panic(); + } + + return 0; +} + +int stm32mp1_ddr_probe(void) +{ + struct stm32mp_ddr_priv *priv = &ddr_priv_data; + + VERBOSE("STM32MP DDR probe\n"); + + priv->ctl = (struct stm32mp_ddrctl *)stm32mp_ddrctrl_base(); + priv->phy = (struct stm32mp_ddrphy *)stm32mp_ddrphyc_base(); + priv->pwr = stm32mp_pwr_base(); + priv->rcc = stm32mp_rcc_base(); + + priv->info.base = STM32MP_DDR_BASE; + priv->info.size = 0; + + return stm32mp1_ddr_setup(); +} diff --git a/drivers/st/ddr/stm32mp_ddr.c b/drivers/st/ddr/stm32mp_ddr.c new file mode 100644 index 0000000..6776e3b --- /dev/null +++ b/drivers/st/ddr/stm32mp_ddr.c @@ -0,0 +1,106 @@ +/* + * Copyright (C) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <common/debug.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32mp_ddr.h> +#include <drivers/st/stm32mp_ddrctrl_regs.h> +#include <drivers/st/stm32mp_pmic.h> +#include <lib/mmio.h> + +#include <platform_def.h> + +#define INVALID_OFFSET 0xFFU + +static uintptr_t get_base_addr(const struct stm32mp_ddr_priv *priv, enum stm32mp_ddr_base_type base) +{ + if (base == DDRPHY_BASE) { + return (uintptr_t)priv->phy; + } else { + return (uintptr_t)priv->ctl; + } +} + +void stm32mp_ddr_set_reg(const struct stm32mp_ddr_priv *priv, enum stm32mp_ddr_reg_type type, + const void *param, const struct stm32mp_ddr_reg_info *ddr_registers) +{ + unsigned int i; + unsigned int value; + enum stm32mp_ddr_base_type base = ddr_registers[type].base; + uintptr_t base_addr = get_base_addr(priv, base); + const struct stm32mp_ddr_reg_desc *desc = ddr_registers[type].desc; + + VERBOSE("init %s\n", ddr_registers[type].name); + for (i = 0; i < ddr_registers[type].size; i++) { + uintptr_t ptr = base_addr + desc[i].offset; + + if (desc[i].par_offset == INVALID_OFFSET) { + ERROR("invalid parameter offset for %s", desc[i].name); + panic(); + } else { + value = *((uint32_t *)((uintptr_t)param + + desc[i].par_offset)); + mmio_write_32(ptr, value); + } + } +} + +/* Start quasi dynamic register update */ +void stm32mp_ddr_start_sw_done(struct stm32mp_ddrctl *ctl) +{ + mmio_clrbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE); + VERBOSE("[0x%lx] swctl = 0x%x\n", + (uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl)); +} + +/* Wait quasi dynamic register update */ +void stm32mp_ddr_wait_sw_done_ack(struct stm32mp_ddrctl *ctl) +{ + uint64_t timeout; + uint32_t swstat; + + mmio_setbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE); + VERBOSE("[0x%lx] swctl = 0x%x\n", + (uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl)); + + timeout = timeout_init_us(TIMEOUT_US_1S); + do { + swstat = mmio_read_32((uintptr_t)&ctl->swstat); + VERBOSE("[0x%lx] swstat = 0x%x ", + (uintptr_t)&ctl->swstat, swstat); + if (timeout_elapsed(timeout)) { + panic(); + } + } while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U); + + VERBOSE("[0x%lx] swstat = 0x%x\n", + (uintptr_t)&ctl->swstat, swstat); +} + +void stm32mp_ddr_enable_axi_port(struct stm32mp_ddrctl *ctl) +{ + /* Enable uMCTL2 AXI port 0 */ + mmio_setbits_32((uintptr_t)&ctl->pctrl_0, DDRCTRL_PCTRL_N_PORT_EN); + VERBOSE("[0x%lx] pctrl_0 = 0x%x\n", (uintptr_t)&ctl->pctrl_0, + mmio_read_32((uintptr_t)&ctl->pctrl_0)); + +#if STM32MP_DDR_DUAL_AXI_PORT + /* Enable uMCTL2 AXI port 1 */ + mmio_setbits_32((uintptr_t)&ctl->pctrl_1, DDRCTRL_PCTRL_N_PORT_EN); + VERBOSE("[0x%lx] pctrl_1 = 0x%x\n", (uintptr_t)&ctl->pctrl_1, + mmio_read_32((uintptr_t)&ctl->pctrl_1)); +#endif + +} + +int stm32mp_board_ddr_power_init(enum ddr_type ddr_type) +{ + if (dt_pmic_status() > 0) { + return pmic_ddr_power_init(ddr_type); + } + + return 0; +} diff --git a/drivers/st/ddr/stm32mp_ddr_test.c b/drivers/st/ddr/stm32mp_ddr_test.c new file mode 100644 index 0000000..6733cc6 --- /dev/null +++ b/drivers/st/ddr/stm32mp_ddr_test.c @@ -0,0 +1,148 @@ +/* + * Copyright (C) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <common/debug.h> +#include <drivers/st/stm32mp_ddr_test.h> +#include <lib/mmio.h> + +#include <platform_def.h> + +#define DDR_PATTERN 0xAAAAAAAAU +#define DDR_ANTIPATTERN 0x55555555U + +/******************************************************************************* + * This function tests a simple read/write access to the DDR. + * Note that the previous content is restored after test. + * Returns 0 if success, and address value else. + ******************************************************************************/ +uint32_t stm32mp_ddr_test_rw_access(void) +{ + uint32_t saved_value = mmio_read_32(STM32MP_DDR_BASE); + + mmio_write_32(STM32MP_DDR_BASE, DDR_PATTERN); + + if (mmio_read_32(STM32MP_DDR_BASE) != DDR_PATTERN) { + return (uint32_t)STM32MP_DDR_BASE; + } + + mmio_write_32(STM32MP_DDR_BASE, saved_value); + + return 0U; +} + +/******************************************************************************* + * This function tests the DDR data bus wiring. + * This is inspired from the Data Bus Test algorithm written by Michael Barr + * in "Programming Embedded Systems in C and C++" book. + * resources.oreilly.com/examples/9781565923546/blob/master/Chapter6/ + * File: memtest.c - This source code belongs to Public Domain. + * Returns 0 if success, and address value else. + ******************************************************************************/ +uint32_t stm32mp_ddr_test_data_bus(void) +{ + uint32_t pattern; + + for (pattern = 1U; pattern != 0U; pattern <<= 1U) { + mmio_write_32(STM32MP_DDR_BASE, pattern); + + if (mmio_read_32(STM32MP_DDR_BASE) != pattern) { + return (uint32_t)STM32MP_DDR_BASE; + } + } + + return 0; +} + +/******************************************************************************* + * This function tests the DDR address bus wiring. + * This is inspired from the Data Bus Test algorithm written by Michael Barr + * in "Programming Embedded Systems in C and C++" book. + * resources.oreilly.com/examples/9781565923546/blob/master/Chapter6/ + * File: memtest.c - This source code belongs to Public Domain. + * size: size in bytes of the DDR memory device. + * Returns 0 if success, and address value else. + ******************************************************************************/ +uint32_t stm32mp_ddr_test_addr_bus(uint64_t size) +{ + uint64_t addressmask = size - 1U; + uint64_t offset; + uint64_t testoffset = 0U; + + /* Write the default pattern at each of the power-of-two offsets. */ + for (offset = sizeof(uint32_t); (offset & addressmask) != 0U; + offset <<= 1U) { + mmio_write_32(STM32MP_DDR_BASE + (uint32_t)offset, + DDR_PATTERN); + } + + /* Check for address bits stuck high. */ + mmio_write_32(STM32MP_DDR_BASE + (uint32_t)testoffset, + DDR_ANTIPATTERN); + + for (offset = sizeof(uint32_t); (offset & addressmask) != 0U; + offset <<= 1U) { + if (mmio_read_32(STM32MP_DDR_BASE + (uint32_t)offset) != + DDR_PATTERN) { + return (uint32_t)(STM32MP_DDR_BASE + offset); + } + } + + mmio_write_32(STM32MP_DDR_BASE + (uint32_t)testoffset, DDR_PATTERN); + + /* Check for address bits stuck low or shorted. */ + for (testoffset = sizeof(uint32_t); (testoffset & addressmask) != 0U; + testoffset <<= 1U) { + mmio_write_32(STM32MP_DDR_BASE + (uint32_t)testoffset, + DDR_ANTIPATTERN); + + if (mmio_read_32(STM32MP_DDR_BASE) != DDR_PATTERN) { + return STM32MP_DDR_BASE; + } + + for (offset = sizeof(uint32_t); (offset & addressmask) != 0U; + offset <<= 1) { + if ((mmio_read_32(STM32MP_DDR_BASE + + (uint32_t)offset) != DDR_PATTERN) && + (offset != testoffset)) { + return (uint32_t)(STM32MP_DDR_BASE + offset); + } + } + + mmio_write_32(STM32MP_DDR_BASE + (uint32_t)testoffset, + DDR_PATTERN); + } + + return 0U; +} + +/******************************************************************************* + * This function checks the DDR size. It has to be run with Data Cache off. + * This test is run before data have been put in DDR, and is only done for + * cold boot. The DDR data can then be overwritten, and it is not useful to + * restore its content. + * Returns DDR computed size. + ******************************************************************************/ +uint32_t stm32mp_ddr_check_size(void) +{ + uint32_t offset = sizeof(uint32_t); + + mmio_write_32(STM32MP_DDR_BASE, DDR_PATTERN); + + while (offset < STM32MP_DDR_MAX_SIZE) { + mmio_write_32(STM32MP_DDR_BASE + offset, DDR_ANTIPATTERN); + dsb(); + + if (mmio_read_32(STM32MP_DDR_BASE) != DDR_PATTERN) { + break; + } + + offset <<= 1U; + } + + INFO("Memory size = 0x%x (%u MB)\n", offset, offset / (1024U * 1024U)); + + return offset; +} diff --git a/drivers/st/ddr/stm32mp_ram.c b/drivers/st/ddr/stm32mp_ram.c new file mode 100644 index 0000000..0804568 --- /dev/null +++ b/drivers/st/ddr/stm32mp_ram.c @@ -0,0 +1,60 @@ +/* + * Copyright (C) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <errno.h> +#include <stdbool.h> + +#include <common/debug.h> +#include <common/fdt_wrappers.h> +#include <drivers/st/stm32mp_ram.h> +#include <libfdt.h> + +#include <platform_def.h> + +int stm32mp_ddr_dt_get_info(void *fdt, int node, struct stm32mp_ddr_info *info) +{ + int ret; + + ret = fdt_read_uint32(fdt, node, "st,mem-speed", &info->speed); + if (ret < 0) { + VERBOSE("%s: no st,mem-speed\n", __func__); + return -EINVAL; + } + ret = fdt_read_uint32(fdt, node, "st,mem-size", &info->size); + if (ret < 0) { + VERBOSE("%s: no st,mem-size\n", __func__); + return -EINVAL; + } + info->name = fdt_getprop(fdt, node, "st,mem-name", NULL); + if (info->name == NULL) { + VERBOSE("%s: no st,mem-name\n", __func__); + return -EINVAL; + } + + INFO("RAM: %s\n", info->name); + + return 0; +} + +int stm32mp_ddr_dt_get_param(void *fdt, int node, const struct stm32mp_ddr_param *param, + uint32_t param_size, uintptr_t config) +{ + int ret; + uint32_t idx; + + for (idx = 0U; idx < param_size; idx++) { + ret = fdt_read_uint32_array(fdt, node, param[idx].name, param[idx].size, + (void *)(config + param[idx].offset)); + + VERBOSE("%s: %s[0x%x] = %d\n", __func__, param[idx].name, param[idx].size, ret); + if (ret != 0) { + ERROR("%s: Cannot read %s, error=%d\n", __func__, param[idx].name, ret); + return -EINVAL; + } + } + + return 0; +} diff --git a/drivers/st/etzpc/etzpc.c b/drivers/st/etzpc/etzpc.c new file mode 100644 index 0000000..4c3c26d --- /dev/null +++ b/drivers/st/etzpc/etzpc.c @@ -0,0 +1,246 @@ +/* + * Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <stdint.h> + +#include <arch_helpers.h> +#include <common/debug.h> +#include <drivers/st/etzpc.h> +#include <dt-bindings/soc/st,stm32-etzpc.h> +#include <lib/mmio.h> +#include <lib/utils_def.h> +#include <libfdt.h> + +#include <platform_def.h> + +/* Device Tree related definitions */ +#define ETZPC_COMPAT "st,stm32-etzpc" +#define ETZPC_LOCK_MASK 0x1U +#define ETZPC_MODE_SHIFT 8 +#define ETZPC_MODE_MASK GENMASK(1, 0) +#define ETZPC_ID_SHIFT 16 +#define ETZPC_ID_MASK GENMASK(7, 0) + +/* ID Registers */ +#define ETZPC_TZMA0_SIZE 0x000U +#define ETZPC_DECPROT0 0x010U +#define ETZPC_DECPROT_LOCK0 0x030U +#define ETZPC_HWCFGR 0x3F0U +#define ETZPC_VERR 0x3F4U + +/* ID Registers fields */ +#define ETZPC_TZMA0_SIZE_LOCK BIT(31) +#define ETZPC_DECPROT0_MASK GENMASK(1, 0) +#define ETZPC_HWCFGR_NUM_TZMA_SHIFT 0 +#define ETZPC_HWCFGR_NUM_PER_SEC_SHIFT 8 +#define ETZPC_HWCFGR_NUM_AHB_SEC_SHIFT 16 +#define ETZPC_HWCFGR_CHUNCKS1N4_SHIFT 24 + +#define DECPROT_SHIFT 1 +#define IDS_PER_DECPROT_REGS 16U +#define IDS_PER_DECPROT_LOCK_REGS 32U + +/* + * etzpc_instance. + * base : register base address set during init given by user + * chunk_size : supported TZMA size steps + * num_tzma: number of TZMA zone read from register at init + * num_ahb_sec : number of securable AHB master zone read from register + * num_per_sec : number of securable AHB & APB Peripherals read from register + * revision : IP revision read from register at init + */ +struct etzpc_instance { + uintptr_t base; + uint8_t chunck_size; + uint8_t num_tzma; + uint8_t num_per_sec; + uint8_t num_ahb_sec; + uint8_t revision; +}; + +/* Only 1 instance of the ETZPC is expected per platform */ +static struct etzpc_instance etzpc_dev; + +/* + * Implementation uses uint8_t to store each securable DECPROT configuration. + * When resuming from deep suspend, the DECPROT configurations are restored. + */ +#define PERIPH_LOCK_BIT BIT(7) +#define PERIPH_ATTR_MASK GENMASK(2, 0) + +#if ENABLE_ASSERTIONS +static bool valid_decprot_id(unsigned int id) +{ + return id < (unsigned int)etzpc_dev.num_per_sec; +} + +static bool valid_tzma_id(unsigned int id) +{ + return id < (unsigned int)etzpc_dev.num_tzma; +} +#endif + +/* + * etzpc_configure_decprot : Load a DECPROT configuration + * decprot_id : ID of the IP + * decprot_attr : Restriction access attribute + */ +void etzpc_configure_decprot(uint32_t decprot_id, + enum etzpc_decprot_attributes decprot_attr) +{ + uintptr_t offset = 4U * (decprot_id / IDS_PER_DECPROT_REGS); + uint32_t shift = (decprot_id % IDS_PER_DECPROT_REGS) << DECPROT_SHIFT; + uint32_t masked_decprot = (uint32_t)decprot_attr & ETZPC_DECPROT0_MASK; + + assert(valid_decprot_id(decprot_id)); + + mmio_clrsetbits_32(etzpc_dev.base + ETZPC_DECPROT0 + offset, + (uint32_t)ETZPC_DECPROT0_MASK << shift, + masked_decprot << shift); +} + +/* + * etzpc_get_decprot : Get the DECPROT attribute + * decprot_id : ID of the IP + * return : Attribute of this DECPROT + */ +enum etzpc_decprot_attributes etzpc_get_decprot(uint32_t decprot_id) +{ + uintptr_t offset = 4U * (decprot_id / IDS_PER_DECPROT_REGS); + uint32_t shift = (decprot_id % IDS_PER_DECPROT_REGS) << DECPROT_SHIFT; + uintptr_t base_decprot = etzpc_dev.base + offset; + uint32_t value; + + assert(valid_decprot_id(decprot_id)); + + value = (mmio_read_32(base_decprot + ETZPC_DECPROT0) >> shift) & + ETZPC_DECPROT0_MASK; + + return (enum etzpc_decprot_attributes)value; +} + +/* + * etzpc_lock_decprot : Lock access to the DECPROT attribute + * decprot_id : ID of the IP + */ +void etzpc_lock_decprot(uint32_t decprot_id) +{ + uintptr_t offset = 4U * (decprot_id / IDS_PER_DECPROT_LOCK_REGS); + uint32_t shift = BIT(decprot_id % IDS_PER_DECPROT_LOCK_REGS); + uintptr_t base_decprot = etzpc_dev.base + offset; + + assert(valid_decprot_id(decprot_id)); + + mmio_write_32(base_decprot + ETZPC_DECPROT_LOCK0, shift); +} + +/* + * etzpc_configure_tzma : Configure the target TZMA read only size + * tzma_id : ID of the memory + * tzma_value : read-only size + */ +void etzpc_configure_tzma(uint32_t tzma_id, uint16_t tzma_value) +{ + assert(valid_tzma_id(tzma_id)); + + mmio_write_32(etzpc_dev.base + ETZPC_TZMA0_SIZE + + (sizeof(uint32_t) * tzma_id), tzma_value); +} + +/* + * etzpc_get_tzma : Get the target TZMA read only size + * tzma_id : TZMA ID + * return : Size of read only size + */ +uint16_t etzpc_get_tzma(uint32_t tzma_id) +{ + assert(valid_tzma_id(tzma_id)); + + return (uint16_t)mmio_read_32(etzpc_dev.base + ETZPC_TZMA0_SIZE + + (sizeof(uint32_t) * tzma_id)); +} + +/* + * etzpc_lock_tzma : Lock the target TZMA + * tzma_id : TZMA ID + */ +void etzpc_lock_tzma(uint32_t tzma_id) +{ + assert(valid_tzma_id(tzma_id)); + + mmio_setbits_32(etzpc_dev.base + ETZPC_TZMA0_SIZE + + (sizeof(uint32_t) * tzma_id), ETZPC_TZMA0_SIZE_LOCK); +} + +/* + * etzpc_get_lock_tzma : Return the lock status of the target TZMA + * tzma_id : TZMA ID + * return : True if TZMA is locked, false otherwise + */ +bool etzpc_get_lock_tzma(uint32_t tzma_id) +{ + uint32_t tzma_size; + + assert(valid_tzma_id(tzma_id)); + + tzma_size = mmio_read_32(etzpc_dev.base + ETZPC_TZMA0_SIZE + + (sizeof(uint32_t) * tzma_id)); + + return (tzma_size & ETZPC_TZMA0_SIZE_LOCK) != 0; +} + +/* + * etzpc_get_num_per_sec : Return the DECPROT ID limit value + */ +uint8_t etzpc_get_num_per_sec(void) +{ + return etzpc_dev.num_per_sec; +} + +/* + * etzpc_get_revision : Return the ETZPC IP revision + */ +uint8_t etzpc_get_revision(void) +{ + return etzpc_dev.revision; +} + +/* + * etzpc_get_base_address : Return the ETZPC IP base address + */ +uintptr_t etzpc_get_base_address(void) +{ + return etzpc_dev.base; +} + +/* + * etzpc_init : Initialize the ETZPC driver + * Return 0 on success and a negative errno on failure + */ +int etzpc_init(void) +{ + uint32_t hwcfg; + + etzpc_dev.base = STM32MP1_ETZPC_BASE; + + hwcfg = mmio_read_32(etzpc_dev.base + ETZPC_HWCFGR); + + etzpc_dev.num_tzma = (uint8_t)(hwcfg >> ETZPC_HWCFGR_NUM_TZMA_SHIFT); + etzpc_dev.num_per_sec = (uint8_t)(hwcfg >> + ETZPC_HWCFGR_NUM_PER_SEC_SHIFT); + etzpc_dev.num_ahb_sec = (uint8_t)(hwcfg >> + ETZPC_HWCFGR_NUM_AHB_SEC_SHIFT); + etzpc_dev.chunck_size = (uint8_t)(hwcfg >> + ETZPC_HWCFGR_CHUNCKS1N4_SHIFT); + + etzpc_dev.revision = mmio_read_8(etzpc_dev.base + ETZPC_VERR); + + VERBOSE("ETZPC version 0x%x", etzpc_dev.revision); + + return 0; +} diff --git a/drivers/st/fmc/stm32_fmc2_nand.c b/drivers/st/fmc/stm32_fmc2_nand.c new file mode 100644 index 0000000..9bdc854 --- /dev/null +++ b/drivers/st/fmc/stm32_fmc2_nand.c @@ -0,0 +1,934 @@ +/* + * Copyright (c) 2019-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <limits.h> +#include <stdint.h> + +#include <common/debug.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/raw_nand.h> +#include <drivers/st/stm32_fmc2_nand.h> +#include <drivers/st/stm32_gpio.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils_def.h> +#include <libfdt.h> + +#include <platform_def.h> + +/* Timeout for device interface reset */ +#define TIMEOUT_US_1_MS 1000U + +/* FMC2 Compatibility */ +#define DT_FMC2_EBI_COMPAT "st,stm32mp1-fmc2-ebi" +#define DT_FMC2_NFC_COMPAT "st,stm32mp1-fmc2-nfc" +#define MAX_CS 2U +#define MAX_BANK 5U + +/* FMC2 Controller Registers */ +#define FMC2_BCR1 0x00U +#define FMC2_PCR 0x80U +#define FMC2_SR 0x84U +#define FMC2_PMEM 0x88U +#define FMC2_PATT 0x8CU +#define FMC2_HECCR 0x94U +#define FMC2_BCHISR 0x254U +#define FMC2_BCHICR 0x258U +#define FMC2_BCHDSR0 0x27CU +#define FMC2_BCHDSR1 0x280U +#define FMC2_BCHDSR2 0x284U +#define FMC2_BCHDSR3 0x288U +#define FMC2_BCHDSR4 0x28CU + +/* FMC2_BCR1 register */ +#define FMC2_BCR1_FMC2EN BIT(31) +/* FMC2_PCR register */ +#define FMC2_PCR_PWAITEN BIT(1) +#define FMC2_PCR_PBKEN BIT(2) +#define FMC2_PCR_PWID_MASK GENMASK_32(5, 4) +#define FMC2_PCR_PWID(x) (((x) << 4) & FMC2_PCR_PWID_MASK) +#define FMC2_PCR_PWID_8 0x0U +#define FMC2_PCR_PWID_16 0x1U +#define FMC2_PCR_ECCEN BIT(6) +#define FMC2_PCR_ECCALG BIT(8) +#define FMC2_PCR_TCLR_MASK GENMASK_32(12, 9) +#define FMC2_PCR_TCLR(x) (((x) << 9) & FMC2_PCR_TCLR_MASK) +#define FMC2_PCR_TCLR_DEFAULT 0xFU +#define FMC2_PCR_TAR_MASK GENMASK_32(16, 13) +#define FMC2_PCR_TAR(x) (((x) << 13) & FMC2_PCR_TAR_MASK) +#define FMC2_PCR_TAR_DEFAULT 0xFU +#define FMC2_PCR_ECCSS_MASK GENMASK_32(19, 17) +#define FMC2_PCR_ECCSS(x) (((x) << 17) & FMC2_PCR_ECCSS_MASK) +#define FMC2_PCR_ECCSS_512 0x1U +#define FMC2_PCR_ECCSS_2048 0x3U +#define FMC2_PCR_BCHECC BIT(24) +#define FMC2_PCR_WEN BIT(25) +/* FMC2_SR register */ +#define FMC2_SR_NWRF BIT(6) +/* FMC2_PMEM register*/ +#define FMC2_PMEM_MEMSET(x) (((x) & GENMASK_32(7, 0)) << 0) +#define FMC2_PMEM_MEMWAIT(x) (((x) & GENMASK_32(7, 0)) << 8) +#define FMC2_PMEM_MEMHOLD(x) (((x) & GENMASK_32(7, 0)) << 16) +#define FMC2_PMEM_MEMHIZ(x) (((x) & GENMASK_32(7, 0)) << 24) +#define FMC2_PMEM_DEFAULT 0x0A0A0A0AU +/* FMC2_PATT register */ +#define FMC2_PATT_ATTSET(x) (((x) & GENMASK_32(7, 0)) << 0) +#define FMC2_PATT_ATTWAIT(x) (((x) & GENMASK_32(7, 0)) << 8) +#define FMC2_PATT_ATTHOLD(x) (((x) & GENMASK_32(7, 0)) << 16) +#define FMC2_PATT_ATTHIZ(x) (((x) & GENMASK_32(7, 0)) << 24) +#define FMC2_PATT_DEFAULT 0x0A0A0A0AU +/* FMC2_BCHISR register */ +#define FMC2_BCHISR_DERF BIT(1) +/* FMC2_BCHICR register */ +#define FMC2_BCHICR_CLEAR_IRQ GENMASK_32(4, 0) +/* FMC2_BCHDSR0 register */ +#define FMC2_BCHDSR0_DUE BIT(0) +#define FMC2_BCHDSR0_DEF BIT(1) +#define FMC2_BCHDSR0_DEN_MASK GENMASK_32(7, 4) +#define FMC2_BCHDSR0_DEN_SHIFT 4U +/* FMC2_BCHDSR1 register */ +#define FMC2_BCHDSR1_EBP1_MASK GENMASK_32(12, 0) +#define FMC2_BCHDSR1_EBP2_MASK GENMASK_32(28, 16) +#define FMC2_BCHDSR1_EBP2_SHIFT 16U +/* FMC2_BCHDSR2 register */ +#define FMC2_BCHDSR2_EBP3_MASK GENMASK_32(12, 0) +#define FMC2_BCHDSR2_EBP4_MASK GENMASK_32(28, 16) +#define FMC2_BCHDSR2_EBP4_SHIFT 16U +/* FMC2_BCHDSR3 register */ +#define FMC2_BCHDSR3_EBP5_MASK GENMASK_32(12, 0) +#define FMC2_BCHDSR3_EBP6_MASK GENMASK_32(28, 16) +#define FMC2_BCHDSR3_EBP6_SHIFT 16U +/* FMC2_BCHDSR4 register */ +#define FMC2_BCHDSR4_EBP7_MASK GENMASK_32(12, 0) +#define FMC2_BCHDSR4_EBP8_MASK GENMASK_32(28, 16) +#define FMC2_BCHDSR4_EBP8_SHIFT 16U + +/* Timings */ +#define FMC2_THIZ 0x01U +#define FMC2_TIO 8000U +#define FMC2_TSYNC 3000U +#define FMC2_PCR_TIMING_MASK GENMASK_32(3, 0) +#define FMC2_PMEM_PATT_TIMING_MASK GENMASK_32(7, 0) + +#define FMC2_BBM_LEN 2U +#define FMC2_MAX_ECC_BYTES 14U +#define TIMEOUT_US_10_MS 10000U +#define FMC2_PSEC_PER_MSEC (1000UL * 1000UL * 1000UL) + +enum stm32_fmc2_ecc { + FMC2_ECC_HAM = 1U, + FMC2_ECC_BCH4 = 4U, + FMC2_ECC_BCH8 = 8U +}; + +struct stm32_fmc2_cs_reg { + uintptr_t data_base; + uintptr_t cmd_base; + uintptr_t addr_base; +}; + +struct stm32_fmc2_nand_timings { + uint8_t tclr; + uint8_t tar; + uint8_t thiz; + uint8_t twait; + uint8_t thold_mem; + uint8_t tset_mem; + uint8_t thold_att; + uint8_t tset_att; +}; + +struct stm32_fmc2_nfc { + uintptr_t reg_base; + struct stm32_fmc2_cs_reg cs[MAX_CS]; + unsigned long clock_id; + unsigned int reset_id; + uint8_t cs_sel; +}; + +static struct stm32_fmc2_nfc stm32_fmc2; + +static uintptr_t fmc2_base(void) +{ + return stm32_fmc2.reg_base; +} + +static void stm32_fmc2_nand_setup_timing(void) +{ + struct stm32_fmc2_nand_timings tims; + unsigned long hclk = clk_get_rate(stm32_fmc2.clock_id); + unsigned long hclkp = FMC2_PSEC_PER_MSEC / (hclk / 1000U); + unsigned long timing, tar, tclr, thiz, twait; + unsigned long tset_mem, tset_att, thold_mem, thold_att; + uint32_t pcr, pmem, patt; + + tar = MAX(hclkp, NAND_TAR_MIN); + timing = div_round_up(tar, hclkp) - 1U; + tims.tar = MIN(timing, (unsigned long)FMC2_PCR_TIMING_MASK); + + tclr = MAX(hclkp, NAND_TCLR_MIN); + timing = div_round_up(tclr, hclkp) - 1U; + tims.tclr = MIN(timing, (unsigned long)FMC2_PCR_TIMING_MASK); + + tims.thiz = FMC2_THIZ; + thiz = (tims.thiz + 1U) * hclkp; + + /* + * tWAIT > tRP + * tWAIT > tWP + * tWAIT > tREA + tIO + */ + twait = MAX(hclkp, NAND_TRP_MIN); + twait = MAX(twait, NAND_TWP_MIN); + twait = MAX(twait, NAND_TREA_MAX + FMC2_TIO); + timing = div_round_up(twait, hclkp); + tims.twait = CLAMP(timing, 1UL, + (unsigned long)FMC2_PMEM_PATT_TIMING_MASK); + + /* + * tSETUP_MEM > tCS - tWAIT + * tSETUP_MEM > tALS - tWAIT + * tSETUP_MEM > tDS - (tWAIT - tHIZ) + */ + tset_mem = hclkp; + if ((twait < NAND_TCS_MIN) && (tset_mem < (NAND_TCS_MIN - twait))) { + tset_mem = NAND_TCS_MIN - twait; + } + if ((twait > thiz) && ((twait - thiz) < NAND_TDS_MIN) && + (tset_mem < (NAND_TDS_MIN - (twait - thiz)))) { + tset_mem = NAND_TDS_MIN - (twait - thiz); + } + timing = div_round_up(tset_mem, hclkp); + tims.tset_mem = CLAMP(timing, 1UL, + (unsigned long)FMC2_PMEM_PATT_TIMING_MASK); + + /* + * tHOLD_MEM > tCH + * tHOLD_MEM > tREH - tSETUP_MEM + * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) + */ + thold_mem = MAX(hclkp, NAND_TCH_MIN); + if ((tset_mem < NAND_TREH_MIN) && + (thold_mem < (NAND_TREH_MIN - tset_mem))) { + thold_mem = NAND_TREH_MIN - tset_mem; + } + if (((tset_mem + twait) < NAND_TRC_MIN) && + (thold_mem < (NAND_TRC_MIN - (tset_mem + twait)))) { + thold_mem = NAND_TRC_MIN - (tset_mem + twait); + } + if (((tset_mem + twait) < NAND_TWC_MIN) && + (thold_mem < (NAND_TWC_MIN - (tset_mem + twait)))) { + thold_mem = NAND_TWC_MIN - (tset_mem + twait); + } + timing = div_round_up(thold_mem, hclkp); + tims.thold_mem = CLAMP(timing, 1UL, + (unsigned long)FMC2_PMEM_PATT_TIMING_MASK); + + /* + * tSETUP_ATT > tCS - tWAIT + * tSETUP_ATT > tCLS - tWAIT + * tSETUP_ATT > tALS - tWAIT + * tSETUP_ATT > tRHW - tHOLD_MEM + * tSETUP_ATT > tDS - (tWAIT - tHIZ) + */ + tset_att = hclkp; + if ((twait < NAND_TCS_MIN) && (tset_att < (NAND_TCS_MIN - twait))) { + tset_att = NAND_TCS_MIN - twait; + } + if ((thold_mem < NAND_TRHW_MIN) && + (tset_att < (NAND_TRHW_MIN - thold_mem))) { + tset_att = NAND_TRHW_MIN - thold_mem; + } + if ((twait > thiz) && ((twait - thiz) < NAND_TDS_MIN) && + (tset_att < (NAND_TDS_MIN - (twait - thiz)))) { + tset_att = NAND_TDS_MIN - (twait - thiz); + } + timing = div_round_up(tset_att, hclkp); + tims.tset_att = CLAMP(timing, 1UL, + (unsigned long)FMC2_PMEM_PATT_TIMING_MASK); + + /* + * tHOLD_ATT > tALH + * tHOLD_ATT > tCH + * tHOLD_ATT > tCLH + * tHOLD_ATT > tCOH + * tHOLD_ATT > tDH + * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM + * tHOLD_ATT > tADL - tSETUP_MEM + * tHOLD_ATT > tWH - tSETUP_MEM + * tHOLD_ATT > tWHR - tSETUP_MEM + * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) + * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) + */ + thold_att = MAX(hclkp, NAND_TALH_MIN); + thold_att = MAX(thold_att, NAND_TCH_MIN); + thold_att = MAX(thold_att, NAND_TCLH_MIN); + thold_att = MAX(thold_att, NAND_TCOH_MIN); + thold_att = MAX(thold_att, NAND_TDH_MIN); + if (((NAND_TWB_MAX + FMC2_TIO + FMC2_TSYNC) > tset_mem) && + (thold_att < (NAND_TWB_MAX + FMC2_TIO + FMC2_TSYNC - tset_mem))) { + thold_att = NAND_TWB_MAX + FMC2_TIO + FMC2_TSYNC - tset_mem; + } + if ((tset_mem < NAND_TADL_MIN) && + (thold_att < (NAND_TADL_MIN - tset_mem))) { + thold_att = NAND_TADL_MIN - tset_mem; + } + if ((tset_mem < NAND_TWH_MIN) && + (thold_att < (NAND_TWH_MIN - tset_mem))) { + thold_att = NAND_TWH_MIN - tset_mem; + } + if ((tset_mem < NAND_TWHR_MIN) && + (thold_att < (NAND_TWHR_MIN - tset_mem))) { + thold_att = NAND_TWHR_MIN - tset_mem; + } + if (((tset_att + twait) < NAND_TRC_MIN) && + (thold_att < (NAND_TRC_MIN - (tset_att + twait)))) { + thold_att = NAND_TRC_MIN - (tset_att + twait); + } + if (((tset_att + twait) < NAND_TWC_MIN) && + (thold_att < (NAND_TWC_MIN - (tset_att + twait)))) { + thold_att = NAND_TWC_MIN - (tset_att + twait); + } + timing = div_round_up(thold_att, hclkp); + tims.thold_att = CLAMP(timing, 1UL, + (unsigned long)FMC2_PMEM_PATT_TIMING_MASK); + + VERBOSE("NAND timings: %u - %u - %u - %u - %u - %u - %u - %u\n", + tims.tclr, tims.tar, tims.thiz, tims.twait, + tims.thold_mem, tims.tset_mem, + tims.thold_att, tims.tset_att); + + /* Set tclr/tar timings */ + pcr = mmio_read_32(fmc2_base() + FMC2_PCR); + pcr &= ~FMC2_PCR_TCLR_MASK; + pcr |= FMC2_PCR_TCLR(tims.tclr); + pcr &= ~FMC2_PCR_TAR_MASK; + pcr |= FMC2_PCR_TAR(tims.tar); + + /* Set tset/twait/thold/thiz timings in common bank */ + pmem = FMC2_PMEM_MEMSET(tims.tset_mem); + pmem |= FMC2_PMEM_MEMWAIT(tims.twait); + pmem |= FMC2_PMEM_MEMHOLD(tims.thold_mem); + pmem |= FMC2_PMEM_MEMHIZ(tims.thiz); + + /* Set tset/twait/thold/thiz timings in attribute bank */ + patt = FMC2_PATT_ATTSET(tims.tset_att); + patt |= FMC2_PATT_ATTWAIT(tims.twait); + patt |= FMC2_PATT_ATTHOLD(tims.thold_att); + patt |= FMC2_PATT_ATTHIZ(tims.thiz); + + mmio_write_32(fmc2_base() + FMC2_PCR, pcr); + mmio_write_32(fmc2_base() + FMC2_PMEM, pmem); + mmio_write_32(fmc2_base() + FMC2_PATT, patt); +} + +static void stm32_fmc2_set_buswidth_16(bool set) +{ + mmio_clrsetbits_32(fmc2_base() + FMC2_PCR, FMC2_PCR_PWID_MASK, + (set ? FMC2_PCR_PWID(FMC2_PCR_PWID_16) : 0U)); +} + +static void stm32_fmc2_set_ecc(bool enable) +{ + mmio_clrsetbits_32(fmc2_base() + FMC2_PCR, FMC2_PCR_ECCEN, + (enable ? FMC2_PCR_ECCEN : 0U)); +} + +static int stm32_fmc2_ham_correct(uint8_t *buffer, uint8_t *eccbuffer, + uint8_t *ecc) +{ + uint8_t xor_ecc_ones; + uint16_t xor_ecc_1b, xor_ecc_2b, xor_ecc_3b; + union { + uint32_t val; + uint8_t bytes[4]; + } xor_ecc; + + /* Page size--------ECC_Code Size + * 256---------------22 bits LSB (ECC_CODE & 0x003FFFFF) + * 512---------------24 bits (ECC_CODE & 0x00FFFFFF) + * 1024--------------26 bits (ECC_CODE & 0x03FFFFFF) + * 2048--------------28 bits (ECC_CODE & 0x0FFFFFFF) + * 4096--------------30 bits (ECC_CODE & 0x3FFFFFFF) + * 8192--------------32 bits (ECC_CODE & 0xFFFFFFFF) + */ + + /* For Page size 512, ECC_Code size 24 bits */ + xor_ecc_1b = ecc[0] ^ eccbuffer[0]; + xor_ecc_2b = ecc[1] ^ eccbuffer[1]; + xor_ecc_3b = ecc[2] ^ eccbuffer[2]; + + xor_ecc.val = 0U; + xor_ecc.bytes[2] = xor_ecc_3b; + xor_ecc.bytes[1] = xor_ecc_2b; + xor_ecc.bytes[0] = xor_ecc_1b; + + if (xor_ecc.val == 0U) { + return 0; /* No Error */ + } + + xor_ecc_ones = __builtin_popcount(xor_ecc.val); + if (xor_ecc_ones < 23U) { + if (xor_ecc_ones == 12U) { + uint16_t bit_address, byte_address; + + /* Correctable ERROR */ + bit_address = ((xor_ecc_1b >> 1) & BIT(0)) | + ((xor_ecc_1b >> 2) & BIT(1)) | + ((xor_ecc_1b >> 3) & BIT(2)); + + byte_address = ((xor_ecc_1b >> 7) & BIT(0)) | + ((xor_ecc_2b) & BIT(1)) | + ((xor_ecc_2b >> 1) & BIT(2)) | + ((xor_ecc_2b >> 2) & BIT(3)) | + ((xor_ecc_2b >> 3) & BIT(4)) | + ((xor_ecc_3b << 4) & BIT(5)) | + ((xor_ecc_3b << 3) & BIT(6)) | + ((xor_ecc_3b << 2) & BIT(7)) | + ((xor_ecc_3b << 1) & BIT(8)); + + /* Correct bit error in the data */ + buffer[byte_address] = + buffer[byte_address] ^ BIT(bit_address); + VERBOSE("Hamming: 1 ECC error corrected\n"); + + return 0; + } + + /* Non Correctable ERROR */ + ERROR("%s: Uncorrectable ECC Errors\n", __func__); + return -1; + } + + /* ECC ERROR */ + ERROR("%s: Hamming correction error\n", __func__); + return -1; +} + + +static int stm32_fmc2_ham_calculate(uint8_t *buffer, uint8_t *ecc) +{ + uint32_t heccr; + uint64_t timeout = timeout_init_us(TIMEOUT_US_10_MS); + + while ((mmio_read_32(fmc2_base() + FMC2_SR) & FMC2_SR_NWRF) == 0U) { + if (timeout_elapsed(timeout)) { + return -ETIMEDOUT; + } + } + + heccr = mmio_read_32(fmc2_base() + FMC2_HECCR); + + ecc[0] = heccr; + ecc[1] = heccr >> 8; + ecc[2] = heccr >> 16; + + /* Disable ECC */ + stm32_fmc2_set_ecc(false); + + return 0; +} + +static int stm32_fmc2_bch_correct(uint8_t *buffer, unsigned int eccsize) +{ + uint32_t bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4; + uint16_t pos[8]; + int i, den; + uint64_t timeout = timeout_init_us(TIMEOUT_US_10_MS); + + while ((mmio_read_32(fmc2_base() + FMC2_BCHISR) & + FMC2_BCHISR_DERF) == 0U) { + if (timeout_elapsed(timeout)) { + return -ETIMEDOUT; + } + } + + bchdsr0 = mmio_read_32(fmc2_base() + FMC2_BCHDSR0); + bchdsr1 = mmio_read_32(fmc2_base() + FMC2_BCHDSR1); + bchdsr2 = mmio_read_32(fmc2_base() + FMC2_BCHDSR2); + bchdsr3 = mmio_read_32(fmc2_base() + FMC2_BCHDSR3); + bchdsr4 = mmio_read_32(fmc2_base() + FMC2_BCHDSR4); + + /* Disable ECC */ + stm32_fmc2_set_ecc(false); + + /* No error found */ + if ((bchdsr0 & FMC2_BCHDSR0_DEF) == 0U) { + return 0; + } + + /* Too many errors detected */ + if ((bchdsr0 & FMC2_BCHDSR0_DUE) != 0U) { + return -EBADMSG; + } + + pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK; + pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT; + pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK; + pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT; + pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK; + pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT; + pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK; + pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT; + + den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT; + for (i = 0; i < den; i++) { + if (pos[i] < (eccsize * 8U)) { + uint8_t bitmask = BIT(pos[i] % 8U); + uint32_t offset = pos[i] / 8U; + + *(buffer + offset) ^= bitmask; + } + } + + return 0; +} + +static void stm32_fmc2_hwctl(struct nand_device *nand) +{ + stm32_fmc2_set_ecc(false); + + if (nand->ecc.max_bit_corr != FMC2_ECC_HAM) { + mmio_clrbits_32(fmc2_base() + FMC2_PCR, FMC2_PCR_WEN); + mmio_write_32(fmc2_base() + FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ); + } + + stm32_fmc2_set_ecc(true); +} + +static int stm32_fmc2_read_page(struct nand_device *nand, + unsigned int page, uintptr_t buffer) +{ + unsigned int eccsize = nand->ecc.size; + unsigned int eccbytes = nand->ecc.bytes; + unsigned int eccsteps = nand->page_size / eccsize; + uint8_t ecc_corr[FMC2_MAX_ECC_BYTES]; + uint8_t ecc_cal[FMC2_MAX_ECC_BYTES] = {0U}; + uint8_t *p; + unsigned int i; + unsigned int s; + int ret; + + VERBOSE(">%s page %u buffer %lx\n", __func__, page, buffer); + + ret = nand_read_page_cmd(page, 0U, 0U, 0U); + if (ret != 0) { + return ret; + } + + for (s = 0U, i = nand->page_size + FMC2_BBM_LEN, p = (uint8_t *)buffer; + s < eccsteps; + s++, i += eccbytes, p += eccsize) { + stm32_fmc2_hwctl(nand); + + /* Read the NAND page sector (512 bytes) */ + ret = nand_change_read_column_cmd(s * eccsize, (uintptr_t)p, + eccsize); + if (ret != 0) { + return ret; + } + + if (nand->ecc.max_bit_corr == FMC2_ECC_HAM) { + ret = stm32_fmc2_ham_calculate(p, ecc_cal); + if (ret != 0) { + return ret; + } + } + + /* Read the corresponding ECC bytes */ + ret = nand_change_read_column_cmd(i, (uintptr_t)ecc_corr, + eccbytes); + if (ret != 0) { + return ret; + } + + /* Correct the data */ + if (nand->ecc.max_bit_corr == FMC2_ECC_HAM) { + ret = stm32_fmc2_ham_correct(p, ecc_corr, ecc_cal); + } else { + ret = stm32_fmc2_bch_correct(p, eccsize); + } + + if (ret != 0) { + return ret; + } + } + + return 0; +} + +static void stm32_fmc2_read_data(struct nand_device *nand, + uint8_t *buff, unsigned int length, + bool use_bus8) +{ + uintptr_t data_base = stm32_fmc2.cs[stm32_fmc2.cs_sel].data_base; + + if (use_bus8 && (nand->buswidth == NAND_BUS_WIDTH_16)) { + stm32_fmc2_set_buswidth_16(false); + } + + if ((((uintptr_t)buff & BIT(0)) != 0U) && (length != 0U)) { + *buff = mmio_read_8(data_base); + buff += sizeof(uint8_t); + length -= sizeof(uint8_t); + } + + if ((((uintptr_t)buff & GENMASK_32(1, 0)) != 0U) && + (length >= sizeof(uint16_t))) { + *(uint16_t *)buff = mmio_read_16(data_base); + buff += sizeof(uint16_t); + length -= sizeof(uint16_t); + } + + /* 32bit aligned */ + while (length >= sizeof(uint32_t)) { + *(uint32_t *)buff = mmio_read_32(data_base); + buff += sizeof(uint32_t); + length -= sizeof(uint32_t); + } + + /* Read remaining bytes */ + if (length >= sizeof(uint16_t)) { + *(uint16_t *)buff = mmio_read_16(data_base); + buff += sizeof(uint16_t); + length -= sizeof(uint16_t); + } + + if (length != 0U) { + *buff = mmio_read_8(data_base); + } + + if (use_bus8 && (nand->buswidth == NAND_BUS_WIDTH_16)) { + /* Reconfigure bus width to 16-bit */ + stm32_fmc2_set_buswidth_16(true); + } +} + +static void stm32_fmc2_write_data(struct nand_device *nand, + uint8_t *buff, unsigned int length, + bool use_bus8) +{ + uintptr_t data_base = stm32_fmc2.cs[stm32_fmc2.cs_sel].data_base; + + if (use_bus8 && (nand->buswidth == NAND_BUS_WIDTH_16)) { + /* Reconfigure bus width to 8-bit */ + stm32_fmc2_set_buswidth_16(false); + } + + if ((((uintptr_t)buff & BIT(0)) != 0U) && (length != 0U)) { + mmio_write_8(data_base, *buff); + buff += sizeof(uint8_t); + length -= sizeof(uint8_t); + } + + if ((((uintptr_t)buff & GENMASK_32(1, 0)) != 0U) && + (length >= sizeof(uint16_t))) { + mmio_write_16(data_base, *(uint16_t *)buff); + buff += sizeof(uint16_t); + length -= sizeof(uint16_t); + } + + /* 32bits aligned */ + while (length >= sizeof(uint32_t)) { + mmio_write_32(data_base, *(uint32_t *)buff); + buff += sizeof(uint32_t); + length -= sizeof(uint32_t); + } + + /* Read remaining bytes */ + if (length >= sizeof(uint16_t)) { + mmio_write_16(data_base, *(uint16_t *)buff); + buff += sizeof(uint16_t); + length -= sizeof(uint16_t); + } + + if (length != 0U) { + mmio_write_8(data_base, *buff); + } + + if (use_bus8 && (nand->buswidth == NAND_BUS_WIDTH_16)) { + /* Reconfigure bus width to 16-bit */ + stm32_fmc2_set_buswidth_16(true); + } +} + +static void stm32_fmc2_ctrl_init(void) +{ + uint32_t pcr = mmio_read_32(fmc2_base() + FMC2_PCR); + uint32_t bcr1 = mmio_read_32(fmc2_base() + FMC2_BCR1); + + /* Enable wait feature and NAND flash memory bank */ + pcr |= FMC2_PCR_PWAITEN; + pcr |= FMC2_PCR_PBKEN; + + /* Set buswidth to 8 bits mode for identification */ + pcr &= ~FMC2_PCR_PWID_MASK; + + /* ECC logic is disabled */ + pcr &= ~FMC2_PCR_ECCEN; + + /* Default mode */ + pcr &= ~FMC2_PCR_ECCALG; + pcr &= ~FMC2_PCR_BCHECC; + pcr &= ~FMC2_PCR_WEN; + + /* Set default ECC sector size */ + pcr &= ~FMC2_PCR_ECCSS_MASK; + pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048); + + /* Set default TCLR/TAR timings */ + pcr &= ~FMC2_PCR_TCLR_MASK; + pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT); + pcr &= ~FMC2_PCR_TAR_MASK; + pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT); + + /* Enable FMC2 controller */ + bcr1 |= FMC2_BCR1_FMC2EN; + + mmio_write_32(fmc2_base() + FMC2_BCR1, bcr1); + mmio_write_32(fmc2_base() + FMC2_PCR, pcr); + mmio_write_32(fmc2_base() + FMC2_PMEM, FMC2_PMEM_DEFAULT); + mmio_write_32(fmc2_base() + FMC2_PATT, FMC2_PATT_DEFAULT); +} + +static int stm32_fmc2_exec(struct nand_req *req) +{ + int ret = 0; + + switch (req->type & NAND_REQ_MASK) { + case NAND_REQ_CMD: + VERBOSE("Write CMD %x\n", (uint8_t)req->type); + mmio_write_8(stm32_fmc2.cs[stm32_fmc2.cs_sel].cmd_base, + (uint8_t)req->type); + break; + case NAND_REQ_ADDR: + VERBOSE("Write ADDR %x\n", *(req->addr)); + mmio_write_8(stm32_fmc2.cs[stm32_fmc2.cs_sel].addr_base, + *(req->addr)); + break; + case NAND_REQ_DATAIN: + VERBOSE("Read data\n"); + stm32_fmc2_read_data(req->nand, req->addr, req->length, + ((req->type & NAND_REQ_BUS_WIDTH_8) != + 0U)); + break; + case NAND_REQ_DATAOUT: + VERBOSE("Write data\n"); + stm32_fmc2_write_data(req->nand, req->addr, req->length, + ((req->type & NAND_REQ_BUS_WIDTH_8) != + 0U)); + break; + case NAND_REQ_WAIT: + VERBOSE("WAIT Ready\n"); + ret = nand_wait_ready(req->delay_ms); + break; + default: + ret = -EINVAL; + break; + }; + + return ret; +} + +static void stm32_fmc2_setup(struct nand_device *nand) +{ + uint32_t pcr = mmio_read_32(fmc2_base() + FMC2_PCR); + + /* Set buswidth */ + pcr &= ~FMC2_PCR_PWID_MASK; + if (nand->buswidth == NAND_BUS_WIDTH_16) { + pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_16); + } + + if (nand->ecc.mode == NAND_ECC_HW) { + nand->mtd_read_page = stm32_fmc2_read_page; + + pcr &= ~FMC2_PCR_ECCALG; + pcr &= ~FMC2_PCR_BCHECC; + + pcr &= ~FMC2_PCR_ECCSS_MASK; + pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512); + + switch (nand->ecc.max_bit_corr) { + case FMC2_ECC_HAM: + nand->ecc.bytes = 3; + break; + case FMC2_ECC_BCH8: + pcr |= FMC2_PCR_ECCALG; + pcr |= FMC2_PCR_BCHECC; + nand->ecc.bytes = 13; + break; + default: + /* Use FMC2 ECC BCH4 */ + pcr |= FMC2_PCR_ECCALG; + nand->ecc.bytes = 7; + break; + } + + if ((nand->buswidth & NAND_BUS_WIDTH_16) != 0) { + nand->ecc.bytes++; + } + } + + mmio_write_32(stm32_fmc2.reg_base + FMC2_PCR, pcr); +} + +static const struct nand_ctrl_ops ctrl_ops = { + .setup = stm32_fmc2_setup, + .exec = stm32_fmc2_exec +}; + +int stm32_fmc2_init(void) +{ + int fmc_ebi_node; + int fmc_nfc_node; + int fmc_flash_node = 0; + int nchips = 0; + unsigned int i; + void *fdt = NULL; + const fdt32_t *cuint; + struct dt_node_info info; + uintptr_t bank_address[MAX_BANK] = { 0, 0, 0, 0, 0 }; + uint8_t bank_assigned = 0; + uint8_t bank; + int ret; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + fmc_ebi_node = dt_get_node(&info, -1, DT_FMC2_EBI_COMPAT); + if (fmc_ebi_node < 0) { + return fmc_ebi_node; + } + + if (info.status == DT_DISABLED) { + return -FDT_ERR_NOTFOUND; + } + + stm32_fmc2.reg_base = info.base; + + if ((info.clock < 0) || (info.reset < 0)) { + return -FDT_ERR_BADVALUE; + } + + stm32_fmc2.clock_id = (unsigned long)info.clock; + stm32_fmc2.reset_id = (unsigned int)info.reset; + + cuint = fdt_getprop(fdt, fmc_ebi_node, "ranges", NULL); + if (cuint == NULL) { + return -FDT_ERR_BADVALUE; + } + + for (i = 0U; i < MAX_BANK; i++) { + bank = fdt32_to_cpu(*cuint); + if ((bank >= MAX_BANK) || ((bank_assigned & BIT(bank)) != 0U)) { + return -FDT_ERR_BADVALUE; + } + bank_assigned |= BIT(bank); + bank_address[bank] = fdt32_to_cpu(*(cuint + 2)); + cuint += 4; + } + + /* Pinctrl initialization */ + if (dt_set_pinctrl_config(fmc_ebi_node) != 0) { + return -FDT_ERR_BADVALUE; + } + + /* Parse NFC controller node */ + fmc_nfc_node = fdt_node_offset_by_compatible(fdt, fmc_ebi_node, + DT_FMC2_NFC_COMPAT); + if (fmc_nfc_node < 0) { + return fmc_nfc_node; + } + + if (fdt_get_status(fmc_nfc_node) == DT_DISABLED) { + return -FDT_ERR_NOTFOUND; + } + + cuint = fdt_getprop(fdt, fmc_nfc_node, "reg", NULL); + if (cuint == NULL) { + return -FDT_ERR_BADVALUE; + } + + for (i = 0U; i < MAX_CS; i++) { + bank = fdt32_to_cpu(*cuint); + if (bank >= MAX_BANK) { + return -FDT_ERR_BADVALUE; + } + stm32_fmc2.cs[i].data_base = fdt32_to_cpu(*(cuint + 1)) + + bank_address[bank]; + + bank = fdt32_to_cpu(*(cuint + 3)); + if (bank >= MAX_BANK) { + return -FDT_ERR_BADVALUE; + } + stm32_fmc2.cs[i].cmd_base = fdt32_to_cpu(*(cuint + 4)) + + bank_address[bank]; + + bank = fdt32_to_cpu(*(cuint + 6)); + if (bank >= MAX_BANK) { + return -FDT_ERR_BADVALUE; + } + stm32_fmc2.cs[i].addr_base = fdt32_to_cpu(*(cuint + 7)) + + bank_address[bank]; + + cuint += 9; + } + + /* Parse flash nodes */ + fdt_for_each_subnode(fmc_flash_node, fdt, fmc_nfc_node) { + nchips++; + } + + if (nchips != 1) { + WARN("Only one SLC NAND device supported\n"); + return -FDT_ERR_BADVALUE; + } + + fdt_for_each_subnode(fmc_flash_node, fdt, fmc_nfc_node) { + /* Get chip select */ + cuint = fdt_getprop(fdt, fmc_flash_node, "reg", NULL); + if (cuint == NULL) { + WARN("Chip select not well defined\n"); + return -FDT_ERR_BADVALUE; + } + + stm32_fmc2.cs_sel = fdt32_to_cpu(*cuint); + if (stm32_fmc2.cs_sel >= MAX_CS) { + return -FDT_ERR_BADVALUE; + } + + VERBOSE("NAND CS %i\n", stm32_fmc2.cs_sel); + } + + /* Enable Clock */ + clk_enable(stm32_fmc2.clock_id); + + /* Reset IP */ + ret = stm32mp_reset_assert(stm32_fmc2.reset_id, TIMEOUT_US_1_MS); + if (ret != 0) { + panic(); + } + ret = stm32mp_reset_deassert(stm32_fmc2.reset_id, TIMEOUT_US_1_MS); + if (ret != 0) { + panic(); + } + + /* Setup default IP registers */ + stm32_fmc2_ctrl_init(); + + /* Setup default timings */ + stm32_fmc2_nand_setup_timing(); + + /* Init NAND RAW framework */ + nand_raw_ctrl_init(&ctrl_ops); + + return 0; +} diff --git a/drivers/st/gpio/stm32_gpio.c b/drivers/st/gpio/stm32_gpio.c new file mode 100644 index 0000000..708989f --- /dev/null +++ b/drivers/st/gpio/stm32_gpio.c @@ -0,0 +1,323 @@ +/* + * Copyright (c) 2016-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <stdbool.h> + +#include <common/bl_common.h> +#include <common/debug.h> +#include <drivers/clk.h> +#include <drivers/st/stm32_gpio.h> +#include <drivers/st/stm32mp_clkfunc.h> +#include <lib/mmio.h> +#include <lib/utils_def.h> +#include <libfdt.h> + +#include <platform_def.h> + +#define DT_GPIO_BANK_SHIFT 12 +#define DT_GPIO_BANK_MASK GENMASK(16, 12) +#define DT_GPIO_PIN_SHIFT 8 +#define DT_GPIO_PIN_MASK GENMASK(11, 8) +#define DT_GPIO_MODE_MASK GENMASK(7, 0) + +static void set_gpio(uint32_t bank, uint32_t pin, uint32_t mode, uint32_t type, + uint32_t speed, uint32_t pull, uint32_t od, + uint32_t alternate, uint8_t status); + +/******************************************************************************* + * This function gets GPIO bank node in DT. + * Returns node offset if status is okay in DT, else return 0 + ******************************************************************************/ +static int ckeck_gpio_bank(void *fdt, uint32_t bank, int pinctrl_node) +{ + int pinctrl_subnode; + uint32_t bank_offset = stm32_get_gpio_bank_offset(bank); + + fdt_for_each_subnode(pinctrl_subnode, fdt, pinctrl_node) { + const fdt32_t *cuint; + + if (fdt_getprop(fdt, pinctrl_subnode, + "gpio-controller", NULL) == NULL) { + continue; + } + + cuint = fdt_getprop(fdt, pinctrl_subnode, "reg", NULL); + if (cuint == NULL) { + continue; + } + + if ((fdt32_to_cpu(*cuint) == bank_offset) && + (fdt_get_status(pinctrl_subnode) != DT_DISABLED)) { + return pinctrl_subnode; + } + } + + return 0; +} + +/******************************************************************************* + * This function gets the pin settings from DT information. + * When analyze and parsing is done, set the GPIO registers. + * Returns 0 on success and a negative FDT error code on failure. + ******************************************************************************/ +static int dt_set_gpio_config(void *fdt, int node, uint8_t status) +{ + const fdt32_t *cuint, *slewrate; + int len; + int pinctrl_node; + uint32_t i; + uint32_t speed = GPIO_SPEED_LOW; + uint32_t pull = GPIO_NO_PULL; + + cuint = fdt_getprop(fdt, node, "pinmux", &len); + if (cuint == NULL) { + return -FDT_ERR_NOTFOUND; + } + + pinctrl_node = fdt_parent_offset(fdt, fdt_parent_offset(fdt, node)); + if (pinctrl_node < 0) { + return -FDT_ERR_NOTFOUND; + } + + slewrate = fdt_getprop(fdt, node, "slew-rate", NULL); + if (slewrate != NULL) { + speed = fdt32_to_cpu(*slewrate); + } + + if (fdt_getprop(fdt, node, "bias-pull-up", NULL) != NULL) { + pull = GPIO_PULL_UP; + } else if (fdt_getprop(fdt, node, "bias-pull-down", NULL) != NULL) { + pull = GPIO_PULL_DOWN; + } else { + VERBOSE("No bias configured in node %d\n", node); + } + + for (i = 0U; i < ((uint32_t)len / sizeof(uint32_t)); i++) { + uint32_t pincfg; + uint32_t bank; + uint32_t pin; + uint32_t mode; + uint32_t alternate = GPIO_ALTERNATE_(0); + uint32_t type; + uint32_t od = GPIO_OD_OUTPUT_LOW; + int bank_node; + int clk; + + pincfg = fdt32_to_cpu(*cuint); + cuint++; + + bank = (pincfg & DT_GPIO_BANK_MASK) >> DT_GPIO_BANK_SHIFT; + + pin = (pincfg & DT_GPIO_PIN_MASK) >> DT_GPIO_PIN_SHIFT; + + mode = pincfg & DT_GPIO_MODE_MASK; + + switch (mode) { + case 0: + mode = GPIO_MODE_INPUT; + break; + case 1 ... 16: + alternate = mode - 1U; + mode = GPIO_MODE_ALTERNATE; + break; + case 17: + mode = GPIO_MODE_ANALOG; + break; + default: + mode = GPIO_MODE_OUTPUT; + break; + } + + if (fdt_getprop(fdt, node, "drive-open-drain", NULL) != NULL) { + type = GPIO_TYPE_OPEN_DRAIN; + } else { + type = GPIO_TYPE_PUSH_PULL; + } + + if (fdt_getprop(fdt, node, "output-high", NULL) != NULL) { + if (mode == GPIO_MODE_INPUT) { + mode = GPIO_MODE_OUTPUT; + od = GPIO_OD_OUTPUT_HIGH; + } + } + + if (fdt_getprop(fdt, node, "output-low", NULL) != NULL) { + if (mode == GPIO_MODE_INPUT) { + mode = GPIO_MODE_OUTPUT; + od = GPIO_OD_OUTPUT_LOW; + } + } + + bank_node = ckeck_gpio_bank(fdt, bank, pinctrl_node); + if (bank_node == 0) { + ERROR("PINCTRL inconsistent in DT\n"); + panic(); + } + + clk = fdt_get_clock_id(bank_node); + if (clk < 0) { + return -FDT_ERR_NOTFOUND; + } + + /* Platform knows the clock: assert it is okay */ + assert((unsigned long)clk == stm32_get_gpio_bank_clock(bank)); + + set_gpio(bank, pin, mode, type, speed, pull, od, alternate, status); + } + + return 0; +} + +/******************************************************************************* + * This function gets the pin settings from DT information. + * When analyze and parsing is done, set the GPIO registers. + * Returns 0 on success and a negative FDT/ERRNO error code on failure. + ******************************************************************************/ +int dt_set_pinctrl_config(int node) +{ + const fdt32_t *cuint; + int lenp; + uint32_t i; + uint8_t status; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + status = fdt_get_status(node); + if (status == DT_DISABLED) { + return -FDT_ERR_NOTFOUND; + } + + cuint = fdt_getprop(fdt, node, "pinctrl-0", &lenp); + if (cuint == NULL) { + return -FDT_ERR_NOTFOUND; + } + + for (i = 0; i < ((uint32_t)lenp / 4U); i++) { + int p_node, p_subnode; + + p_node = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint)); + if (p_node < 0) { + return -FDT_ERR_NOTFOUND; + } + + fdt_for_each_subnode(p_subnode, fdt, p_node) { + int ret = dt_set_gpio_config(fdt, p_subnode, status); + + if (ret < 0) { + return ret; + } + } + + cuint++; + } + + return 0; +} + +static void set_gpio(uint32_t bank, uint32_t pin, uint32_t mode, uint32_t type, + uint32_t speed, uint32_t pull, uint32_t od, + uint32_t alternate, uint8_t status) +{ + uintptr_t base = stm32_get_gpio_bank_base(bank); + unsigned long clock = stm32_get_gpio_bank_clock(bank); + + assert(pin <= GPIO_PIN_MAX); + + clk_enable(clock); + + mmio_clrsetbits_32(base + GPIO_MODE_OFFSET, + (uint32_t)GPIO_MODE_MASK << (pin << 1), + mode << (pin << 1)); + + mmio_clrsetbits_32(base + GPIO_TYPE_OFFSET, + (uint32_t)GPIO_TYPE_MASK << pin, + type << pin); + + mmio_clrsetbits_32(base + GPIO_SPEED_OFFSET, + (uint32_t)GPIO_SPEED_MASK << (pin << 1), + speed << (pin << 1)); + + mmio_clrsetbits_32(base + GPIO_PUPD_OFFSET, + (uint32_t)GPIO_PULL_MASK << (pin << 1), + pull << (pin << 1)); + + if (pin < GPIO_ALT_LOWER_LIMIT) { + mmio_clrsetbits_32(base + GPIO_AFRL_OFFSET, + (uint32_t)GPIO_ALTERNATE_MASK << (pin << 2), + alternate << (pin << 2)); + } else { + size_t shift = (pin - GPIO_ALT_LOWER_LIMIT) << 2; + + mmio_clrsetbits_32(base + GPIO_AFRH_OFFSET, + (uint32_t)GPIO_ALTERNATE_MASK << shift, + alternate << shift); + } + + mmio_clrsetbits_32(base + GPIO_OD_OFFSET, + (uint32_t)GPIO_OD_MASK << pin, + od << pin); + + VERBOSE("GPIO %u mode set to 0x%x\n", bank, + mmio_read_32(base + GPIO_MODE_OFFSET)); + VERBOSE("GPIO %u type set to 0x%x\n", bank, + mmio_read_32(base + GPIO_TYPE_OFFSET)); + VERBOSE("GPIO %u speed set to 0x%x\n", bank, + mmio_read_32(base + GPIO_SPEED_OFFSET)); + VERBOSE("GPIO %u mode pull to 0x%x\n", bank, + mmio_read_32(base + GPIO_PUPD_OFFSET)); + VERBOSE("GPIO %u mode alternate low to 0x%x\n", bank, + mmio_read_32(base + GPIO_AFRL_OFFSET)); + VERBOSE("GPIO %u mode alternate high to 0x%x\n", bank, + mmio_read_32(base + GPIO_AFRH_OFFSET)); + VERBOSE("GPIO %u output data set to 0x%x\n", bank, + mmio_read_32(base + GPIO_OD_OFFSET)); + + clk_disable(clock); + + if (status == DT_SECURE) { + stm32mp_register_secure_gpio(bank, pin); +#if !IMAGE_BL2 + set_gpio_secure_cfg(bank, pin, true); +#endif + + } else { + stm32mp_register_non_secure_gpio(bank, pin); +#if !IMAGE_BL2 + set_gpio_secure_cfg(bank, pin, false); +#endif + } +} + +void set_gpio_secure_cfg(uint32_t bank, uint32_t pin, bool secure) +{ + uintptr_t base = stm32_get_gpio_bank_base(bank); + unsigned long clock = stm32_get_gpio_bank_clock(bank); + + assert(pin <= GPIO_PIN_MAX); + + clk_enable(clock); + + if (secure) { + mmio_setbits_32(base + GPIO_SECR_OFFSET, BIT(pin)); + } else { + mmio_clrbits_32(base + GPIO_SECR_OFFSET, BIT(pin)); + } + + clk_disable(clock); +} + +void set_gpio_reset_cfg(uint32_t bank, uint32_t pin) +{ + set_gpio(bank, pin, GPIO_MODE_ANALOG, GPIO_TYPE_PUSH_PULL, + GPIO_SPEED_LOW, GPIO_NO_PULL, GPIO_OD_OUTPUT_LOW, + GPIO_ALTERNATE_(0), DT_DISABLED); + set_gpio_secure_cfg(bank, pin, stm32_gpio_is_secure_at_reset(bank)); +} diff --git a/drivers/st/i2c/stm32_i2c.c b/drivers/st/i2c/stm32_i2c.c new file mode 100644 index 0000000..bf6c3ee --- /dev/null +++ b/drivers/st/i2c/stm32_i2c.c @@ -0,0 +1,982 @@ +/* + * Copyright (c) 2016-2021, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <errno.h> +#include <stdbool.h> +#include <stdlib.h> + +#include <libfdt.h> + +#include <platform_def.h> + +#include <common/debug.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_gpio.h> +#include <drivers/st/stm32_i2c.h> +#include <lib/mmio.h> +#include <lib/utils.h> + +/* STM32 I2C registers offsets */ +#define I2C_CR1 0x00U +#define I2C_CR2 0x04U +#define I2C_OAR1 0x08U +#define I2C_OAR2 0x0CU +#define I2C_TIMINGR 0x10U +#define I2C_TIMEOUTR 0x14U +#define I2C_ISR 0x18U +#define I2C_ICR 0x1CU +#define I2C_PECR 0x20U +#define I2C_RXDR 0x24U +#define I2C_TXDR 0x28U + +#define TIMINGR_CLEAR_MASK 0xF0FFFFFFU + +#define MAX_NBYTE_SIZE 255U + +#define I2C_NSEC_PER_SEC 1000000000L + +/* I2C Timing hard-coded value, for I2C clock source is HSI at 64MHz */ +#define I2C_TIMING 0x10D07DB5 + +static void notif_i2c_timeout(struct i2c_handle_s *hi2c) +{ + hi2c->i2c_err |= I2C_ERROR_TIMEOUT; + hi2c->i2c_mode = I2C_MODE_NONE; + hi2c->i2c_state = I2C_STATE_READY; +} + +/* + * @brief Configure I2C Analog noise filter. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C peripheral. + * @param analog_filter: New state of the Analog filter + * @retval 0 if OK, negative value else + */ +static int i2c_config_analog_filter(struct i2c_handle_s *hi2c, + uint32_t analog_filter) +{ + if ((hi2c->i2c_state != I2C_STATE_READY) || (hi2c->lock != 0U)) { + return -EBUSY; + } + + hi2c->lock = 1; + + hi2c->i2c_state = I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_PE); + + /* Reset I2Cx ANOFF bit */ + mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_ANFOFF); + + /* Set analog filter bit*/ + mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR1, analog_filter); + + /* Enable the selected I2C peripheral */ + mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_PE); + + hi2c->i2c_state = I2C_STATE_READY; + + hi2c->lock = 0; + + return 0; +} + +/* + * @brief Get I2C setup information from the device tree and set pinctrl + * configuration. + * @param fdt: Pointer to the device tree + * @param node: I2C node offset + * @param init: Ref to the initialization configuration structure + * @retval 0 if OK, negative value else + */ +int stm32_i2c_get_setup_from_fdt(void *fdt, int node, + struct stm32_i2c_init_s *init) +{ + const fdt32_t *cuint; + + cuint = fdt_getprop(fdt, node, "i2c-scl-rising-time-ns", NULL); + if (cuint == NULL) { + init->rise_time = STM32_I2C_RISE_TIME_DEFAULT; + } else { + init->rise_time = fdt32_to_cpu(*cuint); + } + + cuint = fdt_getprop(fdt, node, "i2c-scl-falling-time-ns", NULL); + if (cuint == NULL) { + init->fall_time = STM32_I2C_FALL_TIME_DEFAULT; + } else { + init->fall_time = fdt32_to_cpu(*cuint); + } + + cuint = fdt_getprop(fdt, node, "clock-frequency", NULL); + if (cuint == NULL) { + init->speed_mode = STM32_I2C_SPEED_DEFAULT; + } else { + switch (fdt32_to_cpu(*cuint)) { + case STANDARD_RATE: + init->speed_mode = I2C_SPEED_STANDARD; + break; + case FAST_RATE: + init->speed_mode = I2C_SPEED_FAST; + break; + case FAST_PLUS_RATE: + init->speed_mode = I2C_SPEED_FAST_PLUS; + break; + default: + init->speed_mode = STM32_I2C_SPEED_DEFAULT; + break; + } + } + + return dt_set_pinctrl_config(node); +} + +/* + * @brief Initialize the I2C device. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param init_data: Initialization configuration structure + * @retval 0 if OK, negative value else + */ +int stm32_i2c_init(struct i2c_handle_s *hi2c, + struct stm32_i2c_init_s *init_data) +{ + int rc = 0; + uint32_t timing = I2C_TIMING; + + if (hi2c == NULL) { + return -ENOENT; + } + + if (hi2c->i2c_state == I2C_STATE_RESET) { + hi2c->lock = 0; + } + + hi2c->i2c_state = I2C_STATE_BUSY; + + clk_enable(hi2c->clock); + + /* Disable the selected I2C peripheral */ + mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_PE); + + /* Configure I2Cx: Frequency range */ + mmio_write_32(hi2c->i2c_base_addr + I2C_TIMINGR, + timing & TIMINGR_CLEAR_MASK); + + /* Disable Own Address1 before set the Own Address1 configuration */ + mmio_clrbits_32(hi2c->i2c_base_addr + I2C_OAR1, I2C_OAR1_OA1EN); + + /* Configure I2Cx: Own Address1 and ack own address1 mode */ + if (init_data->addressing_mode == I2C_ADDRESSINGMODE_7BIT) { + mmio_write_32(hi2c->i2c_base_addr + I2C_OAR1, + I2C_OAR1_OA1EN | init_data->own_address1); + } else { /* I2C_ADDRESSINGMODE_10BIT */ + mmio_write_32(hi2c->i2c_base_addr + I2C_OAR1, + I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | + init_data->own_address1); + } + + mmio_write_32(hi2c->i2c_base_addr + I2C_CR2, 0); + + /* Configure I2Cx: Addressing Master mode */ + if (init_data->addressing_mode == I2C_ADDRESSINGMODE_10BIT) { + mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR2, I2C_CR2_ADD10); + } + + /* + * Enable the AUTOEND by default, and enable NACK + * (should be disabled only during Slave process). + */ + mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR2, + I2C_CR2_AUTOEND | I2C_CR2_NACK); + + /* Disable Own Address2 before set the Own Address2 configuration */ + mmio_clrbits_32(hi2c->i2c_base_addr + I2C_OAR2, I2C_DUALADDRESS_ENABLE); + + /* Configure I2Cx: Dual mode and Own Address2 */ + mmio_write_32(hi2c->i2c_base_addr + I2C_OAR2, + init_data->dual_address_mode | + init_data->own_address2 | + (init_data->own_address2_masks << 8)); + + /* Configure I2Cx: Generalcall and NoStretch mode */ + mmio_write_32(hi2c->i2c_base_addr + I2C_CR1, + init_data->general_call_mode | + init_data->no_stretch_mode); + + /* Enable the selected I2C peripheral */ + mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_PE); + + hi2c->i2c_err = I2C_ERROR_NONE; + hi2c->i2c_state = I2C_STATE_READY; + hi2c->i2c_mode = I2C_MODE_NONE; + + rc = i2c_config_analog_filter(hi2c, init_data->analog_filter ? + I2C_ANALOGFILTER_ENABLE : + I2C_ANALOGFILTER_DISABLE); + if (rc != 0) { + ERROR("Cannot initialize I2C analog filter (%d)\n", rc); + clk_disable(hi2c->clock); + return rc; + } + + clk_disable(hi2c->clock); + + return rc; +} + +/* + * @brief I2C Tx data register flush process. + * @param hi2c: I2C handle + * @retval None + */ +static void i2c_flush_txdr(struct i2c_handle_s *hi2c) +{ + /* + * If a pending TXIS flag is set, + * write a dummy data in TXDR to clear it. + */ + if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & I2C_FLAG_TXIS) != + 0U) { + mmio_write_32(hi2c->i2c_base_addr + I2C_TXDR, 0); + } + + /* Flush TX register if not empty */ + if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & I2C_FLAG_TXE) == + 0U) { + mmio_setbits_32(hi2c->i2c_base_addr + I2C_ISR, + I2C_FLAG_TXE); + } +} + +/* + * @brief This function handles I2C Communication timeout. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param flag: Specifies the I2C flag to check + * @param awaited_value: The awaited bit value for the flag (0 or 1) + * @param timeout_ref: Reference to target timeout + * @retval 0 if OK, negative value else + */ +static int i2c_wait_flag(struct i2c_handle_s *hi2c, uint32_t flag, + uint8_t awaited_value, uint64_t timeout_ref) +{ + for ( ; ; ) { + uint32_t isr = mmio_read_32(hi2c->i2c_base_addr + I2C_ISR); + + if (!!(isr & flag) != !!awaited_value) { + return 0; + } + + if (timeout_elapsed(timeout_ref)) { + notif_i2c_timeout(hi2c); + hi2c->lock = 0; + + return -EIO; + } + } +} + +/* + * @brief This function handles Acknowledge failed detection during + * an I2C Communication. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param timeout_ref: Reference to target timeout + * @retval 0 if OK, negative value else + */ +static int i2c_ack_failed(struct i2c_handle_s *hi2c, uint64_t timeout_ref) +{ + if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & I2C_FLAG_AF) == 0U) { + return 0; + } + + /* + * Wait until STOP Flag is reset. + * AutoEnd should be initiate after AF. + */ + while ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & + I2C_FLAG_STOPF) == 0U) { + if (timeout_elapsed(timeout_ref)) { + notif_i2c_timeout(hi2c); + hi2c->lock = 0; + + return -EIO; + } + } + + mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_AF); + + mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_STOPF); + + i2c_flush_txdr(hi2c); + + mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR2, I2C_RESET_CR2); + + hi2c->i2c_err |= I2C_ERROR_AF; + hi2c->i2c_state = I2C_STATE_READY; + hi2c->i2c_mode = I2C_MODE_NONE; + + hi2c->lock = 0; + + return -EIO; +} + +/* + * @brief This function handles I2C Communication timeout for specific usage + * of TXIS flag. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param timeout_ref: Reference to target timeout + * @retval 0 if OK, negative value else + */ +static int i2c_wait_txis(struct i2c_handle_s *hi2c, uint64_t timeout_ref) +{ + while ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & + I2C_FLAG_TXIS) == 0U) { + if (i2c_ack_failed(hi2c, timeout_ref) != 0) { + return -EIO; + } + + if (timeout_elapsed(timeout_ref)) { + notif_i2c_timeout(hi2c); + hi2c->lock = 0; + + return -EIO; + } + } + + return 0; +} + +/* + * @brief This function handles I2C Communication timeout for specific + * usage of STOP flag. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param timeout_ref: Reference to target timeout + * @retval 0 if OK, negative value else + */ +static int i2c_wait_stop(struct i2c_handle_s *hi2c, uint64_t timeout_ref) +{ + while ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & + I2C_FLAG_STOPF) == 0U) { + if (i2c_ack_failed(hi2c, timeout_ref) != 0) { + return -EIO; + } + + if (timeout_elapsed(timeout_ref)) { + notif_i2c_timeout(hi2c); + hi2c->lock = 0; + + return -EIO; + } + } + + return 0; +} + +/* + * @brief Handles I2Cx communication when starting transfer or during transfer + * (TC or TCR flag are set). + * @param hi2c: I2C handle + * @param dev_addr: Specifies the slave address to be programmed + * @param size: Specifies the number of bytes to be programmed. + * This parameter must be a value between 0 and 255. + * @param i2c_mode: New state of the I2C START condition generation. + * This parameter can be one of the following values: + * @arg @ref I2C_RELOAD_MODE: Enable Reload mode. + * @arg @ref I2C_AUTOEND_MODE: Enable Automatic end mode. + * @arg @ref I2C_SOFTEND_MODE: Enable Software end mode. + * @param request: New state of the I2C START condition generation. + * This parameter can be one of the following values: + * @arg @ref I2C_NO_STARTSTOP: Don't Generate stop and start condition. + * @arg @ref I2C_GENERATE_STOP: Generate stop condition + * (size should be set to 0). + * @arg @ref I2C_GENERATE_START_READ: Generate Restart for read request. + * @arg @ref I2C_GENERATE_START_WRITE: Generate Restart for write request. + * @retval None + */ +static void i2c_transfer_config(struct i2c_handle_s *hi2c, uint16_t dev_addr, + uint16_t size, uint32_t i2c_mode, + uint32_t request) +{ + uint32_t clr_value, set_value; + + clr_value = (I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | + I2C_CR2_AUTOEND | I2C_CR2_START | I2C_CR2_STOP) | + (I2C_CR2_RD_WRN & (request >> (31U - I2C_CR2_RD_WRN_OFFSET))); + + set_value = ((uint32_t)dev_addr & I2C_CR2_SADD) | + (((uint32_t)size << I2C_CR2_NBYTES_OFFSET) & I2C_CR2_NBYTES) | + i2c_mode | request; + + mmio_clrsetbits_32(hi2c->i2c_base_addr + I2C_CR2, clr_value, set_value); +} + +/* + * @brief Master sends target device address followed by internal memory + * address for write request. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param dev_addr: Target device address + * @param mem_addr: Internal memory address + * @param mem_add_size: Size of internal memory address + * @param timeout_ref: Reference to target timeout + * @retval 0 if OK, negative value else + */ +static int i2c_request_memory_write(struct i2c_handle_s *hi2c, + uint16_t dev_addr, uint16_t mem_addr, + uint16_t mem_add_size, uint64_t timeout_ref) +{ + i2c_transfer_config(hi2c, dev_addr, mem_add_size, I2C_RELOAD_MODE, + I2C_GENERATE_START_WRITE); + + if (i2c_wait_txis(hi2c, timeout_ref) != 0) { + return -EIO; + } + + if (mem_add_size == I2C_MEMADD_SIZE_8BIT) { + /* Send Memory Address */ + mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR, + (uint8_t)(mem_addr & 0x00FFU)); + } else { + /* Send MSB of Memory Address */ + mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR, + (uint8_t)((mem_addr & 0xFF00U) >> 8)); + + if (i2c_wait_txis(hi2c, timeout_ref) != 0) { + return -EIO; + } + + /* Send LSB of Memory Address */ + mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR, + (uint8_t)(mem_addr & 0x00FFU)); + } + + if (i2c_wait_flag(hi2c, I2C_FLAG_TCR, 0, timeout_ref) != 0) { + return -EIO; + } + + return 0; +} + +/* + * @brief Master sends target device address followed by internal memory + * address for read request. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param dev_addr: Target device address + * @param mem_addr: Internal memory address + * @param mem_add_size: Size of internal memory address + * @param timeout_ref: Reference to target timeout + * @retval 0 if OK, negative value else + */ +static int i2c_request_memory_read(struct i2c_handle_s *hi2c, uint16_t dev_addr, + uint16_t mem_addr, uint16_t mem_add_size, + uint64_t timeout_ref) +{ + i2c_transfer_config(hi2c, dev_addr, mem_add_size, I2C_SOFTEND_MODE, + I2C_GENERATE_START_WRITE); + + if (i2c_wait_txis(hi2c, timeout_ref) != 0) { + return -EIO; + } + + if (mem_add_size == I2C_MEMADD_SIZE_8BIT) { + /* Send Memory Address */ + mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR, + (uint8_t)(mem_addr & 0x00FFU)); + } else { + /* Send MSB of Memory Address */ + mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR, + (uint8_t)((mem_addr & 0xFF00U) >> 8)); + + if (i2c_wait_txis(hi2c, timeout_ref) != 0) { + return -EIO; + } + + /* Send LSB of Memory Address */ + mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR, + (uint8_t)(mem_addr & 0x00FFU)); + } + + if (i2c_wait_flag(hi2c, I2C_FLAG_TC, 0, timeout_ref) != 0) { + return -EIO; + } + + return 0; +} +/* + * @brief Generic function to write an amount of data in blocking mode + * (for Memory Mode and Master Mode) + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param dev_addr: Target device address + * @param mem_addr: Internal memory address (if Memory Mode) + * @param mem_add_size: Size of internal memory address (if Memory Mode) + * @param p_data: Pointer to data buffer + * @param size: Amount of data to be sent + * @param timeout_ms: Timeout duration in milliseconds + * @param mode: Communication mode + * @retval 0 if OK, negative value else + */ +static int i2c_write(struct i2c_handle_s *hi2c, uint16_t dev_addr, + uint16_t mem_addr, uint16_t mem_add_size, + uint8_t *p_data, uint16_t size, uint32_t timeout_ms, + enum i2c_mode_e mode) +{ + uint64_t timeout_ref; + int rc = -EIO; + uint8_t *p_buff = p_data; + uint32_t xfer_size; + uint32_t xfer_count = size; + + if ((mode != I2C_MODE_MASTER) && (mode != I2C_MODE_MEM)) { + return -1; + } + + if ((hi2c->i2c_state != I2C_STATE_READY) || (hi2c->lock != 0U)) { + return -EBUSY; + } + + if ((p_data == NULL) || (size == 0U)) { + return -EINVAL; + } + + clk_enable(hi2c->clock); + + hi2c->lock = 1; + + timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000); + if (i2c_wait_flag(hi2c, I2C_FLAG_BUSY, 1, timeout_ref) != 0) { + goto bail; + } + + hi2c->i2c_state = I2C_STATE_BUSY_TX; + hi2c->i2c_mode = mode; + hi2c->i2c_err = I2C_ERROR_NONE; + + timeout_ref = timeout_init_us(timeout_ms * 1000); + + if (mode == I2C_MODE_MEM) { + /* In Memory Mode, Send Slave Address and Memory Address */ + if (i2c_request_memory_write(hi2c, dev_addr, mem_addr, + mem_add_size, timeout_ref) != 0) { + goto bail; + } + + if (xfer_count > MAX_NBYTE_SIZE) { + xfer_size = MAX_NBYTE_SIZE; + i2c_transfer_config(hi2c, dev_addr, xfer_size, + I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } else { + xfer_size = xfer_count; + i2c_transfer_config(hi2c, dev_addr, xfer_size, + I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } else { + /* In Master Mode, Send Slave Address */ + if (xfer_count > MAX_NBYTE_SIZE) { + xfer_size = MAX_NBYTE_SIZE; + i2c_transfer_config(hi2c, dev_addr, xfer_size, + I2C_RELOAD_MODE, + I2C_GENERATE_START_WRITE); + } else { + xfer_size = xfer_count; + i2c_transfer_config(hi2c, dev_addr, xfer_size, + I2C_AUTOEND_MODE, + I2C_GENERATE_START_WRITE); + } + } + + do { + if (i2c_wait_txis(hi2c, timeout_ref) != 0) { + goto bail; + } + + mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR, *p_buff); + p_buff++; + xfer_count--; + xfer_size--; + + if ((xfer_count != 0U) && (xfer_size == 0U)) { + /* Wait until TCR flag is set */ + if (i2c_wait_flag(hi2c, I2C_FLAG_TCR, 0, + timeout_ref) != 0) { + goto bail; + } + + if (xfer_count > MAX_NBYTE_SIZE) { + xfer_size = MAX_NBYTE_SIZE; + i2c_transfer_config(hi2c, dev_addr, + xfer_size, + I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } else { + xfer_size = xfer_count; + i2c_transfer_config(hi2c, dev_addr, + xfer_size, + I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + + } while (xfer_count > 0U); + + /* + * No need to Check TC flag, with AUTOEND mode the stop + * is automatically generated. + * Wait until STOPF flag is reset. + */ + if (i2c_wait_stop(hi2c, timeout_ref) != 0) { + goto bail; + } + + mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_STOPF); + + mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR2, I2C_RESET_CR2); + + hi2c->i2c_state = I2C_STATE_READY; + hi2c->i2c_mode = I2C_MODE_NONE; + + rc = 0; + +bail: + hi2c->lock = 0; + clk_disable(hi2c->clock); + + return rc; +} + +/* + * @brief Write an amount of data in blocking mode to a specific memory + * address. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param dev_addr: Target device address + * @param mem_addr: Internal memory address + * @param mem_add_size: Size of internal memory address + * @param p_data: Pointer to data buffer + * @param size: Amount of data to be sent + * @param timeout_ms: Timeout duration in milliseconds + * @retval 0 if OK, negative value else + */ +int stm32_i2c_mem_write(struct i2c_handle_s *hi2c, uint16_t dev_addr, + uint16_t mem_addr, uint16_t mem_add_size, + uint8_t *p_data, uint16_t size, uint32_t timeout_ms) +{ + return i2c_write(hi2c, dev_addr, mem_addr, mem_add_size, + p_data, size, timeout_ms, I2C_MODE_MEM); +} + +/* + * @brief Transmits in master mode an amount of data in blocking mode. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param dev_addr: Target device address + * @param p_data: Pointer to data buffer + * @param size: Amount of data to be sent + * @param timeout_ms: Timeout duration in milliseconds + * @retval 0 if OK, negative value else + */ +int stm32_i2c_master_transmit(struct i2c_handle_s *hi2c, uint16_t dev_addr, + uint8_t *p_data, uint16_t size, + uint32_t timeout_ms) +{ + return i2c_write(hi2c, dev_addr, 0, 0, + p_data, size, timeout_ms, I2C_MODE_MASTER); +} + +/* + * @brief Generic function to read an amount of data in blocking mode + * (for Memory Mode and Master Mode) + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param dev_addr: Target device address + * @param mem_addr: Internal memory address (if Memory Mode) + * @param mem_add_size: Size of internal memory address (if Memory Mode) + * @param p_data: Pointer to data buffer + * @param size: Amount of data to be sent + * @param timeout_ms: Timeout duration in milliseconds + * @param mode: Communication mode + * @retval 0 if OK, negative value else + */ +static int i2c_read(struct i2c_handle_s *hi2c, uint16_t dev_addr, + uint16_t mem_addr, uint16_t mem_add_size, + uint8_t *p_data, uint16_t size, uint32_t timeout_ms, + enum i2c_mode_e mode) +{ + uint64_t timeout_ref; + int rc = -EIO; + uint8_t *p_buff = p_data; + uint32_t xfer_count = size; + uint32_t xfer_size; + + if ((mode != I2C_MODE_MASTER) && (mode != I2C_MODE_MEM)) { + return -1; + } + + if ((hi2c->i2c_state != I2C_STATE_READY) || (hi2c->lock != 0U)) { + return -EBUSY; + } + + if ((p_data == NULL) || (size == 0U)) { + return -EINVAL; + } + + clk_enable(hi2c->clock); + + hi2c->lock = 1; + + timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000); + if (i2c_wait_flag(hi2c, I2C_FLAG_BUSY, 1, timeout_ref) != 0) { + goto bail; + } + + hi2c->i2c_state = I2C_STATE_BUSY_RX; + hi2c->i2c_mode = mode; + hi2c->i2c_err = I2C_ERROR_NONE; + + if (mode == I2C_MODE_MEM) { + /* Send Memory Address */ + if (i2c_request_memory_read(hi2c, dev_addr, mem_addr, + mem_add_size, timeout_ref) != 0) { + goto bail; + } + } + + /* + * Send Slave Address. + * Set NBYTES to write and reload if xfer_count > MAX_NBYTE_SIZE + * and generate RESTART. + */ + if (xfer_count > MAX_NBYTE_SIZE) { + xfer_size = MAX_NBYTE_SIZE; + i2c_transfer_config(hi2c, dev_addr, xfer_size, + I2C_RELOAD_MODE, I2C_GENERATE_START_READ); + } else { + xfer_size = xfer_count; + i2c_transfer_config(hi2c, dev_addr, xfer_size, + I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); + } + + do { + if (i2c_wait_flag(hi2c, I2C_FLAG_RXNE, 0, timeout_ref) != 0) { + goto bail; + } + + *p_buff = mmio_read_8(hi2c->i2c_base_addr + I2C_RXDR); + p_buff++; + xfer_size--; + xfer_count--; + + if ((xfer_count != 0U) && (xfer_size == 0U)) { + if (i2c_wait_flag(hi2c, I2C_FLAG_TCR, 0, + timeout_ref) != 0) { + goto bail; + } + + if (xfer_count > MAX_NBYTE_SIZE) { + xfer_size = MAX_NBYTE_SIZE; + i2c_transfer_config(hi2c, dev_addr, + xfer_size, + I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } else { + xfer_size = xfer_count; + i2c_transfer_config(hi2c, dev_addr, + xfer_size, + I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + } while (xfer_count > 0U); + + /* + * No need to Check TC flag, with AUTOEND mode the stop + * is automatically generated. + * Wait until STOPF flag is reset. + */ + if (i2c_wait_stop(hi2c, timeout_ref) != 0) { + goto bail; + } + + mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_STOPF); + + mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR2, I2C_RESET_CR2); + + hi2c->i2c_state = I2C_STATE_READY; + hi2c->i2c_mode = I2C_MODE_NONE; + + rc = 0; + +bail: + hi2c->lock = 0; + clk_disable(hi2c->clock); + + return rc; +} + +/* + * @brief Read an amount of data in blocking mode from a specific memory + * address. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param dev_addr: Target device address + * @param mem_addr: Internal memory address + * @param mem_add_size: Size of internal memory address + * @param p_data: Pointer to data buffer + * @param size: Amount of data to be sent + * @param timeout_ms: Timeout duration in milliseconds + * @retval 0 if OK, negative value else + */ +int stm32_i2c_mem_read(struct i2c_handle_s *hi2c, uint16_t dev_addr, + uint16_t mem_addr, uint16_t mem_add_size, + uint8_t *p_data, uint16_t size, uint32_t timeout_ms) +{ + return i2c_read(hi2c, dev_addr, mem_addr, mem_add_size, + p_data, size, timeout_ms, I2C_MODE_MEM); +} + +/* + * @brief Receives in master mode an amount of data in blocking mode. + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param dev_addr: Target device address + * @param p_data: Pointer to data buffer + * @param size: Amount of data to be sent + * @param timeout_ms: Timeout duration in milliseconds + * @retval 0 if OK, negative value else + */ +int stm32_i2c_master_receive(struct i2c_handle_s *hi2c, uint16_t dev_addr, + uint8_t *p_data, uint16_t size, + uint32_t timeout_ms) +{ + return i2c_read(hi2c, dev_addr, 0, 0, + p_data, size, timeout_ms, I2C_MODE_MASTER); +} + +/* + * @brief Checks if target device is ready for communication. + * @note This function is used with Memory devices + * @param hi2c: Pointer to a struct i2c_handle_s structure that contains + * the configuration information for the specified I2C. + * @param dev_addr: Target device address + * @param trials: Number of trials + * @param timeout_ms: Timeout duration in milliseconds + * @retval True if device is ready, false else + */ +bool stm32_i2c_is_device_ready(struct i2c_handle_s *hi2c, + uint16_t dev_addr, uint32_t trials, + uint32_t timeout_ms) +{ + uint32_t i2c_trials = 0U; + bool rc = false; + + if ((hi2c->i2c_state != I2C_STATE_READY) || (hi2c->lock != 0U)) { + return rc; + } + + clk_enable(hi2c->clock); + + hi2c->lock = 1; + hi2c->i2c_mode = I2C_MODE_NONE; + + if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & I2C_FLAG_BUSY) != + 0U) { + goto bail; + } + + hi2c->i2c_state = I2C_STATE_BUSY; + hi2c->i2c_err = I2C_ERROR_NONE; + + do { + uint64_t timeout_ref; + + /* Generate Start */ + if ((mmio_read_32(hi2c->i2c_base_addr + I2C_OAR1) & + I2C_OAR1_OA1MODE) == 0) { + mmio_write_32(hi2c->i2c_base_addr + I2C_CR2, + (((uint32_t)dev_addr & I2C_CR2_SADD) | + I2C_CR2_START | I2C_CR2_AUTOEND) & + ~I2C_CR2_RD_WRN); + } else { + mmio_write_32(hi2c->i2c_base_addr + I2C_CR2, + (((uint32_t)dev_addr & I2C_CR2_SADD) | + I2C_CR2_START | I2C_CR2_ADD10) & + ~I2C_CR2_RD_WRN); + } + + /* + * No need to Check TC flag, with AUTOEND mode the stop + * is automatically generated. + * Wait until STOPF flag is set or a NACK flag is set. + */ + timeout_ref = timeout_init_us(timeout_ms * 1000); + do { + if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & + (I2C_FLAG_STOPF | I2C_FLAG_AF)) != 0U) { + break; + } + + if (timeout_elapsed(timeout_ref)) { + notif_i2c_timeout(hi2c); + goto bail; + } + } while (true); + + if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & + I2C_FLAG_AF) == 0U) { + if (i2c_wait_flag(hi2c, I2C_FLAG_STOPF, 0, + timeout_ref) != 0) { + goto bail; + } + + mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, + I2C_FLAG_STOPF); + + hi2c->i2c_state = I2C_STATE_READY; + + rc = true; + goto bail; + } + + if (i2c_wait_flag(hi2c, I2C_FLAG_STOPF, 0, timeout_ref) != 0) { + goto bail; + } + + mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_AF); + + mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_STOPF); + + if (i2c_trials == trials) { + mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR2, + I2C_CR2_STOP); + + if (i2c_wait_flag(hi2c, I2C_FLAG_STOPF, 0, + timeout_ref) != 0) { + goto bail; + } + + mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, + I2C_FLAG_STOPF); + } + + i2c_trials++; + } while (i2c_trials < trials); + + notif_i2c_timeout(hi2c); + +bail: + hi2c->lock = 0; + clk_disable(hi2c->clock); + + return rc; +} + diff --git a/drivers/st/io/io_mmc.c b/drivers/st/io/io_mmc.c new file mode 100644 index 0000000..2bf88e6 --- /dev/null +++ b/drivers/st/io/io_mmc.c @@ -0,0 +1,143 @@ +/* + * Copyright (c) 2018-2021, ARM Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <string.h> + +#include <common/debug.h> +#include <drivers/io/io_driver.h> +#include <drivers/io/io_storage.h> +#include <drivers/mmc.h> +#include <drivers/st/io_mmc.h> +#include <drivers/st/stm32_sdmmc2.h> + +/* SDMMC device functions */ +static int mmc_dev_open(const uintptr_t init_params, io_dev_info_t **dev_info); +static int mmc_block_open(io_dev_info_t *dev_info, const uintptr_t spec, + io_entity_t *entity); +static int mmc_dev_init(io_dev_info_t *dev_info, const uintptr_t init_params); +static int mmc_block_seek(io_entity_t *entity, int mode, + signed long long offset); +static int mmc_block_read(io_entity_t *entity, uintptr_t buffer, size_t length, + size_t *length_read); +static int mmc_block_close(io_entity_t *entity); +static int mmc_dev_close(io_dev_info_t *dev_info); +static io_type_t device_type_mmc(void); + +static signed long long seek_offset; +static size_t (*_read_blocks)(int lba, uintptr_t buf, size_t size); + +static const io_dev_connector_t mmc_dev_connector = { + .dev_open = mmc_dev_open +}; + +static const io_dev_funcs_t mmc_dev_funcs = { + .type = device_type_mmc, + .open = mmc_block_open, + .seek = mmc_block_seek, + .size = NULL, + .read = mmc_block_read, + .write = NULL, + .close = mmc_block_close, + .dev_init = mmc_dev_init, + .dev_close = mmc_dev_close, +}; + +static const io_dev_info_t mmc_dev_info = { + .funcs = &mmc_dev_funcs, + .info = 0, +}; + +/* Identify the device type as mmc device */ +static io_type_t device_type_mmc(void) +{ + return IO_TYPE_MMC; +} + +/* Open a connection to the mmc device */ +static int mmc_dev_open(const uintptr_t init_params, io_dev_info_t **dev_info) +{ + struct io_mmc_dev_spec *device_spec = + (struct io_mmc_dev_spec *)init_params; + + assert(dev_info != NULL); + *dev_info = (io_dev_info_t *)&mmc_dev_info; + + _read_blocks = !device_spec->use_boot_part ? + mmc_read_blocks : mmc_boot_part_read_blocks; + + return 0; +} + +static int mmc_dev_init(io_dev_info_t *dev_info, const uintptr_t init_params) +{ + return 0; +} + +/* Close a connection to the mmc device */ +static int mmc_dev_close(io_dev_info_t *dev_info) +{ + return 0; +} + +/* Open a file on the mmc device */ +static int mmc_block_open(io_dev_info_t *dev_info, const uintptr_t spec, + io_entity_t *entity) +{ + seek_offset = 0; + return 0; +} + +/* Seek to a particular file offset on the mmc device */ +static int mmc_block_seek(io_entity_t *entity, int mode, + signed long long offset) +{ + seek_offset = offset; + return 0; +} + +/* Read data from a file on the mmc device */ +static int mmc_block_read(io_entity_t *entity, uintptr_t buffer, + size_t length, size_t *length_read) +{ + uint8_t retries; + + for (retries = 0U; retries < 3U; retries++) { + *length_read = _read_blocks(seek_offset / MMC_BLOCK_SIZE, + buffer, length); + + if (*length_read == length) { + return 0; + } + WARN("%s: length_read = %lu (!= %lu), retry %u\n", __func__, + (unsigned long)*length_read, (unsigned long)length, + retries + 1U); + } + + return -EIO; +} + +/* Close a file on the mmc device */ +static int mmc_block_close(io_entity_t *entity) +{ + return 0; +} + +/* Register the mmc driver with the IO abstraction */ +int register_io_dev_mmc(const io_dev_connector_t **dev_con) +{ + int result; + + assert(dev_con != NULL); + + result = io_register_device(&mmc_dev_info); + if (result == 0) { + *dev_con = &mmc_dev_connector; + } + + return result; +} diff --git a/drivers/st/iwdg/stm32_iwdg.c b/drivers/st/iwdg/stm32_iwdg.c new file mode 100644 index 0000000..74451d7 --- /dev/null +++ b/drivers/st/iwdg/stm32_iwdg.c @@ -0,0 +1,157 @@ +/* + * Copyright (c) 2017-2021, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <string.h> + +#include <libfdt.h> + +#include <platform_def.h> + +#include <arch_helpers.h> +#include <common/debug.h> +#include <drivers/arm/gicv2.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_iwdg.h> +#include <drivers/st/stm32mp_clkfunc.h> +#include <lib/mmio.h> +#include <lib/utils.h> +#include <plat/common/platform.h> + +/* IWDG registers offsets */ +#define IWDG_KR_OFFSET 0x00U + +/* Registers values */ +#define IWDG_KR_RELOAD_KEY 0xAAAA + +struct stm32_iwdg_instance { + uintptr_t base; + unsigned long clock; + uint8_t flags; + int num_irq; +}; + +static struct stm32_iwdg_instance stm32_iwdg[IWDG_MAX_INSTANCE]; + +static int stm32_iwdg_get_dt_node(struct dt_node_info *info, int offset) +{ + int node; + + node = dt_get_node(info, offset, DT_IWDG_COMPAT); + if (node < 0) { + if (offset == -1) { + VERBOSE("%s: No IDWG found\n", __func__); + } + return -FDT_ERR_NOTFOUND; + } + + return node; +} + +void stm32_iwdg_refresh(void) +{ + uint8_t i; + + for (i = 0U; i < IWDG_MAX_INSTANCE; i++) { + struct stm32_iwdg_instance *iwdg = &stm32_iwdg[i]; + + /* 0x00000000 is not a valid address for IWDG peripherals */ + if (iwdg->base != 0U) { + clk_enable(iwdg->clock); + + mmio_write_32(iwdg->base + IWDG_KR_OFFSET, + IWDG_KR_RELOAD_KEY); + + clk_disable(iwdg->clock); + } + } +} + +int stm32_iwdg_init(void) +{ + int node = -1; + struct dt_node_info dt_info; + void *fdt; + uint32_t __unused count = 0; + + if (fdt_get_address(&fdt) == 0) { + panic(); + } + + for (node = stm32_iwdg_get_dt_node(&dt_info, node); + node != -FDT_ERR_NOTFOUND; + node = stm32_iwdg_get_dt_node(&dt_info, node)) { + struct stm32_iwdg_instance *iwdg; + uint32_t hw_init; + uint32_t idx; + + count++; + + idx = stm32_iwdg_get_instance(dt_info.base); + iwdg = &stm32_iwdg[idx]; + iwdg->base = dt_info.base; + iwdg->clock = (unsigned long)dt_info.clock; + + /* DT can specify low power cases */ + if (fdt_getprop(fdt, node, "stm32,enable-on-stop", NULL) == + NULL) { + iwdg->flags |= IWDG_DISABLE_ON_STOP; + } + + if (fdt_getprop(fdt, node, "stm32,enable-on-standby", NULL) == + NULL) { + iwdg->flags |= IWDG_DISABLE_ON_STANDBY; + } + + /* Explicit list of supported bit flags */ + hw_init = stm32_iwdg_get_otp_config(idx); + + if ((hw_init & IWDG_HW_ENABLED) != 0) { + if (dt_info.status == DT_DISABLED) { + ERROR("OTP enabled but iwdg%u DT-disabled\n", + idx + 1U); + panic(); + } + iwdg->flags |= IWDG_HW_ENABLED; + } + + if (dt_info.status == DT_DISABLED) { + zeromem((void *)iwdg, + sizeof(struct stm32_iwdg_instance)); + continue; + } + + if ((hw_init & IWDG_DISABLE_ON_STOP) != 0) { + iwdg->flags |= IWDG_DISABLE_ON_STOP; + } + + if ((hw_init & IWDG_DISABLE_ON_STANDBY) != 0) { + iwdg->flags |= IWDG_DISABLE_ON_STANDBY; + } + + VERBOSE("IWDG%u found, %ssecure\n", idx + 1U, + ((dt_info.status & DT_NON_SECURE) != 0) ? + "non-" : ""); + + if ((dt_info.status & DT_NON_SECURE) != 0) { + stm32mp_register_non_secure_periph_iomem(iwdg->base); + } else { + stm32mp_register_secure_periph_iomem(iwdg->base); + } + +#if defined(IMAGE_BL2) + if (stm32_iwdg_shadow_update(idx, iwdg->flags) != BSEC_OK) { + return -1; + } +#endif + } + + VERBOSE("%u IWDG instance%s found\n", count, (count > 1U) ? "s" : ""); + + return 0; +} diff --git a/drivers/st/mmc/stm32_sdmmc2.c b/drivers/st/mmc/stm32_sdmmc2.c new file mode 100644 index 0000000..6bdd782 --- /dev/null +++ b/drivers/st/mmc/stm32_sdmmc2.c @@ -0,0 +1,798 @@ +/* + * Copyright (c) 2018-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <string.h> + +#include <arch.h> +#include <arch_helpers.h> +#include <common/debug.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/mmc.h> +#include <drivers/st/stm32_gpio.h> +#include <drivers/st/stm32_sdmmc2.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils.h> +#include <libfdt.h> +#include <plat/common/platform.h> + +#include <platform_def.h> + +/* Registers offsets */ +#define SDMMC_POWER 0x00U +#define SDMMC_CLKCR 0x04U +#define SDMMC_ARGR 0x08U +#define SDMMC_CMDR 0x0CU +#define SDMMC_RESPCMDR 0x10U +#define SDMMC_RESP1R 0x14U +#define SDMMC_RESP2R 0x18U +#define SDMMC_RESP3R 0x1CU +#define SDMMC_RESP4R 0x20U +#define SDMMC_DTIMER 0x24U +#define SDMMC_DLENR 0x28U +#define SDMMC_DCTRLR 0x2CU +#define SDMMC_DCNTR 0x30U +#define SDMMC_STAR 0x34U +#define SDMMC_ICR 0x38U +#define SDMMC_MASKR 0x3CU +#define SDMMC_ACKTIMER 0x40U +#define SDMMC_IDMACTRLR 0x50U +#define SDMMC_IDMABSIZER 0x54U +#define SDMMC_IDMABASE0R 0x58U +#define SDMMC_IDMABASE1R 0x5CU +#define SDMMC_FIFOR 0x80U + +/* SDMMC power control register */ +#define SDMMC_POWER_PWRCTRL GENMASK(1, 0) +#define SDMMC_POWER_PWRCTRL_PWR_CYCLE BIT(1) +#define SDMMC_POWER_DIRPOL BIT(4) + +/* SDMMC clock control register */ +#define SDMMC_CLKCR_WIDBUS_4 BIT(14) +#define SDMMC_CLKCR_WIDBUS_8 BIT(15) +#define SDMMC_CLKCR_NEGEDGE BIT(16) +#define SDMMC_CLKCR_HWFC_EN BIT(17) +#define SDMMC_CLKCR_SELCLKRX_0 BIT(20) + +/* SDMMC command register */ +#define SDMMC_CMDR_CMDTRANS BIT(6) +#define SDMMC_CMDR_CMDSTOP BIT(7) +#define SDMMC_CMDR_WAITRESP GENMASK(9, 8) +#define SDMMC_CMDR_WAITRESP_SHORT BIT(8) +#define SDMMC_CMDR_WAITRESP_SHORT_NOCRC BIT(9) +#define SDMMC_CMDR_CPSMEN BIT(12) + +/* SDMMC data control register */ +#define SDMMC_DCTRLR_DTEN BIT(0) +#define SDMMC_DCTRLR_DTDIR BIT(1) +#define SDMMC_DCTRLR_DTMODE GENMASK(3, 2) +#define SDMMC_DCTRLR_DBLOCKSIZE GENMASK(7, 4) +#define SDMMC_DCTRLR_DBLOCKSIZE_SHIFT 4 +#define SDMMC_DCTRLR_FIFORST BIT(13) + +#define SDMMC_DCTRLR_CLEAR_MASK (SDMMC_DCTRLR_DTEN | \ + SDMMC_DCTRLR_DTDIR | \ + SDMMC_DCTRLR_DTMODE | \ + SDMMC_DCTRLR_DBLOCKSIZE) + +/* SDMMC status register */ +#define SDMMC_STAR_CCRCFAIL BIT(0) +#define SDMMC_STAR_DCRCFAIL BIT(1) +#define SDMMC_STAR_CTIMEOUT BIT(2) +#define SDMMC_STAR_DTIMEOUT BIT(3) +#define SDMMC_STAR_TXUNDERR BIT(4) +#define SDMMC_STAR_RXOVERR BIT(5) +#define SDMMC_STAR_CMDREND BIT(6) +#define SDMMC_STAR_CMDSENT BIT(7) +#define SDMMC_STAR_DATAEND BIT(8) +#define SDMMC_STAR_DBCKEND BIT(10) +#define SDMMC_STAR_DPSMACT BIT(12) +#define SDMMC_STAR_RXFIFOHF BIT(15) +#define SDMMC_STAR_RXFIFOE BIT(19) +#define SDMMC_STAR_IDMATE BIT(27) +#define SDMMC_STAR_IDMABTC BIT(28) + +/* SDMMC DMA control register */ +#define SDMMC_IDMACTRLR_IDMAEN BIT(0) + +#define SDMMC_STATIC_FLAGS (SDMMC_STAR_CCRCFAIL | \ + SDMMC_STAR_DCRCFAIL | \ + SDMMC_STAR_CTIMEOUT | \ + SDMMC_STAR_DTIMEOUT | \ + SDMMC_STAR_TXUNDERR | \ + SDMMC_STAR_RXOVERR | \ + SDMMC_STAR_CMDREND | \ + SDMMC_STAR_CMDSENT | \ + SDMMC_STAR_DATAEND | \ + SDMMC_STAR_DBCKEND | \ + SDMMC_STAR_IDMATE | \ + SDMMC_STAR_IDMABTC) + +#define TIMEOUT_US_1_MS 1000U +#define TIMEOUT_US_10_MS 10000U +#define TIMEOUT_US_1_S 1000000U + +/* Power cycle delays in ms */ +#define VCC_POWER_OFF_DELAY 2 +#define VCC_POWER_ON_DELAY 2 +#define POWER_CYCLE_DELAY 2 +#define POWER_OFF_DELAY 2 +#define POWER_ON_DELAY 1 + +#ifndef DT_SDMMC2_COMPAT +#define DT_SDMMC2_COMPAT "st,stm32-sdmmc2" +#endif + +#define SDMMC_FIFO_SIZE 64U + +static void stm32_sdmmc2_init(void); +static int stm32_sdmmc2_send_cmd_req(struct mmc_cmd *cmd); +static int stm32_sdmmc2_send_cmd(struct mmc_cmd *cmd); +static int stm32_sdmmc2_set_ios(unsigned int clk, unsigned int width); +static int stm32_sdmmc2_prepare(int lba, uintptr_t buf, size_t size); +static int stm32_sdmmc2_read(int lba, uintptr_t buf, size_t size); +static int stm32_sdmmc2_write(int lba, uintptr_t buf, size_t size); + +static const struct mmc_ops stm32_sdmmc2_ops = { + .init = stm32_sdmmc2_init, + .send_cmd = stm32_sdmmc2_send_cmd, + .set_ios = stm32_sdmmc2_set_ios, + .prepare = stm32_sdmmc2_prepare, + .read = stm32_sdmmc2_read, + .write = stm32_sdmmc2_write, +}; + +static struct stm32_sdmmc2_params sdmmc2_params; + +static bool next_cmd_is_acmd; + +#pragma weak plat_sdmmc2_use_dma +bool plat_sdmmc2_use_dma(unsigned int instance, unsigned int memory) +{ + return false; +} + +static void stm32_sdmmc2_init(void) +{ + uint32_t clock_div; + uint32_t freq = STM32MP_MMC_INIT_FREQ; + uintptr_t base = sdmmc2_params.reg_base; + int ret; + + if (sdmmc2_params.max_freq != 0U) { + freq = MIN(sdmmc2_params.max_freq, freq); + } + + if (sdmmc2_params.vmmc_regu != NULL) { + ret = regulator_disable(sdmmc2_params.vmmc_regu); + if (ret < 0) { + panic(); + } + } + + mdelay(VCC_POWER_OFF_DELAY); + + mmio_write_32(base + SDMMC_POWER, + SDMMC_POWER_PWRCTRL_PWR_CYCLE | sdmmc2_params.dirpol); + mdelay(POWER_CYCLE_DELAY); + + if (sdmmc2_params.vmmc_regu != NULL) { + ret = regulator_enable(sdmmc2_params.vmmc_regu); + if (ret < 0) { + panic(); + } + } + + mdelay(VCC_POWER_ON_DELAY); + + mmio_write_32(base + SDMMC_POWER, sdmmc2_params.dirpol); + mdelay(POWER_OFF_DELAY); + + clock_div = div_round_up(sdmmc2_params.clk_rate, freq * 2U); + + mmio_write_32(base + SDMMC_CLKCR, SDMMC_CLKCR_HWFC_EN | clock_div | + sdmmc2_params.negedge | + sdmmc2_params.pin_ckin); + + mmio_write_32(base + SDMMC_POWER, + SDMMC_POWER_PWRCTRL | sdmmc2_params.dirpol); + + mdelay(POWER_ON_DELAY); +} + +static int stm32_sdmmc2_stop_transfer(void) +{ + struct mmc_cmd cmd_stop; + + zeromem(&cmd_stop, sizeof(struct mmc_cmd)); + + cmd_stop.cmd_idx = MMC_CMD(12); + cmd_stop.resp_type = MMC_RESPONSE_R1B; + + return stm32_sdmmc2_send_cmd(&cmd_stop); +} + +static int stm32_sdmmc2_send_cmd_req(struct mmc_cmd *cmd) +{ + uint64_t timeout; + uint32_t flags_cmd, status; + uint32_t flags_data = 0; + int err = 0; + uintptr_t base = sdmmc2_params.reg_base; + unsigned int cmd_reg, arg_reg; + + if (cmd == NULL) { + return -EINVAL; + } + + flags_cmd = SDMMC_STAR_CTIMEOUT; + arg_reg = cmd->cmd_arg; + + if ((mmio_read_32(base + SDMMC_CMDR) & SDMMC_CMDR_CPSMEN) != 0U) { + mmio_write_32(base + SDMMC_CMDR, 0); + } + + cmd_reg = cmd->cmd_idx | SDMMC_CMDR_CPSMEN; + + if (cmd->resp_type == 0U) { + flags_cmd |= SDMMC_STAR_CMDSENT; + } + + if ((cmd->resp_type & MMC_RSP_48) != 0U) { + if ((cmd->resp_type & MMC_RSP_136) != 0U) { + flags_cmd |= SDMMC_STAR_CMDREND; + cmd_reg |= SDMMC_CMDR_WAITRESP; + } else if ((cmd->resp_type & MMC_RSP_CRC) != 0U) { + flags_cmd |= SDMMC_STAR_CMDREND | SDMMC_STAR_CCRCFAIL; + cmd_reg |= SDMMC_CMDR_WAITRESP_SHORT; + } else { + flags_cmd |= SDMMC_STAR_CMDREND; + cmd_reg |= SDMMC_CMDR_WAITRESP_SHORT_NOCRC; + } + } + + switch (cmd->cmd_idx) { + case MMC_CMD(1): + arg_reg |= OCR_POWERUP; + break; + case MMC_CMD(6): + if ((sdmmc2_params.device_info->mmc_dev_type == MMC_IS_SD_HC) && + (!next_cmd_is_acmd)) { + cmd_reg |= SDMMC_CMDR_CMDTRANS; + if (sdmmc2_params.use_dma) { + flags_data |= SDMMC_STAR_DCRCFAIL | + SDMMC_STAR_DTIMEOUT | + SDMMC_STAR_DATAEND | + SDMMC_STAR_RXOVERR | + SDMMC_STAR_IDMATE | + SDMMC_STAR_DBCKEND; + } + } + break; + case MMC_CMD(8): + if (sdmmc2_params.device_info->mmc_dev_type == MMC_IS_EMMC) { + cmd_reg |= SDMMC_CMDR_CMDTRANS; + } + break; + case MMC_CMD(12): + cmd_reg |= SDMMC_CMDR_CMDSTOP; + break; + case MMC_CMD(17): + case MMC_CMD(18): + cmd_reg |= SDMMC_CMDR_CMDTRANS; + if (sdmmc2_params.use_dma) { + flags_data |= SDMMC_STAR_DCRCFAIL | + SDMMC_STAR_DTIMEOUT | + SDMMC_STAR_DATAEND | + SDMMC_STAR_RXOVERR | + SDMMC_STAR_IDMATE; + } + break; + case MMC_ACMD(41): + arg_reg |= OCR_3_2_3_3 | OCR_3_3_3_4; + break; + case MMC_ACMD(51): + cmd_reg |= SDMMC_CMDR_CMDTRANS; + if (sdmmc2_params.use_dma) { + flags_data |= SDMMC_STAR_DCRCFAIL | + SDMMC_STAR_DTIMEOUT | + SDMMC_STAR_DATAEND | + SDMMC_STAR_RXOVERR | + SDMMC_STAR_IDMATE | + SDMMC_STAR_DBCKEND; + } + break; + default: + break; + } + + next_cmd_is_acmd = (cmd->cmd_idx == MMC_CMD(55)); + + mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); + + /* + * Clear the SDMMC_DCTRLR if the command does not await data. + * Skip CMD55 as the next command could be data related, and + * the register could have been set in prepare function. + */ + if (((cmd_reg & SDMMC_CMDR_CMDTRANS) == 0U) && !next_cmd_is_acmd) { + mmio_write_32(base + SDMMC_DCTRLR, 0U); + } + + if ((cmd->resp_type & MMC_RSP_BUSY) != 0U) { + mmio_write_32(base + SDMMC_DTIMER, UINT32_MAX); + } + + mmio_write_32(base + SDMMC_ARGR, arg_reg); + + mmio_write_32(base + SDMMC_CMDR, cmd_reg); + + status = mmio_read_32(base + SDMMC_STAR); + + timeout = timeout_init_us(TIMEOUT_US_10_MS); + + while ((status & flags_cmd) == 0U) { + if (timeout_elapsed(timeout)) { + err = -ETIMEDOUT; + ERROR("%s: timeout 10ms (cmd = %u,status = %x)\n", + __func__, cmd->cmd_idx, status); + goto err_exit; + } + + status = mmio_read_32(base + SDMMC_STAR); + } + + if ((status & (SDMMC_STAR_CTIMEOUT | SDMMC_STAR_CCRCFAIL)) != 0U) { + if ((status & SDMMC_STAR_CTIMEOUT) != 0U) { + err = -ETIMEDOUT; + /* + * Those timeouts can occur, and framework will handle + * the retries. CMD8 is expected to return this timeout + * for eMMC + */ + if (!((cmd->cmd_idx == MMC_CMD(1)) || + (cmd->cmd_idx == MMC_CMD(13)) || + ((cmd->cmd_idx == MMC_CMD(8)) && + (cmd->resp_type == MMC_RESPONSE_R7)))) { + ERROR("%s: CTIMEOUT (cmd = %u,status = %x)\n", + __func__, cmd->cmd_idx, status); + } + } else { + err = -EIO; + ERROR("%s: CRCFAIL (cmd = %u,status = %x)\n", + __func__, cmd->cmd_idx, status); + } + + goto err_exit; + } + + if ((cmd_reg & SDMMC_CMDR_WAITRESP) != 0U) { + if ((cmd->cmd_idx == MMC_CMD(9)) && + ((cmd_reg & SDMMC_CMDR_WAITRESP) == SDMMC_CMDR_WAITRESP)) { + /* Need to invert response to match CSD structure */ + cmd->resp_data[0] = mmio_read_32(base + SDMMC_RESP4R); + cmd->resp_data[1] = mmio_read_32(base + SDMMC_RESP3R); + cmd->resp_data[2] = mmio_read_32(base + SDMMC_RESP2R); + cmd->resp_data[3] = mmio_read_32(base + SDMMC_RESP1R); + } else { + cmd->resp_data[0] = mmio_read_32(base + SDMMC_RESP1R); + if ((cmd_reg & SDMMC_CMDR_WAITRESP) == + SDMMC_CMDR_WAITRESP) { + cmd->resp_data[1] = mmio_read_32(base + + SDMMC_RESP2R); + cmd->resp_data[2] = mmio_read_32(base + + SDMMC_RESP3R); + cmd->resp_data[3] = mmio_read_32(base + + SDMMC_RESP4R); + } + } + } + + if (flags_data == 0U) { + mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); + + return 0; + } + + status = mmio_read_32(base + SDMMC_STAR); + + timeout = timeout_init_us(TIMEOUT_US_10_MS); + + while ((status & flags_data) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("%s: timeout 10ms (cmd = %u,status = %x)\n", + __func__, cmd->cmd_idx, status); + err = -ETIMEDOUT; + goto err_exit; + } + + status = mmio_read_32(base + SDMMC_STAR); + }; + + if ((status & (SDMMC_STAR_DTIMEOUT | SDMMC_STAR_DCRCFAIL | + SDMMC_STAR_TXUNDERR | SDMMC_STAR_RXOVERR | + SDMMC_STAR_IDMATE)) != 0U) { + ERROR("%s: Error flag (cmd = %u,status = %x)\n", __func__, + cmd->cmd_idx, status); + err = -EIO; + } + +err_exit: + mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); + mmio_clrbits_32(base + SDMMC_CMDR, SDMMC_CMDR_CMDTRANS); + + if ((err != 0) && ((status & SDMMC_STAR_DPSMACT) != 0U)) { + int ret_stop = stm32_sdmmc2_stop_transfer(); + + if (ret_stop != 0) { + return ret_stop; + } + } + + return err; +} + +static int stm32_sdmmc2_send_cmd(struct mmc_cmd *cmd) +{ + uint8_t retry; + int err; + + assert(cmd != NULL); + + for (retry = 0U; retry < 3U; retry++) { + err = stm32_sdmmc2_send_cmd_req(cmd); + if (err == 0) { + return 0; + } + + if ((cmd->cmd_idx == MMC_CMD(1)) || + (cmd->cmd_idx == MMC_CMD(13))) { + return 0; /* Retry managed by framework */ + } + + /* Command 8 is expected to fail for eMMC */ + if (cmd->cmd_idx != MMC_CMD(8)) { + WARN(" CMD%u, Retry: %u, Error: %d\n", + cmd->cmd_idx, retry + 1U, err); + } + + udelay(10U); + } + + return err; +} + +static int stm32_sdmmc2_set_ios(unsigned int clk, unsigned int width) +{ + uintptr_t base = sdmmc2_params.reg_base; + uint32_t bus_cfg = 0; + uint32_t clock_div, max_freq, freq; + uint32_t clk_rate = sdmmc2_params.clk_rate; + uint32_t max_bus_freq = sdmmc2_params.device_info->max_bus_freq; + + switch (width) { + case MMC_BUS_WIDTH_1: + break; + case MMC_BUS_WIDTH_4: + bus_cfg |= SDMMC_CLKCR_WIDBUS_4; + break; + case MMC_BUS_WIDTH_8: + bus_cfg |= SDMMC_CLKCR_WIDBUS_8; + break; + default: + panic(); + break; + } + + if (sdmmc2_params.device_info->mmc_dev_type == MMC_IS_EMMC) { + if (max_bus_freq >= 52000000U) { + max_freq = STM32MP_EMMC_HIGH_SPEED_MAX_FREQ; + } else { + max_freq = STM32MP_EMMC_NORMAL_SPEED_MAX_FREQ; + } + } else { + if (max_bus_freq >= 50000000U) { + max_freq = STM32MP_SD_HIGH_SPEED_MAX_FREQ; + } else { + max_freq = STM32MP_SD_NORMAL_SPEED_MAX_FREQ; + } + } + + if (sdmmc2_params.max_freq != 0U) { + freq = MIN(sdmmc2_params.max_freq, max_freq); + } else { + freq = max_freq; + } + + clock_div = div_round_up(clk_rate, freq * 2U); + + mmio_write_32(base + SDMMC_CLKCR, + SDMMC_CLKCR_HWFC_EN | clock_div | bus_cfg | + sdmmc2_params.negedge | + sdmmc2_params.pin_ckin); + + return 0; +} + +static int stm32_sdmmc2_prepare(int lba, uintptr_t buf, size_t size) +{ + struct mmc_cmd cmd; + int ret; + uintptr_t base = sdmmc2_params.reg_base; + uint32_t data_ctrl = SDMMC_DCTRLR_DTDIR; + uint32_t arg_size; + + assert(size != 0U); + + if (size > MMC_BLOCK_SIZE) { + arg_size = MMC_BLOCK_SIZE; + } else { + arg_size = size; + } + + sdmmc2_params.use_dma = plat_sdmmc2_use_dma(base, buf); + + if (sdmmc2_params.use_dma) { + inv_dcache_range(buf, size); + } + + /* Prepare CMD 16*/ + mmio_write_32(base + SDMMC_DTIMER, 0); + + mmio_write_32(base + SDMMC_DLENR, 0); + + mmio_write_32(base + SDMMC_DCTRLR, 0); + + zeromem(&cmd, sizeof(struct mmc_cmd)); + + cmd.cmd_idx = MMC_CMD(16); + cmd.cmd_arg = arg_size; + cmd.resp_type = MMC_RESPONSE_R1; + + ret = stm32_sdmmc2_send_cmd(&cmd); + if (ret != 0) { + ERROR("CMD16 failed\n"); + return ret; + } + + /* Prepare data command */ + mmio_write_32(base + SDMMC_DTIMER, UINT32_MAX); + + mmio_write_32(base + SDMMC_DLENR, size); + + if (sdmmc2_params.use_dma) { + mmio_write_32(base + SDMMC_IDMACTRLR, + SDMMC_IDMACTRLR_IDMAEN); + mmio_write_32(base + SDMMC_IDMABASE0R, buf); + + flush_dcache_range(buf, size); + } + + data_ctrl |= __builtin_ctz(arg_size) << SDMMC_DCTRLR_DBLOCKSIZE_SHIFT; + + mmio_clrsetbits_32(base + SDMMC_DCTRLR, + SDMMC_DCTRLR_CLEAR_MASK, + data_ctrl); + + return 0; +} + +static int stm32_sdmmc2_read(int lba, uintptr_t buf, size_t size) +{ + uint32_t error_flags = SDMMC_STAR_RXOVERR | SDMMC_STAR_DCRCFAIL | + SDMMC_STAR_DTIMEOUT; + uint32_t flags = error_flags | SDMMC_STAR_DATAEND; + uint32_t status; + uint32_t *buffer; + uintptr_t base = sdmmc2_params.reg_base; + uintptr_t fifo_reg = base + SDMMC_FIFOR; + uint64_t timeout; + int ret; + + /* Assert buf is 4 bytes aligned */ + assert((buf & GENMASK(1, 0)) == 0U); + + buffer = (uint32_t *)buf; + + if (sdmmc2_params.use_dma) { + inv_dcache_range(buf, size); + + return 0; + } + + if (size <= MMC_BLOCK_SIZE) { + flags |= SDMMC_STAR_DBCKEND; + } + + timeout = timeout_init_us(TIMEOUT_US_1_S); + + do { + status = mmio_read_32(base + SDMMC_STAR); + + if ((status & error_flags) != 0U) { + ERROR("%s: Read error (status = %x)\n", __func__, + status); + mmio_write_32(base + SDMMC_DCTRLR, + SDMMC_DCTRLR_FIFORST); + + mmio_write_32(base + SDMMC_ICR, + SDMMC_STATIC_FLAGS); + + ret = stm32_sdmmc2_stop_transfer(); + if (ret != 0) { + return ret; + } + + return -EIO; + } + + if (timeout_elapsed(timeout)) { + ERROR("%s: timeout 1s (status = %x)\n", + __func__, status); + mmio_write_32(base + SDMMC_ICR, + SDMMC_STATIC_FLAGS); + + ret = stm32_sdmmc2_stop_transfer(); + if (ret != 0) { + return ret; + } + + return -ETIMEDOUT; + } + + if (size < (SDMMC_FIFO_SIZE / 2U)) { + if ((mmio_read_32(base + SDMMC_DCNTR) > 0U) && + ((status & SDMMC_STAR_RXFIFOE) == 0U)) { + *buffer = mmio_read_32(fifo_reg); + buffer++; + } + } else if ((status & SDMMC_STAR_RXFIFOHF) != 0U) { + uint32_t count; + + /* Read data from SDMMC Rx FIFO */ + for (count = 0; count < (SDMMC_FIFO_SIZE / 2U); + count += sizeof(uint32_t)) { + *buffer = mmio_read_32(fifo_reg); + buffer++; + } + } + } while ((status & flags) == 0U); + + mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); + + if ((status & SDMMC_STAR_DPSMACT) != 0U) { + WARN("%s: DPSMACT=1, send stop\n", __func__); + return stm32_sdmmc2_stop_transfer(); + } + + return 0; +} + +static int stm32_sdmmc2_write(int lba, uintptr_t buf, size_t size) +{ + return 0; +} + +static int stm32_sdmmc2_dt_get_config(void) +{ + int sdmmc_node; + void *fdt = NULL; + const fdt32_t *cuint; + struct dt_node_info dt_info; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + if (fdt == NULL) { + return -FDT_ERR_NOTFOUND; + } + + sdmmc_node = dt_match_instance_by_compatible(DT_SDMMC2_COMPAT, + sdmmc2_params.reg_base); + if (sdmmc_node == -FDT_ERR_NOTFOUND) { + return -FDT_ERR_NOTFOUND; + } + + dt_fill_device_info(&dt_info, sdmmc_node); + if (dt_info.status == DT_DISABLED) { + return -FDT_ERR_NOTFOUND; + } + + if (dt_set_pinctrl_config(sdmmc_node) != 0) { + return -FDT_ERR_BADVALUE; + } + + sdmmc2_params.clock_id = dt_info.clock; + sdmmc2_params.reset_id = dt_info.reset; + + if ((fdt_getprop(fdt, sdmmc_node, "st,use-ckin", NULL)) != NULL) { + sdmmc2_params.pin_ckin = SDMMC_CLKCR_SELCLKRX_0; + } + + if ((fdt_getprop(fdt, sdmmc_node, "st,sig-dir", NULL)) != NULL) { + sdmmc2_params.dirpol = SDMMC_POWER_DIRPOL; + } + + if ((fdt_getprop(fdt, sdmmc_node, "st,neg-edge", NULL)) != NULL) { + sdmmc2_params.negedge = SDMMC_CLKCR_NEGEDGE; + } + + cuint = fdt_getprop(fdt, sdmmc_node, "bus-width", NULL); + if (cuint != NULL) { + switch (fdt32_to_cpu(*cuint)) { + case 4: + sdmmc2_params.bus_width = MMC_BUS_WIDTH_4; + break; + + case 8: + sdmmc2_params.bus_width = MMC_BUS_WIDTH_8; + break; + + default: + break; + } + } + + cuint = fdt_getprop(fdt, sdmmc_node, "max-frequency", NULL); + if (cuint != NULL) { + sdmmc2_params.max_freq = fdt32_to_cpu(*cuint); + } + + sdmmc2_params.vmmc_regu = regulator_get_by_supply_name(fdt, sdmmc_node, "vmmc"); + + return 0; +} + +unsigned long long stm32_sdmmc2_mmc_get_device_size(void) +{ + return sdmmc2_params.device_info->device_size; +} + +int stm32_sdmmc2_mmc_init(struct stm32_sdmmc2_params *params) +{ + assert((params != NULL) && + ((params->reg_base & MMC_BLOCK_MASK) == 0U) && + ((params->bus_width == MMC_BUS_WIDTH_1) || + (params->bus_width == MMC_BUS_WIDTH_4) || + (params->bus_width == MMC_BUS_WIDTH_8))); + + memcpy(&sdmmc2_params, params, sizeof(struct stm32_sdmmc2_params)); + + sdmmc2_params.vmmc_regu = NULL; + + if (stm32_sdmmc2_dt_get_config() != 0) { + ERROR("%s: DT error\n", __func__); + return -ENOMEM; + } + + clk_enable(sdmmc2_params.clock_id); + + if ((int)sdmmc2_params.reset_id >= 0) { + int rc; + + rc = stm32mp_reset_assert(sdmmc2_params.reset_id, TIMEOUT_US_1_MS); + if (rc != 0) { + panic(); + } + udelay(2); + rc = stm32mp_reset_deassert(sdmmc2_params.reset_id, TIMEOUT_US_1_MS); + if (rc != 0) { + panic(); + } + mdelay(1); + } + + sdmmc2_params.clk_rate = clk_get_rate(sdmmc2_params.clock_id); + sdmmc2_params.device_info->ocr_voltage = OCR_3_2_3_3 | OCR_3_3_3_4; + + return mmc_init(&stm32_sdmmc2_ops, sdmmc2_params.clk_rate, + sdmmc2_params.bus_width, sdmmc2_params.flags, + sdmmc2_params.device_info); +} diff --git a/drivers/st/pmic/stm32mp_pmic.c b/drivers/st/pmic/stm32mp_pmic.c new file mode 100644 index 0000000..5b43760 --- /dev/null +++ b/drivers/st/pmic/stm32mp_pmic.c @@ -0,0 +1,526 @@ +/* + * Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> + +#include <common/debug.h> +#include <drivers/delay_timer.h> +#include <drivers/st/regulator.h> +#include <drivers/st/stm32_i2c.h> +#include <drivers/st/stm32mp_pmic.h> +#include <drivers/st/stpmic1.h> +#include <lib/mmio.h> +#include <lib/utils_def.h> +#include <libfdt.h> + +#include <platform_def.h> + +#define PMIC_NODE_NOT_FOUND 1 + +static struct i2c_handle_s i2c_handle; +static uint32_t pmic_i2c_addr; + +static int register_pmic(void); + +static int dt_get_pmic_node(void *fdt) +{ + static int node = -FDT_ERR_BADOFFSET; + + if (node == -FDT_ERR_BADOFFSET) { + node = fdt_node_offset_by_compatible(fdt, -1, "st,stpmic1"); + } + + return node; +} + +int dt_pmic_status(void) +{ + static int status = -FDT_ERR_BADVALUE; + int node; + void *fdt; + + if (status != -FDT_ERR_BADVALUE) { + return status; + } + + if (fdt_get_address(&fdt) == 0) { + return -ENOENT; + } + + node = dt_get_pmic_node(fdt); + if (node <= 0) { + status = -FDT_ERR_NOTFOUND; + + return status; + } + + status = (int)fdt_get_status(node); + + return status; +} + +static bool dt_pmic_is_secure(void) +{ + int status = dt_pmic_status(); + + return (status >= 0) && + (status == DT_SECURE) && + (i2c_handle.dt_status == DT_SECURE); +} + +/* + * Get PMIC and its I2C bus configuration from the device tree. + * Return 0 on success, negative on error, 1 if no PMIC node is defined. + */ +static int dt_pmic_i2c_config(struct dt_node_info *i2c_info, + struct stm32_i2c_init_s *init) +{ + static int i2c_node = -FDT_ERR_NOTFOUND; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + if (i2c_node == -FDT_ERR_NOTFOUND) { + int pmic_node; + const fdt32_t *cuint; + + pmic_node = dt_get_pmic_node(fdt); + if (pmic_node < 0) { + return PMIC_NODE_NOT_FOUND; + } + + cuint = fdt_getprop(fdt, pmic_node, "reg", NULL); + if (cuint == NULL) { + return -FDT_ERR_NOTFOUND; + } + + pmic_i2c_addr = fdt32_to_cpu(*cuint) << 1; + if (pmic_i2c_addr > UINT16_MAX) { + return -FDT_ERR_BADVALUE; + } + + i2c_node = fdt_parent_offset(fdt, pmic_node); + if (i2c_node < 0) { + return -FDT_ERR_NOTFOUND; + } + } + + dt_fill_device_info(i2c_info, i2c_node); + if (i2c_info->base == 0U) { + return -FDT_ERR_NOTFOUND; + } + + return stm32_i2c_get_setup_from_fdt(fdt, i2c_node, init); +} + +bool initialize_pmic_i2c(void) +{ + int ret; + struct dt_node_info i2c_info; + struct i2c_handle_s *i2c = &i2c_handle; + struct stm32_i2c_init_s i2c_init; + + ret = dt_pmic_i2c_config(&i2c_info, &i2c_init); + if (ret < 0) { + ERROR("I2C configuration failed %d\n", ret); + panic(); + } + + if (ret != 0) { + return false; + } + + /* Initialize PMIC I2C */ + i2c->i2c_base_addr = i2c_info.base; + i2c->dt_status = i2c_info.status; + i2c->clock = i2c_info.clock; + i2c->i2c_state = I2C_STATE_RESET; + i2c_init.own_address1 = pmic_i2c_addr; + i2c_init.addressing_mode = I2C_ADDRESSINGMODE_7BIT; + i2c_init.dual_address_mode = I2C_DUALADDRESS_DISABLE; + i2c_init.own_address2 = 0; + i2c_init.own_address2_masks = I2C_OAR2_OA2NOMASK; + i2c_init.general_call_mode = I2C_GENERALCALL_DISABLE; + i2c_init.no_stretch_mode = I2C_NOSTRETCH_DISABLE; + i2c_init.analog_filter = 1; + i2c_init.digital_filter_coef = 0; + + ret = stm32_i2c_init(i2c, &i2c_init); + if (ret != 0) { + ERROR("Cannot initialize I2C %x (%d)\n", + i2c->i2c_base_addr, ret); + panic(); + } + + if (!stm32_i2c_is_device_ready(i2c, pmic_i2c_addr, 1, + I2C_TIMEOUT_BUSY_MS)) { + ERROR("I2C device not ready\n"); + panic(); + } + + stpmic1_bind_i2c(i2c, (uint16_t)pmic_i2c_addr); + + return true; +} + +static void register_pmic_shared_peripherals(void) +{ + uintptr_t i2c_base = i2c_handle.i2c_base_addr; + + if (dt_pmic_is_secure()) { + stm32mp_register_secure_periph_iomem(i2c_base); + } else { + if (i2c_base != 0U) { + stm32mp_register_non_secure_periph_iomem(i2c_base); + } + } +} + +void initialize_pmic(void) +{ + if (!initialize_pmic_i2c()) { + VERBOSE("No PMIC\n"); + return; + } + + register_pmic_shared_peripherals(); + + if (register_pmic() < 0) { + panic(); + } + + if (stpmic1_powerctrl_on() < 0) { + panic(); + } + +} + +#if DEBUG +void print_pmic_info_and_debug(void) +{ + unsigned long pmic_version; + + if (stpmic1_get_version(&pmic_version) != 0) { + ERROR("Failed to access PMIC\n"); + panic(); + } + + INFO("PMIC version = 0x%02lx\n", pmic_version); +} +#endif + +int pmic_ddr_power_init(enum ddr_type ddr_type) +{ + int status; + uint16_t buck3_min_mv; + struct rdev *buck2, *buck3, *vref; + struct rdev *ldo3 __unused; + + buck2 = regulator_get_by_name("buck2"); + if (buck2 == NULL) { + return -ENOENT; + } + +#if STM32MP15 + ldo3 = regulator_get_by_name("ldo3"); + if (ldo3 == NULL) { + return -ENOENT; + } +#endif + + vref = regulator_get_by_name("vref_ddr"); + if (vref == NULL) { + return -ENOENT; + } + + switch (ddr_type) { + case STM32MP_DDR3: +#if STM32MP15 + status = regulator_set_flag(ldo3, REGUL_SINK_SOURCE); + if (status != 0) { + return status; + } +#endif + + status = regulator_set_min_voltage(buck2); + if (status != 0) { + return status; + } + + status = regulator_enable(buck2); + if (status != 0) { + return status; + } + + status = regulator_enable(vref); + if (status != 0) { + return status; + } + +#if STM32MP15 + status = regulator_enable(ldo3); + if (status != 0) { + return status; + } +#endif + break; + + case STM32MP_LPDDR2: + case STM32MP_LPDDR3: + /* + * Set LDO3 to 1.8V + * Set LDO3 to bypass mode if BUCK3 = 1.8V + * Set LDO3 to normal mode if BUCK3 != 1.8V + */ + buck3 = regulator_get_by_name("buck3"); + if (buck3 == NULL) { + return -ENOENT; + } + + regulator_get_range(buck3, &buck3_min_mv, NULL); + +#if STM32MP15 + if (buck3_min_mv != 1800) { + status = regulator_set_min_voltage(ldo3); + if (status != 0) { + return status; + } + } else { + status = regulator_set_flag(ldo3, REGUL_ENABLE_BYPASS); + if (status != 0) { + return status; + } + } +#endif + + status = regulator_set_min_voltage(buck2); + if (status != 0) { + return status; + } + +#if STM32MP15 + status = regulator_enable(ldo3); + if (status != 0) { + return status; + } +#endif + + status = regulator_enable(buck2); + if (status != 0) { + return status; + } + + status = regulator_enable(vref); + if (status != 0) { + return status; + } + break; + + default: + break; + }; + + return 0; +} + +int pmic_voltages_init(void) +{ +#if STM32MP13 + struct rdev *buck1, *buck4; + int status; + + buck1 = regulator_get_by_name("buck1"); + if (buck1 == NULL) { + return -ENOENT; + } + + buck4 = regulator_get_by_name("buck4"); + if (buck4 == NULL) { + return -ENOENT; + } + + status = regulator_set_min_voltage(buck1); + if (status != 0) { + return status; + } + + status = regulator_set_min_voltage(buck4); + if (status != 0) { + return status; + } +#endif + + return 0; +} + +enum { + STPMIC1_BUCK1 = 0, + STPMIC1_BUCK2, + STPMIC1_BUCK3, + STPMIC1_BUCK4, + STPMIC1_LDO1, + STPMIC1_LDO2, + STPMIC1_LDO3, + STPMIC1_LDO4, + STPMIC1_LDO5, + STPMIC1_LDO6, + STPMIC1_VREF_DDR, + STPMIC1_BOOST, + STPMIC1_VBUS_OTG, + STPMIC1_SW_OUT, +}; + +static int pmic_set_state(const struct regul_description *desc, bool enable) +{ + VERBOSE("%s: set state to %d\n", desc->node_name, enable); + + if (enable == STATE_ENABLE) { + return stpmic1_regulator_enable(desc->node_name); + } else { + return stpmic1_regulator_disable(desc->node_name); + } +} + +static int pmic_get_state(const struct regul_description *desc) +{ + VERBOSE("%s: get state\n", desc->node_name); + + return stpmic1_is_regulator_enabled(desc->node_name); +} + +static int pmic_get_voltage(const struct regul_description *desc) +{ + VERBOSE("%s: get volt\n", desc->node_name); + + return stpmic1_regulator_voltage_get(desc->node_name); +} + +static int pmic_set_voltage(const struct regul_description *desc, uint16_t mv) +{ + VERBOSE("%s: get volt\n", desc->node_name); + + return stpmic1_regulator_voltage_set(desc->node_name, mv); +} + +static int pmic_list_voltages(const struct regul_description *desc, + const uint16_t **levels, size_t *count) +{ + VERBOSE("%s: list volt\n", desc->node_name); + + return stpmic1_regulator_levels_mv(desc->node_name, levels, count); +} + +static int pmic_set_flag(const struct regul_description *desc, uint16_t flag) +{ + VERBOSE("%s: set_flag 0x%x\n", desc->node_name, flag); + + switch (flag) { + case REGUL_OCP: + return stpmic1_regulator_icc_set(desc->node_name); + + case REGUL_ACTIVE_DISCHARGE: + return stpmic1_active_discharge_mode_set(desc->node_name); + + case REGUL_PULL_DOWN: + return stpmic1_regulator_pull_down_set(desc->node_name); + + case REGUL_MASK_RESET: + return stpmic1_regulator_mask_reset_set(desc->node_name); + + case REGUL_SINK_SOURCE: + return stpmic1_regulator_sink_mode_set(desc->node_name); + + case REGUL_ENABLE_BYPASS: + return stpmic1_regulator_bypass_mode_set(desc->node_name); + + default: + return -EINVAL; + } +} + +static const struct regul_ops pmic_ops = { + .set_state = pmic_set_state, + .get_state = pmic_get_state, + .set_voltage = pmic_set_voltage, + .get_voltage = pmic_get_voltage, + .list_voltages = pmic_list_voltages, + .set_flag = pmic_set_flag, +}; + +#define DEFINE_REGU(name) { \ + .node_name = name, \ + .ops = &pmic_ops, \ + .driver_data = NULL, \ + .enable_ramp_delay = 1000, \ +} + +static const struct regul_description pmic_regs[] = { + [STPMIC1_BUCK1] = DEFINE_REGU("buck1"), + [STPMIC1_BUCK2] = DEFINE_REGU("buck2"), + [STPMIC1_BUCK3] = DEFINE_REGU("buck3"), + [STPMIC1_BUCK4] = DEFINE_REGU("buck4"), + [STPMIC1_LDO1] = DEFINE_REGU("ldo1"), + [STPMIC1_LDO2] = DEFINE_REGU("ldo2"), + [STPMIC1_LDO3] = DEFINE_REGU("ldo3"), + [STPMIC1_LDO4] = DEFINE_REGU("ldo4"), + [STPMIC1_LDO5] = DEFINE_REGU("ldo5"), + [STPMIC1_LDO6] = DEFINE_REGU("ldo6"), + [STPMIC1_VREF_DDR] = DEFINE_REGU("vref_ddr"), + [STPMIC1_BOOST] = DEFINE_REGU("boost"), + [STPMIC1_VBUS_OTG] = DEFINE_REGU("pwr_sw1"), + [STPMIC1_SW_OUT] = DEFINE_REGU("pwr_sw2"), +}; + +#define NB_REG ARRAY_SIZE(pmic_regs) + +static int register_pmic(void) +{ + void *fdt; + int pmic_node, regulators_node, subnode; + + VERBOSE("Register pmic\n"); + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + pmic_node = dt_get_pmic_node(fdt); + if (pmic_node < 0) { + return pmic_node; + } + + regulators_node = fdt_subnode_offset(fdt, pmic_node, "regulators"); + if (regulators_node < 0) { + return -ENOENT; + } + + fdt_for_each_subnode(subnode, fdt, regulators_node) { + const char *reg_name = fdt_get_name(fdt, subnode, NULL); + const struct regul_description *desc; + unsigned int i; + int ret; + + for (i = 0; i < NB_REG; i++) { + desc = &pmic_regs[i]; + if (strcmp(desc->node_name, reg_name) == 0) { + break; + } + } + assert(i < NB_REG); + + ret = regulator_register(desc, subnode); + if (ret != 0) { + WARN("%s:%d failed to register %s\n", __func__, + __LINE__, reg_name); + return ret; + } + } + + return 0; +} diff --git a/drivers/st/pmic/stpmic1.c b/drivers/st/pmic/stpmic1.c new file mode 100644 index 0000000..37eb50b --- /dev/null +++ b/drivers/st/pmic/stpmic1.c @@ -0,0 +1,937 @@ +/* + * Copyright (c) 2016-2021, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <errno.h> +#include <string.h> + +#include <common/debug.h> +#include <drivers/st/stpmic1.h> + +#define I2C_TIMEOUT_MS 25 + +struct regul_struct { + const char *dt_node_name; + const uint16_t *voltage_table; + uint8_t voltage_table_size; + uint8_t control_reg; + uint8_t enable_mask; + uint8_t low_power_reg; + uint8_t pull_down_reg; + uint8_t pull_down; + uint8_t mask_reset_reg; + uint8_t mask_reset; + uint8_t icc_reg; + uint8_t icc_mask; +}; + +static struct i2c_handle_s *pmic_i2c_handle; +static uint16_t pmic_i2c_addr; +/* + * Special mode corresponds to LDO3 in sink source mode or in bypass mode. + * LDO3 doesn't switch back from special to normal mode. + */ +static bool ldo3_special_mode; + +/* Voltage tables in mV */ +static const uint16_t buck1_voltage_table[] = { + 725, + 725, + 725, + 725, + 725, + 725, + 750, + 775, + 800, + 825, + 850, + 875, + 900, + 925, + 950, + 975, + 1000, + 1025, + 1050, + 1075, + 1100, + 1125, + 1150, + 1175, + 1200, + 1225, + 1250, + 1275, + 1300, + 1325, + 1350, + 1375, + 1400, + 1425, + 1450, + 1475, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, + 1500, +}; + +static const uint16_t buck2_voltage_table[] = { + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1050, + 1050, + 1100, + 1100, + 1150, + 1150, + 1200, + 1200, + 1250, + 1250, + 1300, + 1300, + 1350, + 1350, + 1400, + 1400, + 1450, + 1450, + 1500, +}; + +static const uint16_t buck3_voltage_table[] = { + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1000, + 1100, + 1100, + 1100, + 1100, + 1200, + 1200, + 1200, + 1200, + 1300, + 1300, + 1300, + 1300, + 1400, + 1400, + 1400, + 1400, + 1500, + 1600, + 1700, + 1800, + 1900, + 2000, + 2100, + 2200, + 2300, + 2400, + 2500, + 2600, + 2700, + 2800, + 2900, + 3000, + 3100, + 3200, + 3300, + 3400, +}; + +static const uint16_t buck4_voltage_table[] = { + 600, + 625, + 650, + 675, + 700, + 725, + 750, + 775, + 800, + 825, + 850, + 875, + 900, + 925, + 950, + 975, + 1000, + 1025, + 1050, + 1075, + 1100, + 1125, + 1150, + 1175, + 1200, + 1225, + 1250, + 1275, + 1300, + 1300, + 1350, + 1350, + 1400, + 1400, + 1450, + 1450, + 1500, + 1600, + 1700, + 1800, + 1900, + 2000, + 2100, + 2200, + 2300, + 2400, + 2500, + 2600, + 2700, + 2800, + 2900, + 3000, + 3100, + 3200, + 3300, + 3400, + 3500, + 3600, + 3700, + 3800, + 3900, +}; + +static const uint16_t ldo1_voltage_table[] = { + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1800, + 1900, + 2000, + 2100, + 2200, + 2300, + 2400, + 2500, + 2600, + 2700, + 2800, + 2900, + 3000, + 3100, + 3200, + 3300, +}; + +static const uint16_t ldo2_voltage_table[] = { + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1800, + 1900, + 2000, + 2100, + 2200, + 2300, + 2400, + 2500, + 2600, + 2700, + 2800, + 2900, + 3000, + 3100, + 3200, + 3300, +}; + +static const uint16_t ldo3_voltage_table[] = { + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1800, + 1900, + 2000, + 2100, + 2200, + 2300, + 2400, + 2500, + 2600, + 2700, + 2800, + 2900, + 3000, + 3100, + 3200, + 3300, + 3300, + 3300, + 3300, + 3300, + 3300, + 3300, +}; + +/* Special mode table is used for sink source OR bypass mode */ +static const uint16_t ldo3_special_mode_table[] = { + 0, +}; + +static const uint16_t ldo5_voltage_table[] = { + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1700, + 1800, + 1900, + 2000, + 2100, + 2200, + 2300, + 2400, + 2500, + 2600, + 2700, + 2800, + 2900, + 3000, + 3100, + 3200, + 3300, + 3400, + 3500, + 3600, + 3700, + 3800, + 3900, +}; + +static const uint16_t ldo6_voltage_table[] = { + 900, + 1000, + 1100, + 1200, + 1300, + 1400, + 1500, + 1600, + 1700, + 1800, + 1900, + 2000, + 2100, + 2200, + 2300, + 2400, + 2500, + 2600, + 2700, + 2800, + 2900, + 3000, + 3100, + 3200, + 3300, +}; + +static const uint16_t ldo4_voltage_table[] = { + 3300, +}; + +static const uint16_t vref_ddr_voltage_table[] = { + 3300, +}; + +static const uint16_t fixed_5v_voltage_table[] = { + 5000, +}; + +/* Table of Regulators in PMIC SoC */ +static const struct regul_struct regulators_table[] = { + { + .dt_node_name = "buck1", + .voltage_table = buck1_voltage_table, + .voltage_table_size = ARRAY_SIZE(buck1_voltage_table), + .control_reg = BUCK1_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = BUCK1_PWRCTRL_REG, + .pull_down_reg = BUCK_PULL_DOWN_REG, + .pull_down = BUCK1_PULL_DOWN_SHIFT, + .mask_reset_reg = MASK_RESET_BUCK_REG, + .mask_reset = BUCK1_MASK_RESET, + .icc_reg = BUCK_ICC_TURNOFF_REG, + .icc_mask = BUCK1_ICC_SHIFT, + }, + { + .dt_node_name = "buck2", + .voltage_table = buck2_voltage_table, + .voltage_table_size = ARRAY_SIZE(buck2_voltage_table), + .control_reg = BUCK2_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = BUCK2_PWRCTRL_REG, + .pull_down_reg = BUCK_PULL_DOWN_REG, + .pull_down = BUCK2_PULL_DOWN_SHIFT, + .mask_reset_reg = MASK_RESET_BUCK_REG, + .mask_reset = BUCK2_MASK_RESET, + .icc_reg = BUCK_ICC_TURNOFF_REG, + .icc_mask = BUCK2_ICC_SHIFT, + }, + { + .dt_node_name = "buck3", + .voltage_table = buck3_voltage_table, + .voltage_table_size = ARRAY_SIZE(buck3_voltage_table), + .control_reg = BUCK3_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = BUCK3_PWRCTRL_REG, + .pull_down_reg = BUCK_PULL_DOWN_REG, + .pull_down = BUCK3_PULL_DOWN_SHIFT, + .mask_reset_reg = MASK_RESET_BUCK_REG, + .mask_reset = BUCK3_MASK_RESET, + .icc_reg = BUCK_ICC_TURNOFF_REG, + .icc_mask = BUCK3_ICC_SHIFT, + }, + { + .dt_node_name = "buck4", + .voltage_table = buck4_voltage_table, + .voltage_table_size = ARRAY_SIZE(buck4_voltage_table), + .control_reg = BUCK4_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = BUCK4_PWRCTRL_REG, + .pull_down_reg = BUCK_PULL_DOWN_REG, + .pull_down = BUCK4_PULL_DOWN_SHIFT, + .mask_reset_reg = MASK_RESET_BUCK_REG, + .mask_reset = BUCK4_MASK_RESET, + .icc_reg = BUCK_ICC_TURNOFF_REG, + .icc_mask = BUCK4_ICC_SHIFT, + }, + { + .dt_node_name = "ldo1", + .voltage_table = ldo1_voltage_table, + .voltage_table_size = ARRAY_SIZE(ldo1_voltage_table), + .control_reg = LDO1_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = LDO1_PWRCTRL_REG, + .mask_reset_reg = MASK_RESET_LDO_REG, + .mask_reset = LDO1_MASK_RESET, + .icc_reg = LDO_ICC_TURNOFF_REG, + .icc_mask = LDO1_ICC_SHIFT, + }, + { + .dt_node_name = "ldo2", + .voltage_table = ldo2_voltage_table, + .voltage_table_size = ARRAY_SIZE(ldo2_voltage_table), + .control_reg = LDO2_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = LDO2_PWRCTRL_REG, + .mask_reset_reg = MASK_RESET_LDO_REG, + .mask_reset = LDO2_MASK_RESET, + .icc_reg = LDO_ICC_TURNOFF_REG, + .icc_mask = LDO2_ICC_SHIFT, + }, + { + .dt_node_name = "ldo3", + .voltage_table = ldo3_voltage_table, + .voltage_table_size = ARRAY_SIZE(ldo3_voltage_table), + .control_reg = LDO3_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = LDO3_PWRCTRL_REG, + .mask_reset_reg = MASK_RESET_LDO_REG, + .mask_reset = LDO3_MASK_RESET, + .icc_reg = LDO_ICC_TURNOFF_REG, + .icc_mask = LDO3_ICC_SHIFT, + }, + { + .dt_node_name = "ldo4", + .voltage_table = ldo4_voltage_table, + .voltage_table_size = ARRAY_SIZE(ldo4_voltage_table), + .control_reg = LDO4_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = LDO4_PWRCTRL_REG, + .mask_reset_reg = MASK_RESET_LDO_REG, + .mask_reset = LDO4_MASK_RESET, + .icc_reg = LDO_ICC_TURNOFF_REG, + .icc_mask = LDO4_ICC_SHIFT, + }, + { + .dt_node_name = "ldo5", + .voltage_table = ldo5_voltage_table, + .voltage_table_size = ARRAY_SIZE(ldo5_voltage_table), + .control_reg = LDO5_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = LDO5_PWRCTRL_REG, + .mask_reset_reg = MASK_RESET_LDO_REG, + .mask_reset = LDO5_MASK_RESET, + .icc_reg = LDO_ICC_TURNOFF_REG, + .icc_mask = LDO5_ICC_SHIFT, + }, + { + .dt_node_name = "ldo6", + .voltage_table = ldo6_voltage_table, + .voltage_table_size = ARRAY_SIZE(ldo6_voltage_table), + .control_reg = LDO6_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = LDO6_PWRCTRL_REG, + .mask_reset_reg = MASK_RESET_LDO_REG, + .mask_reset = LDO6_MASK_RESET, + .icc_reg = LDO_ICC_TURNOFF_REG, + .icc_mask = LDO6_ICC_SHIFT, + }, + { + .dt_node_name = "vref_ddr", + .voltage_table = vref_ddr_voltage_table, + .voltage_table_size = ARRAY_SIZE(vref_ddr_voltage_table), + .control_reg = VREF_DDR_CONTROL_REG, + .enable_mask = LDO_BUCK_ENABLE_MASK, + .low_power_reg = VREF_DDR_PWRCTRL_REG, + .mask_reset_reg = MASK_RESET_LDO_REG, + .mask_reset = VREF_DDR_MASK_RESET, + }, + { + .dt_node_name = "boost", + .voltage_table = fixed_5v_voltage_table, + .voltage_table_size = ARRAY_SIZE(fixed_5v_voltage_table), + .control_reg = USB_CONTROL_REG, + .enable_mask = BOOST_ENABLED, + .icc_reg = BUCK_ICC_TURNOFF_REG, + .icc_mask = BOOST_ICC_SHIFT, + }, + { + .dt_node_name = "pwr_sw1", + .voltage_table = fixed_5v_voltage_table, + .voltage_table_size = ARRAY_SIZE(fixed_5v_voltage_table), + .control_reg = USB_CONTROL_REG, + .enable_mask = USBSW_OTG_SWITCH_ENABLED, + .icc_reg = BUCK_ICC_TURNOFF_REG, + .icc_mask = PWR_SW1_ICC_SHIFT, + }, + { + .dt_node_name = "pwr_sw2", + .voltage_table = fixed_5v_voltage_table, + .voltage_table_size = ARRAY_SIZE(fixed_5v_voltage_table), + .control_reg = USB_CONTROL_REG, + .enable_mask = SWIN_SWOUT_ENABLED, + .icc_reg = BUCK_ICC_TURNOFF_REG, + .icc_mask = PWR_SW2_ICC_SHIFT, + }, +}; + +#define MAX_REGUL ARRAY_SIZE(regulators_table) + +static const struct regul_struct *get_regulator_data(const char *name) +{ + uint8_t i; + + for (i = 0 ; i < MAX_REGUL ; i++) { + if (strncmp(name, regulators_table[i].dt_node_name, + strlen(regulators_table[i].dt_node_name)) == 0) { + return ®ulators_table[i]; + } + } + + /* Regulator not found */ + panic(); + return NULL; +} + +static uint8_t voltage_to_index(const char *name, uint16_t millivolts) +{ + const struct regul_struct *regul = get_regulator_data(name); + uint8_t i; + + for (i = 0 ; i < regul->voltage_table_size ; i++) { + if (regul->voltage_table[i] == millivolts) { + return i; + } + } + + /* Voltage not found */ + panic(); + + return 0; +} + +int stpmic1_powerctrl_on(void) +{ + return stpmic1_register_update(MAIN_CONTROL_REG, PWRCTRL_PIN_VALID, + PWRCTRL_PIN_VALID); +} + +int stpmic1_switch_off(void) +{ + return stpmic1_register_update(MAIN_CONTROL_REG, 1, + SOFTWARE_SWITCH_OFF_ENABLED); +} + +int stpmic1_regulator_enable(const char *name) +{ + const struct regul_struct *regul = get_regulator_data(name); + + return stpmic1_register_update(regul->control_reg, regul->enable_mask, + regul->enable_mask); +} + +int stpmic1_regulator_disable(const char *name) +{ + const struct regul_struct *regul = get_regulator_data(name); + + return stpmic1_register_update(regul->control_reg, 0, + regul->enable_mask); +} + +bool stpmic1_is_regulator_enabled(const char *name) +{ + uint8_t val; + const struct regul_struct *regul = get_regulator_data(name); + + if (stpmic1_register_read(regul->control_reg, &val) != 0) { + panic(); + } + + return (val & regul->enable_mask) == regul->enable_mask; +} + +int stpmic1_regulator_voltage_set(const char *name, uint16_t millivolts) +{ + uint8_t voltage_index = voltage_to_index(name, millivolts); + const struct regul_struct *regul = get_regulator_data(name); + uint8_t mask; + + if ((strncmp(name, "ldo3", 5) == 0) && ldo3_special_mode) { + /* + * when the LDO3 is in special mode, we do not change voltage, + * because by setting voltage, the LDO would leaves sink-source + * mode. There is obviously no reason to leave sink-source mode + * at runtime. + */ + return 0; + } + + /* Voltage can be set for buck<N> or ldo<N> (except ldo4) regulators */ + if (strncmp(name, "buck", 4) == 0) { + mask = BUCK_VOLTAGE_MASK; + } else if ((strncmp(name, "ldo", 3) == 0) && + (strncmp(name, "ldo4", 5) != 0)) { + mask = LDO_VOLTAGE_MASK; + } else { + return 0; + } + + return stpmic1_register_update(regul->control_reg, + voltage_index << LDO_BUCK_VOLTAGE_SHIFT, + mask); +} + +int stpmic1_regulator_pull_down_set(const char *name) +{ + const struct regul_struct *regul = get_regulator_data(name); + + if (regul->pull_down_reg != 0) { + return stpmic1_register_update(regul->pull_down_reg, + BIT(regul->pull_down), + LDO_BUCK_PULL_DOWN_MASK << + regul->pull_down); + } + + return 0; +} + +int stpmic1_regulator_mask_reset_set(const char *name) +{ + const struct regul_struct *regul = get_regulator_data(name); + + if (regul->mask_reset_reg == 0U) { + return -EPERM; + } + + return stpmic1_register_update(regul->mask_reset_reg, + BIT(regul->mask_reset), + LDO_BUCK_RESET_MASK << + regul->mask_reset); +} + +int stpmic1_regulator_icc_set(const char *name) +{ + const struct regul_struct *regul = get_regulator_data(name); + + if (regul->mask_reset_reg == 0U) { + return -EPERM; + } + + return stpmic1_register_update(regul->icc_reg, + BIT(regul->icc_mask), + BIT(regul->icc_mask)); +} + +int stpmic1_regulator_sink_mode_set(const char *name) +{ + if (strncmp(name, "ldo3", 5) != 0) { + return -EPERM; + } + + ldo3_special_mode = true; + + /* disable bypass mode, enable sink mode */ + return stpmic1_register_update(LDO3_CONTROL_REG, + LDO3_DDR_SEL << LDO_BUCK_VOLTAGE_SHIFT, + LDO3_BYPASS | LDO_VOLTAGE_MASK); +} + +int stpmic1_regulator_bypass_mode_set(const char *name) +{ + if (strncmp(name, "ldo3", 5) != 0) { + return -EPERM; + } + + ldo3_special_mode = true; + + /* enable bypass mode, disable sink mode */ + return stpmic1_register_update(LDO3_CONTROL_REG, + LDO3_BYPASS, + LDO3_BYPASS | LDO_VOLTAGE_MASK); +} + +int stpmic1_active_discharge_mode_set(const char *name) +{ + if (strncmp(name, "pwr_sw1", 8) == 0) { + return stpmic1_register_update(USB_CONTROL_REG, + VBUS_OTG_DISCHARGE, + VBUS_OTG_DISCHARGE); + } + + if (strncmp(name, "pwr_sw2", 8) == 0) { + return stpmic1_register_update(USB_CONTROL_REG, + SW_OUT_DISCHARGE, + SW_OUT_DISCHARGE); + } + + return -EPERM; +} + +int stpmic1_regulator_levels_mv(const char *name, const uint16_t **levels, + size_t *levels_count) +{ + const struct regul_struct *regul = get_regulator_data(name); + + if ((strncmp(name, "ldo3", 5) == 0) && ldo3_special_mode) { + *levels_count = ARRAY_SIZE(ldo3_special_mode_table); + *levels = ldo3_special_mode_table; + } else { + *levels_count = regul->voltage_table_size; + *levels = regul->voltage_table; + } + + return 0; +} + +int stpmic1_regulator_voltage_get(const char *name) +{ + const struct regul_struct *regul = get_regulator_data(name); + uint8_t value; + uint8_t mask; + int status; + + if ((strncmp(name, "ldo3", 5) == 0) && ldo3_special_mode) { + return 0; + } + + /* Voltage can be set for buck<N> or ldo<N> (except ldo4) regulators */ + if (strncmp(name, "buck", 4) == 0) { + mask = BUCK_VOLTAGE_MASK; + } else if ((strncmp(name, "ldo", 3) == 0) && + (strncmp(name, "ldo4", 5) != 0)) { + mask = LDO_VOLTAGE_MASK; + } else { + return 0; + } + + status = stpmic1_register_read(regul->control_reg, &value); + if (status < 0) { + return status; + } + + value = (value & mask) >> LDO_BUCK_VOLTAGE_SHIFT; + + if (value > regul->voltage_table_size) { + return -ERANGE; + } + + return (int)regul->voltage_table[value]; +} + +int stpmic1_register_read(uint8_t register_id, uint8_t *value) +{ + return stm32_i2c_mem_read(pmic_i2c_handle, pmic_i2c_addr, + (uint16_t)register_id, + I2C_MEMADD_SIZE_8BIT, value, + 1, I2C_TIMEOUT_MS); +} + +int stpmic1_register_write(uint8_t register_id, uint8_t value) +{ + int status; + + status = stm32_i2c_mem_write(pmic_i2c_handle, pmic_i2c_addr, + (uint16_t)register_id, + I2C_MEMADD_SIZE_8BIT, &value, + 1, I2C_TIMEOUT_MS); + +#if ENABLE_ASSERTIONS + if (status != 0) { + return status; + } + + if ((register_id != WATCHDOG_CONTROL_REG) && (register_id <= 0x40U)) { + uint8_t readval; + + status = stpmic1_register_read(register_id, &readval); + if (status != 0) { + return status; + } + + if (readval != value) { + return -EIO; + } + } +#endif + + return status; +} + +int stpmic1_register_update(uint8_t register_id, uint8_t value, uint8_t mask) +{ + int status; + uint8_t val; + + status = stpmic1_register_read(register_id, &val); + if (status != 0) { + return status; + } + + val = (val & ~mask) | (value & mask); + + return stpmic1_register_write(register_id, val); +} + +void stpmic1_bind_i2c(struct i2c_handle_s *i2c_handle, uint16_t i2c_addr) +{ + pmic_i2c_handle = i2c_handle; + pmic_i2c_addr = i2c_addr; +} + +void stpmic1_dump_regulators(void) +{ + uint32_t i; + + for (i = 0U; i < MAX_REGUL; i++) { + const char *name __unused = regulators_table[i].dt_node_name; + + VERBOSE("PMIC regul %s: %sable, %dmV", + name, + stpmic1_is_regulator_enabled(name) ? "en" : "dis", + stpmic1_regulator_voltage_get(name)); + } +} + +int stpmic1_get_version(unsigned long *version) +{ + uint8_t read_val; + int status; + + status = stpmic1_register_read(VERSION_STATUS_REG, &read_val); + if (status < 0) { + return status; + } + + *version = (unsigned long)read_val; + + return 0; +} diff --git a/drivers/st/regulator/regulator_core.c b/drivers/st/regulator/regulator_core.c new file mode 100644 index 0000000..5cc8329 --- /dev/null +++ b/drivers/st/regulator/regulator_core.c @@ -0,0 +1,560 @@ +/* + * Copyright (c) 2021-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <limits.h> +#include <stdint.h> +#include <string.h> + +#include <common/debug.h> +#include <drivers/delay_timer.h> +#include <drivers/st/regulator.h> +#include <libfdt.h> + +#define MAX_PROPERTY_LEN 64 + +static struct rdev rdev_array[PLAT_NB_RDEVS]; + +#define for_each_rdev(rdev) \ + for (rdev = rdev_array; rdev < (rdev_array + PLAT_NB_RDEVS); rdev++) + +#define for_each_registered_rdev(rdev) \ + for (rdev = rdev_array; \ + (rdev < (rdev_array + PLAT_NB_RDEVS)) && (rdev->desc != NULL); rdev++) + +static void lock_driver(const struct rdev *rdev) +{ + if (rdev->desc->ops->lock != NULL) { + rdev->desc->ops->lock(rdev->desc); + } +} + +static void unlock_driver(const struct rdev *rdev) +{ + if (rdev->desc->ops->unlock != NULL) { + rdev->desc->ops->unlock(rdev->desc); + } +} + +static struct rdev *regulator_get_by_phandle(int32_t phandle) +{ + struct rdev *rdev; + + for_each_registered_rdev(rdev) { + if (rdev->phandle == phandle) { + return rdev; + } + } + + WARN("%s: phandle %d not found\n", __func__, phandle); + return NULL; +} + +/* + * Get a regulator from its node name + * + * @fdt - pointer to device tree memory + * @node_name - name of the node "ldo1" + * Return pointer to rdev if succeed, NULL else. + */ +struct rdev *regulator_get_by_name(const char *node_name) +{ + struct rdev *rdev; + + assert(node_name != NULL); + VERBOSE("get %s\n", node_name); + + for_each_registered_rdev(rdev) { + if (strcmp(rdev->desc->node_name, node_name) == 0) { + return rdev; + } + } + + WARN("%s: %s not found\n", __func__, node_name); + return NULL; +} + +static int32_t get_supply_phandle(const void *fdt, int node, const char *name) +{ + const fdt32_t *cuint; + int len __unused; + int supply_phandle = -FDT_ERR_NOTFOUND; + char prop_name[MAX_PROPERTY_LEN]; + + len = snprintf(prop_name, MAX_PROPERTY_LEN - 1, "%s-supply", name); + assert((len >= 0) && (len < MAX_PROPERTY_LEN - 1)); + + cuint = fdt_getprop(fdt, node, prop_name, NULL); + if (cuint != NULL) { + supply_phandle = fdt32_to_cpu(*cuint); + VERBOSE("%s: supplied by %d\n", name, supply_phandle); + } + + return supply_phandle; +} + +/* + * Get a regulator from a supply name + * + * @fdt - pointer to device tree memory + * @node - offset of the node that contains the supply description + * @name - name of the supply "vdd" for "vdd-supply' + * Return pointer to rdev if succeed, NULL else. + */ +struct rdev *regulator_get_by_supply_name(const void *fdt, int node, const char *name) +{ + const int p = get_supply_phandle(fdt, node, name); + + if (p < 0) { + return NULL; + } + + return regulator_get_by_phandle(p); +} + +static int __regulator_set_state(struct rdev *rdev, bool state) +{ + if (rdev->desc->ops->set_state == NULL) { + return -ENODEV; + } + + return rdev->desc->ops->set_state(rdev->desc, state); +} + +/* + * Enable regulator + * + * @rdev - pointer to rdev struct + * Return 0 if succeed, non 0 else. + */ +int regulator_enable(struct rdev *rdev) +{ + int ret; + + assert(rdev != NULL); + + ret = __regulator_set_state(rdev, STATE_ENABLE); + + udelay(rdev->enable_ramp_delay); + + return ret; +} + +/* + * Disable regulator + * + * @rdev - pointer to rdev struct + * Return 0 if succeed, non 0 else. + */ +int regulator_disable(struct rdev *rdev) +{ + int ret; + + assert(rdev != NULL); + + if (rdev->flags & REGUL_ALWAYS_ON) { + return 0; + } + + ret = __regulator_set_state(rdev, STATE_DISABLE); + + udelay(rdev->enable_ramp_delay); + + return ret; +} + +/* + * Regulator enabled query + * + * @rdev - pointer to rdev struct + * Return 0 if disabled, 1 if enabled, <0 else. + */ +int regulator_is_enabled(const struct rdev *rdev) +{ + int ret; + + assert(rdev != NULL); + + VERBOSE("%s: is en\n", rdev->desc->node_name); + + if (rdev->desc->ops->get_state == NULL) { + return -ENODEV; + } + + lock_driver(rdev); + + ret = rdev->desc->ops->get_state(rdev->desc); + if (ret < 0) { + ERROR("regul %s get state failed: err:%d\n", + rdev->desc->node_name, ret); + } + + unlock_driver(rdev); + + return ret; +} + +/* + * Set regulator voltage + * + * @rdev - pointer to rdev struct + * @mvolt - Target voltage level in millivolt + * Return 0 if succeed, non 0 else. + */ +int regulator_set_voltage(struct rdev *rdev, uint16_t mvolt) +{ + int ret; + + assert(rdev != NULL); + + VERBOSE("%s: set mvolt\n", rdev->desc->node_name); + + if (rdev->desc->ops->set_voltage == NULL) { + return -ENODEV; + } + + if ((mvolt < rdev->min_mv) || (mvolt > rdev->max_mv)) { + return -EPERM; + } + + lock_driver(rdev); + + ret = rdev->desc->ops->set_voltage(rdev->desc, mvolt); + if (ret < 0) { + ERROR("regul %s set volt failed: err:%d\n", + rdev->desc->node_name, ret); + } + + unlock_driver(rdev); + + return ret; +} + +/* + * Set regulator min voltage + * + * @rdev - pointer to rdev struct + * Return 0 if succeed, non 0 else. + */ +int regulator_set_min_voltage(struct rdev *rdev) +{ + return regulator_set_voltage(rdev, rdev->min_mv); +} + +/* + * Get regulator voltage + * + * @rdev - pointer to rdev struct + * Return milli volts if succeed, <0 else. + */ +int regulator_get_voltage(const struct rdev *rdev) +{ + int ret; + + assert(rdev != NULL); + + VERBOSE("%s: get volt\n", rdev->desc->node_name); + + if (rdev->desc->ops->get_voltage == NULL) { + return rdev->min_mv; + } + + lock_driver(rdev); + + ret = rdev->desc->ops->get_voltage(rdev->desc); + if (ret < 0) { + ERROR("regul %s get voltage failed: err:%d\n", + rdev->desc->node_name, ret); + } + + unlock_driver(rdev); + + return ret; +} + +/* + * List regulator voltages + * + * @rdev - pointer to rdev struct + * @levels - out: array of supported millitvolt levels from min to max value + * @count - out: number of possible millivolt values + * Return 0 if succeed, non 0 else. + */ +int regulator_list_voltages(const struct rdev *rdev, const uint16_t **levels, size_t *count) +{ + int ret; + size_t n; + + assert(rdev != NULL); + assert(levels != NULL); + assert(count != NULL); + + VERBOSE("%s: list volt\n", rdev->desc->node_name); + + if (rdev->desc->ops->list_voltages == NULL) { + return -ENODEV; + } + + lock_driver(rdev); + + ret = rdev->desc->ops->list_voltages(rdev->desc, levels, count); + + unlock_driver(rdev); + + if (ret < 0) { + ERROR("regul %s list_voltages failed: err: %d\n", + rdev->desc->node_name, ret); + return ret; + } + + /* + * Reduce the possible values depending on min and max from device-tree + */ + n = *count; + while ((n > 1U) && ((*levels)[n - 1U] > rdev->max_mv)) { + n--; + } + + /* Verify that max val is a valid value */ + if (rdev->max_mv != (*levels)[n - 1]) { + ERROR("regul %s: max value %u is invalid\n", + rdev->desc->node_name, rdev->max_mv); + return -EINVAL; + } + + while ((n > 1U) && ((*levels[0U]) < rdev->min_mv)) { + (*levels)++; + n--; + } + + /* Verify that min is not too high */ + if (n == 0U) { + ERROR("regul %s set min voltage is too high\n", + rdev->desc->node_name); + return -EINVAL; + } + + /* Verify that min val is a valid vlue */ + if (rdev->min_mv != (*levels)[0U]) { + ERROR("regul %s: min value %u is invalid\n", + rdev->desc->node_name, rdev->min_mv); + return -EINVAL; + } + + *count = n; + + VERBOSE("rdev->min_mv=%u rdev->max_mv=%u\n", rdev->min_mv, rdev->max_mv); + + return 0; +} + +/* + * Get regulator voltages range + * + * @rdev - pointer to rdev struct + * @min_mv - out: min possible millivolt value + * @max_mv - out: max possible millivolt value + * Return 0 if succeed, non 0 else. + */ +void regulator_get_range(const struct rdev *rdev, uint16_t *min_mv, uint16_t *max_mv) +{ + assert(rdev != NULL); + + if (min_mv != NULL) { + *min_mv = rdev->min_mv; + } + if (max_mv != NULL) { + *max_mv = rdev->max_mv; + } +} + +/* + * Set regulator flag + * + * @rdev - pointer to rdev struct + * @flag - flag value to set (eg: REGUL_OCP) + * Return 0 if succeed, non 0 else. + */ +int regulator_set_flag(struct rdev *rdev, uint16_t flag) +{ + int ret; + + /* check that only one bit is set on flag */ + if (__builtin_popcount(flag) != 1) { + return -EINVAL; + } + + /* REGUL_ALWAYS_ON and REGUL_BOOT_ON are internal properties of the core */ + if ((flag == REGUL_ALWAYS_ON) || (flag == REGUL_BOOT_ON)) { + rdev->flags |= flag; + return 0; + } + + if (rdev->desc->ops->set_flag == NULL) { + ERROR("%s can not set any flag\n", rdev->desc->node_name); + return -ENODEV; + } + + lock_driver(rdev); + + ret = rdev->desc->ops->set_flag(rdev->desc, flag); + + unlock_driver(rdev); + + if (ret != 0) { + ERROR("%s: could not set flag %d ret=%d\n", + rdev->desc->node_name, flag, ret); + return ret; + } + + rdev->flags |= flag; + + return 0; +} + +static int parse_properties(const void *fdt, struct rdev *rdev, int node) +{ + int ret; + + if (fdt_getprop(fdt, node, "regulator-always-on", NULL) != NULL) { + VERBOSE("%s: set regulator-always-on\n", rdev->desc->node_name); + ret = regulator_set_flag(rdev, REGUL_ALWAYS_ON); + if (ret != 0) { + return ret; + } + } + + return 0; +} + +/* + * Parse the device-tree for a regulator + * + * Read min/max voltage from dt and check its validity + * Read the properties, and call the driver to set flags + * Read power supply phandle + * Read and store low power mode states + * + * @rdev - pointer to rdev struct + * @node - device-tree node offset of the regulator + * Return 0 if disabled, 1 if enabled, <0 else. + */ +static int parse_dt(struct rdev *rdev, int node) +{ + void *fdt; + const fdt32_t *cuint; + const uint16_t *levels; + size_t size; + int ret; + + VERBOSE("%s: parse dt\n", rdev->desc->node_name); + + if (fdt_get_address(&fdt) == 0) { + return -ENOENT; + } + + rdev->phandle = fdt_get_phandle(fdt, node); + + cuint = fdt_getprop(fdt, node, "regulator-min-microvolt", NULL); + if (cuint != NULL) { + uint16_t min_mv; + + min_mv = (uint16_t)(fdt32_to_cpu(*cuint) / 1000U); + VERBOSE("%s: min_mv=%d\n", rdev->desc->node_name, (int)min_mv); + if (min_mv <= rdev->max_mv) { + rdev->min_mv = min_mv; + } else { + ERROR("%s: min_mv=%d is too high\n", + rdev->desc->node_name, (int)min_mv); + return -EINVAL; + } + } + + cuint = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL); + if (cuint != NULL) { + uint16_t max_mv; + + max_mv = (uint16_t)(fdt32_to_cpu(*cuint) / 1000U); + VERBOSE("%s: max_mv=%d\n", rdev->desc->node_name, (int)max_mv); + if (max_mv >= rdev->min_mv) { + rdev->max_mv = max_mv; + } else { + ERROR("%s: max_mv=%d is too low\n", + rdev->desc->node_name, (int)max_mv); + return -EINVAL; + } + } + + /* validate that min and max values can be used */ + ret = regulator_list_voltages(rdev, &levels, &size); + if ((ret != 0) && (ret != -ENODEV)) { + return ret; + } + + ret = parse_properties(fdt, rdev, node); + if (ret != 0) { + return ret; + } + + return 0; +} + +/* + * Register a regulator driver in regulator framework. + * Initialize voltage range from driver description + * + * @desc - pointer to the regulator description + * @node - device-tree node offset of the regulator + * Return 0 if succeed, non 0 else. + */ +int regulator_register(const struct regul_description *desc, int node) +{ + struct rdev *rdev; + + assert(desc != NULL); + + VERBOSE("register %s\n", desc->node_name); + + for_each_rdev(rdev) { + if (rdev->desc == NULL) { + break; + } + } + + if (rdev == rdev_array + PLAT_NB_RDEVS) { + WARN("Not enough place for regulators, PLAT_NB_RDEVS should be increased.\n"); + return -ENOMEM; + } + + rdev->desc = desc; + rdev->enable_ramp_delay = rdev->desc->enable_ramp_delay; + + if (rdev->desc->ops->list_voltages != NULL) { + int ret; + const uint16_t *levels; + size_t count; + + lock_driver(rdev); + + ret = rdev->desc->ops->list_voltages(rdev->desc, &levels, &count); + + unlock_driver(rdev); + + if (ret < 0) { + ERROR("regul %s set state failed: err:%d\n", + rdev->desc->node_name, ret); + return ret; + } + + rdev->min_mv = levels[0]; + rdev->max_mv = levels[count - 1U]; + } else { + rdev->max_mv = UINT16_MAX; + } + + return parse_dt(rdev, node); +} diff --git a/drivers/st/regulator/regulator_fixed.c b/drivers/st/regulator/regulator_fixed.c new file mode 100644 index 0000000..f1c224e --- /dev/null +++ b/drivers/st/regulator/regulator_fixed.c @@ -0,0 +1,87 @@ +/* + * Copyright (c) 2021, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> + +#include <common/debug.h> +#include <common/fdt_wrappers.h> +#include <drivers/st/regulator.h> +#include <drivers/st/regulator_fixed.h> +#include <libfdt.h> + +#ifndef PLAT_NB_FIXED_REGS +#error "Missing PLAT_NB_FIXED_REGS" +#endif + +#define FIXED_NAME_LEN 32 + +struct fixed_data { + char name[FIXED_NAME_LEN]; + uint16_t volt; + struct regul_description desc; +}; + +static struct fixed_data data[PLAT_NB_FIXED_REGS]; + +static int fixed_set_state(const struct regul_description *desc, bool state) +{ + return 0; +} + +static int fixed_get_state(const struct regul_description *desc) +{ + return 1; +} + +static struct regul_ops fixed_ops = { + .set_state = fixed_set_state, + .get_state = fixed_get_state, +}; + +int fixed_regulator_register(void) +{ + uint32_t count = 0; + void *fdt; + int node; + + VERBOSE("fixed reg init!\n"); + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + fdt_for_each_compatible_node(fdt, node, "regulator-fixed") { + int len __unused; + int ret; + struct fixed_data *d = &data[count]; + const char *reg_name; + + reg_name = fdt_get_name(fdt, node, NULL); + + VERBOSE("register fixed reg %s!\n", reg_name); + + len = snprintf(d->name, FIXED_NAME_LEN - 1, "%s", reg_name); + assert((len > 0) && (len < (FIXED_NAME_LEN - 1))); + + d->desc.node_name = d->name; + d->desc.driver_data = d; + d->desc.ops = &fixed_ops; + + ret = regulator_register(&d->desc, node); + if (ret != 0) { + WARN("%s:%d failed to register %s\n", __func__, + __LINE__, reg_name); + return ret; + } + + count++; + assert(count <= PLAT_NB_FIXED_REGS); + + } + + return 0; +} diff --git a/drivers/st/reset/stm32mp1_reset.c b/drivers/st/reset/stm32mp1_reset.c new file mode 100644 index 0000000..98c8dcf --- /dev/null +++ b/drivers/st/reset/stm32mp1_reset.c @@ -0,0 +1,69 @@ +/* + * Copyright (c) 2018-2019, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <errno.h> +#include <limits.h> + +#include <platform_def.h> + +#include <common/bl_common.h> +#include <common/debug.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils_def.h> + +static uint32_t id2reg_offset(unsigned int reset_id) +{ + return ((reset_id & GENMASK(31, 5)) >> 5) * sizeof(uint32_t); +} + +static uint8_t id2reg_bit_pos(unsigned int reset_id) +{ + return (uint8_t)(reset_id & GENMASK(4, 0)); +} + +int stm32mp_reset_assert(uint32_t id, unsigned int to_us) +{ + uint32_t offset = id2reg_offset(id); + uint32_t bitmsk = BIT(id2reg_bit_pos(id)); + uintptr_t rcc_base = stm32mp_rcc_base(); + + mmio_write_32(rcc_base + offset, bitmsk); + + if (to_us != 0U) { + uint64_t timeout_ref = timeout_init_us(to_us); + + while ((mmio_read_32(rcc_base + offset) & bitmsk) == 0U) { + if (timeout_elapsed(timeout_ref)) { + return -ETIMEDOUT; + } + } + } + + return 0; +} + +int stm32mp_reset_deassert(uint32_t id, unsigned int to_us) +{ + uint32_t offset = id2reg_offset(id) + RCC_RSTCLRR_OFFSET; + uint32_t bitmsk = BIT(id2reg_bit_pos(id)); + uintptr_t rcc_base = stm32mp_rcc_base(); + + mmio_write_32(rcc_base + offset, bitmsk); + + if (to_us != 0U) { + uint64_t timeout_ref = timeout_init_us(to_us); + + while ((mmio_read_32(rcc_base + offset) & bitmsk) != 0U) { + if (timeout_elapsed(timeout_ref)) { + return -ETIMEDOUT; + } + } + } + + return 0; +} diff --git a/drivers/st/spi/stm32_qspi.c b/drivers/st/spi/stm32_qspi.c new file mode 100644 index 0000000..73aa9ac --- /dev/null +++ b/drivers/st/spi/stm32_qspi.c @@ -0,0 +1,508 @@ +/* + * Copyright (c) 2019-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause + */ + +#include <inttypes.h> + +#include <common/debug.h> +#include <common/fdt_wrappers.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/spi_mem.h> +#include <drivers/st/stm32_gpio.h> +#include <drivers/st/stm32_qspi.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils_def.h> +#include <libfdt.h> + +#include <platform_def.h> + +/* Timeout for device interface reset */ +#define TIMEOUT_US_1_MS 1000U + +/* QUADSPI registers */ +#define QSPI_CR 0x00U +#define QSPI_DCR 0x04U +#define QSPI_SR 0x08U +#define QSPI_FCR 0x0CU +#define QSPI_DLR 0x10U +#define QSPI_CCR 0x14U +#define QSPI_AR 0x18U +#define QSPI_ABR 0x1CU +#define QSPI_DR 0x20U +#define QSPI_PSMKR 0x24U +#define QSPI_PSMAR 0x28U +#define QSPI_PIR 0x2CU +#define QSPI_LPTR 0x30U + +/* QUADSPI control register */ +#define QSPI_CR_EN BIT(0) +#define QSPI_CR_ABORT BIT(1) +#define QSPI_CR_DMAEN BIT(2) +#define QSPI_CR_TCEN BIT(3) +#define QSPI_CR_SSHIFT BIT(4) +#define QSPI_CR_DFM BIT(6) +#define QSPI_CR_FSEL BIT(7) +#define QSPI_CR_FTHRES_SHIFT 8U +#define QSPI_CR_TEIE BIT(16) +#define QSPI_CR_TCIE BIT(17) +#define QSPI_CR_FTIE BIT(18) +#define QSPI_CR_SMIE BIT(19) +#define QSPI_CR_TOIE BIT(20) +#define QSPI_CR_APMS BIT(22) +#define QSPI_CR_PMM BIT(23) +#define QSPI_CR_PRESCALER_MASK GENMASK_32(31, 24) +#define QSPI_CR_PRESCALER_SHIFT 24U + +/* QUADSPI device configuration register */ +#define QSPI_DCR_CKMODE BIT(0) +#define QSPI_DCR_CSHT_MASK GENMASK_32(10, 8) +#define QSPI_DCR_CSHT_SHIFT 8U +#define QSPI_DCR_FSIZE_MASK GENMASK_32(20, 16) +#define QSPI_DCR_FSIZE_SHIFT 16U + +/* QUADSPI status register */ +#define QSPI_SR_TEF BIT(0) +#define QSPI_SR_TCF BIT(1) +#define QSPI_SR_FTF BIT(2) +#define QSPI_SR_SMF BIT(3) +#define QSPI_SR_TOF BIT(4) +#define QSPI_SR_BUSY BIT(5) + +/* QUADSPI flag clear register */ +#define QSPI_FCR_CTEF BIT(0) +#define QSPI_FCR_CTCF BIT(1) +#define QSPI_FCR_CSMF BIT(3) +#define QSPI_FCR_CTOF BIT(4) + +/* QUADSPI communication configuration register */ +#define QSPI_CCR_DDRM BIT(31) +#define QSPI_CCR_DHHC BIT(30) +#define QSPI_CCR_SIOO BIT(28) +#define QSPI_CCR_FMODE_SHIFT 26U +#define QSPI_CCR_DMODE_SHIFT 24U +#define QSPI_CCR_DCYC_SHIFT 18U +#define QSPI_CCR_ABSIZE_SHIFT 16U +#define QSPI_CCR_ABMODE_SHIFT 14U +#define QSPI_CCR_ADSIZE_SHIFT 12U +#define QSPI_CCR_ADMODE_SHIFT 10U +#define QSPI_CCR_IMODE_SHIFT 8U +#define QSPI_CCR_IND_WRITE 0U +#define QSPI_CCR_IND_READ 1U +#define QSPI_CCR_MEM_MAP 3U + +#define QSPI_MAX_CHIP 2U + +#define QSPI_FIFO_TIMEOUT_US 30U +#define QSPI_CMD_TIMEOUT_US 1000U +#define QSPI_BUSY_TIMEOUT_US 100U +#define QSPI_ABT_TIMEOUT_US 100U + +#define DT_QSPI_COMPAT "st,stm32f469-qspi" + +#define FREQ_100MHZ 100000000U + +struct stm32_qspi_ctrl { + uintptr_t reg_base; + uintptr_t mm_base; + size_t mm_size; + unsigned long clock_id; + unsigned int reset_id; +}; + +static struct stm32_qspi_ctrl stm32_qspi; + +static uintptr_t qspi_base(void) +{ + return stm32_qspi.reg_base; +} + +static int stm32_qspi_wait_for_not_busy(void) +{ + uint64_t timeout = timeout_init_us(QSPI_BUSY_TIMEOUT_US); + + while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_BUSY) != 0U) { + if (timeout_elapsed(timeout)) { + ERROR("%s: busy timeout\n", __func__); + return -ETIMEDOUT; + } + } + + return 0; +} + +static int stm32_qspi_wait_cmd(const struct spi_mem_op *op) +{ + int ret = 0; + uint64_t timeout; + + timeout = timeout_init_us(QSPI_CMD_TIMEOUT_US); + while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TCF) == 0U) { + if (timeout_elapsed(timeout)) { + ret = -ETIMEDOUT; + break; + } + } + + if (ret == 0) { + if ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TEF) != 0U) { + ERROR("%s: transfer error\n", __func__); + ret = -EIO; + } + } else { + ERROR("%s: cmd timeout\n", __func__); + } + + /* Clear flags */ + mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF | QSPI_FCR_CTEF); + + if (ret == 0) { + ret = stm32_qspi_wait_for_not_busy(); + } + + return ret; +} + +static void stm32_qspi_read_fifo(uint8_t *val, uintptr_t addr) +{ + *val = mmio_read_8(addr); +} + +static void stm32_qspi_write_fifo(uint8_t *val, uintptr_t addr) +{ + mmio_write_8(addr, *val); +} + +static int stm32_qspi_poll(const struct spi_mem_op *op) +{ + void (*fifo)(uint8_t *val, uintptr_t addr); + uint32_t len; + uint8_t *buf; + + if (op->data.dir == SPI_MEM_DATA_IN) { + fifo = stm32_qspi_read_fifo; + } else { + fifo = stm32_qspi_write_fifo; + } + + buf = (uint8_t *)op->data.buf; + + for (len = op->data.nbytes; len != 0U; len--) { + uint64_t timeout = timeout_init_us(QSPI_FIFO_TIMEOUT_US); + + while ((mmio_read_32(qspi_base() + QSPI_SR) & + QSPI_SR_FTF) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("%s: fifo timeout\n", __func__); + return -ETIMEDOUT; + } + } + + fifo(buf++, qspi_base() + QSPI_DR); + } + + return 0; +} + +static int stm32_qspi_mm(const struct spi_mem_op *op) +{ + memcpy(op->data.buf, + (void *)(stm32_qspi.mm_base + (size_t)op->addr.val), + op->data.nbytes); + + return 0; +} + +static int stm32_qspi_tx(const struct spi_mem_op *op, uint8_t mode) +{ + if (op->data.nbytes == 0U) { + return 0; + } + + if (mode == QSPI_CCR_MEM_MAP) { + return stm32_qspi_mm(op); + } + + return stm32_qspi_poll(op); +} + +static unsigned int stm32_qspi_get_mode(uint8_t buswidth) +{ + if (buswidth == 4U) { + return 3U; + } + + return buswidth; +} + +static int stm32_qspi_exec_op(const struct spi_mem_op *op) +{ + uint64_t timeout; + uint32_t ccr; + size_t addr_max; + uint8_t mode = QSPI_CCR_IND_WRITE; + int ret; + + VERBOSE("%s: cmd:%x mode:%d.%d.%d.%d addr:%" PRIx64 " len:%x\n", + __func__, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, + op->dummy.buswidth, op->data.buswidth, + op->addr.val, op->data.nbytes); + + addr_max = op->addr.val + op->data.nbytes + 1U; + + if ((op->data.dir == SPI_MEM_DATA_IN) && (op->data.nbytes != 0U)) { + if ((addr_max < stm32_qspi.mm_size) && + (op->addr.buswidth != 0U)) { + mode = QSPI_CCR_MEM_MAP; + } else { + mode = QSPI_CCR_IND_READ; + } + } + + if (op->data.nbytes != 0U) { + mmio_write_32(qspi_base() + QSPI_DLR, op->data.nbytes - 1U); + } + + ccr = mode << QSPI_CCR_FMODE_SHIFT; + ccr |= op->cmd.opcode; + ccr |= stm32_qspi_get_mode(op->cmd.buswidth) << QSPI_CCR_IMODE_SHIFT; + + if (op->addr.nbytes != 0U) { + ccr |= (op->addr.nbytes - 1U) << QSPI_CCR_ADSIZE_SHIFT; + ccr |= stm32_qspi_get_mode(op->addr.buswidth) << + QSPI_CCR_ADMODE_SHIFT; + } + + if ((op->dummy.buswidth != 0U) && (op->dummy.nbytes != 0U)) { + ccr |= (op->dummy.nbytes * 8U / op->dummy.buswidth) << + QSPI_CCR_DCYC_SHIFT; + } + + if (op->data.nbytes != 0U) { + ccr |= stm32_qspi_get_mode(op->data.buswidth) << + QSPI_CCR_DMODE_SHIFT; + } + + mmio_write_32(qspi_base() + QSPI_CCR, ccr); + + if ((op->addr.nbytes != 0U) && (mode != QSPI_CCR_MEM_MAP)) { + mmio_write_32(qspi_base() + QSPI_AR, op->addr.val); + } + + ret = stm32_qspi_tx(op, mode); + + /* + * Abort in: + * - Error case. + * - Memory mapped read: prefetching must be stopped if we read the last + * byte of device (device size - fifo size). If device size is not + * known then prefetching is always stopped. + */ + if ((ret != 0) || (mode == QSPI_CCR_MEM_MAP)) { + goto abort; + } + + /* Wait end of TX in indirect mode */ + ret = stm32_qspi_wait_cmd(op); + if (ret != 0) { + goto abort; + } + + return 0; + +abort: + mmio_setbits_32(qspi_base() + QSPI_CR, QSPI_CR_ABORT); + + /* Wait clear of abort bit by hardware */ + timeout = timeout_init_us(QSPI_ABT_TIMEOUT_US); + while ((mmio_read_32(qspi_base() + QSPI_CR) & QSPI_CR_ABORT) != 0U) { + if (timeout_elapsed(timeout)) { + ret = -ETIMEDOUT; + break; + } + } + + mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF); + + if (ret != 0) { + ERROR("%s: exec op error\n", __func__); + } + + return ret; +} + +static int stm32_qspi_claim_bus(unsigned int cs) +{ + uint32_t cr; + + if (cs >= QSPI_MAX_CHIP) { + return -ENODEV; + } + + /* Set chip select and enable the controller */ + cr = QSPI_CR_EN; + if (cs == 1U) { + cr |= QSPI_CR_FSEL; + } + + mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_FSEL, cr); + + return 0; +} + +static void stm32_qspi_release_bus(void) +{ + mmio_clrbits_32(qspi_base() + QSPI_CR, QSPI_CR_EN); +} + +static int stm32_qspi_set_speed(unsigned int hz) +{ + unsigned long qspi_clk = clk_get_rate(stm32_qspi.clock_id); + uint32_t prescaler = UINT8_MAX; + uint32_t csht; + int ret; + + if (qspi_clk == 0U) { + return -EINVAL; + } + + if (hz > 0U) { + prescaler = div_round_up(qspi_clk, hz) - 1U; + if (prescaler > UINT8_MAX) { + prescaler = UINT8_MAX; + } + } + + csht = div_round_up((5U * qspi_clk) / (prescaler + 1U), FREQ_100MHZ); + csht = ((csht - 1U) << QSPI_DCR_CSHT_SHIFT) & QSPI_DCR_CSHT_MASK; + + ret = stm32_qspi_wait_for_not_busy(); + if (ret != 0) { + return ret; + } + + mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_PRESCALER_MASK, + prescaler << QSPI_CR_PRESCALER_SHIFT); + + mmio_clrsetbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CSHT_MASK, csht); + + VERBOSE("%s: speed=%lu\n", __func__, qspi_clk / (prescaler + 1U)); + + return 0; +} + +static int stm32_qspi_set_mode(unsigned int mode) +{ + int ret; + + ret = stm32_qspi_wait_for_not_busy(); + if (ret != 0) { + return ret; + } + + if ((mode & SPI_CS_HIGH) != 0U) { + return -ENODEV; + } + + if (((mode & SPI_CPHA) != 0U) && ((mode & SPI_CPOL) != 0U)) { + mmio_setbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE); + } else if (((mode & SPI_CPHA) == 0U) && ((mode & SPI_CPOL) == 0U)) { + mmio_clrbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE); + } else { + return -ENODEV; + } + + VERBOSE("%s: mode=0x%x\n", __func__, mode); + + if ((mode & SPI_RX_QUAD) != 0U) { + VERBOSE("rx: quad\n"); + } else if ((mode & SPI_RX_DUAL) != 0U) { + VERBOSE("rx: dual\n"); + } else { + VERBOSE("rx: single\n"); + } + + if ((mode & SPI_TX_QUAD) != 0U) { + VERBOSE("tx: quad\n"); + } else if ((mode & SPI_TX_DUAL) != 0U) { + VERBOSE("tx: dual\n"); + } else { + VERBOSE("tx: single\n"); + } + + return 0; +} + +static const struct spi_bus_ops stm32_qspi_bus_ops = { + .claim_bus = stm32_qspi_claim_bus, + .release_bus = stm32_qspi_release_bus, + .set_speed = stm32_qspi_set_speed, + .set_mode = stm32_qspi_set_mode, + .exec_op = stm32_qspi_exec_op, +}; + +int stm32_qspi_init(void) +{ + size_t size; + int qspi_node; + struct dt_node_info info; + void *fdt = NULL; + int ret; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + qspi_node = dt_get_node(&info, -1, DT_QSPI_COMPAT); + if (qspi_node < 0) { + ERROR("No QSPI ctrl found\n"); + return -FDT_ERR_NOTFOUND; + } + + if (info.status == DT_DISABLED) { + return -FDT_ERR_NOTFOUND; + } + + ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi", + &stm32_qspi.reg_base, &size); + if (ret != 0) { + return ret; + } + + ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi_mm", + &stm32_qspi.mm_base, + &stm32_qspi.mm_size); + if (ret != 0) { + return ret; + } + + if (dt_set_pinctrl_config(qspi_node) != 0) { + return -FDT_ERR_BADVALUE; + } + + if ((info.clock < 0) || (info.reset < 0)) { + return -FDT_ERR_BADVALUE; + } + + stm32_qspi.clock_id = (unsigned long)info.clock; + stm32_qspi.reset_id = (unsigned int)info.reset; + + clk_enable(stm32_qspi.clock_id); + + ret = stm32mp_reset_assert(stm32_qspi.reset_id, TIMEOUT_US_1_MS); + if (ret != 0) { + panic(); + } + ret = stm32mp_reset_deassert(stm32_qspi.reset_id, TIMEOUT_US_1_MS); + if (ret != 0) { + panic(); + } + + mmio_write_32(qspi_base() + QSPI_CR, QSPI_CR_SSHIFT); + mmio_write_32(qspi_base() + QSPI_DCR, QSPI_DCR_FSIZE_MASK); + + return spi_mem_init_slave(fdt, qspi_node, &stm32_qspi_bus_ops); +}; diff --git a/drivers/st/uart/aarch32/stm32_console.S b/drivers/st/uart/aarch32/stm32_console.S new file mode 100644 index 0000000..e3e0e67 --- /dev/null +++ b/drivers/st/uart/aarch32/stm32_console.S @@ -0,0 +1,261 @@ +/* + * Copyright (c) 2018-2022, ARM Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ +#include <asm_macros.S> +#include <assert_macros.S> +#include <console_macros.S> +#include <drivers/st/stm32_console.h> +#include <drivers/st/stm32_uart_regs.h> + +#define USART_TIMEOUT 0x1000 + + /* + * "core" functions are low-level implementations that don't require + * writeable memory and are thus safe to call in BL1 crash context. + */ + .globl console_stm32_core_init + .globl console_stm32_core_putc + .globl console_stm32_core_getc + .globl console_stm32_core_flush + + .globl console_stm32_putc + .globl console_stm32_flush + + + + /* ----------------------------------------------------------------- + * int console_core_init(uintptr_t base_addr, + * unsigned int uart_clk, + * unsigned int baud_rate) + * + * Function to initialize the console without a C Runtime to print + * debug information. This function will be accessed by console_init + * and crash reporting. + * + * In: r0 - console base address + * r1 - Uart clock in Hz + * r2 - Baud rate + * Out: return 1 on success else 0 on error + * Clobber list : r1, r2, r3 + * ----------------------------------------------------------------- + */ +func console_stm32_core_init + /* Check the input base address */ + cmp r0, #0 + beq core_init_fail +#if !defined(IMAGE_BL2) +#if STM32MP_RECONFIGURE_CONSOLE + /* UART clock rate is set to 0 in BL32, skip init in that case */ + cmp r1, #0 + beq 1f +#else /* STM32MP_RECONFIGURE_CONSOLE */ + /* Skip UART initialization if it is already enabled */ + ldr r3, [r0, #USART_CR1] + ands r3, r3, #USART_CR1_UE + bne 1f +#endif /* STM32MP_RECONFIGURE_CONSOLE */ +#endif /* IMAGE_BL2 */ + /* Check baud rate and uart clock for sanity */ + cmp r1, #0 + beq core_init_fail + cmp r2, #0 + beq core_init_fail + /* Disable UART */ + ldr r3, [r0, #USART_CR1] + bic r3, r3, #USART_CR1_UE + str r3, [r0, #USART_CR1] + /* Configure UART */ + orr r3, r3, #(USART_CR1_TE | USART_CR1_FIFOEN) + str r3, [r0, #USART_CR1] + ldr r3, [r0, #USART_CR2] + bic r3, r3, #USART_CR2_STOP + str r3, [r0, #USART_CR2] + /* Divisor = (Uart clock + (baudrate / 2)) / baudrate */ + lsr r3, r2, #1 + add r3, r1, r3 + udiv r3, r3, r2 + cmp r3, #16 + bhi 2f + /* Oversampling 8 */ + /* Divisor = (2 * Uart clock + (baudrate / 2)) / baudrate */ + lsr r3, r2, #1 + add r3, r3, r1, lsl #1 + udiv r3, r3, r2 + and r1, r3, #USART_BRR_DIV_FRACTION + lsr r1, r1, #1 + bic r3, r3, #USART_BRR_DIV_FRACTION + orr r3, r3, r1 + ldr r1, [r0, #USART_CR1] + orr r1, r1, #USART_CR1_OVER8 + str r1, [r0, #USART_CR1] +2: + str r3, [r0, #USART_BRR] + /* Enable UART */ + ldr r3, [r0, #USART_CR1] + orr r3, r3, #USART_CR1_UE + str r3, [r0, #USART_CR1] + /* Check TEACK bit */ + mov r2, #USART_TIMEOUT +teack_loop: + subs r2, r2, #1 + beq core_init_fail + ldr r3, [r0, #USART_ISR] + tst r3, #USART_ISR_TEACK + beq teack_loop +1: + mov r0, #1 + bx lr +core_init_fail: + mov r0, #0 + bx lr +endfunc console_stm32_core_init + + .globl console_stm32_register + + /* ------------------------------------------------------- + * int console_stm32_register(uintptr_t baseaddr, + * uint32_t clock, uint32_t baud, + * console_t *console); + * Function to initialize and register a new STM32 + * console. Storage passed in for the console struct + * *must* be persistent (i.e. not from the stack). + * In: r0 - UART register base address + * r1 - UART clock in Hz + * r2 - Baud rate + * r3 - pointer to empty console_t struct + * Out: return 1 on success, 0 on error + * Clobber list : r0, r1, r2 + * ------------------------------------------------------- + */ +func console_stm32_register + push {r4, lr} + mov r4, r3 + cmp r4, #0 + beq register_fail + str r0, [r4, #CONSOLE_T_BASE] + + bl console_stm32_core_init + cmp r0, #0 + beq register_fail + + mov r0, r4 + pop {r4, lr} + finish_console_register stm32 putc=1, getc=0, flush=1 + +register_fail: + pop {r4, pc} +endfunc console_stm32_register + + /* --------------------------------------------------------------- + * int console_core_putc(int c, uintptr_t base_addr) + * + * Function to output a character over the console. It returns the + * character printed on success or -1 on error. + * + * In : r0 - character to be printed + * r1 - console base address + * Out : return -1 on error else return character. + * Clobber list : r2 + * --------------------------------------------------------------- + */ +func console_stm32_core_putc + /* Check the input parameter */ + cmp r1, #0 + beq putc_error + + /* Check Transmit Data Register Empty */ +txe_loop: + ldr r2, [r1, #USART_ISR] + tst r2, #USART_ISR_TXE + beq txe_loop + str r0, [r1, #USART_TDR] + /* Check transmit complete flag */ +tc_loop: + ldr r2, [r1, #USART_ISR] + tst r2, #USART_ISR_TC + beq tc_loop + bx lr +putc_error: + mov r0, #-1 + bx lr +endfunc console_stm32_core_putc + + /* ------------------------------------------------------------ + * int console_stm32_putc(int c, console_t *console) + * Function to output a character over the console. It + * returns the character printed on success or -1 on error. + * In: r0 - character to be printed + * r1 - pointer to console_t structure + * Out : return -1 on error else return character. + * Clobber list: r2 + * ------------------------------------------------------------ + */ +func console_stm32_putc +#if ENABLE_ASSERTIONS + cmp r1, #0 + ASM_ASSERT(ne) +#endif /* ENABLE_ASSERTIONS */ + ldr r1, [r1, #CONSOLE_T_BASE] + b console_stm32_core_putc +endfunc console_stm32_putc + + /* ----------------------------------------------------------- + * int console_core_getc(uintptr_t base_addr) + * + * Function to get a character from the console. + * It returns the character grabbed on success or -1 on error. + * + * In : r0 - console base address + * Out : return -1. + * Clobber list : r0, r1 + * ----------------------------------------------------------- + */ +func console_stm32_core_getc + /* Not supported */ + mov r0, #-1 + bx lr +endfunc console_stm32_core_getc + + /* --------------------------------------------------------------- + * void console_core_flush(uintptr_t base_addr) + * + * Function to force a write of all buffered data that hasn't been + * output. + * + * In : r0 - console base address + * Out : void. + * Clobber list : r0, r1 + * --------------------------------------------------------------- + */ +func console_stm32_core_flush +#if ENABLE_ASSERTIONS + cmp r0, #0 + ASM_ASSERT(ne) +#endif /* ENABLE_ASSERTIONS */ + /* Check Transmit Data Register Empty */ +txe_loop_3: + ldr r1, [r0, #USART_ISR] + tst r1, #USART_ISR_TXE + beq txe_loop_3 + bx lr +endfunc console_stm32_core_flush + + /* ------------------------------------------------------ + * void console_stm32_flush(console_t *console) + * Function to force a write of all buffered + * data that hasn't been output. + * In : r0 - pointer to console_t structure + * Out : void. + * Clobber list: r0, r1 + * ------------------------------------------------------ + */ +func console_stm32_flush +#if ENABLE_ASSERTIONS + cmp r0, #0 + ASM_ASSERT(ne) +#endif /* ENABLE_ASSERTIONS */ + ldr r0, [r0, #CONSOLE_T_BASE] + b console_stm32_core_flush +endfunc console_stm32_flush diff --git a/drivers/st/uart/stm32_uart.c b/drivers/st/uart/stm32_uart.c new file mode 100644 index 0000000..63970c7 --- /dev/null +++ b/drivers/st/uart/stm32_uart.c @@ -0,0 +1,439 @@ +/* + * Copyright (c) 2021-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <string.h> + +#include <common/bl_common.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_gpio.h> +#include <drivers/st/stm32_uart.h> +#include <drivers/st/stm32_uart_regs.h> +#include <drivers/st/stm32mp_clkfunc.h> +#include <lib/mmio.h> + +#include <platform_def.h> + +/* UART time-out value */ +#define STM32_UART_TIMEOUT_US 20000U + +/* Mask to clear ALL the configuration registers */ + +#define STM32_UART_CR1_FIELDS \ + (USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \ + USART_CR1_RE | USART_CR1_OVER8 | USART_CR1_FIFOEN) + +#define STM32_UART_CR2_FIELDS \ + (USART_CR2_SLVEN | USART_CR2_DIS_NSS | USART_CR2_ADDM7 | \ + USART_CR2_LBDL | USART_CR2_LBDIE | USART_CR2_LBCL | \ + USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_CLKEN | \ + USART_CR2_STOP | USART_CR2_LINEN | USART_CR2_SWAP | \ + USART_CR2_RXINV | USART_CR2_TXINV | USART_CR2_DATAINV | \ + USART_CR2_MSBFIRST | USART_CR2_ABREN | USART_CR2_ABRMODE | \ + USART_CR2_RTOEN | USART_CR2_ADD) + +#define STM32_UART_CR3_FIELDS \ + (USART_CR3_EIE | USART_CR3_IREN | USART_CR3_IRLP | \ + USART_CR3_HDSEL | USART_CR3_NACK | USART_CR3_SCEN | \ + USART_CR3_DMAR | USART_CR3_DMAT | USART_CR3_RTSE | \ + USART_CR3_CTSE | USART_CR3_CTSIE | USART_CR3_ONEBIT | \ + USART_CR3_OVRDIS | USART_CR3_DDRE | USART_CR3_DEM | \ + USART_CR3_DEP | USART_CR3_SCARCNT | USART_CR3_WUS | \ + USART_CR3_WUFIE | USART_CR3_TXFTIE | USART_CR3_TCBGTIE | \ + USART_CR3_RXFTCFG | USART_CR3_RXFTIE | USART_CR3_TXFTCFG) + +#define STM32_UART_ISR_ERRORS \ + (USART_ISR_ORE | USART_ISR_NE | USART_ISR_FE | USART_ISR_PE) + +static const uint16_t presc_table[STM32_UART_PRESCALER_NB] = { + 1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U +}; + +/* @brief BRR division operation to set BRR register in 8-bit oversampling + * mode. + * @param clockfreq: UART clock. + * @param baud_rate: Baud rate set by the user. + * @param prescaler: UART prescaler value. + * @retval Division result. + */ +static uint32_t uart_div_sampling8(unsigned long clockfreq, + uint32_t baud_rate, + uint32_t prescaler) +{ + uint32_t scaled_freq = clockfreq / presc_table[prescaler]; + + return ((scaled_freq * 2) + (baud_rate / 2)) / baud_rate; + +} + +/* @brief BRR division operation to set BRR register in 16-bit oversampling + * mode. + * @param clockfreq: UART clock. + * @param baud_rate: Baud rate set by the user. + * @param prescaler: UART prescaler value. + * @retval Division result. + */ +static uint32_t uart_div_sampling16(unsigned long clockfreq, + uint32_t baud_rate, + uint32_t prescaler) +{ + uint32_t scaled_freq = clockfreq / presc_table[prescaler]; + + return (scaled_freq + (baud_rate / 2)) / baud_rate; + +} + +/* + * @brief Return the UART clock frequency. + * @param huart: UART handle. + * @retval Frequency value in Hz. + */ +static unsigned long uart_get_clock_freq(struct stm32_uart_handle_s *huart) +{ + return fdt_get_uart_clock_freq((uintptr_t)huart->base); +} + +/* + * @brief Configure the UART peripheral. + * @param huart: UART handle. + * @retval UART status. + */ +static int uart_set_config(struct stm32_uart_handle_s *huart, + const struct stm32_uart_init_s *init) +{ + uint32_t tmpreg; + unsigned long clockfreq; + unsigned long int_div; + uint32_t brrtemp; + uint32_t over_sampling; + + /*---------------------- USART BRR configuration --------------------*/ + clockfreq = uart_get_clock_freq(huart); + if (clockfreq == 0UL) { + return -ENODEV; + } + + int_div = clockfreq / init->baud_rate; + if (int_div < 16U) { + uint32_t usartdiv = uart_div_sampling8(clockfreq, + init->baud_rate, + init->prescaler); + + brrtemp = (usartdiv & USART_BRR_DIV_MANTISSA) | + ((usartdiv & USART_BRR_DIV_FRACTION) >> 1); + over_sampling = USART_CR1_OVER8; + } else { + brrtemp = uart_div_sampling16(clockfreq, + init->baud_rate, + init->prescaler) & + (USART_BRR_DIV_FRACTION | USART_BRR_DIV_MANTISSA); + over_sampling = 0x0U; + } + mmio_write_32(huart->base + USART_BRR, brrtemp); + + /* + * ---------------------- USART CR1 Configuration -------------------- + * Clear M, PCE, PS, TE, RE and OVER8 bits and configure + * the UART word length, parity, mode and oversampling: + * - set the M bits according to init->word_length value, + * - set PCE and PS bits according to init->parity value, + * - set TE and RE bits according to init->mode value, + * - set OVER8 bit according baudrate and clock. + */ + tmpreg = init->word_length | + init->parity | + init->mode | + over_sampling | + init->fifo_mode; + mmio_clrsetbits_32(huart->base + USART_CR1, STM32_UART_CR1_FIELDS, tmpreg); + + /* + * --------------------- USART CR2 Configuration --------------------- + * Configure the UART Stop Bits: Set STOP[13:12] bits according + * to init->stop_bits value. + */ + mmio_clrsetbits_32(huart->base + USART_CR2, STM32_UART_CR2_FIELDS, + init->stop_bits); + + /* + * --------------------- USART CR3 Configuration --------------------- + * Configure: + * - UART HardWare Flow Control: set CTSE and RTSE bits according + * to init->hw_flow_control value, + * - one-bit sampling method versus three samples' majority rule + * according to init->one_bit_sampling (not applicable to + * LPUART), + * - set TXFTCFG bit according to init->tx_fifo_threshold value, + * - set RXFTCFG bit according to init->rx_fifo_threshold value. + */ + tmpreg = init->hw_flow_control | init->one_bit_sampling; + + if (init->fifo_mode == USART_CR1_FIFOEN) { + tmpreg |= init->tx_fifo_threshold | + init->rx_fifo_threshold; + } + + mmio_clrsetbits_32(huart->base + USART_CR3, STM32_UART_CR3_FIELDS, tmpreg); + + /* + * --------------------- USART PRESC Configuration ------------------- + * Configure UART Clock Prescaler : set PRESCALER according to + * init->prescaler value. + */ + assert(init->prescaler < STM32_UART_PRESCALER_NB); + mmio_clrsetbits_32(huart->base + USART_PRESC, USART_PRESC_PRESCALER, + init->prescaler); + + return 0; +} + +/* + * @brief Handle UART communication timeout. + * @param huart: UART handle. + * @param flag: Specifies the UART flag to check. + * @retval UART status. + */ +static int stm32_uart_wait_flag(struct stm32_uart_handle_s *huart, uint32_t flag) +{ + uint64_t timeout_ref = timeout_init_us(STM32_UART_TIMEOUT_US); + + while ((mmio_read_32(huart->base + USART_ISR) & flag) == 0U) { + if (timeout_elapsed(timeout_ref)) { + return -ETIMEDOUT; + } + } + + return 0; +} + +/* + * @brief Check the UART idle State. + * @param huart: UART handle. + * @retval UART status. + */ +static int stm32_uart_check_idle(struct stm32_uart_handle_s *huart) +{ + int ret; + + /* Check if the transmitter is enabled */ + if ((mmio_read_32(huart->base + USART_CR1) & USART_CR1_TE) == USART_CR1_TE) { + ret = stm32_uart_wait_flag(huart, USART_ISR_TEACK); + if (ret != 0) { + return ret; + } + } + + /* Check if the receiver is enabled */ + if ((mmio_read_32(huart->base + USART_CR1) & USART_CR1_RE) == USART_CR1_RE) { + ret = stm32_uart_wait_flag(huart, USART_ISR_REACK); + if (ret != 0) { + return ret; + } + } + + return 0; +} + +/* + * @brief Compute RDR register mask depending on word length. + * @param huart: UART handle. + * @retval Mask value. + */ +static unsigned int stm32_uart_rdr_mask(const struct stm32_uart_init_s *init) +{ + unsigned int mask = 0U; + + switch (init->word_length) { + case STM32_UART_WORDLENGTH_9B: + mask = GENMASK(8, 0); + break; + case STM32_UART_WORDLENGTH_8B: + mask = GENMASK(7, 0); + break; + case STM32_UART_WORDLENGTH_7B: + mask = GENMASK(6, 0); + break; + default: + break; /* not reached */ + } + + if (init->parity != STM32_UART_PARITY_NONE) { + mask >>= 1; + } + + return mask; +} + +/* + * @brief Check interrupt and status errors. + * @retval True if error detected, false otherwise. + */ +static bool stm32_uart_error_detected(struct stm32_uart_handle_s *huart) +{ + return (mmio_read_32(huart->base + USART_ISR) & STM32_UART_ISR_ERRORS) != 0U; +} + +/* + * @brief Clear status errors. + */ +static void stm32_uart_error_clear(struct stm32_uart_handle_s *huart) +{ + mmio_write_32(huart->base + USART_ICR, STM32_UART_ISR_ERRORS); +} + +/* + * @brief Stop the UART. + * @param base: UART base address. + */ +void stm32_uart_stop(uintptr_t base) +{ + mmio_clrbits_32(base + USART_CR1, USART_CR1_UE); +} + +/* + * @brief Initialize UART. + * @param huart: UART handle. + * @param base_addr: base address of UART. + * @param init: UART initialization parameter. + * @retval UART status. + */ +int stm32_uart_init(struct stm32_uart_handle_s *huart, + uintptr_t base_addr, + const struct stm32_uart_init_s *init) +{ + int ret; + int uart_node; + int clk; + void *fdt = NULL; + + if (huart == NULL || init == NULL || base_addr == 0U) { + return -EINVAL; + } + + huart->base = base_addr; + + /* Search UART instance in DT */ + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + if (fdt == NULL) { + return -FDT_ERR_NOTFOUND; + } + + uart_node = dt_match_instance_by_compatible(DT_UART_COMPAT, base_addr); + if (uart_node == -FDT_ERR_NOTFOUND) { + return -FDT_ERR_NOTFOUND; + } + + /* Pinctrl initialization */ + if (dt_set_pinctrl_config(uart_node) != 0) { + return -FDT_ERR_BADVALUE; + } + + /* Clock initialization */ + clk = fdt_get_clock_id(uart_node); + if (clk < 0) { + return -FDT_ERR_NOTFOUND; + } + clk_enable(clk); + + /* Disable the peripheral */ + stm32_uart_stop(huart->base); + + /* Computation of UART mask to apply to RDR register */ + huart->rdr_mask = stm32_uart_rdr_mask(init); + + /* Init the peripheral */ + ret = uart_set_config(huart, init); + if (ret != 0) { + return ret; + } + + /* Enable the peripheral */ + mmio_setbits_32(huart->base + USART_CR1, USART_CR1_UE); + + /* TEACK and/or REACK to check */ + return stm32_uart_check_idle(huart); +} + +/* + * @brief Transmit one data in no blocking mode. + * @param huart: UART handle. + * @param c: data to sent. + * @retval UART status. + */ +int stm32_uart_putc(struct stm32_uart_handle_s *huart, int c) +{ + int ret; + + if (huart == NULL) { + return -EINVAL; + } + + ret = stm32_uart_wait_flag(huart, USART_ISR_TXE); + if (ret != 0) { + return ret; + } + + mmio_write_32(huart->base + USART_TDR, c); + if (stm32_uart_error_detected(huart)) { + stm32_uart_error_clear(huart); + return -EFAULT; + } + + return 0; +} + +/* + * @brief Flush TX Transmit fifo + * @param huart: UART handle. + * @retval UART status. + */ +int stm32_uart_flush(struct stm32_uart_handle_s *huart) +{ + int ret; + + if (huart == NULL) { + return -EINVAL; + } + + ret = stm32_uart_wait_flag(huart, USART_ISR_TXE); + if (ret != 0) { + return ret; + } + + return stm32_uart_wait_flag(huart, USART_ISR_TC); +} + +/* + * @brief Receive a data in no blocking mode. + * @retval value if >0 or UART status. + */ +int stm32_uart_getc(struct stm32_uart_handle_s *huart) +{ + uint32_t data; + + if (huart == NULL) { + return -EINVAL; + } + + /* Check if data is available */ + if ((mmio_read_32(huart->base + USART_ISR) & USART_ISR_RXNE) == 0U) { + return -EAGAIN; + } + + data = mmio_read_32(huart->base + USART_RDR) & huart->rdr_mask; + + if (stm32_uart_error_detected(huart)) { + stm32_uart_error_clear(huart); + return -EFAULT; + } + + return (int)data; +} diff --git a/drivers/st/usb/stm32mp1_usb.c b/drivers/st/usb/stm32mp1_usb.c new file mode 100644 index 0000000..9a49690 --- /dev/null +++ b/drivers/st/usb/stm32mp1_usb.c @@ -0,0 +1,1091 @@ +/* + * Copyright (c) 2021, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <stdint.h> + +#include <arch_helpers.h> +#include <common/debug.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32mp1_usb.h> +#include <lib/mmio.h> + +#include <platform_def.h> + +#define USB_OTG_MODE_DEVICE 0U +#define USB_OTG_MODE_HOST 1U +#define USB_OTG_MODE_DRD 2U + +#define EP_TYPE_CTRL 0U +#define EP_TYPE_ISOC 1U +#define EP_TYPE_BULK 2U +#define EP_TYPE_INTR 3U + +#define USBD_FIFO_FLUSH_TIMEOUT_US 1000U +#define EP0_FIFO_SIZE 64U + +/* OTG registers offsets */ +#define OTG_GOTGINT 0x004U +#define OTG_GAHBCFG 0x008U +#define OTG_GUSBCFG 0x00CU +#define OTG_GRSTCTL 0x010U +#define OTG_GINTSTS 0x014U +#define OTG_GINTMSK 0x018U +#define OTG_GRXSTSP 0x020U +#define OTG_GLPMCFG 0x054U +#define OTG_DCFG 0x800U +#define OTG_DCTL 0x804U +#define OTG_DSTS 0x808U +#define OTG_DIEPMSK 0x810U +#define OTG_DOEPMSK 0x814U +#define OTG_DAINT 0x818U +#define OTG_DAINTMSK 0x81CU +#define OTG_DIEPEMPMSK 0x834U + +/* Definitions for OTG_DIEPx registers */ +#define OTG_DIEP_BASE 0x900U +#define OTG_DIEP_SIZE 0x20U +#define OTG_DIEPCTL 0x00U +#define OTG_DIEPINT 0x08U +#define OTG_DIEPTSIZ 0x10U +#define OTG_DIEPDMA 0x14U +#define OTG_DTXFSTS 0x18U +#define OTG_DIEP_MAX_NB 9U + +/* Definitions for OTG_DOEPx registers */ +#define OTG_DOEP_BASE 0xB00U +#define OTG_DOEP_SIZE 0x20U +#define OTG_DOEPCTL 0x00U +#define OTG_DOEPINT 0x08U +#define OTG_DOEPTSIZ 0x10U +#define OTG_DOEPDMA 0x14U +#define OTG_D0EP_MAX_NB 9U + +/* Definitions for OTG_DAINT registers */ +#define OTG_DAINT_OUT_MASK GENMASK(31, 16) +#define OTG_DAINT_OUT_SHIFT 16U +#define OTG_DAINT_IN_MASK GENMASK(15, 0) +#define OTG_DAINT_IN_SHIFT 0U + +#define OTG_DAINT_EP0_IN BIT(16) +#define OTG_DAINT_EP0_OUT BIT(0) + +/* Definitions for FIFOs */ +#define OTG_FIFO_BASE 0x1000U +#define OTG_FIFO_SIZE 0x1000U + +/* Bit definitions for OTG_GOTGINT register */ +#define OTG_GOTGINT_SEDET BIT(2) + +/* Bit definitions for OTG_GAHBCFG register */ +#define OTG_GAHBCFG_GINT BIT(0) + +/* Bit definitions for OTG_GUSBCFG register */ +#define OTG_GUSBCFG_TRDT GENMASK(13, 10) +#define OTG_GUSBCFG_TRDT_SHIFT 10U + +#define USBD_HS_TRDT_VALUE 9U + +/* Bit definitions for OTG_GRSTCTL register */ +#define OTG_GRSTCTL_RXFFLSH BIT(4) +#define OTG_GRSTCTL_TXFFLSH BIT(5) +#define OTG_GRSTCTL_TXFNUM_SHIFT 6U + +/* Bit definitions for OTG_GINTSTS register */ +#define OTG_GINTSTS_CMOD BIT(0) +#define OTG_GINTSTS_MMIS BIT(1) +#define OTG_GINTSTS_OTGINT BIT(2) +#define OTG_GINTSTS_SOF BIT(3) +#define OTG_GINTSTS_RXFLVL BIT(4) +#define OTG_GINTSTS_USBSUSP BIT(11) +#define OTG_GINTSTS_USBRST BIT(12) +#define OTG_GINTSTS_ENUMDNE BIT(13) +#define OTG_GINTSTS_IEPINT BIT(18) +#define OTG_GINTSTS_OEPINT BIT(19) +#define OTG_GINTSTS_IISOIXFR BIT(20) +#define OTG_GINTSTS_IPXFR_INCOMPISOOUT BIT(21) +#define OTG_GINTSTS_LPMINT BIT(27) +#define OTG_GINTSTS_SRQINT BIT(30) +#define OTG_GINTSTS_WKUPINT BIT(31) + +/* Bit definitions for OTG_GRXSTSP register */ +#define OTG_GRXSTSP_EPNUM GENMASK(3, 0) +#define OTG_GRXSTSP_BCNT GENMASK(14, 4) +#define OTG_GRXSTSP_BCNT_SHIFT 4U +#define OTG_GRXSTSP_PKTSTS GENMASK(20, 17) +#define OTG_GRXSTSP_PKTSTS_SHIFT 17U + +#define STS_GOUT_NAK 1U +#define STS_DATA_UPDT 2U +#define STS_XFER_COMP 3U +#define STS_SETUP_COMP 4U +#define STS_SETUP_UPDT 6U + +/* Bit definitions for OTG_GLPMCFG register */ +#define OTG_GLPMCFG_BESL GENMASK(5, 2) + +/* Bit definitions for OTG_DCFG register */ +#define OTG_DCFG_DAD GENMASK(10, 4) +#define OTG_DCFG_DAD_SHIFT 4U + +/* Bit definitions for OTG_DCTL register */ +#define OTG_DCTL_RWUSIG BIT(0) +#define OTG_DCTL_SDIS BIT(1) +#define OTG_DCTL_CGINAK BIT(8) + +/* Bit definitions for OTG_DSTS register */ +#define OTG_DSTS_SUSPSTS BIT(0) +#define OTG_DSTS_ENUMSPD_MASK GENMASK(2, 1) +#define OTG_DSTS_FNSOF0 BIT(8) + +#define OTG_DSTS_ENUMSPD(val) ((val) << 1) +#define OTG_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ OTG_DSTS_ENUMSPD(0U) +#define OTG_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ OTG_DSTS_ENUMSPD(1U) +#define OTG_DSTS_ENUMSPD_LS_PHY_6MHZ OTG_DSTS_ENUMSPD(2U) +#define OTG_DSTS_ENUMSPD_FS_PHY_48MHZ OTG_DSTS_ENUMSPD(3U) + +/* Bit definitions for OTG_DIEPMSK register */ +#define OTG_DIEPMSK_XFRCM BIT(0) +#define OTG_DIEPMSK_EPDM BIT(1) +#define OTG_DIEPMSK_TOM BIT(3) + +/* Bit definitions for OTG_DOEPMSK register */ +#define OTG_DOEPMSK_XFRCM BIT(0) +#define OTG_DOEPMSK_EPDM BIT(1) +#define OTG_DOEPMSK_STUPM BIT(3) + +/* Bit definitions for OTG_DIEPCTLx registers */ +#define OTG_DIEPCTL_MPSIZ GENMASK(10, 0) +#define OTG_DIEPCTL_STALL BIT(21) +#define OTG_DIEPCTL_CNAK BIT(26) +#define OTG_DIEPCTL_SD0PID_SEVNFRM BIT(28) +#define OTG_DIEPCTL_SODDFRM BIT(29) +#define OTG_DIEPCTL_EPDIS BIT(30) +#define OTG_DIEPCTL_EPENA BIT(31) + +/* Bit definitions for OTG_DIEPINTx registers */ +#define OTG_DIEPINT_XFRC BIT(0) +#define OTG_DIEPINT_EPDISD BIT(1) +#define OTG_DIEPINT_TOC BIT(3) +#define OTG_DIEPINT_ITTXFE BIT(4) +#define OTG_DIEPINT_INEPNE BIT(6) +#define OTG_DIEPINT_TXFE BIT(7) +#define OTG_DIEPINT_TXFE_SHIFT 7U + +#define OTG_DIEPINT_MASK (BIT(13) | BIT(11) | GENMASK(9, 0)) + +/* Bit definitions for OTG_DIEPTSIZx registers */ +#define OTG_DIEPTSIZ_XFRSIZ GENMASK(18, 0) +#define OTG_DIEPTSIZ_PKTCNT GENMASK(28, 19) +#define OTG_DIEPTSIZ_PKTCNT_SHIFT 19U +#define OTG_DIEPTSIZ_MCNT_MASK GENMASK(30, 29) +#define OTG_DIEPTSIZ_MCNT_DATA0 BIT(29) + +#define OTG_DIEPTSIZ_PKTCNT_1 BIT(19) + +/* Bit definitions for OTG_DTXFSTSx registers */ +#define OTG_DTXFSTS_INEPTFSAV GENMASK(15, 0) + +/* Bit definitions for OTG_DOEPCTLx registers */ +#define OTG_DOEPCTL_STALL BIT(21) +#define OTG_DOEPCTL_CNAK BIT(26) +#define OTG_DOEPCTL_SD0PID_SEVNFRM BIT(28) /* other than endpoint 0 */ +#define OTG_DOEPCTL_SD1PID_SODDFRM BIT(29) /* other than endpoint 0 */ +#define OTG_DOEPCTL_EPDIS BIT(30) +#define OTG_DOEPCTL_EPENA BIT(31) + +/* Bit definitions for OTG_DOEPTSIZx registers */ +#define OTG_DOEPTSIZ_XFRSIZ GENMASK(18, 0) +#define OTG_DOEPTSIZ_PKTCNT GENMASK(28, 19) +#define OTG_DOEPTSIZ_RXDPID_STUPCNT GENMASK(30, 29) + +/* Bit definitions for OTG_DOEPINTx registers */ +#define OTG_DOEPINT_XFRC BIT(0) +#define OTG_DOEPINT_STUP BIT(3) +#define OTG_DOEPINT_OTEPDIS BIT(4) + +#define OTG_DOEPINT_MASK (GENMASK(15, 12) | GENMASK(9, 8) | GENMASK(6, 0)) + +#define EP_NB 15U +#define EP_ALL 0x10U + +/* + * Flush TX FIFO. + * handle: PCD handle. + * num: FIFO number. + * This parameter can be a value from 1 to 15 or EP_ALL. + * EP_ALL= 0x10 means Flush all TX FIFOs + * return: USB status. + */ +static enum usb_status usb_dwc2_flush_tx_fifo(void *handle, uint32_t num) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uint64_t timeout = timeout_init_us(USBD_FIFO_FLUSH_TIMEOUT_US); + + mmio_write_32(usb_base_addr + OTG_GRSTCTL, + OTG_GRSTCTL_TXFFLSH | (uint32_t)(num << OTG_GRSTCTL_TXFNUM_SHIFT)); + + while ((mmio_read_32(usb_base_addr + OTG_GRSTCTL) & + OTG_GRSTCTL_TXFFLSH) == OTG_GRSTCTL_TXFFLSH) { + if (timeout_elapsed(timeout)) { + return USBD_TIMEOUT; + } + } + + return USBD_OK; +} + +/* + * Flush RX FIFO. + * handle: PCD handle. + * return: USB status. + */ +static enum usb_status usb_dwc2_flush_rx_fifo(void *handle) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uint64_t timeout = timeout_init_us(USBD_FIFO_FLUSH_TIMEOUT_US); + + mmio_write_32(usb_base_addr + OTG_GRSTCTL, OTG_GRSTCTL_RXFFLSH); + + while ((mmio_read_32(usb_base_addr + OTG_GRSTCTL) & + OTG_GRSTCTL_RXFFLSH) == OTG_GRSTCTL_RXFFLSH) { + if (timeout_elapsed(timeout)) { + return USBD_TIMEOUT; + } + } + + return USBD_OK; +} + +/* + * Return the global USB interrupt status. + * handle: PCD handle. + * return: Interrupt register value. + */ +static uint32_t usb_dwc2_read_int(void *handle) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + + return mmio_read_32(usb_base_addr + OTG_GINTSTS) & + mmio_read_32(usb_base_addr + OTG_GINTMSK); +} + +/* + * Return the USB device OUT endpoints interrupt. + * handle: PCD handle. + * return: Device OUT endpoint interrupts. + */ +static uint32_t usb_dwc2_all_out_ep_int(void *handle) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + + return ((mmio_read_32(usb_base_addr + OTG_DAINT) & + mmio_read_32(usb_base_addr + OTG_DAINTMSK)) & + OTG_DAINT_OUT_MASK) >> OTG_DAINT_OUT_SHIFT; +} + +/* + * Return the USB device IN endpoints interrupt. + * handle: PCD handle. + * return: Device IN endpoint interrupts. + */ +static uint32_t usb_dwc2_all_in_ep_int(void *handle) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + + return ((mmio_read_32(usb_base_addr + OTG_DAINT) & + mmio_read_32(usb_base_addr + OTG_DAINTMSK)) & + OTG_DAINT_IN_MASK) >> OTG_DAINT_IN_SHIFT; +} + +/* + * Return Device OUT EP interrupt register. + * handle: PCD handle. + * epnum: Endpoint number. + * This parameter can be a value from 0 to 15. + * return: Device OUT EP Interrupt register. + */ +static uint32_t usb_dwc2_out_ep_int(void *handle, uint8_t epnum) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + + return mmio_read_32(usb_base_addr + OTG_DOEP_BASE + + (epnum * OTG_DOEP_SIZE) + OTG_DOEPINT) & + mmio_read_32(usb_base_addr + OTG_DOEPMSK); +} + +/* + * Return Device IN EP interrupt register. + * handle: PCD handle. + * epnum: Endpoint number. + * This parameter can be a value from 0 to 15. + * return: Device IN EP Interrupt register. + */ +static uint32_t usb_dwc2_in_ep_int(void *handle, uint8_t epnum) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uint32_t msk; + uint32_t emp; + + msk = mmio_read_32(usb_base_addr + OTG_DIEPMSK); + emp = mmio_read_32(usb_base_addr + OTG_DIEPEMPMSK); + msk |= ((emp >> epnum) << OTG_DIEPINT_TXFE_SHIFT) & OTG_DIEPINT_TXFE; + + return mmio_read_32(usb_base_addr + OTG_DIEP_BASE + + (epnum * OTG_DIEP_SIZE) + OTG_DIEPINT) & msk; +} + +/* + * Return USB core mode. + * handle: PCD handle. + * return: Core mode. + * This parameter can be 0 (host) or 1 (device). + */ +static uint32_t usb_dwc2_get_mode(void *handle) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + + return mmio_read_32(usb_base_addr + OTG_GINTSTS) & OTG_GINTSTS_CMOD; +} + +/* + * Activate EP0 for detup transactions. + * handle: PCD handle. + * return: USB status. + */ +static enum usb_status usb_dwc2_activate_setup(void *handle) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uintptr_t reg_offset = usb_base_addr + OTG_DIEP_BASE; + + /* Set the MPS of the IN EP based on the enumeration speed */ + mmio_clrbits_32(reg_offset + OTG_DIEPCTL, OTG_DIEPCTL_MPSIZ); + + if ((mmio_read_32(usb_base_addr + OTG_DSTS) & OTG_DSTS_ENUMSPD_MASK) == + OTG_DSTS_ENUMSPD_LS_PHY_6MHZ) { + mmio_setbits_32(reg_offset + OTG_DIEPCTL, 3U); + } + + mmio_setbits_32(usb_base_addr + OTG_DCTL, OTG_DCTL_CGINAK); + + return USBD_OK; +} + +/* + * Prepare the EP0 to start the first control setup. + * handle: Selected device. + * return: USB status. + */ +static enum usb_status usb_dwc2_ep0_out_start(void *handle) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uintptr_t reg_offset = usb_base_addr + OTG_DIEP_BASE + OTG_DIEPTSIZ; + uint32_t reg_value = 0U; + + /* PKTCNT = 1 and XFRSIZ = 24 bytes for endpoint 0 */ + reg_value |= OTG_DIEPTSIZ_PKTCNT_1; + reg_value |= (EP0_FIFO_SIZE & OTG_DIEPTSIZ_XFRSIZ); + reg_value |= OTG_DOEPTSIZ_RXDPID_STUPCNT; + + mmio_write_32(reg_offset, reg_value); + + return USBD_OK; +} + +/* + * Write a packet into the TX FIFO associated with the EP/channel. + * handle: Selected device. + * src: Pointer to source buffer. + * ch_ep_num: Endpoint or host channel number. + * len: Number of bytes to write. + * return: USB status. + */ +static enum usb_status usb_dwc2_write_packet(void *handle, uint8_t *src, + uint8_t ch_ep_num, uint16_t len) +{ + uint32_t reg_offset; + uint32_t count32b = (len + 3U) / 4U; + uint32_t i; + + reg_offset = (uintptr_t)handle + OTG_FIFO_BASE + + (ch_ep_num * OTG_FIFO_SIZE); + + for (i = 0U; i < count32b; i++) { + uint32_t src_copy = 0U; + uint32_t j; + + /* Data written to FIFO need to be 4 bytes aligned */ + for (j = 0U; j < 4U; j++) { + src_copy += (*(src + j)) << (8U * j); + } + + mmio_write_32(reg_offset, src_copy); + src += 4U; + } + + return USBD_OK; +} + +/* + * Read a packet from the RX FIFO associated with the EP/channel. + * handle: Selected device. + * dst: Destination pointer. + * len: Number of bytes to read. + * return: Pointer to destination buffer. + */ +static void *usb_dwc2_read_packet(void *handle, uint8_t *dest, uint16_t len) +{ + uint32_t reg_offset; + uint32_t count32b = (len + 3U) / 4U; + uint32_t i; + + VERBOSE("read packet length %i to 0x%lx\n", len, (uintptr_t)dest); + + reg_offset = (uintptr_t)handle + OTG_FIFO_BASE; + + for (i = 0U; i < count32b; i++) { + *(uint32_t *)dest = mmio_read_32(reg_offset); + dest += 4U; + dsb(); + } + + return (void *)dest; +} + +/* + * Setup and start a transfer over an EP. + * handle: Selected device + * ep: Pointer to endpoint structure. + * return: USB status. + */ +static enum usb_status usb_dwc2_ep_start_xfer(void *handle, struct usbd_ep *ep) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uint32_t reg_offset; + uint32_t reg_value; + uint32_t clear_value; + + if (ep->is_in) { + reg_offset = usb_base_addr + OTG_DIEP_BASE + (ep->num * OTG_DIEP_SIZE); + clear_value = OTG_DIEPTSIZ_PKTCNT | OTG_DIEPTSIZ_XFRSIZ; + if (ep->xfer_len == 0U) { + reg_value = OTG_DIEPTSIZ_PKTCNT_1; + } else { + /* + * Program the transfer size and packet count + * as follows: + * xfersize = N * maxpacket + short_packet + * pktcnt = N + (short_packet exist ? 1 : 0) + */ + reg_value = (OTG_DIEPTSIZ_PKTCNT & + (((ep->xfer_len + ep->maxpacket - 1U) / + ep->maxpacket) << OTG_DIEPTSIZ_PKTCNT_SHIFT)) + | ep->xfer_len; + + if (ep->type == EP_TYPE_ISOC) { + clear_value |= OTG_DIEPTSIZ_MCNT_MASK; + reg_value |= OTG_DIEPTSIZ_MCNT_DATA0; + } + } + + mmio_clrsetbits_32(reg_offset + OTG_DIEPTSIZ, clear_value, reg_value); + + if ((ep->type != EP_TYPE_ISOC) && (ep->xfer_len > 0U)) { + /* Enable the TX FIFO empty interrupt for this EP */ + mmio_setbits_32(usb_base_addr + OTG_DIEPEMPMSK, BIT(ep->num)); + } + + /* EP enable, IN data in FIFO */ + reg_value = OTG_DIEPCTL_CNAK | OTG_DIEPCTL_EPENA; + + if (ep->type == EP_TYPE_ISOC) { + if ((mmio_read_32(usb_base_addr + OTG_DSTS) & OTG_DSTS_FNSOF0) == 0U) { + reg_value |= OTG_DIEPCTL_SODDFRM; + } else { + reg_value |= OTG_DIEPCTL_SD0PID_SEVNFRM; + } + } + + mmio_setbits_32(reg_offset + OTG_DIEPCTL, reg_value); + + if (ep->type == EP_TYPE_ISOC) { + usb_dwc2_write_packet(handle, ep->xfer_buff, ep->num, ep->xfer_len); + } + } else { + reg_offset = usb_base_addr + OTG_DOEP_BASE + (ep->num * OTG_DOEP_SIZE); + /* + * Program the transfer size and packet count as follows: + * pktcnt = N + * xfersize = N * maxpacket + */ + if (ep->xfer_len == 0U) { + reg_value = ep->maxpacket | OTG_DIEPTSIZ_PKTCNT_1; + } else { + uint16_t pktcnt = (ep->xfer_len + ep->maxpacket - 1U) / ep->maxpacket; + + reg_value = (pktcnt << OTG_DIEPTSIZ_PKTCNT_SHIFT) | + (ep->maxpacket * pktcnt); + } + + mmio_clrsetbits_32(reg_offset + OTG_DOEPTSIZ, + OTG_DOEPTSIZ_XFRSIZ & OTG_DOEPTSIZ_PKTCNT, + reg_value); + + /* EP enable */ + reg_value = OTG_DOEPCTL_CNAK | OTG_DOEPCTL_EPENA; + + if (ep->type == EP_TYPE_ISOC) { + if ((mmio_read_32(usb_base_addr + OTG_DSTS) & OTG_DSTS_FNSOF0) == 0U) { + reg_value |= OTG_DOEPCTL_SD1PID_SODDFRM; + } else { + reg_value |= OTG_DOEPCTL_SD0PID_SEVNFRM; + } + } + + mmio_setbits_32(reg_offset + OTG_DOEPCTL, reg_value); + } + + return USBD_OK; +} + +/* + * Setup and start a transfer over the EP0. + * handle: Selected device. + * ep: Pointer to endpoint structure. + * return: USB status. + */ +static enum usb_status usb_dwc2_ep0_start_xfer(void *handle, struct usbd_ep *ep) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uint32_t reg_offset; + uint32_t reg_value; + + if (ep->is_in) { + reg_offset = usb_base_addr + OTG_DIEP_BASE + + (ep->num * OTG_DIEP_SIZE); + + if (ep->xfer_len == 0U) { + reg_value = OTG_DIEPTSIZ_PKTCNT_1; + } else { + /* + * Program the transfer size and packet count + * as follows: + * xfersize = N * maxpacket + short_packet + * pktcnt = N + (short_packet exist ? 1 : 0) + */ + + if (ep->xfer_len > ep->maxpacket) { + ep->xfer_len = ep->maxpacket; + } + + reg_value = OTG_DIEPTSIZ_PKTCNT_1 | ep->xfer_len; + } + + mmio_clrsetbits_32(reg_offset + OTG_DIEPTSIZ, + OTG_DIEPTSIZ_XFRSIZ | OTG_DIEPTSIZ_PKTCNT, + reg_value); + + /* Enable the TX FIFO empty interrupt for this EP */ + if (ep->xfer_len > 0U) { + mmio_setbits_32(usb_base_addr + OTG_DIEPEMPMSK, + BIT(ep->num)); + } + + /* EP enable, IN data in FIFO */ + mmio_setbits_32(reg_offset + OTG_DIEPCTL, + OTG_DIEPCTL_CNAK | OTG_DIEPCTL_EPENA); + } else { + reg_offset = usb_base_addr + OTG_DOEP_BASE + + (ep->num * OTG_DOEP_SIZE); + + /* + * Program the transfer size and packet count as follows: + * pktcnt = N + * xfersize = N * maxpacket + */ + if (ep->xfer_len > 0U) { + ep->xfer_len = ep->maxpacket; + } + + reg_value = OTG_DIEPTSIZ_PKTCNT_1 | ep->maxpacket; + + mmio_clrsetbits_32(reg_offset + OTG_DIEPTSIZ, + OTG_DIEPTSIZ_XFRSIZ | OTG_DIEPTSIZ_PKTCNT, + reg_value); + + /* EP enable */ + mmio_setbits_32(reg_offset + OTG_DOEPCTL, + OTG_DOEPCTL_CNAK | OTG_DOEPCTL_EPENA); + } + + return USBD_OK; +} + +/* + * Set a stall condition over an EP. + * handle: Selected device. + * ep: Pointer to endpoint structure. + * return: USB status. + */ +static enum usb_status usb_dwc2_ep_set_stall(void *handle, struct usbd_ep *ep) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uint32_t reg_offset; + uint32_t reg_value; + + if (ep->is_in) { + reg_offset = usb_base_addr + OTG_DIEP_BASE + + (ep->num * OTG_DIEP_SIZE); + reg_value = mmio_read_32(reg_offset + OTG_DIEPCTL); + + if ((reg_value & OTG_DIEPCTL_EPENA) == 0U) { + reg_value &= ~OTG_DIEPCTL_EPDIS; + } + + reg_value |= OTG_DIEPCTL_STALL; + + mmio_write_32(reg_offset + OTG_DIEPCTL, reg_value); + } else { + reg_offset = usb_base_addr + OTG_DOEP_BASE + + (ep->num * OTG_DOEP_SIZE); + reg_value = mmio_read_32(reg_offset + OTG_DOEPCTL); + + if ((reg_value & OTG_DOEPCTL_EPENA) == 0U) { + reg_value &= ~OTG_DOEPCTL_EPDIS; + } + + reg_value |= OTG_DOEPCTL_STALL; + + mmio_write_32(reg_offset + OTG_DOEPCTL, reg_value); + } + + return USBD_OK; +} + +/* + * Stop the USB device mode. + * handle: Selected device. + * return: USB status. + */ +static enum usb_status usb_dwc2_stop_device(void *handle) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uint32_t i; + + /* Disable Int */ + mmio_clrbits_32(usb_base_addr + OTG_GAHBCFG, OTG_GAHBCFG_GINT); + + /* Clear pending interrupts */ + for (i = 0U; i < EP_NB; i++) { + mmio_write_32(usb_base_addr + OTG_DIEP_BASE + (i * OTG_DIEP_SIZE) + OTG_DIEPINT, + OTG_DIEPINT_MASK); + mmio_write_32(usb_base_addr + OTG_DOEP_BASE + (i * OTG_DOEP_SIZE) + OTG_DOEPINT, + OTG_DOEPINT_MASK); + } + + mmio_write_32(usb_base_addr + OTG_DAINT, OTG_DAINT_IN_MASK | OTG_DAINT_OUT_MASK); + + /* Clear interrupt masks */ + mmio_write_32(usb_base_addr + OTG_DIEPMSK, 0U); + mmio_write_32(usb_base_addr + OTG_DOEPMSK, 0U); + mmio_write_32(usb_base_addr + OTG_DAINTMSK, 0U); + + /* Flush the FIFO */ + usb_dwc2_flush_rx_fifo(handle); + usb_dwc2_flush_tx_fifo(handle, EP_ALL); + + /* Disconnect the USB device by disabling the pull-up/pull-down */ + mmio_setbits_32((uintptr_t)handle + OTG_DCTL, OTG_DCTL_SDIS); + + return USBD_OK; +} + +/* + * Stop the USB device mode. + * handle: Selected device. + * address: New device address to be assigned. + * This parameter can be a value from 0 to 255. + * return: USB status. + */ +static enum usb_status usb_dwc2_set_address(void *handle, uint8_t address) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + + mmio_clrsetbits_32(usb_base_addr + OTG_DCFG, + OTG_DCFG_DAD, + address << OTG_DCFG_DAD_SHIFT); + + return USBD_OK; +} + +/* + * Check FIFO for the next packet to be loaded. + * handle: Selected device. + * epnum : Endpoint number. + * xfer_len: Block length. + * xfer_count: Number of blocks. + * maxpacket: Max packet length. + * xfer_buff: Buffer pointer. + * return: USB status. + */ +static enum usb_status usb_dwc2_write_empty_tx_fifo(void *handle, + uint32_t epnum, + uint32_t xfer_len, + uint32_t *xfer_count, + uint32_t maxpacket, + uint8_t **xfer_buff) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uint32_t reg_offset; + int32_t len; + uint32_t len32b; + enum usb_status ret; + + len = xfer_len - *xfer_count; + + if ((len > 0) && ((uint32_t)len > maxpacket)) { + len = maxpacket; + } + + len32b = (len + 3U) / 4U; + + reg_offset = usb_base_addr + OTG_DIEP_BASE + (epnum * OTG_DIEP_SIZE); + + while (((mmio_read_32(reg_offset + OTG_DTXFSTS) & + OTG_DTXFSTS_INEPTFSAV) > len32b) && + (*xfer_count < xfer_len) && (xfer_len != 0U)) { + /* Write the FIFO */ + len = xfer_len - *xfer_count; + + if ((len > 0) && ((uint32_t)len > maxpacket)) { + len = maxpacket; + } + + len32b = (len + 3U) / 4U; + + ret = usb_dwc2_write_packet(handle, *xfer_buff, epnum, len); + if (ret != USBD_OK) { + return ret; + } + + *xfer_buff += len; + *xfer_count += len; + } + + if (len <= 0) { + mmio_clrbits_32(usb_base_addr + OTG_DIEPEMPMSK, BIT(epnum)); + } + + return USBD_OK; +} + +/* + * Handle PCD interrupt request. + * handle: PCD handle. + * param: Pointer to information updated by the IT handling. + * return: Action to do after IT handling. + */ +static enum usb_action usb_dwc2_it_handler(void *handle, uint32_t *param) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + uint32_t ep_intr; + uint32_t epint; + uint32_t epnum; + uint32_t temp; + enum usb_status ret; + + if (usb_dwc2_get_mode(handle) != USB_OTG_MODE_DEVICE) { + return USB_NOTHING; + } + + /* Avoid spurious interrupt */ + if (usb_dwc2_read_int(handle) == 0U) { + return USB_NOTHING; + } + + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_MMIS) != 0U) { + /* Incorrect mode, acknowledge the interrupt */ + mmio_write_32(usb_base_addr + OTG_GINTSTS, OTG_GINTSTS_MMIS); + } + + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_OEPINT) != 0U) { + uint32_t reg_offset; + + /* Read in the device interrupt bits */ + ep_intr = usb_dwc2_all_out_ep_int(handle); + epnum = 0U; + while ((ep_intr & BIT(0)) != BIT(0)) { + epnum++; + ep_intr >>= 1; + } + + reg_offset = usb_base_addr + OTG_DOEP_BASE + (epnum * OTG_DOEP_SIZE) + OTG_DOEPINT; + + epint = usb_dwc2_out_ep_int(handle, epnum); + + if ((epint & OTG_DOEPINT_XFRC) == OTG_DOEPINT_XFRC) { + mmio_write_32(reg_offset, OTG_DOEPINT_XFRC); + *param = epnum; + + return USB_DATA_OUT; + } + + if ((epint & OTG_DOEPINT_STUP) == OTG_DOEPINT_STUP) { + /* Inform that a setup packet is available */ + mmio_write_32(reg_offset, OTG_DOEPINT_STUP); + + return USB_SETUP; + } + + if ((epint & OTG_DOEPINT_OTEPDIS) == OTG_DOEPINT_OTEPDIS) { + mmio_write_32(reg_offset, OTG_DOEPINT_OTEPDIS); + } + } + + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_IEPINT) != 0U) { + uint32_t reg_offset; + + /* Read in the device interrupt bits */ + ep_intr = usb_dwc2_all_in_ep_int(handle); + epnum = 0U; + while ((ep_intr & BIT(0)) != BIT(0)) { + epnum++; + ep_intr >>= 1; + } + + reg_offset = usb_base_addr + OTG_DIEP_BASE + (epnum * OTG_DIEP_SIZE) + OTG_DIEPINT; + + epint = usb_dwc2_in_ep_int(handle, epnum); + + if ((epint & OTG_DIEPINT_XFRC) == OTG_DIEPINT_XFRC) { + mmio_clrbits_32(usb_base_addr + OTG_DIEPEMPMSK, BIT(epnum)); + mmio_write_32(reg_offset, OTG_DIEPINT_XFRC); + *param = epnum; + + return USB_DATA_IN; + } + + if ((epint & OTG_DIEPINT_TOC) == OTG_DIEPINT_TOC) { + mmio_write_32(reg_offset, OTG_DIEPINT_TOC); + } + + if ((epint & OTG_DIEPINT_ITTXFE) == OTG_DIEPINT_ITTXFE) { + mmio_write_32(reg_offset, OTG_DIEPINT_ITTXFE); + } + + if ((epint & OTG_DIEPINT_INEPNE) == OTG_DIEPINT_INEPNE) { + mmio_write_32(reg_offset, OTG_DIEPINT_INEPNE); + } + + if ((epint & OTG_DIEPINT_EPDISD) == OTG_DIEPINT_EPDISD) { + mmio_write_32(reg_offset, OTG_DIEPINT_EPDISD); + } + + if ((epint & OTG_DIEPINT_TXFE) == OTG_DIEPINT_TXFE) { + *param = epnum; + + return USB_WRITE_EMPTY; + } + } + + /* Handle resume interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_WKUPINT) != 0U) { + INFO("handle USB : Resume\n"); + + /* Clear the remote wake-up signaling */ + mmio_clrbits_32(usb_base_addr + OTG_DCTL, OTG_DCTL_RWUSIG); + mmio_write_32(usb_base_addr + OTG_GINTSTS, OTG_GINTSTS_WKUPINT); + + return USB_RESUME; + } + + /* Handle suspend interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_USBSUSP) != 0U) { + INFO("handle USB : Suspend int\n"); + + mmio_write_32(usb_base_addr + OTG_GINTSTS, OTG_GINTSTS_USBSUSP); + + if ((mmio_read_32(usb_base_addr + OTG_DSTS) & + OTG_DSTS_SUSPSTS) == OTG_DSTS_SUSPSTS) { + return USB_SUSPEND; + } + } + + /* Handle LPM interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_LPMINT) != 0U) { + INFO("handle USB : LPM int enter in suspend\n"); + + mmio_write_32(usb_base_addr + OTG_GINTSTS, OTG_GINTSTS_LPMINT); + *param = (mmio_read_32(usb_base_addr + OTG_GLPMCFG) & + OTG_GLPMCFG_BESL) >> 2; + + return USB_LPM; + } + + /* Handle reset interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_USBRST) != 0U) { + INFO("handle USB : Reset\n"); + + mmio_clrbits_32(usb_base_addr + OTG_DCTL, OTG_DCTL_RWUSIG); + + usb_dwc2_flush_tx_fifo(handle, 0U); + + mmio_write_32(usb_base_addr + OTG_DAINT, OTG_DAINT_IN_MASK | OTG_DAINT_OUT_MASK); + mmio_setbits_32(usb_base_addr + OTG_DAINTMSK, OTG_DAINT_EP0_IN | OTG_DAINT_EP0_OUT); + + mmio_setbits_32(usb_base_addr + OTG_DOEPMSK, OTG_DOEPMSK_STUPM | + OTG_DOEPMSK_XFRCM | + OTG_DOEPMSK_EPDM); + mmio_setbits_32(usb_base_addr + OTG_DIEPMSK, OTG_DIEPMSK_TOM | + OTG_DIEPMSK_XFRCM | + OTG_DIEPMSK_EPDM); + + /* Set default address to 0 */ + mmio_clrbits_32(usb_base_addr + OTG_DCFG, OTG_DCFG_DAD); + + /* Setup EP0 to receive SETUP packets */ + ret = usb_dwc2_ep0_out_start(handle); + if (ret != USBD_OK) { + return ret; + } + + mmio_write_32(usb_base_addr + OTG_GINTSTS, OTG_GINTSTS_USBRST); + + return USB_RESET; + } + + /* Handle enumeration done interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_ENUMDNE) != 0U) { + ret = usb_dwc2_activate_setup(handle); + if (ret != USBD_OK) { + return ret; + } + + mmio_clrbits_32(usb_base_addr + OTG_GUSBCFG, OTG_GUSBCFG_TRDT); + + mmio_setbits_32(usb_base_addr + OTG_GUSBCFG, + (USBD_HS_TRDT_VALUE << OTG_GUSBCFG_TRDT_SHIFT) & OTG_GUSBCFG_TRDT); + + mmio_write_32(usb_base_addr + OTG_GINTSTS, OTG_GINTSTS_ENUMDNE); + + return USB_ENUM_DONE; + } + + /* Handle RXQLevel interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_RXFLVL) != 0U) { + mmio_clrbits_32(usb_base_addr + OTG_GINTMSK, + OTG_GINTSTS_RXFLVL); + + temp = mmio_read_32(usb_base_addr + OTG_GRXSTSP); + + *param = temp & OTG_GRXSTSP_EPNUM; + *param |= (temp & OTG_GRXSTSP_BCNT) << (USBD_OUT_COUNT_SHIFT - + OTG_GRXSTSP_BCNT_SHIFT); + + if (((temp & OTG_GRXSTSP_PKTSTS) >> OTG_GRXSTSP_PKTSTS_SHIFT) == STS_DATA_UPDT) { + if ((temp & OTG_GRXSTSP_BCNT) != 0U) { + mmio_setbits_32(usb_base_addr + OTG_GINTMSK, OTG_GINTSTS_RXFLVL); + + return USB_READ_DATA_PACKET; + } + } else if (((temp & OTG_GRXSTSP_PKTSTS) >> OTG_GRXSTSP_PKTSTS_SHIFT) == + STS_SETUP_UPDT) { + mmio_setbits_32(usb_base_addr + OTG_GINTMSK, OTG_GINTSTS_RXFLVL); + + return USB_READ_SETUP_PACKET; + } + + mmio_setbits_32(usb_base_addr + OTG_GINTMSK, OTG_GINTSTS_RXFLVL); + } + + /* Handle SOF interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_SOF) != 0U) { + INFO("handle USB : SOF\n"); + + mmio_write_32(usb_base_addr + OTG_GINTSTS, OTG_GINTSTS_SOF); + + return USB_SOF; + } + + /* Handle incomplete ISO IN interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_IISOIXFR) != 0U) { + INFO("handle USB : ISO IN\n"); + + mmio_write_32(usb_base_addr + OTG_GINTSTS, + OTG_GINTSTS_IISOIXFR); + } + + /* Handle incomplete ISO OUT interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_IPXFR_INCOMPISOOUT) != + 0U) { + INFO("handle USB : ISO OUT\n"); + + mmio_write_32(usb_base_addr + OTG_GINTSTS, + OTG_GINTSTS_IPXFR_INCOMPISOOUT); + } + + /* Handle connection event interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_SRQINT) != 0U) { + INFO("handle USB : Connect\n"); + + mmio_write_32(usb_base_addr + OTG_GINTSTS, OTG_GINTSTS_SRQINT); + } + + /* Handle disconnection event interrupt */ + if ((usb_dwc2_read_int(handle) & OTG_GINTSTS_OTGINT) != 0U) { + INFO("handle USB : Disconnect\n"); + + temp = mmio_read_32(usb_base_addr + OTG_GOTGINT); + + if ((temp & OTG_GOTGINT_SEDET) == OTG_GOTGINT_SEDET) { + return USB_DISCONNECT; + } + } + + return USB_NOTHING; +} + +/* + * Start the usb device mode + * usb_core_handle: USB core driver handle. + * return USB status. + */ +static enum usb_status usb_dwc2_start_device(void *handle) +{ + uintptr_t usb_base_addr = (uintptr_t)handle; + + mmio_clrbits_32(usb_base_addr + OTG_DCTL, OTG_DCTL_SDIS); + mmio_setbits_32(usb_base_addr + OTG_GAHBCFG, OTG_GAHBCFG_GINT); + + return USBD_OK; +} + +static const struct usb_driver usb_dwc2driver = { + .ep0_out_start = usb_dwc2_ep0_out_start, + .ep_start_xfer = usb_dwc2_ep_start_xfer, + .ep0_start_xfer = usb_dwc2_ep0_start_xfer, + .write_packet = usb_dwc2_write_packet, + .read_packet = usb_dwc2_read_packet, + .ep_set_stall = usb_dwc2_ep_set_stall, + .start_device = usb_dwc2_start_device, + .stop_device = usb_dwc2_stop_device, + .set_address = usb_dwc2_set_address, + .write_empty_tx_fifo = usb_dwc2_write_empty_tx_fifo, + .it_handler = usb_dwc2_it_handler +}; + +/* + * Initialize USB DWC2 driver. + * usb_core_handle: USB core driver handle. + * pcd_handle: PCD handle. + * base_register: USB global register base address. + */ +void stm32mp1_usb_init_driver(struct usb_handle *usb_core_handle, + struct pcd_handle *pcd_handle, + void *base_register) +{ + register_usb_driver(usb_core_handle, pcd_handle, &usb_dwc2driver, + base_register); +} |