diff options
Diffstat (limited to '')
-rw-r--r-- | docs/about/features.rst | 128 |
1 files changed, 128 insertions, 0 deletions
diff --git a/docs/about/features.rst b/docs/about/features.rst new file mode 100644 index 0000000..cb8b552 --- /dev/null +++ b/docs/about/features.rst @@ -0,0 +1,128 @@ +Feature Overview +================ + +This page provides an overview of the current |TF-A| feature set. For a full +description of these features and their implementation details, please see +the documents that are part of the *Components* and *System Design* chapters. + +The :ref:`Change Log & Release Notes` provides details of changes made since the +last release. + +Current features +---------------- + +- Initialization of the secure world, for example exception vectors, control + registers and interrupts for the platform. + +- Library support for CPU specific reset and power down sequences. This + includes support for errata workarounds and the latest Arm DynamIQ CPUs. + +- Drivers to enable standard initialization of Arm System IP, for example + Generic Interrupt Controller (GIC), Cache Coherent Interconnect (CCI), + Cache Coherent Network (CCN), Network Interconnect (NIC) and TrustZone + Controller (TZC). + +- A generic |SCMI| driver to interface with conforming power controllers, for + example the Arm System Control Processor (SCP). + +- SMC (Secure Monitor Call) handling, conforming to the `SMC Calling + Convention`_ using an EL3 runtime services framework. + +- |PSCI| library support for CPU, cluster and system power management + use-cases. + This library is pre-integrated with the AArch64 EL3 Runtime Software, and + is also suitable for integration with other AArch32 EL3 Runtime Software, + for example an AArch32 Secure OS. + +- A minimal AArch32 Secure Payload (*SP_MIN*) to demonstrate |PSCI| library + integration with AArch32 EL3 Runtime Software. + +- Secure Monitor library code such as world switching, EL1 context management + and interrupt routing. + When a Secure-EL1 Payload (SP) is present, for example a Secure OS, the + AArch64 EL3 Runtime Software must be integrated with a Secure Payload + Dispatcher (SPD) component to customize the interaction with the SP. + +- A Test SP and SPD to demonstrate AArch64 Secure Monitor functionality and SP + interaction with PSCI. + +- SPDs for the `OP-TEE Secure OS`_, `NVIDIA Trusted Little Kernel`_, + `Trusty Secure OS`_ and `ProvenCore Secure OS`_. + +- A Trusted Board Boot implementation, conforming to all mandatory TBBR + requirements. This includes image authentication, Firmware Update (or + recovery mode), and packaging of the various firmware images into a + Firmware Image Package (FIP). + +- Pre-integration of TBB with the Arm CryptoCell product, to take advantage of + its hardware Root of Trust and crypto acceleration services. + +- Reliability, Availability, and Serviceability (RAS) functionality, including + + - A Secure Partition Manager (SPM) to manage Secure Partitions in + Secure-EL0, which can be used to implement simple management and + security services. + + - An |SDEI| dispatcher to route interrupt-based |SDEI| events. + + - An Exception Handling Framework (EHF) that allows dispatching of EL3 + interrupts to their registered handlers, to facilitate firmware-first + error handling. + +- A dynamic configuration framework that enables each of the firmware images + to be configured at runtime if required by the platform. It also enables + loading of a hardware configuration (for example, a kernel device tree) + as part of the FIP, to be passed through the firmware stages. + This feature is now incorporated inside the firmware configuration framework + (fconf). + +- Support for alternative boot flows, for example to support platforms where + the EL3 Runtime Software is loaded using other firmware or a separate + secure system processor, or where a non-TF-A ROM expects BL2 to be loaded + at EL3. + +- Support for the GCC, LLVM and Arm Compiler 6 toolchains. + +- Support for combining several libraries into a "romlib" image that may be + shared across images to reduce memory footprint. The romlib image is stored + in ROM but is accessed through a jump-table that may be stored + in read-write memory, allowing for the library code to be patched. + +- Support for the Secure Partition Manager Dispatcher (SPMD) component as a + new standard service. + +- Support for ARMv8.3 pointer authentication in the normal and secure worlds. + The use of pointer authentication in the normal world is enabled whenever + architectural support is available, without the need for additional build + flags. + +- Position-Independent Executable (PIE) support. Currently for BL2, BL31, and + TSP, with further support to be added in a future release. + +Still to come +------------- + +- Support for additional platforms. + +- Refinements to Position Independent Executable (PIE) support. + +- Continued support for the FF-A v1.0 (formally known as SPCI) specification, to enable the + use of secure partition management in the secure world. + +- Documentation enhancements. + +- Ongoing support for new architectural features, CPUs and System IP. + +- Ongoing support for new Arm system architecture specifications. + +- Ongoing security hardening, optimization and quality improvements. + +.. _SMC Calling Convention: https://developer.arm.com/docs/den0028/latest +.. _OP-TEE Secure OS: https://github.com/OP-TEE/optee_os +.. _NVIDIA Trusted Little Kernel: http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary +.. _Trusty Secure OS: https://source.android.com/security/trusty +.. _ProvenCore Secure OS: https://provenrun.com/products/provencore/ + +-------------- + +*Copyright (c) 2019-2021, Arm Limited. All rights reserved.* |