diff options
Diffstat (limited to 'docs/components/secure-partition-manager-mm.rst')
-rw-r--r-- | docs/components/secure-partition-manager-mm.rst | 834 |
1 files changed, 834 insertions, 0 deletions
diff --git a/docs/components/secure-partition-manager-mm.rst b/docs/components/secure-partition-manager-mm.rst new file mode 100644 index 0000000..4cdb96c --- /dev/null +++ b/docs/components/secure-partition-manager-mm.rst @@ -0,0 +1,834 @@ +Secure Partition Manager (MM) +***************************** + +Foreword +======== + +Two implementations of a Secure Partition Manager co-exist in the TF-A codebase: + +- SPM based on the FF-A specification (:ref:`Secure Partition Manager`). +- SPM based on the MM interface. + +Both implementations differ in their architectures and only one can be selected +at build time. + +This document describes the latter implementation where the Secure Partition Manager +resides at EL3 and management services run from isolated Secure Partitions at S-EL0. +The communication protocol is established through the Management Mode (MM) interface. + +Background +========== + +In some market segments that primarily deal with client-side devices like mobile +phones, tablets, STBs and embedded devices, a Trusted OS instantiates trusted +applications to provide security services like DRM, secure payment and +authentication. The Global Platform TEE Client API specification defines the API +used by Non-secure world applications to access these services. A Trusted OS +fulfils the requirements of a security service as described above. + +Management services are typically implemented at the highest level of privilege +in the system, i.e. EL3 in Trusted Firmware-A (TF-A). The service requirements are +fulfilled by the execution environment provided by TF-A. + +The following diagram illustrates the corresponding software stack: + +|Image 1| + +In other market segments that primarily deal with server-side devices (e.g. data +centres and enterprise servers) the secure software stack typically does not +include a Global Platform Trusted OS. Security functions are accessed through +other interfaces (e.g. ACPI TCG TPM interface, UEFI runtime variable service). + +Placement of management and security functions with diverse requirements in a +privileged Exception Level (i.e. EL3 or S-EL1) makes security auditing of +firmware more difficult and does not allow isolation of unrelated services from +each other either. + +Introduction +============ + +A **Secure Partition** is a software execution environment instantiated in +S-EL0 that can be used to implement simple management and security services. +Since S-EL0 is an unprivileged Exception Level, a Secure Partition relies on +privileged firmware (i.e. TF-A) to be granted access to system and processor +resources. Essentially, it is a software sandbox in the Secure world that runs +under the control of privileged software, provides one or more services and +accesses the following system resources: + +- Memory and device regions in the system address map. + +- PE system registers. + +- A range of synchronous exceptions (e.g. SMC function identifiers). + +Note that currently TF-A only supports handling one Secure Partition. + +A Secure Partition enables TF-A to implement only the essential secure +services in EL3 and instantiate the rest in a partition in S-EL0. +Furthermore, multiple Secure Partitions can be used to isolate unrelated +services from each other. + +The following diagram illustrates the place of a Secure Partition in a typical +Armv8-A software stack. A single or multiple Secure Partitions provide secure +services to software components in the Non-secure world and other Secure +Partitions. + +|Image 2| + +The TF-A build system is responsible for including the Secure Partition image +in the FIP. During boot, BL2 includes support to authenticate and load the +Secure Partition image. A BL31 component called **Secure Partition Manager +(SPM)** is responsible for managing the partition. This is semantically +similar to a hypervisor managing a virtual machine. + +The SPM is responsible for the following actions during boot: + +- Allocate resources requested by the Secure Partition. + +- Perform architectural and system setup required by the Secure Partition to + fulfil a service request. + +- Implement a standard interface that is used for initialising a Secure + Partition. + +The SPM is responsible for the following actions during runtime: + +- Implement a standard interface that is used by a Secure Partition to fulfil + service requests. + +- Implement a standard interface that is used by the Non-secure world for + accessing the services exported by a Secure Partition. A service can be + invoked through a SMC. + +Alternatively, a partition can be viewed as a thread of execution running under +the control of the SPM. Hence common programming concepts described below are +applicable to a partition. + +Description +=========== + +The previous section introduced some general aspects of the software +architecture of a Secure Partition. This section describes the specific choices +made in the current implementation of this software architecture. Subsequent +revisions of the implementation will include a richer set of features that +enable a more flexible architecture. + +Building TF-A with Secure Partition support +------------------------------------------- + +SPM is supported on the Arm FVP exclusively at the moment. The current +implementation supports inclusion of only a single Secure Partition in which a +service always runs to completion (e.g. the requested services cannot be +preempted to give control back to the Normal world). + +It is not currently possible for BL31 to integrate SPM support and a Secure +Payload Dispatcher (SPD) at the same time; they are mutually exclusive. In the +SPM bootflow, a Secure Partition image executing at S-EL0 replaces the Secure +Payload image executing at S-EL1 (e.g. a Trusted OS). Both are referred to as +BL32. + +A working prototype of a SP has been implemented by re-purposing the EDK2 code +and tools, leveraging the concept of the *Standalone Management Mode (MM)* in +the UEFI specification (see the PI v1.6 Volume 4: Management Mode Core +Interface). This will be referred to as the *Standalone MM Secure Partition* in +the rest of this document. + +To enable SPM support in TF-A, the source code must be compiled with the build +flag ``SPM_MM=1``, along with ``EL3_EXCEPTION_HANDLING=1`` and ``ENABLE_SVE_FOR_NS=0``. +On Arm platforms the build option ``ARM_BL31_IN_DRAM`` must be set to 1. Also, the +location of the binary that contains the BL32 image +(``BL32=path/to/image.bin``) must be specified. + +First, build the Standalone MM Secure Partition. To build it, refer to the +`instructions in the EDK2 repository`_. + +Then build TF-A with SPM support and include the Standalone MM Secure Partition +image in the FIP: + +.. code:: shell + + BL32=path/to/standalone/mm/sp BL33=path/to/bl33.bin \ + make PLAT=fvp SPM_MM=1 EL3_EXCEPTION_HANDLING=1 ENABLE_SVE_FOR_NS=0 ARM_BL31_IN_DRAM=1 all fip + +Describing Secure Partition resources +------------------------------------- + +TF-A exports a porting interface that enables a platform to specify the system +resources required by the Secure Partition. Some instructions are given below. +However, this interface is under development and it may change as new features +are implemented. + +- A Secure Partition is considered a BL32 image, so the same defines that apply + to BL32 images apply to a Secure Partition: ``BL32_BASE`` and ``BL32_LIMIT``. + +- The following defines are needed to allocate space for the translation tables + used by the Secure Partition: ``PLAT_SP_IMAGE_MMAP_REGIONS`` and + ``PLAT_SP_IMAGE_MAX_XLAT_TABLES``. + +- The functions ``plat_get_secure_partition_mmap()`` and + ``plat_get_secure_partition_boot_info()`` have to be implemented. The file + ``plat/arm/board/fvp/fvp_common.c`` can be used as an example. It uses the + defines in ``include/plat/arm/common/arm_spm_def.h``. + + - ``plat_get_secure_partition_mmap()`` returns an array of mmap regions that + describe the memory regions that the SPM needs to allocate for a Secure + Partition. + + - ``plat_get_secure_partition_boot_info()`` returns a + ``spm_mm_boot_info_t`` struct that is populated by the platform + with information about the memory map of the Secure Partition. + +For an example of all the changes in context, you may refer to commit +``e29efeb1b4``, in which the port for FVP was introduced. + +Accessing Secure Partition services +----------------------------------- + +The `SMC Calling Convention`_ (*Arm DEN 0028B*) describes SMCs as a conduit for +accessing services implemented in the Secure world. The ``MM_COMMUNICATE`` +interface defined in the `Management Mode Interface Specification`_ (*Arm DEN +0060A*) is used to invoke a Secure Partition service as a Fast Call. + +The mechanism used to identify a service within the partition depends on the +service implementation. It is assumed that the caller of the service will be +able to discover this mechanism through standard platform discovery mechanisms +like ACPI and Device Trees. For example, *Volume 4: Platform Initialisation +Specification v1.6. Management Mode Core Interface* specifies that a GUID is +used to identify a management mode service. A client populates the GUID in the +``EFI_MM_COMMUNICATE_HEADER``. The header is populated in the communication +buffer shared with the Secure Partition. + +A Fast Call appears to be atomic from the perspective of the caller and returns +when the requested operation has completed. A service invoked through the +``MM_COMMUNICATE`` SMC will run to completion in the partition on a given CPU. +The SPM is responsible for guaranteeing this behaviour. This means that there +can only be a single outstanding Fast Call in a partition on a given CPU. + +Exchanging data with the Secure Partition +----------------------------------------- + +The exchange of data between the Non-secure world and the partition takes place +through a shared memory region. The location of data in the shared memory area +is passed as a parameter to the ``MM_COMMUNICATE`` SMC. The shared memory area +is statically allocated by the SPM and is expected to be either implicitly known +to the Non-secure world or discovered through a platform discovery mechanism +e.g. ACPI table or device tree. It is possible for the Non-secure world to +exchange data with a partition only if it has been populated in this shared +memory area. The shared memory area is implemented as per the guidelines +specified in Section 3.2.3 of the `Management Mode Interface Specification`_ +(*Arm DEN 0060A*). + +The format of data structures used to encapsulate data in the shared memory is +agreed between the Non-secure world and the Secure Partition. For example, in +the `Management Mode Interface specification`_ (*Arm DEN 0060A*), Section 4 +describes that the communication buffer shared between the Non-secure world and +the Management Mode (MM) in the Secure world must be of the type +``EFI_MM_COMMUNICATE_HEADER``. This data structure is defined in *Volume 4: +Platform Initialisation Specification v1.6. Management Mode Core Interface*. +Any caller of a MM service will have to use the ``EFI_MM_COMMUNICATE_HEADER`` +data structure. + +Runtime model of the Secure Partition +===================================== + +This section describes how the Secure Partition interfaces with the SPM. + +Interface with SPM +------------------ + +In order to instantiate one or more secure services in the Secure Partition in +S-EL0, the SPM should define the following types of interfaces: + +- Interfaces that enable access to privileged operations from S-EL0. These + operations typically require access to system resources that are either shared + amongst multiple software components in the Secure world or cannot be directly + accessed from an unprivileged Exception Level. + +- Interfaces that establish the control path between the SPM and the Secure + Partition. + +This section describes the APIs currently exported by the SPM that enable a +Secure Partition to initialise itself and export its services in S-EL0. These +interfaces are not accessible from the Non-secure world. + +Conduit +^^^^^^^ + +The `SMC Calling Convention`_ (*Arm DEN 0028B*) specification describes the SMC +and HVC conduits for accessing firmware services and their availability +depending on the implemented Exception levels. In S-EL0, the Supervisor Call +exception (SVC) is the only architectural mechanism available for unprivileged +software to make a request for an operation implemented in privileged software. +Hence, the SVC conduit must be used by the Secure Partition to access interfaces +implemented by the SPM. + +A SVC causes an exception to be taken to S-EL1. TF-A assumes ownership of S-EL1 +and installs a simple exception vector table in S-EL1 that relays a SVC request +from a Secure Partition as a SMC request to the SPM in EL3. Upon servicing the +SMC request, Trusted Firmware-A returns control directly to S-EL0 through an +ERET instruction. + +Calling conventions +^^^^^^^^^^^^^^^^^^^ + +The `SMC Calling Convention`_ (*Arm DEN 0028B*) specification describes the +32-bit and 64-bit calling conventions for the SMC and HVC conduits. The SVC +conduit introduces the concept of SVC32 and SVC64 calling conventions. The SVC32 +and SVC64 calling conventions are equivalent to the 32-bit (SMC32) and the +64-bit (SMC64) calling conventions respectively. + +Communication initiated by SPM +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +A service request is initiated from the SPM through an exception return +instruction (ERET) to S-EL0. Later, the Secure Partition issues an SVC +instruction to signal completion of the request. Some example use cases are +given below: + +- A request to initialise the Secure Partition during system boot. + +- A request to handle a runtime service request. + +Communication initiated by Secure Partition +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +A request is initiated from the Secure Partition by executing a SVC instruction. +An ERET instruction is used by TF-A to return to S-EL0 with the result of the +request. + +For instance, a request to perform privileged operations on behalf of a +partition (e.g. management of memory attributes in the translation tables for +the Secure EL1&0 translation regime). + +Interfaces +^^^^^^^^^^ + +The current implementation reserves function IDs for Fast Calls in the Standard +Secure Service calls range (see `SMC Calling Convention`_ (*Arm DEN 0028B*) +specification) for each API exported by the SPM. This section defines the +function prototypes for each function ID. The function IDs specify whether one +or both of the SVC32 and SVC64 calling conventions can be used to invoke the +corresponding interface. + +Secure Partition Event Management +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The Secure Partition provides an Event Management interface that is used by the +SPM to delegate service requests to the Secure Partition. The interface also +allows the Secure Partition to: + +- Register with the SPM a service that it provides. +- Indicate completion of a service request delegated by the SPM + +Miscellaneous interfaces +------------------------ + +``SPM_MM_VERSION_AARCH32`` +^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- Description + + Returns the version of the interface exported by SPM. + +- Parameters + + - **uint32** - Function ID + + - SVC32 Version: **0x84000060** + +- Return parameters + + - **int32** - Status + + On success, the format of the value is as follows: + + - Bit [31]: Must be 0 + - Bits [30:16]: Major Version. Must be 0 for this revision of the SPM + interface. + - Bits [15:0]: Minor Version. Must be 1 for this revision of the SPM + interface. + + On error, the format of the value is as follows: + + - ``NOT_SUPPORTED``: SPM interface is not supported or not available for the + client. + +- Usage + + This function returns the version of the Secure Partition Manager + implementation. The major version is 0 and the minor version is 1. The version + number is a 31-bit unsigned integer, with the upper 15 bits denoting the major + revision, and the lower 16 bits denoting the minor revision. The following + rules apply to the version numbering: + + - Different major revision values indicate possibly incompatible functions. + + - For two revisions, A and B, for which the major revision values are + identical, if the minor revision value of revision B is greater than the + minor revision value of revision A, then every function in revision A must + work in a compatible way with revision B. However, it is possible for + revision B to have a higher function count than revision A. + +- Implementation responsibilities + + If this function returns a valid version number, all the functions that are + described subsequently must be implemented, unless it is explicitly stated + that a function is optional. + +See `Error Codes`_ for integer values that are associated with each return +code. + +Secure Partition Initialisation +------------------------------- + +The SPM is responsible for initialising the architectural execution context to +enable initialisation of a service in S-EL0. The responsibilities of the SPM are +listed below. At the end of initialisation, the partition issues a +``MM_SP_EVENT_COMPLETE_AARCH64`` call (described later) to signal readiness for +handling requests for services implemented by the Secure Partition. The +initialisation event is executed as a Fast Call. + +Entry point invocation +^^^^^^^^^^^^^^^^^^^^^^ + +The entry point for service requests that should be handled as Fast Calls is +used as the target of the ERET instruction to start initialisation of the Secure +Partition. + +Architectural Setup +^^^^^^^^^^^^^^^^^^^ + +At cold boot, system registers accessible from S-EL0 will be in their reset +state unless otherwise specified. The SPM will perform the following +architectural setup to enable execution in S-EL0 + +MMU setup +^^^^^^^^^ + +The platform port of a Secure Partition specifies to the SPM a list of regions +that it needs access to and their attributes. The SPM validates this resource +description and initialises the Secure EL1&0 translation regime as follows. + +1. Device regions are mapped with nGnRE attributes and Execute Never + instruction access permissions. + +2. Code memory regions are mapped with RO data and Executable instruction access + permissions. + +3. Read Only data memory regions are mapped with RO data and Execute Never + instruction access permissions. + +4. Read Write data memory regions are mapped with RW data and Execute Never + instruction access permissions. + +5. If the resource description does not explicitly describe the type of memory + regions then all memory regions will be marked with Code memory region + attributes. + +6. The ``UXN`` and ``PXN`` bits are set for regions that are not executable by + S-EL0 or S-EL1. + +System Register Setup +^^^^^^^^^^^^^^^^^^^^^ + +System registers that influence software execution in S-EL0 are setup by the SPM +as follows: + +1. ``SCTLR_EL1`` + + - ``UCI=1`` + - ``EOE=0`` + - ``WXN=1`` + - ``nTWE=1`` + - ``nTWI=1`` + - ``UCT=1`` + - ``DZE=1`` + - ``I=1`` + - ``UMA=0`` + - ``SA0=1`` + - ``C=1`` + - ``A=1`` + - ``M=1`` + +2. ``CPACR_EL1`` + + - ``FPEN=b'11`` + +3. ``PSTATE`` + + - ``D,A,I,F=1`` + - ``CurrentEL=0`` (EL0) + - ``SpSel=0`` (Thread mode) + - ``NRW=0`` (AArch64) + +General Purpose Register Setup +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +SPM will invoke the entry point of a service by executing an ERET instruction. +This transition into S-EL0 is special since it is not in response to a previous +request through a SVC instruction. This is the first entry into S-EL0. The +general purpose register usage at the time of entry will be as specified in the +"Return State" column of Table 3-1 in Section 3.1 "Register use in AArch64 SMC +calls" of the `SMC Calling Convention`_ (*Arm DEN 0028B*) specification. In +addition, certain other restrictions will be applied as described below. + +1. ``SP_EL0`` + + A non-zero value will indicate that the SPM has initialised the stack pointer + for the current CPU. + + The value will be 0 otherwise. + +2. ``X4-X30`` + + The values of these registers will be 0. + +3. ``X0-X3`` + + Parameters passed by the SPM. + + - ``X0``: Virtual address of a buffer shared between EL3 and S-EL0. The + buffer will be mapped in the Secure EL1&0 translation regime with read-only + memory attributes described earlier. + + - ``X1``: Size of the buffer in bytes. + + - ``X2``: Cookie value (*IMPLEMENTATION DEFINED*). + + - ``X3``: Cookie value (*IMPLEMENTATION DEFINED*). + +Runtime Event Delegation +------------------------ + +The SPM receives requests for Secure Partition services through a synchronous +invocation (i.e. a SMC from the Non-secure world). These requests are delegated +to the partition by programming a return from the last +``MM_SP_EVENT_COMPLETE_AARCH64`` call received from the partition. The last call +was made to signal either completion of Secure Partition initialisation or +completion of a partition service request. + +``MM_SP_EVENT_COMPLETE_AARCH64`` +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- Description + + Signal completion of the last SP service request. + +- Parameters + + - **uint32** - Function ID + + - SVC64 Version: **0xC4000061** + + - **int32** - Event Status Code + + Zero or a positive value indicates that the event was handled successfully. + The values depend upon the original event that was delegated to the Secure + partition. They are described as follows. + + - ``SUCCESS`` : Used to indicate that the Secure Partition was initialised + or a runtime request was handled successfully. + + - Any other value greater than 0 is used to pass a specific Event Status + code in response to a runtime event. + + A negative value indicates an error. The values of Event Status code depend + on the original event. + +- Return parameters + + - **int32** - Event ID/Return Code + + Zero or a positive value specifies the unique ID of the event being + delegated to the partition by the SPM. + + In the current implementation, this parameter contains the function ID of + the ``MM_COMMUNICATE`` SMC. This value indicates to the partition that an + event has been delegated to it in response to an ``MM_COMMUNICATE`` request + from the Non-secure world. + + A negative value indicates an error. The format of the value is as follows: + + - ``NOT_SUPPORTED``: Function was called from the Non-secure world. + + See `Error Codes`_ for integer values that are associated with each return + code. + + - **uint32** - Event Context Address + + Address of a buffer shared between the SPM and Secure Partition to pass + event specific information. The format of the data populated in the buffer + is implementation defined. + + The buffer is mapped in the Secure EL1&0 translation regime with read-only + memory attributes described earlier. + + For the SVC64 version, this parameter is a 64-bit Virtual Address (VA). + + For the SVC32 version, this parameter is a 32-bit Virtual Address (VA). + + - **uint32** - Event context size + + Size of the memory starting at Event Address. + + - **uint32/uint64** - Event Cookie + + This is an optional parameter. If unused its value is SBZ. + +- Usage + + This function signals to the SPM that the handling of the last event delegated + to a partition has completed. The partition is ready to handle its next event. + A return from this function is in response to the next event that will be + delegated to the partition. The return parameters describe the next event. + +- Caller responsibilities + + A Secure Partition must only call ``MM_SP_EVENT_COMPLETE_AARCH64`` to signal + completion of a request that was delegated to it by the SPM. + +- Callee responsibilities + + When the SPM receives this call from a Secure Partition, the corresponding + syndrome information can be used to return control through an ERET + instruction, to the instruction immediately after the call in the Secure + Partition context. This syndrome information comprises of general purpose and + system register values when the call was made. + + The SPM must save this syndrome information and use it to delegate the next + event to the Secure Partition. The return parameters of this interface must + specify the properties of the event and be populated in ``X0-X3/W0-W3`` + registers. + +Secure Partition Memory Management +---------------------------------- + +A Secure Partition executes at S-EL0, which is an unprivileged Exception Level. +The SPM is responsible for enabling access to regions of memory in the system +address map from a Secure Partition. This is done by mapping these regions in +the Secure EL1&0 Translation regime with appropriate memory attributes. +Attributes refer to memory type, permission, cacheability and shareability +attributes used in the Translation tables. The definitions of these attributes +and their usage can be found in the `Armv8-A ARM`_ (*Arm DDI 0487*). + +All memory required by the Secure Partition is allocated upfront in the SPM, +even before handing over to the Secure Partition for the first time. The initial +access permissions of the memory regions are statically provided by the platform +port and should allow the Secure Partition to run its initialisation code. + +However, they might not suit the final needs of the Secure Partition because its +final memory layout might not be known until the Secure Partition initialises +itself. As the Secure Partition initialises its runtime environment it might, +for example, load dynamically some modules. For instance, a Secure Partition +could implement a loader for a standard executable file format (e.g. an PE-COFF +loader for loading executable files at runtime). These executable files will be +a part of the Secure Partition image. The location of various sections in an +executable file and their permission attributes (e.g. read-write data, read-only +data and code) will be known only when the file is loaded into memory. + +In this case, the Secure Partition needs a way to change the access permissions +of its memory regions. The SPM provides this feature through the +``MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64`` SVC interface. This interface is +available to the Secure Partition during a specific time window: from the first +entry into the Secure Partition up to the first ``SP_EVENT_COMPLETE`` call that +signals the Secure Partition has finished its initialisation. Once the +initialisation is complete, the SPM does not allow changes to the memory +attributes. + +This section describes the standard SVC interface that is implemented by the SPM +to determine and change permission attributes of memory regions that belong to a +Secure Partition. + +``MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64`` +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- Description + + Request the permission attributes of a memory region from S-EL0. + +- Parameters + + - **uint32** Function ID + + - SVC64 Version: **0xC4000064** + + - **uint64** Base Address + + This parameter is a 64-bit Virtual Address (VA). + + There are no alignment restrictions on the Base Address. The permission + attributes of the translation granule it lies in are returned. + +- Return parameters + + - **int32** - Memory Attributes/Return Code + + On success the format of the Return Code is as follows: + + - Bits[1:0] : Data access permission + + - b'00 : No access + - b'01 : Read-Write access + - b'10 : Reserved + - b'11 : Read-only access + + - Bit[2]: Instruction access permission + + - b'0 : Executable + - b'1 : Non-executable + + - Bit[30:3] : Reserved. SBZ. + + - Bit[31] : Must be 0 + + On failure the following error codes are returned: + + - ``INVALID_PARAMETERS``: The Secure Partition is not allowed to access the + memory region the Base Address lies in. + + - ``NOT_SUPPORTED`` : The SPM does not support retrieval of attributes of + any memory page that is accessible by the Secure Partition, or the + function was called from the Non-secure world. Also returned if it is + used after ``MM_SP_EVENT_COMPLETE_AARCH64``. + + See `Error Codes`_ for integer values that are associated with each return + code. + +- Usage + + This function is used to request the permission attributes for S-EL0 on a + memory region accessible from a Secure Partition. The size of the memory + region is equal to the Translation Granule size used in the Secure EL1&0 + translation regime. Requests to retrieve other memory region attributes are + not currently supported. + +- Caller responsibilities + + The caller must obtain the Translation Granule Size of the Secure EL1&0 + translation regime from the SPM through an implementation defined method. + +- Callee responsibilities + + The SPM must not return the memory access controls for a page of memory that + is not accessible from a Secure Partition. + +``MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64`` +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- Description + + Set the permission attributes of a memory region from S-EL0. + +- Parameters + + - **uint32** - Function ID + + - SVC64 Version: **0xC4000065** + + - **uint64** - Base Address + + This parameter is a 64-bit Virtual Address (VA). + + The alignment of the Base Address must be greater than or equal to the size + of the Translation Granule Size used in the Secure EL1&0 translation + regime. + + - **uint32** - Page count + + Number of pages starting from the Base Address whose memory attributes + should be changed. The page size is equal to the Translation Granule Size. + + - **uint32** - Memory Access Controls + + - Bits[1:0] : Data access permission + + - b'00 : No access + - b'01 : Read-Write access + - b'10 : Reserved + - b'11 : Read-only access + + - Bit[2] : Instruction access permission + + - b'0 : Executable + - b'1 : Non-executable + + - Bits[31:3] : Reserved. SBZ. + + A combination of attributes that mark the region with RW and Executable + permissions is prohibited. A request to mark a device memory region with + Executable permissions is prohibited. + +- Return parameters + + - **int32** - Return Code + + - ``SUCCESS``: The Memory Access Controls were changed successfully. + + - ``DENIED``: The SPM is servicing a request to change the attributes of a + memory region that overlaps with the region specified in this request. + + - ``INVALID_PARAMETER``: An invalid combination of Memory Access Controls + has been specified. The Base Address is not correctly aligned. The Secure + Partition is not allowed to access part or all of the memory region + specified in the call. + + - ``NO_MEMORY``: The SPM does not have memory resources to change the + attributes of the memory region in the translation tables. + + - ``NOT_SUPPORTED``: The SPM does not permit change of attributes of any + memory region that is accessible by the Secure Partition. Function was + called from the Non-secure world. Also returned if it is used after + ``MM_SP_EVENT_COMPLETE_AARCH64``. + + See `Error Codes`_ for integer values that are associated with each return + code. + +- Usage + + This function is used to change the permission attributes for S-EL0 on a + memory region accessible from a Secure Partition. The size of the memory + region is equal to the Translation Granule size used in the Secure EL1&0 + translation regime. Requests to change other memory region attributes are not + currently supported. + + This function is only available at boot time. This interface is revoked after + the Secure Partition sends the first ``MM_SP_EVENT_COMPLETE_AARCH64`` to + signal that it is initialised and ready to receive run-time requests. + +- Caller responsibilities + + The caller must obtain the Translation Granule Size of the Secure EL1&0 + translation regime from the SPM through an implementation defined method. + +- Callee responsibilities + + The SPM must preserve the original memory access controls of the region of + memory in case of an unsuccessful call. The SPM must preserve the consistency + of the S-EL1 translation regime if this function is called on different PEs + concurrently and the memory regions specified overlap. + +Error Codes +----------- + +.. csv-table:: + :header: "Name", "Value" + + ``SUCCESS``,0 + ``NOT_SUPPORTED``,-1 + ``INVALID_PARAMETER``,-2 + ``DENIED``,-3 + ``NO_MEMORY``,-5 + ``NOT_PRESENT``,-7 + +-------------- + +*Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.* + +.. _Armv8-A ARM: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile +.. _instructions in the EDK2 repository: https://github.com/tianocore/edk2-staging/blob/AArch64StandaloneMm/HowtoBuild.MD +.. _Management Mode Interface Specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf +.. _SDEI Specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf +.. _SMC Calling Convention: https://developer.arm.com/docs/den0028/latest + +.. |Image 1| image:: ../resources/diagrams/secure_sw_stack_tos.png +.. |Image 2| image:: ../resources/diagrams/secure_sw_stack_sp.png |