summaryrefslogtreecommitdiffstats
path: root/docs/getting_started/porting-guide.rst
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--docs/getting_started/porting-guide.rst3515
1 files changed, 3515 insertions, 0 deletions
diff --git a/docs/getting_started/porting-guide.rst b/docs/getting_started/porting-guide.rst
new file mode 100644
index 0000000..aa57e1d
--- /dev/null
+++ b/docs/getting_started/porting-guide.rst
@@ -0,0 +1,3515 @@
+Porting Guide
+=============
+
+Introduction
+------------
+
+Porting Trusted Firmware-A (TF-A) to a new platform involves making some
+mandatory and optional modifications for both the cold and warm boot paths.
+Modifications consist of:
+
+- Implementing a platform-specific function or variable,
+- Setting up the execution context in a certain way, or
+- Defining certain constants (for example #defines).
+
+The platform-specific functions and variables are declared in
+``include/plat/common/platform.h``. The firmware provides a default
+implementation of variables and functions to fulfill the optional requirements.
+These implementations are all weakly defined; they are provided to ease the
+porting effort. Each platform port can override them with its own implementation
+if the default implementation is inadequate.
+
+Some modifications are common to all Boot Loader (BL) stages. Section 2
+discusses these in detail. The subsequent sections discuss the remaining
+modifications for each BL stage in detail.
+
+Please refer to the :ref:`Platform Ports Policy` for the policy regarding
+compatibility and deprecation of these porting interfaces.
+
+Only Arm development platforms (such as FVP and Juno) may use the
+functions/definitions in ``include/plat/arm/common/`` and the corresponding
+source files in ``plat/arm/common/``. This is done so that there are no
+dependencies between platforms maintained by different people/companies. If you
+want to use any of the functionality present in ``plat/arm`` files, please
+create a pull request that moves the code to ``plat/common`` so that it can be
+discussed.
+
+Common modifications
+--------------------
+
+This section covers the modifications that should be made by the platform for
+each BL stage to correctly port the firmware stack. They are categorized as
+either mandatory or optional.
+
+Common mandatory modifications
+------------------------------
+
+A platform port must enable the Memory Management Unit (MMU) as well as the
+instruction and data caches for each BL stage. Setting up the translation
+tables is the responsibility of the platform port because memory maps differ
+across platforms. A memory translation library (see ``lib/xlat_tables/``) is
+provided to help in this setup.
+
+Note that although this library supports non-identity mappings, this is intended
+only for re-mapping peripheral physical addresses and allows platforms with high
+I/O addresses to reduce their virtual address space. All other addresses
+corresponding to code and data must currently use an identity mapping.
+
+Also, the only translation granule size supported in TF-A is 4KB, as various
+parts of the code assume that is the case. It is not possible to switch to
+16 KB or 64 KB granule sizes at the moment.
+
+In Arm standard platforms, each BL stage configures the MMU in the
+platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
+an identity mapping for all addresses.
+
+If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
+block of identity mapped secure memory with Device-nGnRE attributes aligned to
+page boundary (4K) for each BL stage. All sections which allocate coherent
+memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
+section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
+possible for the firmware to place variables in it using the following C code
+directive:
+
+::
+
+ __section("bakery_lock")
+
+Or alternatively the following assembler code directive:
+
+::
+
+ .section bakery_lock
+
+The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
+used to allocate any data structures that are accessed both when a CPU is
+executing with its MMU and caches enabled, and when it's running with its MMU
+and caches disabled. Examples are given below.
+
+The following variables, functions and constants must be defined by the platform
+for the firmware to work correctly.
+
+.. _platform_def_mandatory:
+
+File : platform_def.h [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Each platform must ensure that a header file of this name is in the system
+include path with the following constants defined. This will require updating
+the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
+
+Platform ports may optionally use the file ``include/plat/common/common_def.h``,
+which provides typical values for some of the constants below. These values are
+likely to be suitable for all platform ports.
+
+- **#define : PLATFORM_LINKER_FORMAT**
+
+ Defines the linker format used by the platform, for example
+ ``elf64-littleaarch64``.
+
+- **#define : PLATFORM_LINKER_ARCH**
+
+ Defines the processor architecture for the linker by the platform, for
+ example ``aarch64``.
+
+- **#define : PLATFORM_STACK_SIZE**
+
+ Defines the normal stack memory available to each CPU. This constant is used
+ by ``plat/common/aarch64/platform_mp_stack.S`` and
+ ``plat/common/aarch64/platform_up_stack.S``.
+
+- **#define : CACHE_WRITEBACK_GRANULE**
+
+ Defines the size in bytes of the largest cache line across all the cache
+ levels in the platform.
+
+- **#define : FIRMWARE_WELCOME_STR**
+
+ Defines the character string printed by BL1 upon entry into the ``bl1_main()``
+ function.
+
+- **#define : PLATFORM_CORE_COUNT**
+
+ Defines the total number of CPUs implemented by the platform across all
+ clusters in the system.
+
+- **#define : PLAT_NUM_PWR_DOMAINS**
+
+ Defines the total number of nodes in the power domain topology
+ tree at all the power domain levels used by the platform.
+ This macro is used by the PSCI implementation to allocate
+ data structures to represent power domain topology.
+
+- **#define : PLAT_MAX_PWR_LVL**
+
+ Defines the maximum power domain level that the power management operations
+ should apply to. More often, but not always, the power domain level
+ corresponds to affinity level. This macro allows the PSCI implementation
+ to know the highest power domain level that it should consider for power
+ management operations in the system that the platform implements. For
+ example, the Base AEM FVP implements two clusters with a configurable
+ number of CPUs and it reports the maximum power domain level as 1.
+
+- **#define : PLAT_MAX_OFF_STATE**
+
+ Defines the local power state corresponding to the deepest power down
+ possible at every power domain level in the platform. The local power
+ states for each level may be sparsely allocated between 0 and this value
+ with 0 being reserved for the RUN state. The PSCI implementation uses this
+ value to initialize the local power states of the power domain nodes and
+ to specify the requested power state for a PSCI_CPU_OFF call.
+
+- **#define : PLAT_MAX_RET_STATE**
+
+ Defines the local power state corresponding to the deepest retention state
+ possible at every power domain level in the platform. This macro should be
+ a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
+ PSCI implementation to distinguish between retention and power down local
+ power states within PSCI_CPU_SUSPEND call.
+
+- **#define : PLAT_MAX_PWR_LVL_STATES**
+
+ Defines the maximum number of local power states per power domain level
+ that the platform supports. The default value of this macro is 2 since
+ most platforms just support a maximum of two local power states at each
+ power domain level (power-down and retention). If the platform needs to
+ account for more local power states, then it must redefine this macro.
+
+ Currently, this macro is used by the Generic PSCI implementation to size
+ the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
+
+- **#define : BL1_RO_BASE**
+
+ Defines the base address in secure ROM where BL1 originally lives. Must be
+ aligned on a page-size boundary.
+
+- **#define : BL1_RO_LIMIT**
+
+ Defines the maximum address in secure ROM that BL1's actual content (i.e.
+ excluding any data section allocated at runtime) can occupy.
+
+- **#define : BL1_RW_BASE**
+
+ Defines the base address in secure RAM where BL1's read-write data will live
+ at runtime. Must be aligned on a page-size boundary.
+
+- **#define : BL1_RW_LIMIT**
+
+ Defines the maximum address in secure RAM that BL1's read-write data can
+ occupy at runtime.
+
+- **#define : BL2_BASE**
+
+ Defines the base address in secure RAM where BL1 loads the BL2 binary image.
+ Must be aligned on a page-size boundary. This constant is not applicable
+ when BL2_IN_XIP_MEM is set to '1'.
+
+- **#define : BL2_LIMIT**
+
+ Defines the maximum address in secure RAM that the BL2 image can occupy.
+ This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
+
+- **#define : BL2_RO_BASE**
+
+ Defines the base address in secure XIP memory where BL2 RO section originally
+ lives. Must be aligned on a page-size boundary. This constant is only needed
+ when BL2_IN_XIP_MEM is set to '1'.
+
+- **#define : BL2_RO_LIMIT**
+
+ Defines the maximum address in secure XIP memory that BL2's actual content
+ (i.e. excluding any data section allocated at runtime) can occupy. This
+ constant is only needed when BL2_IN_XIP_MEM is set to '1'.
+
+- **#define : BL2_RW_BASE**
+
+ Defines the base address in secure RAM where BL2's read-write data will live
+ at runtime. Must be aligned on a page-size boundary. This constant is only
+ needed when BL2_IN_XIP_MEM is set to '1'.
+
+- **#define : BL2_RW_LIMIT**
+
+ Defines the maximum address in secure RAM that BL2's read-write data can
+ occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
+ to '1'.
+
+- **#define : BL31_BASE**
+
+ Defines the base address in secure RAM where BL2 loads the BL31 binary
+ image. Must be aligned on a page-size boundary.
+
+- **#define : BL31_LIMIT**
+
+ Defines the maximum address in secure RAM that the BL31 image can occupy.
+
+- **#define : PLAT_RSS_COMMS_PAYLOAD_MAX_SIZE**
+
+ Defines the maximum message size between AP and RSS. Need to define if
+ platform supports RSS.
+
+For every image, the platform must define individual identifiers that will be
+used by BL1 or BL2 to load the corresponding image into memory from non-volatile
+storage. For the sake of performance, integer numbers will be used as
+identifiers. The platform will use those identifiers to return the relevant
+information about the image to be loaded (file handler, load address,
+authentication information, etc.). The following image identifiers are
+mandatory:
+
+- **#define : BL2_IMAGE_ID**
+
+ BL2 image identifier, used by BL1 to load BL2.
+
+- **#define : BL31_IMAGE_ID**
+
+ BL31 image identifier, used by BL2 to load BL31.
+
+- **#define : BL33_IMAGE_ID**
+
+ BL33 image identifier, used by BL2 to load BL33.
+
+If Trusted Board Boot is enabled, the following certificate identifiers must
+also be defined:
+
+- **#define : TRUSTED_BOOT_FW_CERT_ID**
+
+ BL2 content certificate identifier, used by BL1 to load the BL2 content
+ certificate.
+
+- **#define : TRUSTED_KEY_CERT_ID**
+
+ Trusted key certificate identifier, used by BL2 to load the trusted key
+ certificate.
+
+- **#define : SOC_FW_KEY_CERT_ID**
+
+ BL31 key certificate identifier, used by BL2 to load the BL31 key
+ certificate.
+
+- **#define : SOC_FW_CONTENT_CERT_ID**
+
+ BL31 content certificate identifier, used by BL2 to load the BL31 content
+ certificate.
+
+- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
+
+ BL33 key certificate identifier, used by BL2 to load the BL33 key
+ certificate.
+
+- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
+
+ BL33 content certificate identifier, used by BL2 to load the BL33 content
+ certificate.
+
+- **#define : FWU_CERT_ID**
+
+ Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
+ FWU content certificate.
+
+- **#define : PLAT_CRYPTOCELL_BASE**
+
+ This defines the base address of ArmĀ® TrustZoneĀ® CryptoCell and must be
+ defined if CryptoCell crypto driver is used for Trusted Board Boot. For
+ capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
+ set.
+
+If the AP Firmware Updater Configuration image, BL2U is used, the following
+must also be defined:
+
+- **#define : BL2U_BASE**
+
+ Defines the base address in secure memory where BL1 copies the BL2U binary
+ image. Must be aligned on a page-size boundary.
+
+- **#define : BL2U_LIMIT**
+
+ Defines the maximum address in secure memory that the BL2U image can occupy.
+
+- **#define : BL2U_IMAGE_ID**
+
+ BL2U image identifier, used by BL1 to fetch an image descriptor
+ corresponding to BL2U.
+
+If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
+must also be defined:
+
+- **#define : SCP_BL2U_IMAGE_ID**
+
+ SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
+ corresponding to SCP_BL2U.
+
+ .. note::
+ TF-A does not provide source code for this image.
+
+If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
+also be defined:
+
+- **#define : NS_BL1U_BASE**
+
+ Defines the base address in non-secure ROM where NS_BL1U executes.
+ Must be aligned on a page-size boundary.
+
+ .. note::
+ TF-A does not provide source code for this image.
+
+- **#define : NS_BL1U_IMAGE_ID**
+
+ NS_BL1U image identifier, used by BL1 to fetch an image descriptor
+ corresponding to NS_BL1U.
+
+If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
+be defined:
+
+- **#define : NS_BL2U_BASE**
+
+ Defines the base address in non-secure memory where NS_BL2U executes.
+ Must be aligned on a page-size boundary.
+
+ .. note::
+ TF-A does not provide source code for this image.
+
+- **#define : NS_BL2U_IMAGE_ID**
+
+ NS_BL2U image identifier, used by BL1 to fetch an image descriptor
+ corresponding to NS_BL2U.
+
+For the the Firmware update capability of TRUSTED BOARD BOOT, the following
+macros may also be defined:
+
+- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
+
+ Total number of images that can be loaded simultaneously. If the platform
+ doesn't specify any value, it defaults to 10.
+
+If a SCP_BL2 image is supported by the platform, the following constants must
+also be defined:
+
+- **#define : SCP_BL2_IMAGE_ID**
+
+ SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
+ from platform storage before being transferred to the SCP.
+
+- **#define : SCP_FW_KEY_CERT_ID**
+
+ SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
+ certificate (mandatory when Trusted Board Boot is enabled).
+
+- **#define : SCP_FW_CONTENT_CERT_ID**
+
+ SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
+ content certificate (mandatory when Trusted Board Boot is enabled).
+
+If a BL32 image is supported by the platform, the following constants must
+also be defined:
+
+- **#define : BL32_IMAGE_ID**
+
+ BL32 image identifier, used by BL2 to load BL32.
+
+- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
+
+ BL32 key certificate identifier, used by BL2 to load the BL32 key
+ certificate (mandatory when Trusted Board Boot is enabled).
+
+- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
+
+ BL32 content certificate identifier, used by BL2 to load the BL32 content
+ certificate (mandatory when Trusted Board Boot is enabled).
+
+- **#define : BL32_BASE**
+
+ Defines the base address in secure memory where BL2 loads the BL32 binary
+ image. Must be aligned on a page-size boundary.
+
+- **#define : BL32_LIMIT**
+
+ Defines the maximum address that the BL32 image can occupy.
+
+If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
+platform, the following constants must also be defined:
+
+- **#define : TSP_SEC_MEM_BASE**
+
+ Defines the base address of the secure memory used by the TSP image on the
+ platform. This must be at the same address or below ``BL32_BASE``.
+
+- **#define : TSP_SEC_MEM_SIZE**
+
+ Defines the size of the secure memory used by the BL32 image on the
+ platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
+ accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
+ and ``BL32_LIMIT``.
+
+- **#define : TSP_IRQ_SEC_PHY_TIMER**
+
+ Defines the ID of the secure physical generic timer interrupt used by the
+ TSP's interrupt handling code.
+
+If the platform port uses the translation table library code, the following
+constants must also be defined:
+
+- **#define : PLAT_XLAT_TABLES_DYNAMIC**
+
+ Optional flag that can be set per-image to enable the dynamic allocation of
+ regions even when the MMU is enabled. If not defined, only static
+ functionality will be available, if defined and set to 1 it will also
+ include the dynamic functionality.
+
+- **#define : MAX_XLAT_TABLES**
+
+ Defines the maximum number of translation tables that are allocated by the
+ translation table library code. To minimize the amount of runtime memory
+ used, choose the smallest value needed to map the required virtual addresses
+ for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
+ image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
+ as well.
+
+- **#define : MAX_MMAP_REGIONS**
+
+ Defines the maximum number of regions that are allocated by the translation
+ table library code. A region consists of physical base address, virtual base
+ address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
+ defined in the ``mmap_region_t`` structure. The platform defines the regions
+ that should be mapped. Then, the translation table library will create the
+ corresponding tables and descriptors at runtime. To minimize the amount of
+ runtime memory used, choose the smallest value needed to register the
+ required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
+ enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
+ the dynamic regions as well.
+
+- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
+
+ Defines the total size of the virtual address space in bytes. For example,
+ for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
+
+- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
+
+ Defines the total size of the physical address space in bytes. For example,
+ for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
+
+If the platform port uses the IO storage framework, the following constants
+must also be defined:
+
+- **#define : MAX_IO_DEVICES**
+
+ Defines the maximum number of registered IO devices. Attempting to register
+ more devices than this value using ``io_register_device()`` will fail with
+ -ENOMEM.
+
+- **#define : MAX_IO_HANDLES**
+
+ Defines the maximum number of open IO handles. Attempting to open more IO
+ entities than this value using ``io_open()`` will fail with -ENOMEM.
+
+- **#define : MAX_IO_BLOCK_DEVICES**
+
+ Defines the maximum number of registered IO block devices. Attempting to
+ register more devices this value using ``io_dev_open()`` will fail
+ with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
+ With this macro, multiple block devices could be supported at the same
+ time.
+
+If the platform needs to allocate data within the per-cpu data framework in
+BL31, it should define the following macro. Currently this is only required if
+the platform decides not to use the coherent memory section by undefining the
+``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
+required memory within the the per-cpu data to minimize wastage.
+
+- **#define : PLAT_PCPU_DATA_SIZE**
+
+ Defines the memory (in bytes) to be reserved within the per-cpu data
+ structure for use by the platform layer.
+
+The following constants are optional. They should be defined when the platform
+memory layout implies some image overlaying like in Arm standard platforms.
+
+- **#define : BL31_PROGBITS_LIMIT**
+
+ Defines the maximum address in secure RAM that the BL31's progbits sections
+ can occupy.
+
+- **#define : TSP_PROGBITS_LIMIT**
+
+ Defines the maximum address that the TSP's progbits sections can occupy.
+
+If the platform port uses the PL061 GPIO driver, the following constant may
+optionally be defined:
+
+- **PLAT_PL061_MAX_GPIOS**
+ Maximum number of GPIOs required by the platform. This allows control how
+ much memory is allocated for PL061 GPIO controllers. The default value is
+
+ #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
+
+If the platform port uses the partition driver, the following constant may
+optionally be defined:
+
+- **PLAT_PARTITION_MAX_ENTRIES**
+ Maximum number of partition entries required by the platform. This allows
+ control how much memory is allocated for partition entries. The default
+ value is 128.
+ For example, define the build flag in ``platform.mk``:
+ PLAT_PARTITION_MAX_ENTRIES := 12
+ $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
+
+- **PLAT_PARTITION_BLOCK_SIZE**
+ The size of partition block. It could be either 512 bytes or 4096 bytes.
+ The default value is 512.
+ For example, define the build flag in ``platform.mk``:
+ PLAT_PARTITION_BLOCK_SIZE := 4096
+ $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
+
+The following constant is optional. It should be defined to override the default
+behaviour of the ``assert()`` function (for example, to save memory).
+
+- **PLAT_LOG_LEVEL_ASSERT**
+ If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
+ ``assert()`` prints the name of the file, the line number and the asserted
+ expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
+ name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
+ doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
+ defined, it defaults to ``LOG_LEVEL``.
+
+If the platform port uses the DRTM feature, the following constants must be
+defined:
+
+- **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
+
+ Maximum Event Log size used by the platform. Platform can decide the maximum
+ size of the Event Log buffer, depending upon the highest hash algorithm
+ chosen and the number of components selected to measure during the DRTM
+ execution flow.
+
+- **#define : PLAT_DRTM_MMAP_ENTRIES**
+
+ Number of the MMAP entries used by the DRTM implementation to calculate the
+ size of address map region of the platform.
+
+File : plat_macros.S [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Each platform must ensure a file of this name is in the system include path with
+the following macro defined. In the Arm development platforms, this file is
+found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
+
+- **Macro : plat_crash_print_regs**
+
+ This macro allows the crash reporting routine to print relevant platform
+ registers in case of an unhandled exception in BL31. This aids in debugging
+ and this macro can be defined to be empty in case register reporting is not
+ desired.
+
+ For instance, GIC or interconnect registers may be helpful for
+ troubleshooting.
+
+Handling Reset
+--------------
+
+BL1 by default implements the reset vector where execution starts from a cold
+or warm boot. BL31 can be optionally set as a reset vector using the
+``RESET_TO_BL31`` make variable.
+
+For each CPU, the reset vector code is responsible for the following tasks:
+
+#. Distinguishing between a cold boot and a warm boot.
+
+#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
+ the CPU is placed in a platform-specific state until the primary CPU
+ performs the necessary steps to remove it from this state.
+
+#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
+ specific address in the BL31 image in the same processor mode as it was
+ when released from reset.
+
+The following functions need to be implemented by the platform port to enable
+reset vector code to perform the above tasks.
+
+Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uintptr_t
+
+This function is called with the MMU and caches disabled
+(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
+distinguishing between a warm and cold reset for the current CPU using
+platform-specific means. If it's a warm reset, then it returns the warm
+reset entrypoint point provided to ``plat_setup_psci_ops()`` during
+BL31 initialization. If it's a cold reset then this function must return zero.
+
+This function does not follow the Procedure Call Standard used by the
+Application Binary Interface for the Arm 64-bit architecture. The caller should
+not assume that callee saved registers are preserved across a call to this
+function.
+
+This function fulfills requirement 1 and 3 listed above.
+
+Note that for platforms that support programming the reset address, it is
+expected that a CPU will start executing code directly at the right address,
+both on a cold and warm reset. In this case, there is no need to identify the
+type of reset nor to query the warm reset entrypoint. Therefore, implementing
+this function is not required on such platforms.
+
+Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+
+This function is called with the MMU and data caches disabled. It is responsible
+for placing the executing secondary CPU in a platform-specific state until the
+primary CPU performs the necessary actions to bring it out of that state and
+allow entry into the OS. This function must not return.
+
+In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
+itself off. The primary CPU is responsible for powering up the secondary CPUs
+when normal world software requires them. When booting an EL3 payload instead,
+they stay powered on and are put in a holding pen until their mailbox gets
+populated.
+
+This function fulfills requirement 2 above.
+
+Note that for platforms that can't release secondary CPUs out of reset, only the
+primary CPU will execute the cold boot code. Therefore, implementing this
+function is not required on such platforms.
+
+Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : unsigned int
+
+This function identifies whether the current CPU is the primary CPU or a
+secondary CPU. A return value of zero indicates that the CPU is not the
+primary CPU, while a non-zero return value indicates that the CPU is the
+primary CPU.
+
+Note that for platforms that can't release secondary CPUs out of reset, only the
+primary CPU will execute the cold boot code. Therefore, there is no need to
+distinguish between primary and secondary CPUs and implementing this function is
+not required.
+
+Function : platform_mem_init() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function is called before any access to data is made by the firmware, in
+order to carry out any essential memory initialization.
+
+Function: plat_get_rotpk_info()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void *, void **, unsigned int *, unsigned int *
+ Return : int
+
+This function is mandatory when Trusted Board Boot is enabled. It returns a
+pointer to the ROTPK stored in the platform (or a hash of it) and its length.
+The ROTPK must be encoded in DER format according to the following ASN.1
+structure:
+
+::
+
+ AlgorithmIdentifier ::= SEQUENCE {
+ algorithm OBJECT IDENTIFIER,
+ parameters ANY DEFINED BY algorithm OPTIONAL
+ }
+
+ SubjectPublicKeyInfo ::= SEQUENCE {
+ algorithm AlgorithmIdentifier,
+ subjectPublicKey BIT STRING
+ }
+
+In case the function returns a hash of the key:
+
+::
+
+ DigestInfo ::= SEQUENCE {
+ digestAlgorithm AlgorithmIdentifier,
+ digest OCTET STRING
+ }
+
+The function returns 0 on success. Any other value is treated as error by the
+Trusted Board Boot. The function also reports extra information related
+to the ROTPK in the flags parameter:
+
+::
+
+ ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
+ hash.
+ ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
+ verification while the platform ROTPK is not deployed.
+ When this flag is set, the function does not need to
+ return a platform ROTPK, and the authentication
+ framework uses the ROTPK in the certificate without
+ verifying it against the platform value. This flag
+ must not be used in a deployed production environment.
+
+Function: plat_get_nv_ctr()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void *, unsigned int *
+ Return : int
+
+This function is mandatory when Trusted Board Boot is enabled. It returns the
+non-volatile counter value stored in the platform in the second argument. The
+cookie in the first argument may be used to select the counter in case the
+platform provides more than one (for example, on platforms that use the default
+TBBR CoT, the cookie will correspond to the OID values defined in
+TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
+
+The function returns 0 on success. Any other value means the counter value could
+not be retrieved from the platform.
+
+Function: plat_set_nv_ctr()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void *, unsigned int
+ Return : int
+
+This function is mandatory when Trusted Board Boot is enabled. It sets a new
+counter value in the platform. The cookie in the first argument may be used to
+select the counter (as explained in plat_get_nv_ctr()). The second argument is
+the updated counter value to be written to the NV counter.
+
+The function returns 0 on success. Any other value means the counter value could
+not be updated.
+
+Function: plat_set_nv_ctr2()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void *, const auth_img_desc_t *, unsigned int
+ Return : int
+
+This function is optional when Trusted Board Boot is enabled. If this
+interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
+first argument passed is a cookie and is typically used to
+differentiate between a Non Trusted NV Counter and a Trusted NV
+Counter. The second argument is a pointer to an authentication image
+descriptor and may be used to decide if the counter is allowed to be
+updated or not. The third argument is the updated counter value to
+be written to the NV counter.
+
+The function returns 0 on success. Any other value means the counter value
+either could not be updated or the authentication image descriptor indicates
+that it is not allowed to be updated.
+
+Function: plat_convert_pk()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void *, unsigned int, void **, unsigned int *
+ Return : int
+
+This function is optional when Trusted Board Boot is enabled, and only
+used if the platform saves a hash of the ROTPK.
+First argument is the Distinguished Encoding Rules (DER) ROTPK.
+Second argument is its size.
+Third argument is used to return a pointer to a buffer, which hash should
+be the one saved in OTP.
+Fourth argument is a pointer to return its size.
+
+Most platforms save the hash of the ROTPK, but some may save slightly different
+information - e.g the hash of the ROTPK plus some related information.
+Defining this function allows to transform the ROTPK used to verify
+the signature to the buffer (a platform specific public key) which
+hash is saved in OTP.
+
+The default implementation copies the input key and length to the output without
+modification.
+
+The function returns 0 on success. Any other value means the expected
+public key buffer cannot be extracted.
+
+Dynamic Root of Trust for Measurement support (in BL31)
+-------------------------------------------------------
+
+The functions mentioned in this section are mandatory, when platform enables
+DRTM_SUPPORT build flag.
+
+Function : plat_get_addr_mmap()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : const mmap_region_t *
+
+This function is used to return the address of the platform *address-map* table,
+which describes the regions of normal memory, memory mapped I/O
+and non-volatile memory.
+
+Function : plat_has_non_host_platforms()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : bool
+
+This function returns *true* if the platform has any trusted devices capable of
+DMA, otherwise returns *false*.
+
+Function : plat_has_unmanaged_dma_peripherals()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : bool
+
+This function returns *true* if platform uses peripherals whose DMA is not
+managed by an SMMU, otherwise returns *false*.
+
+Note -
+If the platform has peripherals that are not managed by the SMMU, then the
+platform should investigate such peripherals to determine whether they can
+be trusted, and such peripherals should be moved under "Non-host platforms"
+if they can be trusted.
+
+Function : plat_get_total_num_smmus()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : unsigned int
+
+This function returns the total number of SMMUs in the platform.
+
+Function : plat_enumerate_smmus()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+::
+
+
+ Argument : void
+ Return : const uintptr_t *, size_t
+
+This function returns an array of SMMU addresses and the actual number of SMMUs
+reported by the platform.
+
+Function : plat_drtm_get_dma_prot_features()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : const plat_drtm_dma_prot_features_t*
+
+This function returns the address of plat_drtm_dma_prot_features_t structure
+containing the maximum number of protected regions and bitmap with the types
+of DMA protection supported by the platform.
+For more details see section 3.3 Table 6 of `DRTM`_ specification.
+
+Function : plat_drtm_dma_prot_get_max_table_bytes()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint64_t
+
+This function returns the maximum size of DMA protected regions table in
+bytes.
+
+Function : plat_drtm_get_tpm_features()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : const plat_drtm_tpm_features_t*
+
+This function returns the address of *plat_drtm_tpm_features_t* structure
+containing PCR usage schema, TPM-based hash, and firmware hash algorithm
+supported by the platform.
+
+Function : plat_drtm_get_min_size_normal_world_dce()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint64_t
+
+This function returns the size normal-world DCE of the platform.
+
+Function : plat_drtm_get_imp_def_dlme_region_size()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint64_t
+
+This function returns the size of implementation defined DLME region
+of the platform.
+
+Function : plat_drtm_get_tcb_hash_table_size()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint64_t
+
+This function returns the size of TCB hash table of the platform.
+
+Function : plat_drtm_get_tcb_hash_features()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint64_t
+
+This function returns the Maximum number of TCB hashes recorded by the
+platform.
+For more details see section 3.3 Table 6 of `DRTM`_ specification.
+
+Function : plat_drtm_validate_ns_region()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uintptr_t, uintptr_t
+ Return : int
+
+This function validates that given region is within the Non-Secure region
+of DRAM. This function takes a region start address and size an input
+arguments, and returns 0 on success and -1 on failure.
+
+Function : plat_set_drtm_error()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uint64_t
+ Return : int
+
+This function writes a 64 bit error code received as input into
+non-volatile storage and returns 0 on success and -1 on failure.
+
+Function : plat_get_drtm_error()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uint64_t*
+ Return : int
+
+This function reads a 64 bit error code from the non-volatile storage
+into the received address, and returns 0 on success and -1 on failure.
+
+Common mandatory function modifications
+---------------------------------------
+
+The following functions are mandatory functions which need to be implemented
+by the platform port.
+
+Function : plat_my_core_pos()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : unsigned int
+
+This function returns the index of the calling CPU which is used as a
+CPU-specific linear index into blocks of memory (for example while allocating
+per-CPU stacks). This function will be invoked very early in the
+initialization sequence which mandates that this function should be
+implemented in assembly and should not rely on the availability of a C
+runtime environment. This function can clobber x0 - x8 and must preserve
+x9 - x29.
+
+This function plays a crucial role in the power domain topology framework in
+PSCI and details of this can be found in
+:ref:`PSCI Power Domain Tree Structure`.
+
+Function : plat_core_pos_by_mpidr()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : u_register_t
+ Return : int
+
+This function validates the ``MPIDR`` of a CPU and converts it to an index,
+which can be used as a CPU-specific linear index into blocks of memory. In
+case the ``MPIDR`` is invalid, this function returns -1. This function will only
+be invoked by BL31 after the power domain topology is initialized and can
+utilize the C runtime environment. For further details about how TF-A
+represents the power domain topology and how this relates to the linear CPU
+index, please refer :ref:`PSCI Power Domain Tree Structure`.
+
+Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Arguments : void **heap_addr, size_t *heap_size
+ Return : int
+
+This function is invoked during Mbed TLS library initialisation to get a heap,
+by means of a starting address and a size. This heap will then be used
+internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
+must be able to provide a heap to it.
+
+A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
+which a heap is statically reserved during compile time inside every image
+(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
+the function simply returns the address and size of this "pre-allocated" heap.
+For a platform to use this default implementation, only a call to the helper
+from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
+
+However, by writting their own implementation, platforms have the potential to
+optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
+shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
+twice.
+
+On success the function should return 0 and a negative error code otherwise.
+
+Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
+ size_t *key_len, unsigned int *flags, const uint8_t *img_id,
+ size_t img_id_len
+ Return : int
+
+This function provides a symmetric key (either SSK or BSSK depending on
+fw_enc_status) which is invoked during runtime decryption of encrypted
+firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
+implementation for testing purposes which must be overridden by the platform
+trying to implement a real world firmware encryption use-case.
+
+It also allows the platform to pass symmetric key identifier rather than
+actual symmetric key which is useful in cases where the crypto backend provides
+secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
+flag must be set in ``flags``.
+
+In addition to above a platform may also choose to provide an image specific
+symmetric key/identifier using img_id.
+
+On success the function should return 0 and a negative error code otherwise.
+
+Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
+
+Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : const struct fwu_metadata *metadata
+ Return : void
+
+This function is mandatory when PSA_FWU_SUPPORT is enabled.
+It provides a means to retrieve image specification (offset in
+non-volatile storage and length) of active/updated images using the passed
+FWU metadata, and update I/O policies of active/updated images using retrieved
+image specification information.
+Further I/O layer operations such as I/O open, I/O read, etc. on these
+images rely on this function call.
+
+In Arm platforms, this function is used to set an I/O policy of the FIP image,
+container of all active/updated secure and non-secure images.
+
+Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int image_id, uintptr_t *dev_handle,
+ uintptr_t *image_spec
+ Return : int
+
+This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
+responsible for setting up the platform I/O policy of the requested metadata
+image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
+be used to load this image from the platform's non-volatile storage.
+
+FWU metadata can not be always stored as a raw image in non-volatile storage
+to define its image specification (offset in non-volatile storage and length)
+statically in I/O policy.
+For example, the FWU metadata image is stored as a partition inside the GUID
+partition table image. Its specification is defined in the partition table
+that needs to be parsed dynamically.
+This function provides a means to retrieve such dynamic information to set
+the I/O policy of the FWU metadata image.
+Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
+image relies on this function call.
+
+It returns '0' on success, otherwise a negative error value on error.
+Alongside, returns device handle and image specification from the I/O policy
+of the requested FWU metadata image.
+
+Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint32_t
+
+This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
+means to retrieve the boot index value from the platform. The boot index is the
+bank from which the platform has booted the firmware images.
+
+By default, the platform will read the metadata structure and try to boot from
+the active bank. If the platform fails to boot from the active bank due to
+reasons like an Authentication failure, or on crossing a set number of watchdog
+resets while booting from the active bank, the platform can then switch to boot
+from a different bank. This function then returns the bank that the platform
+should boot its images from.
+
+Common optional modifications
+-----------------------------
+
+The following are helper functions implemented by the firmware that perform
+common platform-specific tasks. A platform may choose to override these
+definitions.
+
+Function : plat_set_my_stack()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function sets the current stack pointer to the normal memory stack that
+has been allocated for the current CPU. For BL images that only require a
+stack for the primary CPU, the UP version of the function is used. The size
+of the stack allocated to each CPU is specified by the platform defined
+constant ``PLATFORM_STACK_SIZE``.
+
+Common implementations of this function for the UP and MP BL images are
+provided in ``plat/common/aarch64/platform_up_stack.S`` and
+``plat/common/aarch64/platform_mp_stack.S``
+
+Function : plat_get_my_stack()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uintptr_t
+
+This function returns the base address of the normal memory stack that
+has been allocated for the current CPU. For BL images that only require a
+stack for the primary CPU, the UP version of the function is used. The size
+of the stack allocated to each CPU is specified by the platform defined
+constant ``PLATFORM_STACK_SIZE``.
+
+Common implementations of this function for the UP and MP BL images are
+provided in ``plat/common/aarch64/platform_up_stack.S`` and
+``plat/common/aarch64/platform_mp_stack.S``
+
+Function : plat_report_exception()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int
+ Return : void
+
+A platform may need to report various information about its status when an
+exception is taken, for example the current exception level, the CPU security
+state (secure/non-secure), the exception type, and so on. This function is
+called in the following circumstances:
+
+- In BL1, whenever an exception is taken.
+- In BL2, whenever an exception is taken.
+
+The default implementation doesn't do anything, to avoid making assumptions
+about the way the platform displays its status information.
+
+For AArch64, this function receives the exception type as its argument.
+Possible values for exceptions types are listed in the
+``include/common/bl_common.h`` header file. Note that these constants are not
+related to any architectural exception code; they are just a TF-A convention.
+
+For AArch32, this function receives the exception mode as its argument.
+Possible values for exception modes are listed in the
+``include/lib/aarch32/arch.h`` header file.
+
+Function : plat_reset_handler()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+A platform may need to do additional initialization after reset. This function
+allows the platform to do the platform specific initializations. Platform
+specific errata workarounds could also be implemented here. The API should
+preserve the values of callee saved registers x19 to x29.
+
+The default implementation doesn't do anything. If a platform needs to override
+the default implementation, refer to the :ref:`Firmware Design` for general
+guidelines.
+
+Function : plat_disable_acp()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This API allows a platform to disable the Accelerator Coherency Port (if
+present) during a cluster power down sequence. The default weak implementation
+doesn't do anything. Since this API is called during the power down sequence,
+it has restrictions for stack usage and it can use the registers x0 - x17 as
+scratch registers. It should preserve the value in x18 register as it is used
+by the caller to store the return address.
+
+Function : plat_error_handler()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : int
+ Return : void
+
+This API is called when the generic code encounters an error situation from
+which it cannot continue. It allows the platform to perform error reporting or
+recovery actions (for example, reset the system). This function must not return.
+
+The parameter indicates the type of error using standard codes from ``errno.h``.
+Possible errors reported by the generic code are:
+
+- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
+ Board Boot is enabled)
+- ``-ENOENT``: the requested image or certificate could not be found or an IO
+ error was detected
+- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
+ error is usually an indication of an incorrect array size
+
+The default implementation simply spins.
+
+Function : plat_panic_handler()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This API is called when the generic code encounters an unexpected error
+situation from which it cannot recover. This function must not return,
+and must be implemented in assembly because it may be called before the C
+environment is initialized.
+
+.. note::
+ The address from where it was called is stored in x30 (Link Register).
+ The default implementation simply spins.
+
+Function : plat_system_reset()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function is used by the platform to resets the system. It can be used
+in any specific use-case where system needs to be resetted. For example,
+in case of DRTM implementation this function reset the system after
+writing the DRTM error code in the non-volatile storage. This function
+never returns. Failure in reset results in panic.
+
+Function : plat_get_bl_image_load_info()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : bl_load_info_t *
+
+This function returns pointer to the list of images that the platform has
+populated to load. This function is invoked in BL2 to load the
+BL3xx images.
+
+Function : plat_get_next_bl_params()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : bl_params_t *
+
+This function returns a pointer to the shared memory that the platform has
+kept aside to pass TF-A related information that next BL image needs. This
+function is invoked in BL2 to pass this information to the next BL
+image.
+
+Function : plat_get_stack_protector_canary()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : u_register_t
+
+This function returns a random value that is used to initialize the canary used
+when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
+value will weaken the protection as the attacker could easily write the right
+value as part of the attack most of the time. Therefore, it should return a
+true random number.
+
+.. warning::
+ For the protection to be effective, the global data need to be placed at
+ a lower address than the stack bases. Failure to do so would allow an
+ attacker to overwrite the canary as part of the stack buffer overflow attack.
+
+Function : plat_flush_next_bl_params()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function flushes to main memory all the image params that are passed to
+next image. This function is invoked in BL2 to flush this information
+to the next BL image.
+
+Function : plat_log_get_prefix()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int
+ Return : const char *
+
+This function defines the prefix string corresponding to the `log_level` to be
+prepended to all the log output from TF-A. The `log_level` (argument) will
+correspond to one of the standard log levels defined in debug.h. The platform
+can override the common implementation to define a different prefix string for
+the log output. The implementation should be robust to future changes that
+increase the number of log levels.
+
+Function : plat_get_soc_version()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : int32_t
+
+This function returns soc version which mainly consist of below fields
+
+::
+
+ soc_version[30:24] = JEP-106 continuation code for the SiP
+ soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
+ soc_version[15:0] = Implementation defined SoC ID
+
+Function : plat_get_soc_revision()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : int32_t
+
+This function returns soc revision in below format
+
+::
+
+ soc_revision[0:30] = SOC revision of specific SOC
+
+Function : plat_is_smccc_feature_available()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : u_register_t
+ Return : int32_t
+
+This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
+the SMCCC function specified in the argument; otherwise returns
+SMC_ARCH_CALL_NOT_SUPPORTED.
+
+Function : plat_mboot_measure_image()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int, image_info_t *
+ Return : int
+
+When the MEASURED_BOOT flag is enabled:
+
+- This function measures the given image and records its measurement using
+ the measured boot backend driver.
+- On the Arm FVP port, this function measures the given image using its
+ passed id and information and then records that measurement in the
+ Event Log buffer.
+- This function must return 0 on success, a signed integer error code
+ otherwise.
+
+When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
+
+Function : plat_mboot_measure_critical_data()
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int, const void *, size_t
+ Return : int
+
+When the MEASURED_BOOT flag is enabled:
+
+- This function measures the given critical data structure and records its
+ measurement using the measured boot backend driver.
+- This function must return 0 on success, a signed integer error code
+ otherwise.
+
+When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
+
+Function : plat_can_cmo()
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint64_t
+
+When CONDITIONAL_CMO flag is enabled:
+
+- This function indicates whether cache management operations should be
+ performed. It returns 0 if CMOs should be skipped and non-zero
+ otherwise.
+- The function must not clobber x1, x2 and x3. It's also not safe to rely on
+ stack. Otherwise obey AAPCS.
+
+Modifications specific to a Boot Loader stage
+---------------------------------------------
+
+Boot Loader Stage 1 (BL1)
+-------------------------
+
+BL1 implements the reset vector where execution starts from after a cold or
+warm boot. For each CPU, BL1 is responsible for the following tasks:
+
+#. Handling the reset as described in section 2.2
+
+#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
+ only this CPU executes the remaining BL1 code, including loading and passing
+ control to the BL2 stage.
+
+#. Identifying and starting the Firmware Update process (if required).
+
+#. Loading the BL2 image from non-volatile storage into secure memory at the
+ address specified by the platform defined constant ``BL2_BASE``.
+
+#. Populating a ``meminfo`` structure with the following information in memory,
+ accessible by BL2 immediately upon entry.
+
+ ::
+
+ meminfo.total_base = Base address of secure RAM visible to BL2
+ meminfo.total_size = Size of secure RAM visible to BL2
+
+ By default, BL1 places this ``meminfo`` structure at the end of secure
+ memory visible to BL2.
+
+ It is possible for the platform to decide where it wants to place the
+ ``meminfo`` structure for BL2 or restrict the amount of memory visible to
+ BL2 by overriding the weak default implementation of
+ ``bl1_plat_handle_post_image_load`` API.
+
+The following functions need to be implemented by the platform port to enable
+BL1 to perform the above tasks.
+
+Function : bl1_early_platform_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function executes with the MMU and data caches disabled. It is only called
+by the primary CPU.
+
+On Arm standard platforms, this function:
+
+- Enables a secure instance of SP805 to act as the Trusted Watchdog.
+
+- Initializes a UART (PL011 console), which enables access to the ``printf``
+ family of functions in BL1.
+
+- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
+ the CCI slave interface corresponding to the cluster that includes the
+ primary CPU.
+
+Function : bl1_plat_arch_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function performs any platform-specific and architectural setup that the
+platform requires. Platform-specific setup might include configuration of
+memory controllers and the interconnect.
+
+In Arm standard platforms, this function enables the MMU.
+
+This function helps fulfill requirement 2 above.
+
+Function : bl1_platform_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function executes with the MMU and data caches enabled. It is responsible
+for performing any remaining platform-specific setup that can occur after the
+MMU and data cache have been enabled.
+
+if support for multiple boot sources is required, it initializes the boot
+sequence used by plat_try_next_boot_source().
+
+In Arm standard platforms, this function initializes the storage abstraction
+layer used to load the next bootloader image.
+
+This function helps fulfill requirement 4 above.
+
+Function : bl1_plat_sec_mem_layout() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : meminfo *
+
+This function should only be called on the cold boot path. It executes with the
+MMU and data caches enabled. The pointer returned by this function must point to
+a ``meminfo`` structure containing the extents and availability of secure RAM for
+the BL1 stage.
+
+::
+
+ meminfo.total_base = Base address of secure RAM visible to BL1
+ meminfo.total_size = Size of secure RAM visible to BL1
+
+This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
+populates a similar structure to tell BL2 the extents of memory available for
+its own use.
+
+This function helps fulfill requirements 4 and 5 above.
+
+Function : bl1_plat_prepare_exit() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : entry_point_info_t *
+ Return : void
+
+This function is called prior to exiting BL1 in response to the
+``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
+platform specific clean up or bookkeeping operations before transferring
+control to the next image. It receives the address of the ``entry_point_info_t``
+structure passed from BL2. This function runs with MMU disabled.
+
+Function : bl1_plat_set_ep_info() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int image_id, entry_point_info_t *ep_info
+ Return : void
+
+This function allows platforms to override ``ep_info`` for the given ``image_id``.
+
+The default implementation just returns.
+
+Function : bl1_plat_get_next_image_id() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : unsigned int
+
+This and the following function must be overridden to enable the FWU feature.
+
+BL1 calls this function after platform setup to identify the next image to be
+loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
+with the normal boot sequence, which loads and executes BL2. If the platform
+returns a different image id, BL1 assumes that Firmware Update is required.
+
+The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
+platforms override this function to detect if firmware update is required, and
+if so, return the first image in the firmware update process.
+
+Function : bl1_plat_get_image_desc() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int image_id
+ Return : image_desc_t *
+
+BL1 calls this function to get the image descriptor information ``image_desc_t``
+for the provided ``image_id`` from the platform.
+
+The default implementation always returns a common BL2 image descriptor. Arm
+standard platforms return an image descriptor corresponding to BL2 or one of
+the firmware update images defined in the Trusted Board Boot Requirements
+specification.
+
+Function : bl1_plat_handle_pre_image_load() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int image_id
+ Return : int
+
+This function can be used by the platforms to update/use image information
+corresponding to ``image_id``. This function is invoked in BL1, both in cold
+boot and FWU code path, before loading the image.
+
+Function : bl1_plat_handle_post_image_load() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int image_id
+ Return : int
+
+This function can be used by the platforms to update/use image information
+corresponding to ``image_id``. This function is invoked in BL1, both in cold
+boot and FWU code path, after loading and authenticating the image.
+
+The default weak implementation of this function calculates the amount of
+Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
+structure at the beginning of this free memory and populates it. The address
+of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
+information to BL2.
+
+Function : bl1_plat_fwu_done() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int image_id, uintptr_t image_src,
+ unsigned int image_size
+ Return : void
+
+BL1 calls this function when the FWU process is complete. It must not return.
+The platform may override this function to take platform specific action, for
+example to initiate the normal boot flow.
+
+The default implementation spins forever.
+
+Function : bl1_plat_mem_check() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uintptr_t mem_base, unsigned int mem_size,
+ unsigned int flags
+ Return : int
+
+BL1 calls this function while handling FWU related SMCs, more specifically when
+copying or authenticating an image. Its responsibility is to ensure that the
+region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
+that this memory corresponds to either a secure or non-secure memory region as
+indicated by the security state of the ``flags`` argument.
+
+This function can safely assume that the value resulting from the addition of
+``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
+overflow.
+
+This function must return 0 on success, a non-null error code otherwise.
+
+The default implementation of this function asserts therefore platforms must
+override it when using the FWU feature.
+
+Function : bl1_plat_mboot_init() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+When the MEASURED_BOOT flag is enabled:
+
+- This function is used to initialize the backend driver(s) of measured boot.
+- On the Arm FVP port, this function is used to initialize the Event Log
+ backend driver, and also to write header information in the Event Log buffer.
+
+When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
+
+Function : bl1_plat_mboot_finish() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+When the MEASURED_BOOT flag is enabled:
+
+- This function is used to finalize the measured boot backend driver(s),
+ and also, set the information for the next bootloader component to
+ extend the measurement if needed.
+- On the Arm FVP port, this function is used to pass the base address of
+ the Event Log buffer and its size to BL2 via tb_fw_config to extend the
+ Event Log buffer with the measurement of various images loaded by BL2.
+ It results in panic on error.
+
+When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
+
+Boot Loader Stage 2 (BL2)
+-------------------------
+
+The BL2 stage is executed only by the primary CPU, which is determined in BL1
+using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
+``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
+``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
+non-volatile storage to secure/non-secure RAM. After all the images are loaded
+then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
+images to be passed to the next BL image.
+
+The following functions must be implemented by the platform port to enable BL2
+to perform the above tasks.
+
+Function : bl2_early_platform_setup2() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : u_register_t, u_register_t, u_register_t, u_register_t
+ Return : void
+
+This function executes with the MMU and data caches disabled. It is only called
+by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
+are platform specific.
+
+On Arm standard platforms, the arguments received are :
+
+ arg0 - Points to load address of FW_CONFIG
+
+ arg1 - ``meminfo`` structure populated by BL1. The platform copies
+ the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
+
+On Arm standard platforms, this function also:
+
+- Initializes a UART (PL011 console), which enables access to the ``printf``
+ family of functions in BL2.
+
+- Initializes the storage abstraction layer used to load further bootloader
+ images. It is necessary to do this early on platforms with a SCP_BL2 image,
+ since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
+
+Function : bl2_plat_arch_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function executes with the MMU and data caches disabled. It is only called
+by the primary CPU.
+
+The purpose of this function is to perform any architectural initialization
+that varies across platforms.
+
+On Arm standard platforms, this function enables the MMU.
+
+Function : bl2_platform_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function may execute with the MMU and data caches enabled if the platform
+port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
+called by the primary CPU.
+
+The purpose of this function is to perform any platform initialization
+specific to BL2.
+
+In Arm standard platforms, this function performs security setup, including
+configuration of the TrustZone controller to allow non-secure masters access
+to most of DRAM. Part of DRAM is reserved for secure world use.
+
+Function : bl2_plat_handle_pre_image_load() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int
+ Return : int
+
+This function can be used by the platforms to update/use image information
+for given ``image_id``. This function is currently invoked in BL2 before
+loading each image.
+
+Function : bl2_plat_handle_post_image_load() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int
+ Return : int
+
+This function can be used by the platforms to update/use image information
+for given ``image_id``. This function is currently invoked in BL2 after
+loading each image.
+
+Function : bl2_plat_preload_setup [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This optional function performs any BL2 platform initialization
+required before image loading, that is not done later in
+bl2_platform_setup(). Specifically, if support for multiple
+boot sources is required, it initializes the boot sequence used by
+plat_try_next_boot_source().
+
+Function : plat_try_next_boot_source() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : int
+
+This optional function passes to the next boot source in the redundancy
+sequence.
+
+This function moves the current boot redundancy source to the next
+element in the boot sequence. If there are no more boot sources then it
+must return 0, otherwise it must return 1. The default implementation
+of this always returns 0.
+
+Function : bl2_plat_mboot_init() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+When the MEASURED_BOOT flag is enabled:
+
+- This function is used to initialize the backend driver(s) of measured boot.
+- On the Arm FVP port, this function is used to initialize the Event Log
+ backend driver with the Event Log buffer information (base address and
+ size) received from BL1. It results in panic on error.
+
+When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
+
+Function : bl2_plat_mboot_finish() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+When the MEASURED_BOOT flag is enabled:
+
+- This function is used to finalize the measured boot backend driver(s),
+ and also, set the information for the next bootloader component to extend
+ the measurement if needed.
+- On the Arm FVP port, this function is used to pass the Event Log buffer
+ information (base address and size) to non-secure(BL33) and trusted OS(BL32)
+ via nt_fw and tos_fw config respectively. It results in panic on error.
+
+When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
+
+Boot Loader Stage 2 (BL2) at EL3
+--------------------------------
+
+When the platform has a non-TF-A Boot ROM it is desirable to jump
+directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
+execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
+document for more information.
+
+All mandatory functions of BL2 must be implemented, except the functions
+bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
+their work is done now by bl2_el3_early_platform_setup and
+bl2_el3_plat_arch_setup. These functions should generally implement
+the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
+
+
+Function : bl2_el3_early_platform_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : u_register_t, u_register_t, u_register_t, u_register_t
+ Return : void
+
+This function executes with the MMU and data caches disabled. It is only called
+by the primary CPU. This function receives four parameters which can be used
+by the platform to pass any needed information from the Boot ROM to BL2.
+
+On Arm standard platforms, this function does the following:
+
+- Initializes a UART (PL011 console), which enables access to the ``printf``
+ family of functions in BL2.
+
+- Initializes the storage abstraction layer used to load further bootloader
+ images. It is necessary to do this early on platforms with a SCP_BL2 image,
+ since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
+
+- Initializes the private variables that define the memory layout used.
+
+Function : bl2_el3_plat_arch_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function executes with the MMU and data caches disabled. It is only called
+by the primary CPU.
+
+The purpose of this function is to perform any architectural initialization
+that varies across platforms.
+
+On Arm standard platforms, this function enables the MMU.
+
+Function : bl2_el3_plat_prepare_exit() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function is called prior to exiting BL2 and run the next image.
+It should be used to perform platform specific clean up or bookkeeping
+operations before transferring control to the next image. This function
+runs with MMU disabled.
+
+FWU Boot Loader Stage 2 (BL2U)
+------------------------------
+
+The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
+process and is executed only by the primary CPU. BL1 passes control to BL2U at
+``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
+
+#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
+ memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
+ ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
+ should be copied from. Subsequent handling of the SCP_BL2U image is
+ implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
+ If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
+
+#. Any platform specific setup required to perform the FWU process. For
+ example, Arm standard platforms initialize the TZC controller so that the
+ normal world can access DDR memory.
+
+The following functions must be implemented by the platform port to enable
+BL2U to perform the tasks mentioned above.
+
+Function : bl2u_early_platform_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : meminfo *mem_info, void *plat_info
+ Return : void
+
+This function executes with the MMU and data caches disabled. It is only
+called by the primary CPU. The arguments to this function is the address
+of the ``meminfo`` structure and platform specific info provided by BL1.
+
+The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
+private storage as the original memory may be subsequently overwritten by BL2U.
+
+On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
+to extract SCP_BL2U image information, which is then copied into a private
+variable.
+
+Function : bl2u_plat_arch_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function executes with the MMU and data caches disabled. It is only
+called by the primary CPU.
+
+The purpose of this function is to perform any architectural initialization
+that varies across platforms, for example enabling the MMU (since the memory
+map differs across platforms).
+
+Function : bl2u_platform_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function may execute with the MMU and data caches enabled if the platform
+port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
+called by the primary CPU.
+
+The purpose of this function is to perform any platform initialization
+specific to BL2U.
+
+In Arm standard platforms, this function performs security setup, including
+configuration of the TrustZone controller to allow non-secure masters access
+to most of DRAM. Part of DRAM is reserved for secure world use.
+
+Function : bl2u_plat_handle_scp_bl2u() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : int
+
+This function is used to perform any platform-specific actions required to
+handle the SCP firmware. Typically it transfers the image into SCP memory using
+a platform-specific protocol and waits until SCP executes it and signals to the
+Application Processor (AP) for BL2U execution to continue.
+
+This function returns 0 on success, a negative error code otherwise.
+This function is included if SCP_BL2U_BASE is defined.
+
+Boot Loader Stage 3-1 (BL31)
+----------------------------
+
+During cold boot, the BL31 stage is executed only by the primary CPU. This is
+determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
+control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
+CPUs. BL31 executes at EL3 and is responsible for:
+
+#. Re-initializing all architectural and platform state. Although BL1 performs
+ some of this initialization, BL31 remains resident in EL3 and must ensure
+ that EL3 architectural and platform state is completely initialized. It
+ should make no assumptions about the system state when it receives control.
+
+#. Passing control to a normal world BL image, pre-loaded at a platform-
+ specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
+ populated by BL2 in memory to do this.
+
+#. Providing runtime firmware services. Currently, BL31 only implements a
+ subset of the Power State Coordination Interface (PSCI) API as a runtime
+ service. See Section 3.3 below for details of porting the PSCI
+ implementation.
+
+#. Optionally passing control to the BL32 image, pre-loaded at a platform-
+ specific address by BL2. BL31 exports a set of APIs that allow runtime
+ services to specify the security state in which the next image should be
+ executed and run the corresponding image. On ARM platforms, BL31 uses the
+ ``bl_params`` list populated by BL2 in memory to do this.
+
+If BL31 is a reset vector, It also needs to handle the reset as specified in
+section 2.2 before the tasks described above.
+
+The following functions must be implemented by the platform port to enable BL31
+to perform the above tasks.
+
+Function : bl31_early_platform_setup2() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : u_register_t, u_register_t, u_register_t, u_register_t
+ Return : void
+
+This function executes with the MMU and data caches disabled. It is only called
+by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
+platform specific.
+
+In Arm standard platforms, the arguments received are :
+
+ arg0 - The pointer to the head of `bl_params_t` list
+ which is list of executable images following BL31,
+
+ arg1 - Points to load address of SOC_FW_CONFIG if present
+ except in case of Arm FVP and Juno platform.
+
+ In case of Arm FVP and Juno platform, points to load address
+ of FW_CONFIG.
+
+ arg2 - Points to load address of HW_CONFIG if present
+
+ arg3 - A special value to verify platform parameters from BL2 to BL31. Not
+ used in release builds.
+
+The function runs through the `bl_param_t` list and extracts the entry point
+information for BL32 and BL33. It also performs the following:
+
+- Initialize a UART (PL011 console), which enables access to the ``printf``
+ family of functions in BL31.
+
+- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
+ CCI slave interface corresponding to the cluster that includes the primary
+ CPU.
+
+Function : bl31_plat_arch_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function executes with the MMU and data caches disabled. It is only called
+by the primary CPU.
+
+The purpose of this function is to perform any architectural initialization
+that varies across platforms.
+
+On Arm standard platforms, this function enables the MMU.
+
+Function : bl31_platform_setup() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This function may execute with the MMU and data caches enabled if the platform
+port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
+called by the primary CPU.
+
+The purpose of this function is to complete platform initialization so that both
+BL31 runtime services and normal world software can function correctly.
+
+On Arm standard platforms, this function does the following:
+
+- Initialize the generic interrupt controller.
+
+ Depending on the GIC driver selected by the platform, the appropriate GICv2
+ or GICv3 initialization will be done, which mainly consists of:
+
+ - Enable secure interrupts in the GIC CPU interface.
+ - Disable the legacy interrupt bypass mechanism.
+ - Configure the priority mask register to allow interrupts of all priorities
+ to be signaled to the CPU interface.
+ - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
+ - Target all secure SPIs to CPU0.
+ - Enable these secure interrupts in the GIC distributor.
+ - Configure all other interrupts as non-secure.
+ - Enable signaling of secure interrupts in the GIC distributor.
+
+- Enable system-level implementation of the generic timer counter through the
+ memory mapped interface.
+
+- Grant access to the system counter timer module
+
+- Initialize the power controller device.
+
+ In particular, initialise the locks that prevent concurrent accesses to the
+ power controller device.
+
+Function : bl31_plat_runtime_setup() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+The purpose of this function is allow the platform to perform any BL31 runtime
+setup just prior to BL31 exit during cold boot. The default weak
+implementation of this function will invoke ``console_switch_state()`` to switch
+console output to consoles marked for use in the ``runtime`` state.
+
+Function : bl31_plat_get_next_image_ep_info() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uint32_t
+ Return : entry_point_info *
+
+This function may execute with the MMU and data caches enabled if the platform
+port does the necessary initializations in ``bl31_plat_arch_setup()``.
+
+This function is called by ``bl31_main()`` to retrieve information provided by
+BL2 for the next image in the security state specified by the argument. BL31
+uses this information to pass control to that image in the specified security
+state. This function must return a pointer to the ``entry_point_info`` structure
+(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
+should return NULL otherwise.
+
+Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uintptr_t, size_t *, uintptr_t, size_t
+ Return : int
+
+This function returns the Platform attestation token.
+
+The parameters of the function are:
+
+ arg0 - A pointer to the buffer where the Platform token should be copied by
+ this function. The buffer must be big enough to hold the Platform
+ token.
+
+ arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
+ function returns the platform token length in this parameter.
+
+ arg2 - A pointer to the buffer where the challenge object is stored.
+
+ arg3 - The length of the challenge object in bytes. Possible values are 32,
+ 48 and 64.
+
+The function returns 0 on success, -EINVAL on failure.
+
+Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uintptr_t, size_t *, unsigned int
+ Return : int
+
+This function returns the delegated realm attestation key which will be used to
+sign Realm attestation token. The API currently only supports P-384 ECC curve
+key.
+
+The parameters of the function are:
+
+ arg0 - A pointer to the buffer where the attestation key should be copied
+ by this function. The buffer must be big enough to hold the
+ attestation key.
+
+ arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
+ function returns the attestation key length in this parameter.
+
+ arg2 - The type of the elliptic curve to which the requested attestation key
+ belongs.
+
+The function returns 0 on success, -EINVAL on failure.
+
+Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uintptr_t *
+ Return : size_t
+
+This function returns the size of the shared area between EL3 and RMM (or 0 on
+failure). A pointer to the shared area (or a NULL pointer on failure) is stored
+in the pointer passed as argument.
+
+Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Arguments : rmm_manifest_t *manifest
+ Return : int
+
+When ENABLE_RME is enabled, this function populates a boot manifest for the
+RMM image and stores it in the area specified by manifest.
+
+When ENABLE_RME is disabled, this function is not used.
+
+Function : bl31_plat_enable_mmu [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uint32_t
+ Return : void
+
+This function enables the MMU. The boot code calls this function with MMU and
+caches disabled. This function should program necessary registers to enable
+translation, and upon return, the MMU on the calling PE must be enabled.
+
+The function must honor flags passed in the first argument. These flags are
+defined by the translation library, and can be found in the file
+``include/lib/xlat_tables/xlat_mmu_helpers.h``.
+
+On DynamIQ systems, this function must not use stack while enabling MMU, which
+is how the function in xlat table library version 2 is implemented.
+
+Function : plat_init_apkey [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint128_t
+
+This function returns the 128-bit value which can be used to program ARMv8.3
+pointer authentication keys.
+
+The value should be obtained from a reliable source of randomness.
+
+This function is only needed if ARMv8.3 pointer authentication is used in the
+Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
+
+Function : plat_get_syscnt_freq2() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : unsigned int
+
+This function is used by the architecture setup code to retrieve the counter
+frequency for the CPU's generic timer. This value will be programmed into the
+``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
+of the system counter, which is retrieved from the first entry in the frequency
+modes table.
+
+#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
+bytes) aligned to the cache line boundary that should be allocated per-cpu to
+accommodate all the bakery locks.
+
+If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
+calculates the size of the ``bakery_lock`` input section, aligns it to the
+nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
+and stores the result in a linker symbol. This constant prevents a platform
+from relying on the linker and provide a more efficient mechanism for
+accessing per-cpu bakery lock information.
+
+If this constant is defined and its value is not equal to the value
+calculated by the linker then a link time assertion is raised. A compile time
+assertion is raised if the value of the constant is not aligned to the cache
+line boundary.
+
+.. _porting_guide_sdei_requirements:
+
+SDEI porting requirements
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The |SDEI| dispatcher requires the platform to provide the following macros
+and functions, of which some are optional, and some others mandatory.
+
+Macros
+......
+
+Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This macro must be defined to the EL3 exception priority level associated with
+Normal |SDEI| events on the platform. This must have a higher value
+(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
+
+Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This macro must be defined to the EL3 exception priority level associated with
+Critical |SDEI| events on the platform. This must have a lower value
+(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
+
+**Note**: |SDEI| exception priorities must be the lowest among Secure
+priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
+be higher than Normal |SDEI| priority.
+
+Functions
+.........
+
+Function: int plat_sdei_validate_entry_point() [optional]
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+::
+
+ Argument: uintptr_t ep, unsigned int client_mode
+ Return: int
+
+This function validates the entry point address of the event handler provided by
+the client for both event registration and *Complete and Resume* |SDEI| calls.
+The function ensures that the address is valid in the client translation regime.
+
+The second argument is the exception level that the client is executing in. It
+can be Non-Secure EL1 or Non-Secure EL2.
+
+The function must return ``0`` for successful validation, or ``-1`` upon failure.
+
+The default implementation always returns ``0``. On Arm platforms, this function
+translates the entry point address within the client translation regime and
+further ensures that the resulting physical address is located in Non-secure
+DRAM.
+
+Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+::
+
+ Argument: uint64_t
+ Argument: unsigned int
+ Return: void
+
+|SDEI| specification requires that a PE comes out of reset with the events
+masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
+|SDEI| events on the PE. No |SDEI| events can be dispatched until such
+time.
+
+Should a PE receive an interrupt that was bound to an |SDEI| event while the
+events are masked on the PE, the dispatcher implementation invokes the function
+``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
+interrupt and the interrupt ID are passed as parameters.
+
+The default implementation only prints out a warning message.
+
+.. _porting_guide_trng_requirements:
+
+TRNG porting requirements
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The |TRNG| backend requires the platform to provide the following values
+and mandatory functions.
+
+Values
+......
+
+value: uuid_t plat_trng_uuid [mandatory]
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This value must be defined to the UUID of the TRNG backend that is specific to
+the hardware after ``plat_entropy_setup`` function is called. This value must
+conform to the SMCCC calling convention; The most significant 32 bits of the
+UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
+w0 indicates failure to get a TRNG source.
+
+Functions
+.........
+
+Function: void plat_entropy_setup(void) [mandatory]
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+::
+
+ Argument: none
+ Return: none
+
+This function is expected to do platform-specific initialization of any TRNG
+hardware. This may include generating a UUID from a hardware-specific seed.
+
+Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+::
+
+ Argument: uint64_t *
+ Return: bool
+ Out : when the return value is true, the entropy has been written into the
+ storage pointed to
+
+This function writes entropy into storage provided by the caller. If no entropy
+is available, it must return false and the storage must not be written.
+
+Power State Coordination Interface (in BL31)
+--------------------------------------------
+
+The TF-A implementation of the PSCI API is based around the concept of a
+*power domain*. A *power domain* is a CPU or a logical group of CPUs which
+share some state on which power management operations can be performed as
+specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
+a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
+*power domains* are arranged in a hierarchical tree structure and each
+*power domain* can be identified in a system by the cpu index of any CPU that
+is part of that domain and a *power domain level*. A processing element (for
+example, a CPU) is at level 0. If the *power domain* node above a CPU is a
+logical grouping of CPUs that share some state, then level 1 is that group of
+CPUs (for example, a cluster), and level 2 is a group of clusters (for
+example, the system). More details on the power domain topology and its
+organization can be found in :ref:`PSCI Power Domain Tree Structure`.
+
+BL31's platform initialization code exports a pointer to the platform-specific
+power management operations required for the PSCI implementation to function
+correctly. This information is populated in the ``plat_psci_ops`` structure. The
+PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
+power management operations on the power domains. For example, the target
+CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
+handler (if present) is called for the CPU power domain.
+
+The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
+describe composite power states specific to a platform. The PSCI implementation
+defines a generic representation of the power-state parameter, which is an
+array of local power states where each index corresponds to a power domain
+level. Each entry contains the local power state the power domain at that power
+level could enter. It depends on the ``validate_power_state()`` handler to
+convert the power-state parameter (possibly encoding a composite power state)
+passed in a PSCI ``CPU_SUSPEND`` call to this representation.
+
+The following functions form part of platform port of PSCI functionality.
+
+Function : plat_psci_stat_accounting_start() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : const psci_power_state_t *
+ Return : void
+
+This is an optional hook that platforms can implement for residency statistics
+accounting before entering a low power state. The ``pwr_domain_state`` field of
+``state_info`` (first argument) can be inspected if stat accounting is done
+differently at CPU level versus higher levels. As an example, if the element at
+index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
+state, special hardware logic may be programmed in order to keep track of the
+residency statistics. For higher levels (array indices > 0), the residency
+statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
+default implementation will use PMF to capture timestamps.
+
+Function : plat_psci_stat_accounting_stop() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : const psci_power_state_t *
+ Return : void
+
+This is an optional hook that platforms can implement for residency statistics
+accounting after exiting from a low power state. The ``pwr_domain_state`` field
+of ``state_info`` (first argument) can be inspected if stat accounting is done
+differently at CPU level versus higher levels. As an example, if the element at
+index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
+state, special hardware logic may be programmed in order to keep track of the
+residency statistics. For higher levels (array indices > 0), the residency
+statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
+default implementation will use PMF to capture timestamps.
+
+Function : plat_psci_stat_get_residency() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int, const psci_power_state_t *, unsigned int
+ Return : u_register_t
+
+This is an optional interface that is is invoked after resuming from a low power
+state and provides the time spent resident in that low power state by the power
+domain at a particular power domain level. When a CPU wakes up from suspend,
+all its parent power domain levels are also woken up. The generic PSCI code
+invokes this function for each parent power domain that is resumed and it
+identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
+argument) describes the low power state that the power domain has resumed from.
+The current CPU is the first CPU in the power domain to resume from the low
+power state and the ``last_cpu_idx`` (third parameter) is the index of the last
+CPU in the power domain to suspend and may be needed to calculate the residency
+for that power domain.
+
+Function : plat_get_target_pwr_state() [optional]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : unsigned int, const plat_local_state_t *, unsigned int
+ Return : plat_local_state_t
+
+The PSCI generic code uses this function to let the platform participate in
+state coordination during a power management operation. The function is passed
+a pointer to an array of platform specific local power state ``states`` (second
+argument) which contains the requested power state for each CPU at a particular
+power domain level ``lvl`` (first argument) within the power domain. The function
+is expected to traverse this array of upto ``ncpus`` (third argument) and return
+a coordinated target power state by the comparing all the requested power
+states. The target power state should not be deeper than any of the requested
+power states.
+
+A weak definition of this API is provided by default wherein it assumes
+that the platform assigns a local state value in order of increasing depth
+of the power state i.e. for two power states X & Y, if X < Y
+then X represents a shallower power state than Y. As a result, the
+coordinated target local power state for a power domain will be the minimum
+of the requested local power state values.
+
+Function : plat_get_power_domain_tree_desc() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : const unsigned char *
+
+This function returns a pointer to the byte array containing the power domain
+topology tree description. The format and method to construct this array are
+described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
+initialization code requires this array to be described by the platform, either
+statically or dynamically, to initialize the power domain topology tree. In case
+the array is populated dynamically, then plat_core_pos_by_mpidr() and
+plat_my_core_pos() should also be implemented suitably so that the topology tree
+description matches the CPU indices returned by these APIs. These APIs together
+form the platform interface for the PSCI topology framework.
+
+Function : plat_setup_psci_ops() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uintptr_t, const plat_psci_ops **
+ Return : int
+
+This function may execute with the MMU and data caches enabled if the platform
+port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
+called by the primary CPU.
+
+This function is called by PSCI initialization code. Its purpose is to let
+the platform layer know about the warm boot entrypoint through the
+``sec_entrypoint`` (first argument) and to export handler routines for
+platform-specific psci power management actions by populating the passed
+pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
+
+A description of each member of this structure is given below. Please refer to
+the Arm FVP specific implementation of these handlers in
+``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
+platform wants to support, the associated operation or operations in this
+structure must be provided and implemented (Refer section 4 of
+:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
+function in a platform port, the operation should be removed from this
+structure instead of providing an empty implementation.
+
+plat_psci_ops.cpu_standby()
+...........................
+
+Perform the platform-specific actions to enter the standby state for a cpu
+indicated by the passed argument. This provides a fast path for CPU standby
+wherein overheads of PSCI state management and lock acquisition is avoided.
+For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
+the suspend state type specified in the ``power-state`` parameter should be
+STANDBY and the target power domain level specified should be the CPU. The
+handler should put the CPU into a low power retention state (usually by
+issuing a wfi instruction) and ensure that it can be woken up from that
+state by a normal interrupt. The generic code expects the handler to succeed.
+
+plat_psci_ops.pwr_domain_on()
+.............................
+
+Perform the platform specific actions to power on a CPU, specified
+by the ``MPIDR`` (first argument). The generic code expects the platform to
+return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
+
+plat_psci_ops.pwr_domain_off()
+..............................
+
+Perform the platform specific actions to prepare to power off the calling CPU
+and its higher parent power domain levels as indicated by the ``target_state``
+(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
+
+The ``target_state`` encodes the platform coordinated target local power states
+for the CPU power domain and its parent power domain levels. The handler
+needs to perform power management operation corresponding to the local state
+at each power level.
+
+For this handler, the local power state for the CPU power domain will be a
+power down state where as it could be either power down, retention or run state
+for the higher power domain levels depending on the result of state
+coordination. The generic code expects the handler to succeed.
+
+plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
+...........................................................
+
+This optional function may be used as a performance optimization to replace
+or complement pwr_domain_suspend() on some platforms. Its calling semantics
+are identical to pwr_domain_suspend(), except the PSCI implementation only
+calls this function when suspending to a power down state, and it guarantees
+that data caches are enabled.
+
+When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
+before calling pwr_domain_suspend(). If the target_state corresponds to a
+power down state and it is safe to perform some or all of the platform
+specific actions in that function with data caches enabled, it may be more
+efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
+= 1, data caches remain enabled throughout, and so there is no advantage to
+moving platform specific actions to this function.
+
+plat_psci_ops.pwr_domain_suspend()
+..................................
+
+Perform the platform specific actions to prepare to suspend the calling
+CPU and its higher parent power domain levels as indicated by the
+``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
+API implementation.
+
+The ``target_state`` has a similar meaning as described in
+the ``pwr_domain_off()`` operation. It encodes the platform coordinated
+target local power states for the CPU power domain and its parent
+power domain levels. The handler needs to perform power management operation
+corresponding to the local state at each power level. The generic code
+expects the handler to succeed.
+
+The difference between turning a power domain off versus suspending it is that
+in the former case, the power domain is expected to re-initialize its state
+when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
+case, the power domain is expected to save enough state so that it can resume
+execution by restoring this state when its powered on (see
+``pwr_domain_suspend_finish()``).
+
+When suspending a core, the platform can also choose to power off the GICv3
+Redistributor and ITS through an implementation-defined sequence. To achieve
+this safely, the ITS context must be saved first. The architectural part is
+implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
+sequence is implementation defined and it is therefore the responsibility of
+the platform code to implement the necessary sequence. Then the GIC
+Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
+Powering off the Redistributor requires the implementation to support it and it
+is the responsibility of the platform code to execute the right implementation
+defined sequence.
+
+When a system suspend is requested, the platform can also make use of the
+``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
+it has saved the context of the Redistributors and ITS of all the cores in the
+system. The context of the Distributor can be large and may require it to be
+allocated in a special area if it cannot fit in the platform's global static
+data, for example in DRAM. The Distributor can then be powered down using an
+implementation-defined sequence.
+
+plat_psci_ops.pwr_domain_pwr_down_wfi()
+.......................................
+
+This is an optional function and, if implemented, is expected to perform
+platform specific actions including the ``wfi`` invocation which allows the
+CPU to powerdown. Since this function is invoked outside the PSCI locks,
+the actions performed in this hook must be local to the CPU or the platform
+must ensure that races between multiple CPUs cannot occur.
+
+The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
+operation and it encodes the platform coordinated target local power states for
+the CPU power domain and its parent power domain levels. This function must
+not return back to the caller (by calling wfi in an infinite loop to ensure
+some CPUs power down mitigations work properly).
+
+If this function is not implemented by the platform, PSCI generic
+implementation invokes ``psci_power_down_wfi()`` for power down.
+
+plat_psci_ops.pwr_domain_on_finish()
+....................................
+
+This function is called by the PSCI implementation after the calling CPU is
+powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
+It performs the platform-specific setup required to initialize enough state for
+this CPU to enter the normal world and also provide secure runtime firmware
+services.
+
+The ``target_state`` (first argument) is the prior state of the power domains
+immediately before the CPU was turned on. It indicates which power domains
+above the CPU might require initialization due to having previously been in
+low power states. The generic code expects the handler to succeed.
+
+plat_psci_ops.pwr_domain_on_finish_late() [optional]
+...........................................................
+
+This optional function is called by the PSCI implementation after the calling
+CPU is fully powered on with respective data caches enabled. The calling CPU and
+the associated cluster are guaranteed to be participating in coherency. This
+function gives the flexibility to perform any platform-specific actions safely,
+such as initialization or modification of shared data structures, without the
+overhead of explicit cache maintainace operations.
+
+The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
+operation. The generic code expects the handler to succeed.
+
+plat_psci_ops.pwr_domain_suspend_finish()
+.........................................
+
+This function is called by the PSCI implementation after the calling CPU is
+powered on and released from reset in response to an asynchronous wakeup
+event, for example a timer interrupt that was programmed by the CPU during the
+``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
+setup required to restore the saved state for this CPU to resume execution
+in the normal world and also provide secure runtime firmware services.
+
+The ``target_state`` (first argument) has a similar meaning as described in
+the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
+to succeed.
+
+If the Distributor, Redistributors or ITS have been powered off as part of a
+suspend, their context must be restored in this function in the reverse order
+to how they were saved during suspend sequence.
+
+plat_psci_ops.system_off()
+..........................
+
+This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
+call. It performs the platform-specific system poweroff sequence after
+notifying the Secure Payload Dispatcher.
+
+plat_psci_ops.system_reset()
+............................
+
+This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
+call. It performs the platform-specific system reset sequence after
+notifying the Secure Payload Dispatcher.
+
+plat_psci_ops.validate_power_state()
+....................................
+
+This function is called by the PSCI implementation during the ``CPU_SUSPEND``
+call to validate the ``power_state`` parameter of the PSCI API and if valid,
+populate it in ``req_state`` (second argument) array as power domain level
+specific local states. If the ``power_state`` is invalid, the platform must
+return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
+normal world PSCI client.
+
+plat_psci_ops.validate_ns_entrypoint()
+......................................
+
+This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
+``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
+parameter passed by the normal world. If the ``entry_point`` is invalid,
+the platform must return PSCI_E_INVALID_ADDRESS as error, which is
+propagated back to the normal world PSCI client.
+
+plat_psci_ops.get_sys_suspend_power_state()
+...........................................
+
+This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
+call to get the ``req_state`` parameter from platform which encodes the power
+domain level specific local states to suspend to system affinity level. The
+``req_state`` will be utilized to do the PSCI state coordination and
+``pwr_domain_suspend()`` will be invoked with the coordinated target state to
+enter system suspend.
+
+plat_psci_ops.get_pwr_lvl_state_idx()
+.....................................
+
+This is an optional function and, if implemented, is invoked by the PSCI
+implementation to convert the ``local_state`` (first argument) at a specified
+``pwr_lvl`` (second argument) to an index between 0 and
+``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
+supports more than two local power states at each power domain level, that is
+``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
+local power states.
+
+plat_psci_ops.translate_power_state_by_mpidr()
+..............................................
+
+This is an optional function and, if implemented, verifies the ``power_state``
+(second argument) parameter of the PSCI API corresponding to a target power
+domain. The target power domain is identified by using both ``MPIDR`` (first
+argument) and the power domain level encoded in ``power_state``. The power domain
+level specific local states are to be extracted from ``power_state`` and be
+populated in the ``output_state`` (third argument) array. The functionality
+is similar to the ``validate_power_state`` function described above and is
+envisaged to be used in case the validity of ``power_state`` depend on the
+targeted power domain. If the ``power_state`` is invalid for the targeted power
+domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
+function is not implemented, then the generic implementation relies on
+``validate_power_state`` function to translate the ``power_state``.
+
+This function can also be used in case the platform wants to support local
+power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
+APIs as described in Section 5.18 of `PSCI`_.
+
+plat_psci_ops.get_node_hw_state()
+.................................
+
+This is an optional function. If implemented this function is intended to return
+the power state of a node (identified by the first parameter, the ``MPIDR``) in
+the power domain topology (identified by the second parameter, ``power_level``),
+as retrieved from a power controller or equivalent component on the platform.
+Upon successful completion, the implementation must map and return the final
+status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
+must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
+appropriate.
+
+Implementations are not expected to handle ``power_levels`` greater than
+``PLAT_MAX_PWR_LVL``.
+
+plat_psci_ops.system_reset2()
+.............................
+
+This is an optional function. If implemented this function is
+called during the ``SYSTEM_RESET2`` call to perform a reset
+based on the first parameter ``reset_type`` as specified in
+`PSCI`_. The parameter ``cookie`` can be used to pass additional
+reset information. If the ``reset_type`` is not supported, the
+function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
+resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
+and vendor reset can return other PSCI error codes as defined
+in `PSCI`_. On success this function will not return.
+
+plat_psci_ops.write_mem_protect()
+.................................
+
+This is an optional function. If implemented it enables or disables the
+``MEM_PROTECT`` functionality based on the value of ``val``.
+A non-zero value enables ``MEM_PROTECT`` and a value of zero
+disables it. Upon encountering failures it must return a negative value
+and on success it must return 0.
+
+plat_psci_ops.read_mem_protect()
+................................
+
+This is an optional function. If implemented it returns the current
+state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
+failures it must return a negative value and on success it must
+return 0.
+
+plat_psci_ops.mem_protect_chk()
+...............................
+
+This is an optional function. If implemented it checks if a memory
+region defined by a base address ``base`` and with a size of ``length``
+bytes is protected by ``MEM_PROTECT``. If the region is protected
+then it must return 0, otherwise it must return a negative number.
+
+.. _porting_guide_imf_in_bl31:
+
+Interrupt Management framework (in BL31)
+----------------------------------------
+
+BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
+generated in either security state and targeted to EL1 or EL2 in the non-secure
+state or EL3/S-EL1 in the secure state. The design of this framework is
+described in the :ref:`Interrupt Management Framework`
+
+A platform should export the following APIs to support the IMF. The following
+text briefly describes each API and its implementation in Arm standard
+platforms. The API implementation depends upon the type of interrupt controller
+present in the platform. Arm standard platform layer supports both
+`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
+and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
+FVP can be configured to use either GICv2 or GICv3 depending on the build flag
+``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
+details).
+
+See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
+
+Function : plat_interrupt_type_to_line() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uint32_t, uint32_t
+ Return : uint32_t
+
+The Arm processor signals an interrupt exception either through the IRQ or FIQ
+interrupt line. The specific line that is signaled depends on how the interrupt
+controller (IC) reports different interrupt types from an execution context in
+either security state. The IMF uses this API to determine which interrupt line
+the platform IC uses to signal each type of interrupt supported by the framework
+from a given security state. This API must be invoked at EL3.
+
+The first parameter will be one of the ``INTR_TYPE_*`` values (see
+:ref:`Interrupt Management Framework`) indicating the target type of the
+interrupt, the second parameter is the security state of the originating
+execution context. The return result is the bit position in the ``SCR_EL3``
+register of the respective interrupt trap: IRQ=1, FIQ=2.
+
+In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
+configured as FIQs and Non-secure interrupts as IRQs from either security
+state.
+
+In the case of Arm standard platforms using GICv3, the interrupt line to be
+configured depends on the security state of the execution context when the
+interrupt is signalled and are as follows:
+
+- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
+ NS-EL0/1/2 context.
+- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
+ in the NS-EL0/1/2 context.
+- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
+ context.
+
+Function : plat_ic_get_pending_interrupt_type() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint32_t
+
+This API returns the type of the highest priority pending interrupt at the
+platform IC. The IMF uses the interrupt type to retrieve the corresponding
+handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
+pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
+``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
+
+In the case of Arm standard platforms using GICv2, the *Highest Priority
+Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
+the pending interrupt. The type of interrupt depends upon the id value as
+follows.
+
+#. id < 1022 is reported as a S-EL1 interrupt
+#. id = 1022 is reported as a Non-secure interrupt.
+#. id = 1023 is reported as an invalid interrupt type.
+
+In the case of Arm standard platforms using GICv3, the system register
+``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
+is read to determine the id of the pending interrupt. The type of interrupt
+depends upon the id value as follows.
+
+#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
+#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
+#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
+#. All other interrupt id's are reported as EL3 interrupt.
+
+Function : plat_ic_get_pending_interrupt_id() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint32_t
+
+This API returns the id of the highest priority pending interrupt at the
+platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
+pending.
+
+In the case of Arm standard platforms using GICv2, the *Highest Priority
+Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
+pending interrupt. The id that is returned by API depends upon the value of
+the id read from the interrupt controller as follows.
+
+#. id < 1022. id is returned as is.
+#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
+ (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
+ This id is returned by the API.
+#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
+
+In the case of Arm standard platforms using GICv3, if the API is invoked from
+EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
+group 0 Register*, is read to determine the id of the pending interrupt. The id
+that is returned by API depends upon the value of the id read from the
+interrupt controller as follows.
+
+#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
+#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
+ register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
+ Register* is read to determine the id of the group 1 interrupt. This id
+ is returned by the API as long as it is a valid interrupt id
+#. If the id is any of the special interrupt identifiers,
+ ``INTR_ID_UNAVAILABLE`` is returned.
+
+When the API invoked from S-EL1 for GICv3 systems, the id read from system
+register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
+Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
+``INTR_ID_UNAVAILABLE`` is returned.
+
+Function : plat_ic_acknowledge_interrupt() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : uint32_t
+
+This API is used by the CPU to indicate to the platform IC that processing of
+the highest pending interrupt has begun. It should return the raw, unmodified
+value obtained from the interrupt controller when acknowledging an interrupt.
+The actual interrupt number shall be extracted from this raw value using the API
+`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
+
+This function in Arm standard platforms using GICv2, reads the *Interrupt
+Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
+priority pending interrupt from pending to active in the interrupt controller.
+It returns the value read from the ``GICC_IAR``, unmodified.
+
+In the case of Arm standard platforms using GICv3, if the API is invoked
+from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
+Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
+reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
+group 1*. The read changes the state of the highest pending interrupt from
+pending to active in the interrupt controller. The value read is returned
+unmodified.
+
+The TSP uses this API to start processing of the secure physical timer
+interrupt.
+
+Function : plat_ic_end_of_interrupt() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uint32_t
+ Return : void
+
+This API is used by the CPU to indicate to the platform IC that processing of
+the interrupt corresponding to the id (passed as the parameter) has
+finished. The id should be the same as the id returned by the
+``plat_ic_acknowledge_interrupt()`` API.
+
+Arm standard platforms write the id to the *End of Interrupt Register*
+(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
+system register in case of GICv3 depending on where the API is invoked from,
+EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
+controller.
+
+The TSP uses this API to finish processing of the secure physical timer
+interrupt.
+
+Function : plat_ic_get_interrupt_type() [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : uint32_t
+ Return : uint32_t
+
+This API returns the type of the interrupt id passed as the parameter.
+``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
+interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
+returned depending upon how the interrupt has been configured by the platform
+IC. This API must be invoked at EL3.
+
+Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
+and Non-secure interrupts as Group1 interrupts. It reads the group value
+corresponding to the interrupt id from the relevant *Interrupt Group Register*
+(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
+
+In the case of Arm standard platforms using GICv3, both the *Interrupt Group
+Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
+(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
+as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
+
+Common helper functions
+-----------------------
+
+Function : do_panic()
+~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This API is called from assembly files when encountering a critical failure that
+cannot be recovered from. It also invokes elx_panic() which allows to report a
+crash from lower exception level. This function assumes that it is invoked from
+a C runtime environment i.e. valid stack exists. This call **must not** return.
+
+Function : panic()
+~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This API called from C files when encountering a critical failure that cannot
+be recovered from. This function in turn prints backtrace (if enabled) and calls
+do_panic(). This call **must not** return.
+
+Crash Reporting mechanism (in BL31)
+-----------------------------------
+
+BL31 implements a crash reporting mechanism which prints the various registers
+of the CPU to enable quick crash analysis and debugging. This mechanism relies
+on the platform implementing ``plat_crash_console_init``,
+``plat_crash_console_putc`` and ``plat_crash_console_flush``.
+
+The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
+implementation of all of them. Platforms may include this file to their
+makefiles in order to benefit from them. By default, they will cause the crash
+output to be routed over the normal console infrastructure and get printed on
+consoles configured to output in crash state. ``console_set_scope()`` can be
+used to control whether a console is used for crash output.
+
+.. note::
+ Platforms are responsible for making sure that they only mark consoles for
+ use in the crash scope that are able to support this, i.e. that are written
+ in assembly and conform with the register clobber rules for putc()
+ (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
+
+In some cases (such as debugging very early crashes that happen before the
+normal boot console can be set up), platforms may want to control crash output
+more explicitly. These platforms may instead provide custom implementations for
+these. They are executed outside of a C environment and without a stack. Many
+console drivers provide functions named ``console_xxx_core_init/putc/flush``
+that are designed to be used by these functions. See Arm platforms (like juno)
+for an example of this.
+
+Function : plat_crash_console_init [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : int
+
+This API is used by the crash reporting mechanism to initialize the crash
+console. It must only use the general purpose registers x0 through x7 to do the
+initialization and returns 1 on success.
+
+Function : plat_crash_console_putc [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : int
+ Return : int
+
+This API is used by the crash reporting mechanism to print a character on the
+designated crash console. It must only use general purpose registers x1 and
+x2 to do its work. The parameter and the return value are in general purpose
+register x0.
+
+Function : plat_crash_console_flush [mandatory]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : void
+ Return : void
+
+This API is used by the crash reporting mechanism to force write of all buffered
+data on the designated crash console. It should only use general purpose
+registers x0 through x5 to do its work.
+
+.. _External Abort handling and RAS Support:
+
+External Abort handling and RAS Support
+---------------------------------------
+
+Function : plat_ea_handler
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : int
+ Argument : uint64_t
+ Argument : void *
+ Argument : void *
+ Argument : uint64_t
+ Return : void
+
+This function is invoked by the RAS framework for the platform to handle an
+External Abort received at EL3. The intention of the function is to attempt to
+resolve the cause of External Abort and return; if that's not possible, to
+initiate orderly shutdown of the system.
+
+The first parameter (``int ea_reason``) indicates the reason for External Abort.
+Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
+
+The second parameter (``uint64_t syndrome``) is the respective syndrome
+presented to EL3 after having received the External Abort. Depending on the
+nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
+can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
+
+The third parameter (``void *cookie``) is unused for now. The fourth parameter
+(``void *handle``) is a pointer to the preempted context. The fifth parameter
+(``uint64_t flags``) indicates the preempted security state. These parameters
+are received from the top-level exception handler.
+
+If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
+function iterates through RAS handlers registered by the platform. If any of the
+RAS handlers resolve the External Abort, no further action is taken.
+
+If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
+could resolve the External Abort, the default implementation prints an error
+message, and panics.
+
+Function : plat_handle_uncontainable_ea
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : int
+ Argument : uint64_t
+ Return : void
+
+This function is invoked by the RAS framework when an External Abort of
+Uncontainable type is received at EL3. Due to the critical nature of
+Uncontainable errors, the intention of this function is to initiate orderly
+shutdown of the system, and is not expected to return.
+
+This function must be implemented in assembly.
+
+The first and second parameters are the same as that of ``plat_ea_handler``.
+
+The default implementation of this function calls
+``report_unhandled_exception``.
+
+Function : plat_handle_double_fault
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Argument : int
+ Argument : uint64_t
+ Return : void
+
+This function is invoked by the RAS framework when another External Abort is
+received at EL3 while one is already being handled. I.e., a call to
+``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
+this function is to initiate orderly shutdown of the system, and is not expected
+recover or return.
+
+This function must be implemented in assembly.
+
+The first and second parameters are the same as that of ``plat_ea_handler``.
+
+The default implementation of this function calls
+``report_unhandled_exception``.
+
+Function : plat_handle_el3_ea
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+::
+
+ Return : void
+
+This function is invoked when an External Abort is received while executing in
+EL3. Due to its critical nature, the intention of this function is to initiate
+orderly shutdown of the system, and is not expected recover or return.
+
+This function must be implemented in assembly.
+
+The default implementation of this function calls
+``report_unhandled_exception``.
+
+Build flags
+-----------
+
+There are some build flags which can be defined by the platform to control
+inclusion or exclusion of certain BL stages from the FIP image. These flags
+need to be defined in the platform makefile which will get included by the
+build system.
+
+- **NEED_BL33**
+ By default, this flag is defined ``yes`` by the build system and ``BL33``
+ build option should be supplied as a build option. The platform has the
+ option of excluding the BL33 image in the ``fip`` image by defining this flag
+ to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
+ are used, this flag will be set to ``no`` automatically.
+
+Platform include paths
+----------------------
+
+Platforms are allowed to add more include paths to be passed to the compiler.
+The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
+particular for the file ``platform_def.h``.
+
+Example:
+
+.. code:: c
+
+ PLAT_INCLUDES += -Iinclude/plat/myplat/include
+
+C Library
+---------
+
+To avoid subtle toolchain behavioral dependencies, the header files provided
+by the compiler are not used. The software is built with the ``-nostdinc`` flag
+to ensure no headers are included from the toolchain inadvertently. Instead the
+required headers are included in the TF-A source tree. The library only
+contains those C library definitions required by the local implementation. If
+more functionality is required, the needed library functions will need to be
+added to the local implementation.
+
+Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
+been written specifically for TF-A. Some implementation files have been obtained
+from `FreeBSD`_, others have been written specifically for TF-A as well. The
+files can be found in ``include/lib/libc`` and ``lib/libc``.
+
+SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
+can be obtained from http://github.com/freebsd/freebsd.
+
+Storage abstraction layer
+-------------------------
+
+In order to improve platform independence and portability a storage abstraction
+layer is used to load data from non-volatile platform storage. Currently
+storage access is only required by BL1 and BL2 phases and performed inside the
+``load_image()`` function in ``bl_common.c``.
+
+.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
+
+It is mandatory to implement at least one storage driver. For the Arm
+development platforms the Firmware Image Package (FIP) driver is provided as
+the default means to load data from storage (see :ref:`firmware_design_fip`).
+The storage layer is described in the header file
+``include/drivers/io/io_storage.h``. The implementation of the common library is
+in ``drivers/io/io_storage.c`` and the driver files are located in
+``drivers/io/``.
+
+.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
+
+Each IO driver must provide ``io_dev_*`` structures, as described in
+``drivers/io/io_driver.h``. These are returned via a mandatory registration
+function that is called on platform initialization. The semi-hosting driver
+implementation in ``io_semihosting.c`` can be used as an example.
+
+Each platform should register devices and their drivers via the storage
+abstraction layer. These drivers then need to be initialized by bootloader
+phases as required in their respective ``blx_platform_setup()`` functions.
+
+.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
+
+The storage abstraction layer provides mechanisms (``io_dev_init()``) to
+initialize storage devices before IO operations are called.
+
+.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
+
+The basic operations supported by the layer
+include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
+Drivers do not have to implement all operations, but each platform must
+provide at least one driver for a device capable of supporting generic
+operations such as loading a bootloader image.
+
+The current implementation only allows for known images to be loaded by the
+firmware. These images are specified by using their identifiers, as defined in
+``include/plat/common/common_def.h`` (or a separate header file included from
+there). The platform layer (``plat_get_image_source()``) then returns a reference
+to a device and a driver-specific ``spec`` which will be understood by the driver
+to allow access to the image data.
+
+The layer is designed in such a way that is it possible to chain drivers with
+other drivers. For example, file-system drivers may be implemented on top of
+physical block devices, both represented by IO devices with corresponding
+drivers. In such a case, the file-system "binding" with the block device may
+be deferred until the file-system device is initialised.
+
+The abstraction currently depends on structures being statically allocated
+by the drivers and callers, as the system does not yet provide a means of
+dynamically allocating memory. This may also have the affect of limiting the
+amount of open resources per driver.
+
+--------------
+
+*Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.*
+
+.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
+.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
+.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
+.. _FreeBSD: https://www.freebsd.org
+.. _SCC: http://www.simple-cc.org/
+.. _DRTM: https://developer.arm.com/documentation/den0113/a